
Les Cahiers du GERAD ISSN: 0711–2440

Learning to enumerate shifts for large-scale flexible per-
sonnel scheduling problems

F. Rastgar-Amini, C. Contardo, G. Desaulniers, M. Gasse

G–2022–29

July 2022

La collection Les Cahiers du GERAD est constituée des travaux de
recherche menés par nos membres. La plupart de ces documents de
travail a été soumis à des revues avec comité de révision. Lorsqu’un
document est accepté et publié, le pdf original est retiré si c’est
nécessaire et un lien vers l’article publié est ajouté.

Citation suggérée : F. Rastgar-Amini, C. Contardo, G. Desaulniers,
M. Gasse (Juillet 2022). Learning to enumerate shifts for large-scale
flexible personnel scheduling problems, Rapport technique, Les
Cahiers du GERAD G– 2022–29, GERAD, HEC Montréal, Canada.

Avant de citer ce rapport technique, veuillez visiter notre site Web
(https://www.gerad.ca/fr/papers/G-2022-29) afin de mettre à
jour vos données de référence, s’il a été publié dans une revue sci-
entifique.

The series Les Cahiers du GERAD consists of working papers
carried out by our members. Most of these pre-prints have been
submitted to peer-reviewed journals. When accepted and published,
if necessary, the original pdf is removed and a link to the published
article is added.

Suggested citation: F. Rastgar-Amini, C. Contardo, G. Desaulniers,
M. Gasse (July 2022). Learning to enumerate shifts for large-
scale flexible personnel scheduling problems, Technical report,
Les Cahiers du GERAD G–2022–29, GERAD, HEC Montréal, Canada.

Before citing this technical report, please visit our website (https:
//www.gerad.ca/en/papers/G-2022-29) to update your reference
data, if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grâce
au soutien de HEC Montréal, Polytechnique Montréal, Université
McGill, Université du Québec à Montréal, ainsi que du Fonds de
recherche du Québec – Nature et technologies.

Dépôt légal – Bibliothèque et Archives nationales du Québec, 2022
– Bibliothèque et Archives Canada, 2022

The publication of these research reports is made possible thanks
to the support of HEC Montréal, Polytechnique Montréal, McGill
University, Université du Québec à Montréal, as well as the Fonds de
recherche du Québec – Nature et technologies.

Legal deposit – Bibliothèque et Archives nationales du Québec, 2022
– Library and Archives Canada, 2022

GERAD HEC Montréal
3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2022-29
https://www.gerad.ca/en/papers/G-2022-29
https://www.gerad.ca/en/papers/G-2022-29

Learning to enumerate shifts for large-scale flexible per-
sonnel scheduling problems

Farin Rastgar-Amini a, b

Claudio Contardo a, c

Guy Desaulniers a, b

Maxime Gasse a, b, d

a GERAD, Montréal (Qc), Canada, H3T 1J4

b Department of Mathematics and Industrial Engi-
neering, Polytechnique Montréal, Montréal (Qc),
Canada, H3C 3A7

c Department of Mechanical, Industrial and
Aerospace Engineering, Concordia University,
Montréal (Qc), Canada, H3G 2W1

d CERC in Data Science for Real-Time Decision-
Making, Montréal (Qc), Canada, H3T 1J4

farin.rastgar-amini@polymtl.ca

claudio.contardo@concordia.ca

guy.desaulniers@gerad.ca

maxime.gasse@polymtl.ca

July 2022
Les Cahiers du GERAD
G–2022–29
Copyright © 2022 GERAD, Rastgar-Amini, Contardo, Desaulniers, Gasse

Les textes publiés dans la série des rapports de recherche Les Cahiers
du GERAD n’engagent que la responsabilité de leurs auteurs. Les
auteurs conservent leur droit d’auteur et leurs droits moraux sur leurs
publications et les utilisateurs s’engagent à reconnâıtre et respecter
les exigences légales associées à ces droits. Ainsi, les utilisateurs:

• Peuvent télécharger et imprimer une copie de toute publica-
tion du portail public aux fins d’étude ou de recherche privée;

• Ne peuvent pas distribuer le matériel ou l’utiliser pour une
activité à but lucratif ou pour un gain commercial;

• Peuvent distribuer gratuitement l’URL identifiant la publica-
tion.

Si vous pensez que ce document enfreint le droit d’auteur, contactez-
nous en fournissant des détails. Nous supprimerons immédiatement
l’accès au travail et enquêterons sur votre demande.

The authors are exclusively responsible for the content of their re-
search papers published in the series Les Cahiers du GERAD. Copy-
right and moral rights for the publications are retained by the authors
and the users must commit themselves to recognize and abide the
legal requirements associated with these rights. Thus, users:

• May download and print one copy of any publication from the
public portal for the purpose of private study or research;

• May not further distribute the material or use it for any profit-
making activity or commercial gain;

• May freely distribute the URL identifying the publication.
If you believe that this document breaches copyright please contact us
providing details, and we will remove access to the work immediately
and investigate your claim.

Les Cahiers du GERAD G–2022–29 ii

Abstract : Personnel scheduling consists in determining employee work schedules (sequences of work
shifts and days off) to cover the demands of multiple jobs over a planning horizon. We consider finding
a near-optimal set of personnel schedules via the solution of a generalized set-covering model with
side constraints in a flexible context where a large number of potential shifts can be considered as in
the retail industry. Commercial solvers applied to this model often require very long computational
times for practical problem sizes, and as such rely on enumeration heuristics for filtering non-promising
shifts/schedules and, thus, reducing the problem size. We propose deep learning-based heuristics to
drive the enumeration of promising potential shifts based on the information collected from previously
solved instances. Our models predict a subset of time points at which promising shifts are more likely
to either start or end, thus filtering out those that do not start nor end at those time points. Our
computational results on real-life instances show that personnel scheduling problems can be solved
considerably faster with an acceptable optimality gap if shifts are enumerated according to the time
points predicted by our models.

Keywords : Personnel scheduling, work shifts, set-covering model, machine learning, heuristic shift
enumeration

Acknowledgements: This work was funded by Kronos Canadian Systems (now part of UKG),
Prompt, and the Natural Sciences and Engineering Research Council (NSERC) of Canada under
grant # RDC 530544–18. C. Contardo thanks NSERC under Grant # 2020–06311. This financial
support is greatly appreciated. The authors are also grateful to the personnel of UKG for describing
the problem and providing datasets.

Les Cahiers du GERAD G–2022–29 1

1 Introduction

The process of employee scheduling focuses on planning the most cost-effective employee schedules

to fulfill the needs of one or multiple jobs over a planning horizon. Various organizations, including

hospitals, airlines, call centers, retailers, and others, deal with personnel scheduling problems. These

problems can vary according to the type of organization. In hospitals, for instance, employees serve

patients 24 hours a day and seven days a week while working in shifts of 8 hours or 12 hours. During

the week, shifts usually start at predetermined and fixed times (e.g., 7 a.m., 3 p.m., and 11 p.m.). In

this case, personnel scheduling is the task of finding the right number of employees for each shift so that

the demands (i.e. the required number of employees to fulfill the needs of the customers or patients)

can be met. In contrast, large retailers and service industries receive customers only during business

hours. Furthermore, the demand for employees can greatly fluctuate during the planning horizon and

even from one hour to the next. In such environments, shifts may begin and end at any time of the day

to obtain the least-cost schedules which employ, as much as possible, a minimum number of employees

at all times. Consequently, instead of considering only a very limited number of possible shifts for each

employee on each day (say, 3 or 5 like in nurse scheduling), a large number of potential shifts need to

be taken into account (say, more than 900 per day if a day spans from 7 a.m. to 10 p.m., shifts can

start and end at every quarter of an hour, and can last between 4 and 9 hours) and the demand is not

expressed for each shift but for each time period (say, for each 15-minute period of the horizon). This

high flexibility in shift start time and duration results in very complex problems that require efficient

algorithms to produce optimal or near-optimal schedules. In the following, we refer to these problems

as flexible personnel scheduling problems due to the flexibility offered by the numerous potential shifts.

In this research, we focus on flexible personnel scheduling problems in the service industry where

the schedules of the employees depend on the service load associated with the presence of customers.

Several problem variants are defined to address real-life problems in the retail and service industries.

In particular, the variants with multiple jobs can be divided into two categories: with mono-job shifts

and with multi-job shifts. In a mono-job shift, the employee is assigned to a single job for the whole

shift duration, while multi-job shifts allow changing jobs once or multiple times within the same shift.

Also, the problems may include different levels of complexity of days-off rules. For example, in some

contexts, just a minimum number of days off assigned each week to each employee is sufficient while,

in others where a one-month planning horizon is considered, days-off patterns with strict rules on the

number of consecutive workdays or days off must be respected.

In this paper, we consider multiple jobs, mono-job shifts, and a one-week horizon with a minimum
number of days off to be assigned to each employee. We model the corresponding flexible personnel

scheduling problem as a generalized set-covering model with side constraints. In this model, a binary

variable is defined for each shift that can be potentially assigned to each employee on each day. To

reduce its size and obtain faster computational times without comprising too much solution quality,

we propose to classify the shifts into promising and non-promising ones and keep in the model only the

variables associated with the promising shifts. Instead of trying to classify the shifts themselves, we

rather focus on predicting the subsets of start and end times of optimal shifts using a machine learning

(ML) model, more precisely, a deep learning one. Promising shifts are then identified as those whose

start and end times belong to these predicted times.

To obtain good predictions, we test several ML models, which require a training dataset. In this

respect, we generate artificial instances by applying perturbations to the input parameters of real-life

instances and solve the corresponding set-covering models to optimality using a commercial mixed-

integer linear programming (MILP) solver. To assess the proposed solution approach, we ran tests on

the real-life instances, but also on artificial instances that are generated out of the distribution of the

training instances.

This paper is organized as follows. Section 2 presents a literature review on the subject. Section 3.3

states the problem studied and introduces the MILP model used in the optimization phase. Section 4

Les Cahiers du GERAD G–2022–29 2

describes the methodology and the multiple ML models we consider in this study. We compare these

models using a large dataset in Section 5. Finally, a brief conclusion and possible extensions are

discussed in Section 6.

2 Literature review

Our proposed approach accelerates the solution of the integer programming models for flexible per-

sonnel scheduling problems where the shifts are enumerated explicitly. In this section, we present the

contributions in the literature that encompass these three concepts: 1) employ integer programming

models for personnel scheduling problems; 2) apply a heuristic to the problem variant studied; or 3)

apply ML methods to accelerate the solution process of integer programs.

2.1 Integer programming models

Personnel scheduling problems were introduced by Edie (1954) to decrease the vehicles’ waiting time

for service at toll booths with the minimum number of toll collectors. Since then, different types

of problems have arisen for various application areas. Among the most popular research areas on

personnel scheduling problems, Özder et al. (2020) point to health services, manufactures, and call

centers. However, the retail sector has been less explored. Most studies aim to determine schedules for

employees at the lowest cost. There are usually three components to the cost of a solution: 1) the cost

of assigning employees to jobs; 2) the penalty associated with over-assigning employees to jobs; and 3)

the cost resulting from under-assigning employees to jobs, which results in a degradation of the service

quality. For generating employee schedules, mixed-integer programming-based methods are the most

popular approaches in the scientific literature (Van den Bergh et al., 2013).

Mathematical models for personnel scheduling problems can be divided into either explicit set-

covering or implicit formulations. In the explicit models, one integer variable is associated with each

shift type where the type of a shift is defined by all its characteristics such as start time, end time,

break time, job type, etc. In implicit models, some aspects of the shifts are determined by means of

constraints. One example of implicit modeling would be to define shifts solely by their starting times

and add additional constraints to the model to limit their lengths (Thompson, 1995). In many cases,

the number of decision variables is considerably smaller than for an explicit formulation. According

to Thompson (1995), in most cases, it is hard to express the employment cost using an implicit

formulation. Explicit models are preferable when the cost of a shift is defined by its start time, end

time, length, and placement of the breaks. Furthermore, Quimper and Rousseau (2010) point out that

it is not possible to formulate multiple-job problems through implicit modeling.

The first explicit set-covering model for personnel scheduling was proposed by Dantzig (1954) for

the problem of assigning employees to toll booths. In this formulation, all feasible working patterns are

enumerated for all possible start times, end times, and nesting breaks. Then, one integer variable xs is

associated with each feasible work pattern s. Here, the problem objective is to find the shift assignment

of the minimum total cost that covers the demand for open toll booths at each time interval.

Explicit modeling allows one to formulate different aspects of personnel scheduling problems. To

give a few examples, explicit formulations have been used to produce employee schedules for nurse

scheduling (e.g., Bard and Purnomo, 2005a,b), for tour scheduling (e.g., Brunner and Stolletz, 2014),

for personnel scheduling with employee transfers between departments (e.g., Attia et al., 2019; Dahmen

et al., 2020), for a multi-job multi-task shift scheduling problem (e.g., Boyer et al., 2014; Restrepo et al.,

2018), and for a stochastic personnel scheduling problem with demand uncertainty (e.g., Bürgy et al.,

2019).

The set-covering formulation provides the advantage of modeling flexibility. Nevertheless, addi-

tional options for placement of breaks, start times, lengths, and end times for shifts result in a larger

number of possible shifts and consequently larger models. For example, in the retail industry, shifts

Les Cahiers du GERAD G–2022–29 3

may start and end every quarter of an hour during a day. Enumerating all possible shifts for all avail-

able employees and for multiple jobs results in a very large model that requires efficient algorithms to

be solved. These recurrent problems need to be solved in a reasonable amount of time frequently by

efficient algorithms. Commercial solvers fail to achieve near-optimal solutions in a reasonable time for

large-sized problems either formulated explicitly or implicitly. In the literature on personnel scheduling

problems, mostly decomposition methods and heuristic algorithms are implemented to solve large-scale

personnel scheduling problems (Van den Bergh et al., 2013). However, practical personnel scheduling

problems encounter many shift feasibility constraints and many complicated ways to compute a shift’s

cost. In this case, it becomes difficult to design the pricing problems that are used to generate shifts

dynamically in a column generation algorithm. To alleviate this, some authors (see, e.g., Côté et al.,

2011; Restrepo et al., 2018) use context-free grammar to model these shift features.

2.2 Heuristics and metaheuristics

To the best of our knowledge, the studies in personnel scheduling that aim at reducing the number

of variables in a set-covering model are limited to very early works such as Bechtold and Brusco

(1994), Henderson and Berry (1976), and Mabert and Watts (1982). Their methods, called working

set generation, select a subset of schedules from all the possible work schedules and create only schedule

variables for this subset. Different procedures have been developed to determine this subset. The one

that seems to be the most efficient has been proposed by Bechtold and Brusco (1994) and builds the

work schedule subset in three steps: first, it computes a subset of days-off configurations based on the

coverage that they offer; second, it finds for each day a subset of shifts based, again, on the coverage

that these shifts offer; and, finally, it enumerates all work schedules resulting from a combination of

the selected days-off configurations and shifts. Another study by Brusco and Jacobs (2001) performs

experimental tests to find out how the number of required employees is affected if they restrict the

shifts’ starting periods to only 3, 4, and 5 periods of the day instead of 24 periods. These works

cannot be directly applied to our context as they assume that there is a single job to cover and that

the employees are available all the time and can, thus, be considered identical.

Most heuristics and metaheuristics, for personnel scheduling problems, are developed to address

complexities resulting from numerous and complicated constraints and not from the flexibility in

shift enumeration. Such issues arise mostly in the healthcare domain where the preferences of the

staff are important but the possible working shifts are very limited (3 to 5 per day). Generally, in

these problems, the constraints are categorized into two groups: hard and soft constraints, depending

on the legal regulations and personal preferences of the individual institutions and countries. Hard

constraints must be met in order to obtain feasible solutions, whereas soft constraints may be violated

with penalties. Burke et al. (2004) review the state-of-the-art heuristics and metaheuristics such as

simulated annealing, tabu search, and genetic algorithms for nurse rostering problems. Among the

more recent research, we can refer to work of Bard and Purnomo (2005b), Burke et al. (2008), Burke

et al. (2010), and Brucker et al. (2010).

A few papers (Dahmen and Rekik, 2015; Attia et al., 2019; Dahmen et al., 2020; Hassani et al.,

2021) develop heuristics for flexible personnel scheduling problems in the domain of service and retail

industry. Attia et al. (2019) and Dahmen et al. (2020) focus on large-scale multi-department problems.

In the former work, a large neighborhood search heuristic is proposed, where the neighborhoods are

explored using a MILP model. In the latter, a two-stage solution method is devised. In the first stage,

an aggregated MILP model that considers a coarser discretization of the time horizon for the demand

curves is solved to yield an approximate solution. In the second stage, this solution is disaggregated

by solving one or several small MILP models restricted to a small subset of shifts.

Dahmen and Rekik (2015) and Hassani et al. (2021) consider a similar environment to our prob-

lem. Assuming that the employees’ days off are known, Dahmen and Rekik (2015) introduce a hybrid

heuristic that combines tabu search and branch-and-bound to perform a local search. This algorithm

requires average computational times exceeding two hours for instances with 20 to 30 employees and 2

Les Cahiers du GERAD G–2022–29 4

to 4 jobs. Very recently, Hassani et al. (2021) develop a local search heuristic, called the Parallel Stim-

ulation of Disruptions heuristic (PSD), that generates and assigns shifts during the solution process. A

set of generator decisions (e.g., replace/extend/shorten a shift) forms the basic moves that lead to new

feasible and infeasible solutions. PSD can be cast as an iterative ruin and recreate heuristic. At each

iteration, it stimulates a well-targeted disruption (shift shortening) before correcting it with a sequence

of generator decisions that is computed by a truncated depth-first search. Furthermore, to improve

efficiency, the search is performed in parallel by defining at each iteration multiple subproblems, each

initiated by a disruption that can be corrected by a selected subset of employees.

2.3 Machine learning application

Recently, there has been an increasing interest within the mathematical optimization community in

applying machine learning techniques to improve the performance of MILP solvers. A survey on the

contribution of ML to combinatorial optimization problems is presented by Bengio et al. (2021).

Abbasi et al. (2020) summarized the previous works on this subject in the following five avenues:

1. To improve the performance of an optimization solver by predicting if a reformulation is required

for the problem before being solved by a MILP solver. For example, Kruber et al. (2017) employed

ML to predict whether a Dantzig–Wolfe decomposition is required for solving a MILP problem.

2. To improve the performance of solution methods. For instance, ML enhances the performance

of some algorithms by finding good initial feasible solutions (Xavier et al., 2020) and accelerates

enumerative algorithms in branching variable selection (Gasse et al., 2019; Lodi and Zarpel-

lon, 2017). ML is also employed to facilitate column selection in column generation algorithms

(Morabit et al., 2021) and to select cutting planes (Tang et al., 2020).

3. To reduce the computational complexity of solving optimization models under uncertainty by

implementing dimensionality reduction methods (Xu et al., 2016).

4. To generate the solutions (ideally optimal) of a combinatorial optimization problem (Abbasi

et al., 2020) or to predict the value of a subset of decision variables (Lodi et al., 2020; Xavier

et al., 2020).

5. To predict the objective value (ideally optimal) of a problem (Fischetti and Fraccaro, 2019).

We focus on the work of Lodi et al. (2020) and Xavier et al. (2020) from the fourth category in

which we observe some aspects that are common to our research. They studied recurrent problems for

which there are minor differences between the instance input data and are solved by a MILP solver. To

accelerate the solution time, they used ML methods to get information from previously solved instances

and fixed the value of some variables in similar instances to be solved in the future. Subsequently, the

computational performance of MILP solvers is improved due to the elimination of some variables and

the reduction of the problem size.

Lodi et al. (2020) assume the existence of a reference instance to a combinatorial optimization

problem. This instance can be modeled as a MILP model and solved optimally. The problem needs to

be solved again if a perturbation happens in the input of the initial instance. A database of resolutions

can be built by collecting the changes that have happened so far or that can be simulated a priori.

The authors study how information can be retrieved from this database to support the analysis of

potentially perturbed instances. To predict whether a change will influence the reference optimal

solution and to what degree, they formulate this problem as a supervised learning problem. A binary

classifier is trained to predict whether the entire or a part of an optimal solution for the reference

instance is applicable to the perturbed instance. If only a part of the reference solution is valid for the

new instance, the value of the other variables is predicted by regression. These decisions are translated

as additional constraints and imposed to the perturbed problem. The authors employed their approach

to the facility location problem and obtained satisfactory solutions in a decreased time.

Les Cahiers du GERAD G–2022–29 5

Xavier et al. (2020) study a class of optimization problems that deal with power-generating unit

scheduling. These problems are formulated as MILP models and solved by a MILP solver to deter-

mine the schedule and production level of power generators over a planning horizon. To improve the

computational performance of the MILP solver, the authors propose three approaches including the

prediction of affine subspaces that include the optimal solution, with very high likelihood. Their con-

tributions are inspired by intuitive patterns related to these problems which are not included in the

MILP modeling. For example, the operators observed that a specific type of generator was mostly

scheduled to operate throughout the day whereas other types of generators were usually assigned to

peak demand periods. The authors developed an ML model to predict the value of the binary decision

variables by learning from previously solved instances. The output of the ML model determines the

value that variables should be fixed at before solving the MILP. To do so, supplementary constraints

are added to the MILP model that indicates the value of the variables. Results of this research showed

that a substantial size reduction of the problem reduced the complexity and solution time of the MILP

solver.

To the best of our knowledge, no research has been carried out on learning from previously solved

instances for instance size reduction in the field of personnel scheduling.

3 Problem description and mathematical modeling

We start by describing the flexible personnel scheduling problem studied (Section 3.1). Then, Sec-

tion 3.2 provides the notation used in the proposed mathematical model, which is presented afterwards

in Section 3.3.

3.1 Problem statement

In the retail industry, the personnel scheduling process starts with forecasting the workload approxi-

mately two to eight weeks before the beginning of the planning horizon (Bürgy et al., 2019). In fact,

the forecasts focus on the expected number of sales/transactions by department, taking into account

several factors such as seasonality and promotions. These sales are subsequently converted into a

demand in employees per job that can vary over the planning horizon. Several types of jobs may be

relevant in a retail context: salespersons, cashiers, clerks, and multiple others. Once these demands

are established, personnel schedules can be computed with the goal of covering these demands as best

as possible with the available employees. In many organizations, this scheduling process is repeated

on a weekly basis.

The flexible personnel scheduling problem to be solved each week can be stated as follows. There

is a set of jobs J to be performed by a set of skilled employees E. Among all employees in E, there is

only a subset of the employees, denoted Ej , that are qualified to perform job j ∈ J . Employees work

mono-job shifts, where a shift is defined by a valid start time (say, at any quarter of an hour) and a

valid duration (say, between 4 and 9 hours). Because the demands of different jobs may follow different

patterns (for example, some jobs may start at 6:00 AM, while others only at 8:00 AM), the subset of

candidate shifts Sj for a job j ∈ J may differ from one job to another. Also, given the skills of an

employee e ∈ E and their availability over the planning horizon, they can be assigned to a subset of

shifts Se. For each job j ∈ J , a demand curve (a number of employees required as a function of time)

to cover at best is provided. Dividing the planning horizon into a set P of disjoint 15-minute periods,

this curve indicates the number of employees djp required on the job j at period p ∈ P . We assume

that the periods in P are chronologically numbered from 1 to |P | and that the planning horizon is also

divided into 7 days and denoted H = {1, 2, . . . , 7}.

The demand for employees fluctuates during the time horizon and even during the day. The ideal

scheduling for such a problem happens when the number of employees assigned to a job is equal to the

job’s demand at each period while considering the following working rules: there must be a minimum

Les Cahiers du GERAD G–2022–29 6

rest time nR (in periods) between two consecutive shifts assigned to an employee, and there must be a

minimum number of days off nO assigned to each employee. As mentioned above, there are restrictions

associated with the qualifications and time availability of the employees which may make it impossible

to cover adequately all the demands. Hence, to ensure demand coverage, anonymous shifts with high

costs can be scheduled and assigned subsequently to temporary workers. Additionally, since shifts

must have a minimum duration, sometimes there is no choice but to cover some time periods with no

demand or to assign more employees than there is demand at a specific period, yielding what is called

over-coverings. The employees are unproductive at over-covering time periods, so a large penalty

is associated with over-covering. The over-covering penalty associated with each job in a period is

calculated using a non-decreasing step-wise function that favors the distribution of the over-coverings,

if any, over the periods.

Employees should also be treated equally over time based on the number of hours they work.

In fact, the remuneration of the employees is made on different levels following a strictly increasing

function. Each level is made up of certain hours of work. For example, let each 8 hours of work make a

level. Then, if an employee e works 20 hours, then he/she will be paid at 3 levels in the following order:

cE1 per period for the first 8 hours, cE2 per period (with cE2 > cE1) for the second 8 hours, and finally

cE3 per period (with cE3 > cE2) for the last 4 hours. Observe that this remuneration function does not

correspond to the real remuneration of the employees. Indeed, if the real function was used, the more

experienced employees which have a larger hourly rate would work less than the junior employees.

The proposed model (see Section 3.3) is an explicit one that requires the enumeration of all possible

shifts. In the retail industry, there is high flexibility in the start time, the end time, and the duration

of the shifts. Therefore, the number of possible shifts is very large. For instance, we consider that

shifts can start at every quarter of an hour and can last between 3 and 8 hours by steps of 15 minutes:

The set of times at which a shift can start and the set of possible shift lengths are shift starts = {00:00,

00:15, 00:30, ..., 23:45} and shift lengths = {3h, 3h15m, ..., 8h}, respectively. Note that we assume as

in real life that there is no isolated demand spanning less than the minimum shift duration. Therefore,

there is no need to consider a shift assigned to a job with a zero demand at the beginning or the end

of the shift without any harm to the feasibility of the problem.

3.2 Notation

The notation used in the mathematical model is presented in Tables 1 to 3.

Table 1: Sets and subsets

Set Description

S Set of all enumerated shifts
P Set of all time periods in the planning horizon
E Set of employees
J Set of jobs
H Set of days in the planning horizon
Sj Subset of shifts that are candidate for job j ∈ J
Sp Subset of shifts that cover period p ∈ P
Sh Subset of shifts that start on day h ∈ H
Se Subset of shifts that can be assigned to employee e ∈ E
Ej Subset of employees that are qualified for job j ∈ J
Je Subset of jobs that employee e ∈ E is qualified for

Ej
p Subset of employees that are qualified for job j and available at period p

K Set of steps for the over-covering penalty step-wise function
Q Set of steps for the employee remuneration step-wise function

Les Cahiers du GERAD G–2022–29 7

Table 2: Parameters

Parameter Description

djp Number of employees required (demand) for job j ∈ J at period p ∈ P
as,bs Beginning and end periods of shift s ∈ S
gs Length (in number of periods) of shift s ∈ S
nO
e Minimum number of days off to assign to employee e ∈ E
nR Minimum number of rest periods between two shifts assigned to an employee
cAs Cost of an anonymous shift s ∈ S
cEq Employee remuneration per period on step q ∈ Q
mq Maximum number of periods on step q ∈ Q
cVk Cost per over-covering on step k ∈ K
mk Maximum number of over-coverings on step k ∈ K

Table 3: Decision variables

Variable Description

zs,e,j Binary variable equal to 1 if shift s ∈ Sj ∩ Se is assigned to employee e ∈ E for job j ∈ J
us,j Number of anonymous shifts s ∈ S assigned for job j ∈ J
vp,j,k Number of over-coverings for job j ∈ J at period p ∈ P and on step k ∈ K
we,q Number of periods worked by employee e ∈ E on step q ∈ Q
oe,h Binary variable equal to 1 if employee e ∈ E is off on day h ∈ H

3.3 Mathematical model

Given the above notation, the flexible personnel scheduling problem can be modeled as the following

integer program, which is similar to that of Hassani et al. (2021):

min
∑
j∈J

∑
s∈Sj

cAs us,j +
∑
e∈E

∑
q∈Q

cEq we,q +
∑
j∈J

∑
p∈P

∑
k∈K

cVk vp,j,k (1)

s.t. :
∑

s∈Sp∩Sj

us,j +
∑
e∈Ej

p

∑
s∈Se∩Sp∩Sj

zs,e,j −
∑
k∈K

vp,j,k = djp ∀p ∈ P, j ∈ J (2)

∑
j∈Je

∑
s∈Se∩Sj∩Sh

zs,e,j + oe,h = 1 ∀e ∈ E, h ∈ H (3)

∑
j∈Je

∑
s∈Se∩Sj

gszs,e,j −
∑
q∈Q

we,q = 0 ∀e ∈ E (4)

∑
h∈H

oe,h ≥ nOe ∀e ∈ E (5)

∑
j∈Je

∑
s∈Se∩Sj∩Sh+1

aszs,e,j +Moe,h+1

−
∑
j∈Je

∑
s∈Se∩Sj∩Sh

(bs + 1 + nR)zs,e,j ≥ 0 ∀e ∈ E, h ∈ H \ {7} (6)

zs,e,j ∈ {0, 1} ∀j ∈ J, e ∈ Ej , s ∈ Sj ∩ Se (7)

us,j ≥ 0, integer ∀j ∈ J, s ∈ Sj (8)

vp,j,k ∈ [0,mk] ∀p ∈ P, j ∈ J, k ∈ K (9)

we,q ∈ [0,mq] ∀e ∈ E, q ∈ Q (10)

oe,h ∈ {0, 1} ∀e ∈ E, h ∈ H (11)

Les Cahiers du GERAD G–2022–29 8

The objective function (1) minimizes the sum of the personnel costs, the anonymous shift costs, and

the over-covering penalties. Constraints (2) ensure that the demand for each job at each time period

is covered by personalized or anonymous shifts and make the calculation of over-coverings possible.

Constraints (3) impose that each employee is assigned to a shift or a day off on each day of the planning

horizon. The amount of working hours of each employee that falls on each step q ∈ Q is calculated

through the constraints (4). Each employee e receives at least nOe days off according to constraints (5).

The big-M constraints (6) enforce a minimum rest time of nR periods between two working shifts that

are assigned to the same employee on consecutive days, wherein M = maxs∈S{bs + 1 + nR}. Finally,

constraints (7)–(11) restrict the domain of the variables.

4 Methodology

We develop deep learning models to predict a subset of time periods that are likely to be the start or

the end of the shifts in an optimal solution of a particular problem. To provide a training dataset,

we generate artificial instances from real data and solve the corresponding MILP models (1)–(11) to

near optimality (i.e., with an optimality gap tolerance of 0.01%) using a commercial MILP solver.

The parameters and optimal solutions of these instances form the training data, which is used to train

a deep learning classifier that can predict simultaneously shift start time periods and shift end time

periods. Once the potential shift starting and ending periods are predicted for a new instance, shifts

are enumerated according to these subsets of periods, and the MILP model with a reduced number of

variables is solved.

In this section, we start by presenting the real-life instances that were made available to us by

our industrial partner and how we generated additional instances from them (Section 4.1). Then,

we present the features of an instance to be considered for prediction and define the output labels

(Section 4.2). Next, we discuss the learning strategy (Section 4.3) used to train the ML models

which are then described (Section 4.4). Finally, we present the pipeline of the optimization heuristics

(Section 4.5).

4.1 Real-life instances and data generation

For our study, 14 real-life problem instances were made available to us by our industrial partner. Each

instance provides all employee information and workload data over one week. Table 4 presents the

numbers of jobs and employees associated with each instance.

Table 4: Number of jobs and employees in the reference instances and number of generated artificial sub-instances from
each instance

Instance 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Jobs 2 2 2 2 4 4 4 4 5 5 7 7 8 10
Employees 17 27 34 54 34 47 54 94 25 50 36 72 94 50

Sub-instances 1,400 1,400 1,400 1,400 2,800 2,800 2,800 2,800 3,500 3,500 4,900 4,900 5,600 7,000

To develop a good ML model, a large training dataset is required. In this regard, we generate

additional variations of each original instance by perturbing some of its input data. We consider the

following two inputs to perturb:

1. Job demand curves: The demand for jobs changes during the day and the patterns of the demand

over different days of a week are also different. To generate variations from an original instance,

we perturb the demand curves by adding noises to the level of the demand. More precisely, for

each job j ∈ J , we pick uniformly at random between 10% and 20% of each day’s periods and we

Les Cahiers du GERAD G–2022–29 9

apply a Gaussian noise to its demand as follows: djp ← djp + bx+ 0.5c, where x is sampled from a

normal distribution N (0, σ2) with σ = 0.2×djp. Note that the demand remains unchanged when

it is zero at the beginning or the end of a day.

2. Employees: For the new instances, we pick at random d1% × |E|e employees and remove them

from the employee set.

All the remaining data is left unchanged.

In total, 100 artificial instances for each original instance (i.e., 1,400 instances) were generated in

this way and solved. To increase the number of data points in the training set and given that the

shift start and end times can be selected almost independently from one day to another and from

one job to another, we have chosen to decompose each instance and its associated MILP solution into

sub-instances and sub-solutions with respect to each job and each day. Each sub-instance is considered

in the training dataset, denoted D, as an individual training sample and represents the shift scheduling

problem for one job j ∈ J over one day h ∈ H. Therefore, we extract |J | × |H| sub-instances from

each instance which gives a further boost to the size of training data (a total of 46,200 sub-instances

distributed over the original instances as shown in Table 4). Moreover, decomposing the instances

per job helps to have a fixed dimension input size for all instances, which can be fed into a standard

learning model. Finally, we use 67% of these artificial instances (67% of sub-instances for each original

instance) for training and the remaining 33% for validation. Additional instances are also generated

for testing purposes as mentioned in Section 5.

4.2 Features and labels

Each data point i ∈ D is associated with a job j and a day h and is defined by a set of features and two

labels. For the features, we consider two sets that yield two different ML models. In the first set, we

only use the information stemming from the demands for job j on day h, and from the qualifications

and the availability of the employees. For the second set, we also consider information obtained from

the linear relaxation optimal solution of the MILP model (1)–(11).

More precisely, denoting by p̃(h) the index of the first period of day h and L the number of time

periods in a day, the features of a data point i associated with job j and day h, include the two vectors:

• X
(i)
1 =

(
djp̃(h), d

j
p̃(h)+1, . . . , d

j
p̃(h)+L−1

)
, which indicates the demands for job j at each time period

of day h in instance i;

• X
(i)
2 =

(
|Ejp̃(h)|, |E

j
p̃(h)+1|, . . . , |E

j
p̃(h)+L−1|

)
, which specifies the number of qualified and available

employees for job j at each time period of day h in instance i.

Beside the feature vectors X1 and X2, we can extract information from solving the linear relaxation of

the MILP problems similar to Khalil et al. (2016) and Gasse et al. (2019). The second set of features

includes two other vectors, denoted X3 and X4, that rely on the notation:

νjp̃(h)+l−1 = max
e∈Ej ,s∈Sj

{zR(i)
s,e,j |as = p̃(h) + l − 1}, ∀l ∈ {1, 2, ..., L}, (12)

µjp̃(h)+l−1 = max
e∈Ej ,s∈Sj

{zR(i)
s,e,j |bs = p̃(h) + l − 1}, ∀l ∈ {1, 2, ..., L}, (13)

where z
R(i)
s,e,j denotes the value of the corresponding zs,e,j variable in the optimal solution of the linear

relaxation of the instance from which data point i is derived. These vectors for data point i are

defined as:

• X
(i)
3 =

(
νjp̃(h), ν

j
p̃(h)+1, . . . , ν

j
p̃(h)+L−1

)
, which specifies for each period of day h if it is used as a

shift starting period in the linear relaxation optimal solution;

• X
(i)
4 =

(
µjp̃(h), µ

j
p̃(h)+1, . . . , µ

j
p̃(h)+L−1

)
, which indicates for each period of day h if it is used as a

shift ending period in the linear relaxation optimal solution.

Les Cahiers du GERAD G–2022–29 10

To develop supervised learning models, we must define labels for each data point i ∈ D. In our

case, they are derived from the optimal solution of the MILP problem that contains sub-instance

i and correspond to two vectors of binary values, Y (i), Y
(i) ∈ {0, 1}L, containing one component

for each period of day h and indicating whether that period coincides with the beginning or the

end of a shift in that optimal solution. More precisely, let z
∗(i)
s,e,j be the value of the corresponding

zs,e,j variable in the optimal solution of the problem that contains sub-instance i. Furthermore, let

S
(i)
j,h = {s ∈ Sj ∩ Sh|∃ e ∈ Ej such that z

∗(i)
s,e,j = 1} be the subset of shifts in this solution that belong

to day h and are assigned to job j. Then, Y
(i)
l = 1, l ∈ {1, . . . , L}, if there exists a shift s ∈ S(i)

j,h such

that as = p̃(h) + l − 1 and 0 otherwise. Similarly for the end periods, we set Y
(i)

l = 1, l ∈ {1, . . . , L},
if there exists a shift s ∈ S(i)

j,h such that bs = p̃(h) + l − 1 and 0 otherwise.

4.3 Learning strategy

We frame the problem of predicting the optimal start-of-shift and end-of-shift periods as a supervised

multi-label classification problem. Our input space is X = RL×m, with either m = 2 for simple MILP

parameter features or m = 4 for the augmented features, as described in Section 4.2. Our output

space is Y = {0, 1}L×2, with binary labels that indicate if each time period is start-of-shift and/or

end-of-shift. What we aim for is then a mapping from features to labels, f : X → Y (a.k.a., a classifier).

Given a distribution of MILP instances p(X,Y) and a distance function Dist : Y ×Y → R≥0, the goal

of supervised learning is to find an optimal mapping f?, which makes the most accurate predictions

on average,

f? = arg min
f

EX,Y [Dist(Y, f(X))] . (14)

In this work we use the popular Hamming loss as our distance function, which is minimized using

a simple binary relevance scheme (Zhang et al., 2018). We employ parametric probabilistic models

qθ : X → [0, 1]L×2 to output the probability for each label to take value one, with θ the model

parameters that are to be learned. Our training objective is then the binary cross-entropy (BCE)

loss between the probabilistic predictions and the true labels. Finally, we achieve (14) via empirical

risk minimization from a collection of training data points D = {(X(i), Y (i))}Ni=1, as described in

Section 4.1, leading to the following learning problem,

θ? = arg min
θ

N∑
i=1

BCE(Y (i), qθ(X
(i))). (15)

The individual classification accuracy of each label is then obtained using the binary predictions

fθ?(X) = dqθ?(X)e. In practice we solve (15) via stochastic gradient descent on the training data set,

with early stopping on a validation set to prevent overfitting.

4.4 Machine learning models

We experiment three different model architectures for fθ, a fully-connected neural network (FCN),

a convolutional neural network (CNN) (Fawaz et al., 2019), and a U-shaped encoder-decoder con-

volutional neural network (UNet) (Ronneberger et al., 2015), inspired from the problem of image

segmentation in computer vision (Asgari Taghanaki et al., 2021).

Our FCN network, described in Table 5, simply employs 6 densely connected layers with batch

normalization, and a decreasing number of hidden units.

Our CNN network, described in Table 6, consists of 6 one-dimensional convolutional layers, with

an increasing number of kernels and a decreasing kernel length.

Our UNet network, described in Table 7, consists of 4 stacked one-dimensional convolutional en-
coders, with an increasing number of kernels and down-sampling between each encoder (implemented

Les Cahiers du GERAD G–2022–29 11

using a 2-max-pooling), followed by 4 stacked one-dimensional convolutional decoders with a decreasing

number of kernels and up-sampling between each decoder (implemented as transposed convolutions),

and with skip-connections between each encoder and decoder of the same level (implemented as layer

concatenation).

Table 5: FCN architecture

Layer Type Hidden units Activation Shape

0 Input - - L×m
1 Dense 500 relu + batchnorm 500
2 Dense 400 relu + batchnorm 400
3 Dense 300 relu + batchnorm 300
4 Dense 200 relu + batchnorm 200
5 Dense 200 relu + batchnorm 200
6 Dense 2× L sigmoid L× 2

Table 6: CNN architecture

Layer Type
Kernel Size

Activation
Shape

kernels × length length × channels

0 Input - - L×m
1 1D Conv 32× 96 relu L× 32
2 1D Conv 64× 48 relu L× 64
3 1D Conv 128× 24 relu L× 128
4 1D Conv 256× 12 relu L× 256
5 1D Conv 512× 6 relu L× 512
6 1D Conv 2× 1 sigmoid L× 2

4.5 Optimization heuristic pipelines

Once the ML model has been chosen and trained, it can be used to determine subsets P j,h and P j,h
of possible shift start and end times for a given pair of job j ∈ J and day h ∈ H. Depending on

the features used by this model (based or not on the linear relaxation solution), the design of the

solution process differs as follows. If only the X1 and X2 vector features are considered, then the basic

optimization heuristic is the following:

1. For each pair of job j ∈ J and day h ∈ H, compute P j,h and P j,h using the trained ML model;

2. Build the MILP model (1)–(11) considering only personalized shift variables zs,e,j such that

s ∈ Sj ∩ Sh for some j ∈ J and h ∈ H, as ∈ P j,h, and bs ∈ P j,h;

3. Solve the resulting MILP model using a commercial MILP solver.

Alternatively, if the X3 and X4 vector features are also taken into account, then the pipeline of the

feature-enhanced optimization heuristic is as follows:

1. Build the MILP model (1)–(11) considering all personalized shift variables zs,e,j ;

2. Solve the linear relaxation of this model to collect the features in vectors X3 and X4;

3. For each pair of job j ∈ J and day h ∈ H, compute P j,h and P j,h using the trained ML model;

4. From the MILP model (1)–(11), filter out all personalized shift variables zs,e,j such that s ∈
Sj ∩ Sh for some j ∈ J and h ∈ H, and at least one of the following two conditions hold:

as 6∈ P j,h or bs 6∈ P j,h;

5. Solve the resulting MILP model using a commercial MILP solver.

In the following, we denote this feature-enhanced heuristic by MILP-Π* when combined with predictor

Π = CNN, FCN, or UNet. Its basic counterpart is denoted MILP-Π. For all heuristics, we consider

tolerance of 1% on the optimality gap when solving the resulting MILP model.

Les Cahiers du GERAD G–2022–29 12

Table 7: UNet architecture

Layer Type
Kernel Size

Activation
Shape

kernels × length length × channels

0 Input - - L×m
1 1D Conv 32× 3 relu L× 32
2 1D Conv 32× 3 relu L× 32

3 2-Max Pooling - - L/2× 32
4 1D Conv 64× 3 relu L/2× 64
5 1D Conv 64× 3 relu L/2× 64

6 2-Max Pooling - - L/4× 64
7 1D Conv 128× 3 relu L/4× 128
8 1D Conv 128× 3 relu L/4× 128

9 2-Max Pooling - - L/8× 128
10 1D Conv 256× 3 relu L/8× 256
11 1D Conv 256× 3 relu L/8× 256

12 2-Max Pooling - - L/16× 256
13 1D Conv 512× 3 relu L/16× 512
14 1D Conv 512× 3 relu L/16× 512

15 2-Strided 1D Trans Conv 256× 3 - L/8× 256
16 Concat 11, 15 - - L/8× 512
16 1D Conv 256× 3 relu L/8× 256
17 1D Conv 256× 3 relu L/8× 256

18 2-Strided 1D Trans Conv 128× 3 - L/4× 128
19 Concat 8, 18 - - L/4× 256
20 1D Conv 128× 3 relu L/4× 128
21 1D Conv 128× 3 relu L/4× 128

22 2-Strided 1D Trans Conv 64× 3 - L/2× 64
23 Concat 5, 22 - - L/2× 128
24 1D Conv 64× 3 relu L/2× 64
25 1D Conv 64× 3 relu L/2× 64

26 2-Strided 1D Trans Conv 32× 3 - L× 32
27 Concat 2, 26 - - L× 64
28 1D Conv 32× 3 relu L× 32
29 1D Conv 32× 3 relu L× 32

30 1D Conv 2× 1 sigmoid L× 2

5 Computational experiments

In this section, we perform computational experiments to evaluate the efficiency of the proposed

approaches in various instances. In Section 5.1, we describe the computational environment and the

instances used for benchmarking. In Section 5.2, we evaluate the performance of the classifiers. In

Section 5.3, we compare the performance of the basic and feature-enhanced optimization heuristics

between them and against other heuristics used in practice and in the literature. Finally, in Section 5.4,

we assess how robust our approaches are against instances from different distributions.

5.1 Experimental setup

The three proposed ML models (FCN, CNN, UNet) described in Section 4 were implemented in Python

3 using the scikit-learn (Pedregosa et al., 2011) ML library. The libraries of Keras were used to design

deep learning models. IBM ILOG CPLEX 20.1.0 was used as the MILP solver. The code responsible

for loading the input data, querying the ML models, and constructing the MILP models was also

written in Python 3. All MILP problems were solved on a Linux machine equipped with a 12-core (2

threads per core) Intel Core i7 processor clocked at 3.4 GHz with 16 GB RAM.

Les Cahiers du GERAD G–2022–29 13

As mentioned in Section 4.1, we have access to 14 real-life instances (see Table 4) that we kept

for our main tests. From these instances, we have generated 1,400 artificial instances that form the

training and validation datasets. Moreover, using the same procedure described in Section 4.1, we

generated from each original instance 10 additional instances to be used during the testing phase.

Finally, to test the robustness of our best solution approaches to larger input data variations, we also

generated 10 other artificial instances based on a similar but different distribution. We describe how

these instances were generated in Section 5.4.

5.2 Evaluation of the predictors

The three ML models have been trained using the training and validation datasets. In total, it takes

approximately 10 minutes, two hours and one hour for training the feature-enhanced FCN, CNN, and

UNet models, respectively, i.e., when considering the X3 and X4 feature vectors.

In this section, we evaluate the performance of these three ML models on the test dataset (composed

of 140 artificial instances). For the evaluation metric, we use the area under the Receiver Operating

Characteristic (ROC) curve (Fawcett, 2006). Figure 1 shows the average of the curves over the 96

periods, for each predictor. A ROC curve depicts the true and false positive rates on the y and x axes,

respectively. The point in the upper left corner of the ROC space is where the ROC curve of a perfect

predictor would touch. A random predictor would yield a diagonal line from the bottom left corner

to the top right corner as shown in Figure 1. To compare the performance of multiple predictors,

one can, thus, compare the areas under their ROC curves. Larger areas (close to 1) indicate a better

predictor. Thus, we observe in Figure 1 that UNet*, UNet, and CNN* predictors have the highest

areas under the ROC curves (approximately 0.947, 0.942, and 0.941), indicating that the other models

are outperformed by them.

Figure 1: The ROC curves of the six predictors

We have observed that the performance of each ML model may vary greatly depending on the

period of the day. Indeed, it is easier to predict when shifts should start at the beginning of a day

when the demand is increasing, than in the middle of the day when demand is steady but some shifts

must start because previous shifts are ending. On the contrary, for ending periods, the predictors have

Les Cahiers du GERAD G–2022–29 14

a better performance at the end of the day when demand is decreasing than in the middle of the day.

To account for this instability in the prediction performance, we propose to not forward the output of

the ML models directly to the shift enumeration procedure. Instead, similar to the approach of Xavier

et al. (2020), for each period, the output of a predictor is accepted only if both the recall and precision

metrics of this predictor on the validation dataset surpass a predetermined threshold (α). Hence, if the

performance of a predictor for a specific period is not acceptable, that period is considered a potential

shift starting/ending period.

To show how the value of α impacts the performance of the optimization heuristics, we conducted a

sensitivity analysis. First, we solved all 140 artificial test instances using an (almost) exact algorithm,

i.e., using the MILP model with fully enumerated shifts and an optimality gap tolerance of 0.01%.

Then, we solved again these instances with MILP-CNN*, MILP-FCN*, and MILP-UNet* using dif-

ferent values of α, ranging between 50% and 70%. The results of these experiments are summarized

in Figure 2. The box plots in Figure 2a provide the percentage of the reduction in the number of

variables achieved by the predictors compared to the full model (the higher the better). Figure 2b

reports the difference in percentage between the values of the solutions computed by the heuristics and

the exact algorithm, called the error (the lower the better). Finally, Figure 2c specifies the speedup in

computational time achieved by the heuristics (the higher the better).

(a) Problem size (b) Solution quality

(c) Speedup

Figure 2: Sensitivity to α

These results show that setting a larger threshold value for the acceptance of the predictor’s output

in the optimization heuristics yields, as expected, a better solution quality but at the expense of a

smaller computational time speedup. MILP-FCN* reduces fewer variables which indicate the recall

Les Cahiers du GERAD G–2022–29 15

or precision of the classifier is less than α for most of the periods and consequently its output is

not accepted. More reduction in the number of variables and less error of MILP-UNet* shows its

better performance than the other two heuristics, which is consistent with the performance of the

predictors observed in Figure 1. We conducted the remaining tests using MILP-UNet* and MILP-

UNet. Furthermore, to obtain a good speedup, we set α = 50%.

5.3 Evaluation of the optimization heuristics

In this section, we evaluate the performance of the proposed optimization heuristics on the reference

dataset by comparing the following eight different algorithms:

1. Exact: Exact algorithm where the MILP model (1)–(11) is solved considering all possible shifts,

a tolerance on the optimality gap of 0.01%, and a time limit of 20,000 seconds;

2. Tol-1%: Same as Exact except that the optimality gap tolerance is set to 1%;

3. Tol-5%: Same as Exact except that the optimality gap tolerance is set to 5%;

4. LPF: A heuristic that i) solves the linear relaxation of the MILP model with the complete set

of shifts, ii) fixes to 0 all zs,e,j variables taking value 0 in the linear relaxation solution, and iii)

solves the resulting model with an optimality gap tolerance of 1%;

5. PSD: The parallel stimulation of disruptions heuristic of Hassani et al. (2021);

6. MILP-UNet: The proposed heuristic described in Section 4.5 that filters out shifts by applying

a UNet ML model considering only the X1 and X2 feature vectors;

7. MILP-UNet*: Same as MILP-UNet except that the X3 and X4 feature vectors are also considered

in the UNet model;

8. LPF-UNet*: Same as MILP-UNet* except that all zs,e,j variables that take a positive value in

the linear relaxation solution cannot be filtered out.

The 14 real-life instances of the reference dataset were solved using each of these algorithms. We

report the results of these experiments in Tables 8 to 10. For each instance and each algorithm except

the Exact algorithm, Table 8 provides the increase (in percentage) of the cost of the computed solution

with respect to the cost of the solution obtained by the Exact algorithm. For each instance and each

algorithm, Table 9 indicates the computational time (in seconds) required by each algorithm. For

each instance, Table 10 specifies in the second and third columns the total numbers of variables and

constraints in the MILP model (1)–(11), when all shifts are considered in the algorithms Exact, Tol-

1%, and Tol-5%. The last four columns give the percentage of variables that are removed by the
corresponding heuristic. Note that no such statistic is reported for the PSD heuristic as it builds the

shifts dynamically and does not rely on a MILP model. In all these tables, averages over all instances

are reported in the last row and the best result for each instance and on average is highlighted in bold.

From these results, we make the following observations. The computational times required by the

Exact algorithm clearly show the need to develop a more sophisticated exact solution algorithm or to

resort to a heuristic for solving the instances in acceptable computational times (say, less than one

hour for the largest instances). In particular, we observe that the 20,000-second time limit is reached

for 4 of the 14 test instances. A simple heuristic consists in using the same MILP model (with all shift

variables) and running the same algorithm but increasing the optimality gap tolerance as in algorithms

Tol-1% and Tol-5%. With these heuristics, the average computational time decreases but remains large

for some of these instances. Furthermore, the solution costs become less controllable without a larger

tolerance, yielding an average cost increase of 1.87% for heuristic Tol-5%.

Les Cahiers du GERAD G–2022–29 16

Table 8: Cost increase (in %) with respect to best solution cost

Inst. Tol-1% Tol-5% LPF PSD MILP-UNet MILP-UNet* LPF-UNet*

1 0.1 0.1 4.5 1.1 0.6 0.2 0.2
2 0.2 0.2 4.0 2.1 4.0 2.3 0.4
3 0.2 4.7 2.0 6.9 1.1 1.1 0.3
4 0.4 2.0 2.2 2.3 1.0 0.4 0.3
5 0.4 0.4 1.8 4.4 3.6 2.1 0.2
6 0.6 2.0 3.9 3.1 1.3 0.8 0.6
7 0.6 1.3 2.0 2.2 2.3 1.2 0.7
8 0.9 3.2 1.7 3.4 1.4 1.3 0.6
9 0.8 0.8 4.5 2.4 0.7 0.5 0.1
10 0.9 0.9 1.4 2.9 1.4 0.9 0.0
11 0.2 1.7 3.8 1.3 0.4 2.3 0.1
12 0.1 4.8 1.9 0.0 0.7 2.9 1.0
13 0.0 2.5 4.0 5.4 5.1 1.3 0.0
14 0.7 1.6 0.4 0.1 0.7 0.6 0.7

Avg. 0.44 1.87 2.72 2.69 1.74 1.28 0.37

Table 9: Computational times (in seconds)

Inst. Exact Tol-1% Tol-5% LPF PSD MILP-UNet MILP-UNet* LPF-UNet*

1 86 33 33 3 31 9 9 11
2 316 103 103 8 15 14 18 19
3 119 48 40 3 48 10 11 22
4 13,349 851 217 11 117 107 97 98
5 335 121 121 5 74 21 24 38
6 5,575 581 204 11 166 60 39 107
7 20,000 3,416 2,047 19 134 690 372 418
8 20,000 18,170 376 24 330 240 233 554
9 2,147 295 295 12 138 46 63 82
10 3,112 701 704 52 179 144 108 285
11 4,296 3,134 517 131 109 269 91 94
12 20,000 12,442 1,873 268 242 927 280 1,283
13 20,000 6,713 6,175 3,431 272 852 907 6,109
14 6,129 3,643 2,480 11 828 273 180 322

Avg. 8,247 3,589 1,084 285 192 262 174 674

Table 10: MILP model size

Inst.
Exact/Tol-1%/Tol-5% Percentage of removed variables (in %)

Constraints Variables LPF MILP-UNet MILP-UNet* LPF-UNet*

1 3,028 200,587 86.5 66.6 70.7 67.8
2 3,228 132,519 79.4 64.9 65.5 65.4
3 3,368 222,366 87.6 63.9 68.1 68.1
4 3,768 238,333 88.3 66.9 69.2 69.1
5 6,056 444,290 87.8 65.7 69.9 69.9
6 6,316 270,375 79.8 63.3 66.5 62.2
7 6,456 475,964 88.5 70.3 71.9 71.8
8 7,256 487,176 88.6 65.8 69.1 69.0
9 7,220 1,043,674 94.7 78.6 80.4 80.4

10 7,720 2,032,079 97.2 80.1 82.5 82.5
11 10,148 1,363,589 94.0 79.7 82.2 82.2
12 10,888 2,646,682 96.9 82.1 84.7 84.7
13 12,632 1,577,112 93.0 68.4 74.6 74.5
14 14,440 3,375,548 96.7 81.1 84.2 84.2

Avg. 89.9 71.2 74.3 73.7

The heuristic LPF removes the largest number of variables in all instances. It is the fastest for

most instances but requires a relatively large amount of time for instance 13. Furthermore, it yields

Les Cahiers du GERAD G–2022–29 17

the largest average cost increase (2.72%). As for PSD, the average quality of its solutions is similar to

that of those produced by LPF, but with a larger variance. It is, however, faster on average, especially

because it terminates very rapidly for instance 13 with the worst solution among all heuristics.

The last three heuristics apply ML to filter out variables. In particular, the heuristics MILP-UNet

and MILP-UNet* are identical except that the latter considers additional features collected from the

linear relaxation solution. We observe that this is highly profitable given that it allows removing more

variables on average (74.3% versus 71.2%) yielding faster average computational times (174 versus 262

seconds). Furthermore, the average cost increase is reduced by 26%. Finally, LPF-UNet* retains only

a few more variables than MILP-UNet* but yields much higher quality solutions (with an average cost

increase of only 0.37%) in a larger average computational time (674 versus 174 seconds). This much

larger average time is again due to the effort spent solving instance 13.

To summarize, Figure 3 represents the performance of each heuristic with a point in a Cartesian

coordinate system where the (broken) x-axis and the y-axis correspond to the average computational

time and average cost increase, respectively. This plot allows us to clearly identify two Pareto-optimal

algorithms. MILP-UNet* yields the smallest average computational time (174 seconds) and an average

cost increase of 1.28%. On the other hand, LPF-UNet* produces the smallest average cost increase

(0.37%) in an average computational time of 674 seconds. All other heuristics are dominated by these

two algorithms. Therefore, if short computational times are sought, the heuristics MILP-UNet* and

LPF-UNet* proposed in this paper and relying on an ML model to reduce the number of variables

seem to be the most appropriate.

Figure 3: Heuristic performance summary

5.4 Out of distribution results

So far, we performed computational experiments on instances that share the same distribution with

the training dataset. For evaluating our best heuristics on problem instances that arise from a different

distribution, we have generated a new set of instances (10 instances for each of the 14 original instances)

using the procedure described in Section 4.1 except for the following three aspects:

1. Instead of perturbing the demand on only 10% to 20% of the periods, demand noises are applied

to all periods (when the job is active);

2. A larger variance is selected for the Gaussian noise, i.e., σ = 0.4× djp instead of σ = 0.2× djp;

Les Cahiers du GERAD G–2022–29 18

3. A positive noise is always added as follows: djp ← djp + |dxe|, where x is sampled from a random

distribution N (0, σ2). This yields an increased demand;

4. To perturb the employee availability, we pick d2%× |E|e employees randomly (instead of d1%×
|E|e) and make them unavailable throughout the week.

The mean and standard deviation of the demand per job and period (excluding the overnight periods

when a job is inactive) in this new dataset and the training dataset is (2.88, 2.75) and (2.37, 2.07),

respectively. To determine whether these means are equal or significantly different, we implemented a

two-sample Student’s t-test, where null hypothesis was “the two means are equal” and the alternative

hypothesis was “the two means are different”. The p-value obtained from this test is 1.4e-06. Assuming

a significance level of 0.01, this p-value indicates that the means are statistically different. Therefore,

we conclude that the demand distribution of the new dataset is significantly different from that of the

training dataset.

These 140 out-of-distribution test instances are grouped into 14 sets of 10 instances, one for each

original instance. They are denoted O1, O2, ..., O14. Each of these instances was solved using three

algorithms: Exact, MILP-UNet*, and LPF-UNet*. The results of these experiments are reported in

Table 11. Each line indicates the average results obtained for an instance set, namely, the average time

(in seconds) required by each algorithm as well as the average increase (in percentage) of the solution

cost obtained by the two heuristics compared to the optimal value computed by the Exact algorithm.

The last row reports averages over all instances.

From these results, we first observe that these instances are much easier to solve than the original

ones. Indeed, the Exact algorithm can solve all of them within the time limit and in an average time

of 239 seconds, which is much less than the 8,247 seconds achieved for the original instances. This

is due to an increase in the number of under-coverings (as the demand is larger and the employee

availability slightly less) that induces the largest proportion of the solution cost. It then becomes

easier to find a feasible solution within the 1% tolerance on the optimality gap. Next, we observe that

both MILP-UNet* and LPF-UNet* substantially reduce the computational times with respect to the

Exact algorithm, by 91% and 88%, respectively. Like with the original instances, LPF-UNet* requires

larger computational times than MILP-UNet* but produces better quality solutions. Overall, we can

say that the performance of these two heuristics is maintained in these out-of-distribution instances.

Table 11: Results on the out-of-distribution instances

Exact MILP-UNet* LPF-UNet*

Time Time Cost increase Time Cost increase
Inst. set (s) (s) (%) (s) (%)

O1 22 4 2.7 6 0.9
O2 13 5 0.9 5 0.1
O3 25 7 1.3 9 0.2
O4 29 8 1.2 10 0.3
O5 46 14 2.0 19 0.2
O6 63 11 2.0 11 0.7
O7 62 17 1.4 24 0.6
O8 353 47 1.1 28 0.9
O9 51 8 1.4 9 0.3
O10 118 14 0.9 28 0.7
O11 144 16 0.9 23 0.4
O12 460 37 1.5 54 0.1
O13 266 39 1.9 62 0.9
O14 1,689 79 2.3 101 0.6

Avg. 239 22 1.54 28 0.49

Les Cahiers du GERAD G–2022–29 19

6 Conclusion

In this work, we have studied a flexible personnel scheduling problem that involves a large number

of potential work shifts. To efficiently solve this problem, we have proposed three ML models to

predict the starting and ending times of the shifts and use these predictions to filter out from a MILP

model shift variables associated with shifts that have a low probability of being selected. Different

heuristics based on this approach were devised and two of them provided Pareto-optimal results on 14

real-world test instances. Indeed, the MILP-UNet* heuristic was the fastest with an average speedup

factor of 47 compared to an Exact algorithm but yielded an average cost increase of 1.28%. Even

when compared to the state-of-the-art neighborhood-based heuristic PSD, MILP-UNet* shows a much

more robust behavior being capable of finding better quality solutions in similar computing times. On

the other hand, the LPF-UNet* heuristic was able to compute high-quality solutions with an average

cost increase of 0.37% but was slower with a speedup factor of 12. These results clearly show the

potential to design efficient solution approaches by combining state-of-the-art techniques from ML and

mathematical programming.

For future research, we envision using ML to select from the history (previous weeks/months) a

small subset of shifts or complete schedules for some employees (e.g., the regular employees) and to

restrict the optimization model to the selected shifts/schedules for these employees. This seems an

interesting strategy to further speed up the solution process without losing on solution quality.

References
Babak Abbasi, Toktam Babaei, Zahra Hosseinifard, Kate Smith-Miles, and Maryam Dehghani. Predicting

solutions of large-scale optimization problems via machine learning: A case study in blood supply chain
management. Computers & Operations Research, 119:104941, 2020.

Saeid Asgari Taghanaki, Kumar Abhishek, Joseph Paul Cohen, Julien Cohen-Adad, and Ghassan Hamarneh.
Deep semantic segmentation of natural and medical images: a review. Artificial Intelligence Review, 54(1):
137–178, 2021.

Dalia Attia, Reinhard Bürgy, Guy Desaulniers, and François Soumis. A decomposition-based heuristic for
large employee scheduling problems with inter-department transfers. EURO Journal on Computational
Optimization, 7(4):325–357, 2019.

Jonathan F Bard and Hadi W Purnomo. A column generation-based approach to solve the preference scheduling
problem for nurses with downgrading. Socio-Economic Planning Sciences, 39(3):193–213, 2005a.

Jonathan F Bard and Hadi W Purnomo. Preference scheduling for nurses using column generation. European
Journal of Operational Research, 164(2):510–534, 2005b.

Stephen E. Bechtold and Michael J. Brusco. Working set generation methods for labor tour scheduling.
European Journal of Operational Research, 74(3):540–551, 1994.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization: a
methodological tour d’horizon. European Journal of Operational Research, 290(2):405–421, 2021.

Vincent Boyer, Bernard Gendron, and Louis-Martin Rousseau. A branch-and-price algorithm for the multi-
activity multi-task shift scheduling problem. Journal of Scheduling, 17(2):185–197, 2014.

Peter Brucker, Edmund K Burke, Tim Curtois, Rong Qu, and Greet Vanden Berghe. A shift sequence based
approach for nurse scheduling and a new benchmark dataset. Journal of Heuristics, 16(4):559–573, 2010.

Jens O Brunner and Raik Stolletz. Stabilized branch and price with dynamic parameter updating for discon-
tinuous tour scheduling. Computers & Operations Research, 44:137–145, 2014.

Michael J. Brusco and Larry W. Jacobs. Starting-time decisions in labor tour scheduling: An experimental
analysis and case study. European Journal of Operational Research, 131:459–475, 2001.

Reinhard Bürgy, Hélène Michon-Lacaze, and Guy Desaulniers. Employee scheduling with short demand per-
turbations and extensible shifts. Omega, 89:177–192, 2019.

Edmund K Burke, Patrick De Causmaecker, Greet Vanden Berghe, and Hendrik Van Landeghem. The state
of the art of nurse rostering. Journal of Scheduling, 7(6):441–499, 2004.

Les Cahiers du GERAD G–2022–29 20

Edmund K. Burke, Timothy Curtois, Gerhard Post, Rong Qu, and Bart Veltman. A hybrid heuristic order-
ing and variable neighbourhood search for the nurse rostering problem. European Journal of Operational
Research, 188(2):330–341, 2008.

Edmund K. Burke, Jingpeng Li, and Rong Qu. A hybrid model of integer programming and variable neighbour-
hood search for highly-constrained nurse rostering problems. European Journal of Operational Research,
203(2):484–493, 2010.

Marie-Claude Côté, Bernard Gendron, and Louis-Martin Rousseau. Grammar-based integer programming
models for multiactivity shift scheduling. Management Science, 57(1):151–163, 2011.

Sana Dahmen and Monia Rekik. Solving multi-activity multi-day shift scheduling problems with a hybrid
heuristic. Journal of Scheduling, 18(2):207–223, 2015.

Sana Dahmen, Monia Rekik, François Soumis, and Guy Desaulniers. A two-stage solution approach for per-
sonalized multi-department multi-day shift scheduling. European Journal of Operational Research, 280(3):
1051–1063, 2020.

George B Dantzig. Letter to the editor—a comment on Edie’s “Traffic delays at toll booths”. Journal of the
Operations Research Society of America, 2(3):339–341, 1954.

Leslie C. Edie. Traffic delays at toll booths. Journal of the Operations Research Society of America, 2(2):
107–138, 1954.

Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain Muller.
Deep learning for time series classification: a review. Data Mining and Knowledge Discovery, 33(4):917–963,
2019.

Tom Fawcett. An introduction to ROC analysis. Pattern Recognition Letters, 27(8):861–874, 2006.

Martina Fischetti and Marco Fraccaro. Machine learning meets mathematical optimization to predict the
optimal production of offshore wind parks. Computers & Operations Research, 106:289–297, 2019.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combinatorial
optimization with graph convolutional neural networks. Advances in Neural Information Processing Systems,
32, 2019.

Rachid Hassani, Guy Desaulniers, and Issmail El Hallaoui. Parallel stimulation of disruptions for personnel
scheduling in a flexible working environment. pages 1–23, January 2021. URL https://www.gerad.ca/en/

papers/G-2021-01.

Willie B. Henderson and William L. Berry. Heuristic methods for telephone operator shift scheduling: An
experimental analysis. Management Science, 22(12):1372, 1976.

Elias Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. Learning to branch in mixed
integer programming. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.

Markus Kruber, Marco E. Lübbecke, and Axel Parmentier. Learning when to use a decomposition. In Integra-
tion of AI and OR Techniques in Constraint Programming, pages 202–210. Springer International Publishing,
2017. ISBN 978-3-319-59776-8.

Andrea Lodi and Giulia Zarpellon. On learning and branching: a survey. TOP, 25(2):207–236, 2017.

Andrea Lodi, Luca Mossina, and Emmanuel Rachelson. Learning to handle parameter perturbations in com-
binatorial optimization: an application to facility location. EURO Journal on Transportation and Logistics,
9(4):100023, 2020.

Vincent A. Mabert and Charles A. Watts. A simulation analysis of tour-shift construction procedures. Man-
agement Science, 28(5):520–532, 1982.

Morabit Morabit, Guy Desaulniers, and Andrea Lodi. Machine-learning-based column selection for column
generation. Transportation Science, 55(4):815–831, 2021.

Emir Hüseyin Özder, Evrencan Özcan, Tamer Eren, et al. A systematic literature review for personnel schedul-
ing problems. International Journal of Information Technology & Decision Making, 19(6):1695–1735, 2020.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine
learning in python. Journal of Machine Learning Research, 12(85):2825–2830, 2011.

Claude-Guy Quimper and Louis-Martin Rousseau. A large neighbourhood search approach to the multi-activity
shift scheduling problem. Journal of Heuristics, 16(3):373–392, 2010.

Maŕıa I Restrepo, Bernard Gendron, and Louis-Martin Rousseau. Combining Benders decomposition and
column generation for multi-activity tour scheduling. Computers & Operations Research, 93:151–165, 2018.

https://www.gerad.ca/en/papers/G-2021-01
https://www.gerad.ca/en/papers/G-2021-01

Les Cahiers du GERAD G–2022–29 21

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image
segmentation. In International Conference on Medical image computing and computer-assisted intervention,
pages 234–241. Springer, 2015.

Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning for integer programming: Learning
to cut. In International Conference on Machine Learning, pages 9367–9376. PMLR, 2020.

Gary M Thompson. Improved implicit optimal modeling of the labor shift scheduling problem. Management
Science, 41(4):595–607, 1995.

Jorne Van den Bergh, Jeroen Beliën, Philippe De Bruecker, Erik Demeulemeester, and Liesje De Boeck.
Personnel scheduling: A literature review. European Journal of Operational Research, 226(3):367–385,
2013.

Álinson S Xavier, Feng Qiu, and Shabbir Ahmed. Learning to solve large-scale security-constrained unit
commitment problems. INFORMS Journal on Computing, 33(2):739–756, 2020.

Huan Xu, Constantine Caramanis, and Shie Mannor. Statistical optimization in high dimensions. Operations
Research, 64(4):958–979, 2016.

Min-Ling Zhang, Yu-Kun Li, Xu-Ying Liu, and Xin Geng. Binary relevance for multi-label learning: an
overview. Frontiers of Computer Science, 12(2):191–202, 2018.

	Introduction
	Literature review
	Integer programming models
	Heuristics and metaheuristics
	Machine learning application

	Problem description and mathematical modeling
	Problem statement
	Notation
	Mathematical model

	Methodology
	Real-life instances and data generation
	Features and labels
	Learning strategy
	Machine learning models
	Optimization heuristic pipelines

	Computational experiments
	Experimental setup
	Evaluation of the predictors
	Evaluation of the optimization heuristics
	Out of distribution results

	Conclusion

