
Les Cahiers du GERAD ISSN: 0711–2440

A semi-conjugate gradient method for solving unsym-
metric positive definite linear systems

N. Huang, Y.-H. Dai, D. Orban, M. A. Saunders

G–2022–25

June 2022

La collection Les Cahiers du GERAD est constituée des travaux de
recherche menés par nos membres. La plupart de ces documents de
travail a été soumis à des revues avec comité de révision. Lorsqu’un
document est accepté et publié, le pdf original est retiré si c’est
nécessaire et un lien vers l’article publié est ajouté.

Citation suggérée : N. Huang, Y.-H. Dai, D. Orban, M. A. Saun-
ders (Juin 2022). A semi-conjugate gradient method for solving
unsymmetric positive definite linear systems, Rapport technique, Les
Cahiers du GERAD G– 2022–25, GERAD, HEC Montréal, Canada.

Avant de citer ce rapport technique, veuillez visiter notre site Web
(https://www.gerad.ca/fr/papers/G-2022-25) afin de mettre à
jour vos données de référence, s’il a été publié dans une revue sci-
entifique.

The series Les Cahiers du GERAD consists of working papers
carried out by our members. Most of these pre-prints have been
submitted to peer-reviewed journals. When accepted and published,
if necessary, the original pdf is removed and a link to the published
article is added.

Suggested citation: N. Huang, Y.-H. Dai, D. Orban, M. A. Saun-
ders (June 2022). A semi-conjugate gradient method for solving
unsymmetric positive definite linear systems, Technical report,
Les Cahiers du GERAD G–2022–25, GERAD, HEC Montréal, Canada.

Before citing this technical report, please visit our website (https:
//www.gerad.ca/en/papers/G-2022-25) to update your reference
data, if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grâce
au soutien de HEC Montréal, Polytechnique Montréal, Université
McGill, Université du Québec à Montréal, ainsi que du Fonds de
recherche du Québec – Nature et technologies.

Dépôt légal – Bibliothèque et Archives nationales du Québec, 2022
– Bibliothèque et Archives Canada, 2022

The publication of these research reports is made possible thanks
to the support of HEC Montréal, Polytechnique Montréal, McGill
University, Université du Québec à Montréal, as well as the Fonds de
recherche du Québec – Nature et technologies.

Legal deposit – Bibliothèque et Archives nationales du Québec, 2022
– Library and Archives Canada, 2022

GERAD HEC Montréal
3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2022-25
https://www.gerad.ca/en/papers/G-2022-25
https://www.gerad.ca/en/papers/G-2022-25

A semi-conjugate gradient method for solving unsym-
metric positive definite linear systems

Na Huang a

Yu-Hong Dai b

Dominique Orban c

Michael A. Saunders d

a Department of Applied Mathematics, College of
Science, China Agricultural University, Beijing,
China

b LSEC, Academy of Mathematics and Systems
Science, Chinese Academy of Sciences, Beijing,
China

c GERAD & Department of Mathematics and
Industrial Engineering, Polytechnique Montréal,
Montréal (QC) Canada

d Systems Optimization Laboratory, Department of
Management Science and Engineering, Stanford
University, Stanford, CA, USA

hna@cau.edu.cn

dyh@lsec.cc.ac.cn

dominique.orban@gerad.ca

saunders@stanford.edu

June 2022
Les Cahiers du GERAD
G–2022–25
Copyright © 2022 GERAD, Huang, Dai, Orban, Saunders

Les textes publiés dans la série des rapports de recherche Les Cahiers
du GERAD n’engagent que la responsabilité de leurs auteurs. Les
auteurs conservent leur droit d’auteur et leurs droits moraux sur leurs
publications et les utilisateurs s’engagent à reconnâıtre et respecter
les exigences légales associées à ces droits. Ainsi, les utilisateurs:

• Peuvent télécharger et imprimer une copie de toute publica-
tion du portail public aux fins d’étude ou de recherche privée;

• Ne peuvent pas distribuer le matériel ou l’utiliser pour une
activité à but lucratif ou pour un gain commercial;

• Peuvent distribuer gratuitement l’URL identifiant la publica-
tion.

Si vous pensez que ce document enfreint le droit d’auteur, contactez-
nous en fournissant des détails. Nous supprimerons immédiatement
l’accès au travail et enquêterons sur votre demande.

The authors are exclusively responsible for the content of their re-
search papers published in the series Les Cahiers du GERAD. Copy-
right and moral rights for the publications are retained by the authors
and the users must commit themselves to recognize and abide the
legal requirements associated with these rights. Thus, users:

• May download and print one copy of any publication from the
public portal for the purpose of private study or research;

• May not further distribute the material or use it for any profit-
making activity or commercial gain;

• May freely distribute the URL identifying the publication.
If you believe that this document breaches copyright please contact us
providing details, and we will remove access to the work immediately
and investigate your claim.

Les Cahiers du GERAD G–2022–25 ii

Abstract : The conjugate gradient (CG) method is a classic Krylov subspace method for solving
symmetric positive definite linear systems. We introduce an analogous semi-conjugate gradient (SCG)
method for unsymmetric positive definite linear systems. Unlike CG, SCG requires the solution of
a lower triangular linear system to produce each semi-conjugate direction. We prove that SCG is
theoretically equivalent to the full orthogonalization method (FOM), which is based on the Arnoldi
process and converges in a finite number of steps. Because SCG’s triangular system increases in size
each iteration, we study a sliding window implementation (SWI) to improve efficiency, and show that
the directions produced are still locally semi-conjugate. A counter-example illustrates that SWI is
different from the direct incomplete orthogonalization method (DIOM), which is FOM with a sliding
window. Numerical experiments from the convection-diffusion equation and other applications show
that SCG is robust and that the sliding window implementation SWI allows SCG to solve large systems
efficiently.

Keywords: Linear system, sparse matrix, iterative method, semi-conjugate gradient method

Acknowledgements: Research of the first author is partially supported by National Natural Science
Foundation of China (No. 12001531).

We would like to thank our colleague and friend, Dr Oleg Burdakov, for his devotion to research
and for his everlasting sense of humor. In particular, we wish to express our gratitude to him for
fundamental contributions that initiated this work, and for many constructive suggestions on our early
Matlab implementation of SCG and SWI. At the end of 2017, he independently constructed SCG and
SWI to solve quasi-definite linear systems. Subsequently, he extended them to general unsymmetric
positive definite linear systems. The question of choosing an ideal m remains for future research, as it
does for GMRES(m) and DQGMRES(m).

Les Cahiers du GERAD G–2022–25 1

1 Introduction

We consider numerical methods for solving linear systems

Ax = b, (1)

where A ∈ Rn×n is unsymmetric positive definite. Such a matrix A is positive definite if xTAx > 0

holds for all nonzero x ∈ Rn [17]. This is true if and only if its symmetric part (A+AT)/2 is symmetric

positive definite.

Krylov subspace methods seek an approximate solution xk from the affine subspace x0 +Kk(A, r0),

where x0 is an arbitrary initial point, r0 = b−Ax0 is the initial residual, and Kk(A, r0) is the Krylov

subspace

Kk(A, r0) = span{r0, Ar0, A
2r0, . . . , A

k−1r0},

which we denote by Kk when there is no ambiguity.

One of the best known Krylov subspace methods is the conjugate gradient (CG) method [18],

which was derived in 1952 to solve sparse symmetric positive definite linear systems. When combined

with a suitable preconditioning, CG has many successful applications in science and engineering. If

A is unsymmetric or rectangular, CG could be applied to the normal equations ATAx = ATb. It is

numerically preferable to apply LSQR [22] or LSMR [15] to min ‖Ax− b‖22, but the squared condition

may lead to excessive iterations on compatible systems Ax = b.

A variety of other methods have been developed to deal with the square unsymmetric case, such

as the generalized CG-type methods (e.g., Orthodir, Orthomin [2, 3, 31, 32]), the biconjugate gradient

(BiCG) algorithm and its variations (e.g., CGS, BiCGSTAB, QMR, CSBCG [5, 16, 27, 28, 30]), the

Manteuffel-Chebyshev iterations [19, 20, 29], and other generations based on orthogonal factorizations,

Lanczos process (e.g., USYMLQ, USYMQR, LSQR, BiLQ [21, 22, 26]).

Arnoldi’s method [1] was introduced in 1951 to deal with square unsymmetric matrices. This is an

algorithm for constructing an orthonormal basis of the Krylov subspace Kk. Subsequently, based on

the Arnoldi process or its variations [23], several Krylov subspace methods for solving unsymmetric

linear systems were established, such as the generalized minimum residual method (GMRES) [24], the

direct quasi-GMRES method (DQGMRES) [25], the full orthogonalization method (FOM) [23], and

the direct incomplete orthogonalization method (DIOM) [23].

Unlike finding an approximation from a Krylov subspace, Yuan et al. [33] sought an approximation

following some semi-conjugate directions and presented two semi-conjugate direction (SCD) methods

for general linear systems. They showed that SCD has no breakdown for real positive definite systems.

Later, Dai and Yuan [9] further studied SCD methods and introduced a new implementation for

generating the semi-conjugate directions using only the latest m conjugate directions, where m is

a given positive integer. SCD methods also have been considered for solving nonlinear systems of

equations and finding saddle points of functions, which called pseudo-orthogonal direction methods

in [6, 7].

Here we also focus on SCD methods, taking the first direction to be r0 as in CG. Hence, we call it the

semi-conjugate gradient (SCG) method. We show that SCG is theoretically equivalent to FOM. SCG

needs to solve a lower triangular linear system of increasing size at each step. To improve efficiency,

we also study the sliding window implementation of SCG (SWI) and show that SWI still belongs

to the set of Krylov subspace methods and will not break down. In contrast to the sliding window

implementation of FOM (i.e., DIOM), the directions produced by SWI are locally semi-conjugate.

This illustrates that SWI is different from DIOM. Several numerical experiments on linear systems

from the convection-diffusion equation and other applications show that SWI often solves problems

more efficiently than SCG and DIOM.

Les Cahiers du GERAD G–2022–25 2

The paper is organized as follows. In Section 2, we introduce our semi-conjugate gradient method

and provide some important properties. In Section 2.2, we prove that SCG is theoretically equivalent

to FOM. The sliding window implementation of SCG and its convergence analysis are provided in

Section 3. A counter-example in Section 3.1 illustrates that SWI and DIOM are different. Numerical

experiments are reported in Section 4. Conclusions and future work are summarized in Section 5.

Notation

For a matrix W ∈ Rn×n, HW = (W + WT)/2 and SW = (W −WT)/2 denote the symmetric and

skew-symmetric parts of W . λ(W) and ρ(W) denote an arbitrary eigenvalue and the spectral radius

of W . λmin(W) and λmax(W) denote the minimum and maximum eigenvalues of a symmetric matrix

W . A vector ek is the kth column of an identity matrix. The solution of Ax = b (1) is denoted by x?.

The kth approximation to x? is xk, and the corresponding error is dk = xk − x?. The 2-norm ‖v‖ is

used for vectors v.

2 The semi-conjugate gradient method

In this section, we introduce the semi-conjugate gradient method SCG to solve unsymmetric positive

definite linear systems (1). The method is summarized in Algorithm 1. Without loss of generality, we

assume that x0 = 0 and then r0 = b.

Algorithm 1 SCG: The semi-conjugate gradient method

1: Given x0 = 0, set k = 0, r0 = b, p0 = r0 and q0 = Ap0.
2: while a stopping condition is not satisfied do

3: Compute the step size αk = p
T
k rk/p

T
k qk.

Update xk+1 = xk + αkpk and rk+1 = rk − αkqk.

4: Form vk+1 = Ark+1, Lk+1 = P
T
k+1Qk+1 and solve Lk+1λk+1 = P

T
k+1vk+1,

where Pk+1 =
[
p0 p1 . . . pk

]
, Qk+1 =

[
q0 q1 . . . qk

]
.

5: Update
pk+1 = rk+1 − Pk+1λk+1, qk+1 = vk+1 −Qk+1λk+1. (2)

6: Increment k by 1.
7: end while

As shown in Lemma 2.2 below, Lk+1 is lower triangular. The system Lk+1λk+1 = PT
k+1vk+1 has

the form 
pT0 q0
pT1 q0 pT1 q1
pT2 q0 pT2 q1 pT2 q2

...
...

...
. . .

pTk q0 pTk q1 pTk q2 . . . pTk qk




λ
(1)
k+1

λ
(2)
k+1

λ
(3)
k+1
...

λ
(k+1)
k+1

 =


pT0 vk+1

pT1 vk+1

pT2 vk+1
...

pTk vk+1

 ,

where λ
(i)
k+1 denotes the ith component of λk+1. Hence

λ
(1)
k+1 =

pT0 vk+1

pT0 q0
,

λ
(i)
k+1 =

pTi−1(vk+1 − λ
(1)
k+1q0 − λ

(2)
k+1q1 − · · · − λ

(i−1)
k+1 qi−2)

pTi−1qi−1
(i > 1).

Algorithm 2 combines this with (2) to compute directions pk+1 and qk+1.

As stated, Algorithm 1 and Algorithm 2 together form a special case of [9, Algorithm 2.3] in which

p0 = r0. In other words, SCG is a special case of SCD [33, Algorithm 4.1], though the latter does not

explicitly use qk. We now derive some further important properties of SCG and show that it generates

the same iterates as FOM. Thus, SCG theoretically follows the iterations of CG if A is SPD.

Les Cahiers du GERAD G–2022–25 3

Algorithm 2 Computation of pk+1 and qk+1

Assume that p0, . . . , pk, q0, . . . , qk and r0, . . . , rk+1 have been computed.
Set p← rk+1 and q ← vk+1.
for i = 1, 2, . . . , k + 1 do

Compute λ
(i)
k+1 = p

T
i−1q/p

T
i−1qi−1.

Set p← p− λ(i)k+1pi−1 and q ← q − λ(i)k+1qi−1.
end for
Set pk+1 = p and qk+1 = q.

2.1 Convergence analysis of SCG

We provide properties of SCG and prove that it converges in a finite number of steps.

Lemma 2.1. The sequence {pk, qk} produced by SCG satisfies qk = Apk.

Proof. For k = 0, we have q0 = Ap0 and Q1 = AP1. For k ≥ 1, by recursion, (2), we have

qk = vk −Qkλk = Ark −APkλk = Apk.

Lemma 2.2. The matrices Lk (k ≥ 1) are nonsingular and lower triangular with positive diagonal

elements.

Proof. The proof is by induction on k. From Lemma 2.1 and the fact that A is positive definite,

L1 = PT
1 Q1 = pT0 Ap0 > 0, so the result holds for k = 1. Assume Lk possesses the desired property.

By definition of Lk,

PT
k qk = PT

k (vk −QkL
−1
k PT

k vk) = PT
k vk − P

T
kQkL

−1
k PT

k vk = 0,

and from Lemma 2.1 we see that

Lk+1 = PT
k+1Qk+1 =

[
Pk pk

]T [
Qk qk

]
=

(
PT
kQk PT

k qk
pTkQk pTkqk

)
=

(
Lk 0

pTkQk pTkApk

)
is also nonsingular and lower triangular with positive diagonal elements.

Remark 2.1. As A is positive definite, for pk 6= 0 we get pTk qk = pTkApk > 0. The step size αk in SCG

is therefore well defined. In addition, from Lemma 2.2, we see that Lk+1 is nonsingular if pj 6= 0,

j = 0, . . . , k. Therefore, SCG will not break down as long as pk 6= 0.

From Lemmas 2.1 and 2.2 we immediately obtain the following result.

Corollary 2.1. For all j > i ≥ 0, it holds that pTi qj = pTi Apj = 0.

Lemma 2.3. After k iterations of SCG we have

rTk qk = pTk qk, (3)

PT
k rk = 0, (4)

rTi rk = 0, i = 0, 1, . . . , k − 1. (5)

Proof. It follows from (2) that

rk = PkL
−1
k PT

kArk + pk. (6)

This along with Corollary 2.1 leads to

rTk qk = (PkL
−1
k PT

kArk + pk)T qk = rTkA
TPkL

−T
k PT

k qk + pTk qk = pTk qk.

Les Cahiers du GERAD G–2022–25 4

Therefore, (3) holds.

The proof of (4) and (5) is by induction on k. For k = 1 with p0 = r0,

rT0 r1 = rT0 (r0 − α0q0) = rT0 r0 −
pT0 r0

pT0 q0
rT0 q0 = rT0 r0 −

rT0 r0

rT0 q0
rT0 q0 = 0,

and PT
1 r1 = pT0 r1 = rT0 r1 = 0. Hence, (4) and (5) hold for k = 1.

Suppose (4) and (5) hold for some k ≥ 1. Then if i < k,

rTi rk+1 = rTi (rk − αkqk) = rTi rk − αkr
T
i qk = −αkr

T
i qk. (7)

With (6) and Corollary 2.1 this yields

rTi qk = (PiL
−1
i PT

i Ari + pi)
T qk = rTi A

TPiL
−T
i PT

i qk + pTi qk = 0.

Substituting into (7) gives rTi rk+1 = 0.

If i = k, we check directly that

rTk rk+1 = rTk (rk − αkqk) = rTk rk −
pTk rk

pTk qk
rTk qk. (8)

Using (2) and the inductive assumption, we have

pTk rk = (rk − PkL
−1
k PT

kArk)T rk = rTk rk − r
T
kA

TPkL
−T
k PT

k rk = rTk rk. (9)

Substituting (3) and (9) into (8) gives

rTk rk+1 = rTk rk −
rTk rk

pTk qk
pTk qk = 0,

so that (5) also holds for k + 1.

By Corollary 2.1 and the inductive assumption, we know that

PT
k rk+1 = PT

k (rk − αkqk) = PT
k rk − αkP

T
k qk = 0,

pTk rk+1 = pTk (rk − αkqk) = pTk rk −
pTk rk

pTk qk
pTk qk = 0.

This implies that PT
k+1rk+1 =

(
PT
k rk+1

pTk rk+1

)
= 0.

It follows from (2) and Lemma 2.3 that

pTk rk = (rk − Pkλk)T rk = rTk rk − λ
T
k P

T
k rk = rTk rk.

This implies that αk in SCG can also be defined by αk = rTk rk/p
T
k qk, which saves the computation of

pTk rk and allows us to reuse the quantity rTk rk that typically appears in a stopping condition.

Lemma 2.4. After k − 1 iterations of SCG, if pk = 0 then rk = 0.

Proof. Assume pj 6= 0, j = 0, . . . , k − 1. From the definition of Lk and Lemmas 2.1 and 2.2 we know

that Pk has full column rank. Let

Pk = Uk

(
Σk

0

)
V T
k (10)

Les Cahiers du GERAD G–2022–25 5

be the singular value decomposition (SVD), where n × n Uk and k × k Vk are unitary matrices, and

Σk = diag{σ1, σ2, . . . , σk} with all σj > 0 contains the singular values of Pk. It follows from Lemma 2.3

that

0 = PT
k rk = Vk

(
Σk 0

)
UT
k rk = Vk

(
Σk 0

)(r̃(1)k

r̃
(2)
k

)
= VkΣkr̃

(1)
k ,

where UT
k rk = ((r̃

(1)
k)T , (r̃

(2)
k)T)T . This implies that r̃

(1)
k = 0.

If pk = 0, by (2) and Lemma 2.1 we get (I − Pk(PT
kAPk)−1PT

kA)rk = 0, i.e.,

(UT
kAUk − U

T
kAPk(PT

kAPk)−1PT
kAUk)UT

k rk = 0

as Uk is unitary and A is nonsingular. Substituting (10) gives[
U

T
kAUk − U

T
kAUk

(
Σk

0

)((
Σk 0

)
U

T
kAUk

(
Σk

0

))−1(
Σk 0

)
U

T
kAUk

]
U

T
k rk = 0. (11)

Let UT
kAUk =

(
Ã

(1)
k Ã

(2)
k

Ã
(3)
k Ã

(4)
k

)
∈ Rn×n, where Ã

(1)
k ∈ Rk×k. Then (11) reads

0 =

(
0 0

0 Ã
(4)
k − Ã

(3)
k

(
Ã

(1)
k

)−1
Ã

(2)
k

)(
r̃
(1)
k

r̃
(2)
k

)
=

(
0[

Ã
(4)
k − Ã

(3)
k

(
Ã

(1)
k

)−1
Ã

(2)
k

]
r̃
(2)
k

)
.

Since A is positive definite, we have r̃
(2)
k = 0. This along with r̃

(1)
k = 0 leads to UT

k rk = 0, which gives

the result by the full column rank of Uk.

Remark 2.2. Combining Remark 2.1 with Lemma 2.4, we see that SCG will not break down unless

rk = 0.

We are now ready to prove that SCG converges in a finite number of steps.

Theorem 2.1. SCG converges to the unique solution of the linear system (1) within n + 1 steps if

roundoff errors are ignored.

Proof. If rk 6= 0 for all k = 0, 1, . . . , n−1, by Lemma 2.3 r0, r1, . . . , rn−1 are orthogonal, and therefore

linearly independent. Then there exist a0, a1, . . . , an−1 such that rn =
∑n−1

i=0 airi. Lemma 2.3 then

yields rTn rn =
∑n−1

i=0 air
T
n ri = 0.

2.2 SCG is equivalent to FOM

In this section, we show that SCG and FOM are theoretically equivalent.

FOM is a Krylov subspace method introduced by Saad [23] in which the residual associated with

the kth solution approximation x̂k satisfies the Galerkin condition

r̂k = b−Ax̂k ⊥ Kk. (12)

Given the initial guess x̂0 = 0 and β = ‖r̂0‖ = ‖b‖, Arnoldi’s method sets v̂1 = r̂0/β and, for

j = 1, 2, . . . , k − 1, computes 
hij = v̂Ti Av̂j , i = 1, 2, . . . , j,

wj = Av̂j −
∑j

i=1 hij v̂i,
hj+1,j = ‖wj‖,
v̂j+1 = wj/hj+1,j .

(13)

Les Cahiers du GERAD G–2022–25 6

This process constructs V̂k =
[
v̂1 v̂2 . . . v̂k

]
whose columns form an orthonormal basis of Kk such

that

AV̂k = V̂kHk + hk+1,kv̂k+1e
T
k ,

where Hk is k×k upper Hessenberg and hk+1,k will appear in Hk+1. FOM seeks a solution of the form

x̂k = V̂kyk. Thus,

r̂k = βv̂1 −AV̂kyk = V̂k+1

(
βe1 −Hkyk

−hk+1,ke
T
k yk

)
.

By (12), the kth approximate solution x̂k in FOM is given by

yk = H−1k (βe1).

If A is positive definite, so is each Hk in exact arithmetic because Hk = V̂ T
k AV̂k. Therefore, it possesses

an LU factorization without pivoting,1 say Hk = L̂kÛk [17] with L̂k unit lower triangular and Ûk upper

triangular with positive diagonal elements, which allows us to state FOM in the form of Algorithm 3.

Algorithm 3 FOM [23, Algorithms 6.4 and 6.8]

1: Given x̂0 = 0, set r̂0 = b, β = ‖r̂0‖, and v̂1 = r̂0/β.
2: for k = 1, 2, . . . do
3: Compute hik, i = 1, 2, . . . , k and v̂k+1 by the Arnoldi process.

4: Update the LU factorization of Hk, i.e., obtain the last column uk of Ûk.
5: Compute ζk = {if k = 1 then β, else − lk,k−1ζk−1}.
6: Compute p̂k = (v̂k −

∑k−1
i=1 uikp̂i)/ukk.

7: Compute x̂k = x̂k−1 + ζkp̂k.
8: Compute r̂k = r̂k−1 − ζkAp̂k.
9: end for

We now state properties of FOM used to analyze its connection with SCG.

Lemma 2.5. [23, Proposition 6.7] In FOM,

r̂k = −hk+1,ke
T
k ykv̂k+1 = v̂k+1/tk+1,

where yk = H−1k (βe1) and tk+1 = 1/(−hk+1,ke
T
k yk).

Lemma 2.6. [23, Properties on page 157] In FOM,

• the directions p̂k are semi-conjugate, i.e., p̂Ti Ap̂j = 0 for i < j;

• the residual vectors r̂k are orthogonal, i.e., r̂Ti r̂j = 0 for i 6= j.

The connection between SCG and FOM can now be summarized as follows.

Theorem 2.2. Assume that r̂k and p̂k are produced by FOM, and rk and pk are produced by SCG.

Then for all k ≥ 1, if r̂k−1 6= 0 and rk−1 6= 0, there exists ak 6= 0 such that

p̂k = ak−1pk−1, (14)

r̂k = rk. (15)

Proof. We use induction on k. For k = 1, as r̂0 = r0 = p0, it is easy to see that

p̂1 = u−111 v̂1 =
1

βu11
r0 =

1

βh11
p0.

Note that h11 = v̂T1 Av̂1 = (rT0 Ar0)/β2 leads to

p̂1 =
β

rT0 Ar0
p0 =

‖r0‖
rT0 Ar0

p0.

1
In practice, pivoting remains advisable in general for stability.

Les Cahiers du GERAD G–2022–25 7

In addition, by r̂0 = r0 = p0 and ζ1 = β, we have

r̂1 = r̂0 − ζ1p̂1 = r0 −
β‖r0‖
rT0 Ar0

p0 = r0 −
rT0 r0

rT0 Ar0
p0 = r0 −

pT0 r0

pT0 Ap0
p0 = r0 − α0p0 = r1.

We then have (14)–(15) satisfied for k = 1 with a0 = ‖r0‖/(r
T
0 Ar0) 6= 0.

Suppose there exist constants ai 6= 0 (0 ≤ i ≤ K − 2) such that (14)–(15) are satisfied for all

1 ≤ k < K. We show that (14)–(15) also hold for k = K. Let

P̂K−1 =
[
p̂1 . . . p̂K−1

]
, ũK = (u1,K , . . . , uK−1,K)T , DK−1 = diag{a0, . . . , aK−2}.

From the induction hypothesis, DK−1 is nonsingular and P̂K−1 = PK−1DK−1. With Lemma 2.5, this

leads to

p̂K = u−1K,K

(
v̂K −

K−1∑
i=1

ui,K p̂i
)

= u−1K,K

(
v̂K − P̂K−1ũK

)
= u−1K,K

(
tK r̂K−1 − PK−1DK−1ũK

)
= u−1K,K

(
tKrK−1 − PK−1DK−1ũK

)
. (16)

From Lemma 2.6, p̂Ti Ap̂K = 0 holds for all i < K, including P̂T
K−1Ap̂K = 0. Since P̂K−1 = PK−1DK−1

and the matrix DK−1 is nonsingular, we get

PT
K−1Ap̂K = 0.

Multiplying both sides of (16) by PT
K−1A and using SCG and Lemma 2.1, we obtain

0 = tKP
T
K−1ArK−1 − P

T
K−1APK−1DK−1ũK = tKP

T
K−1vK−1 − P

T
K−1QK−1DK−1ũK

= tKP
T
K−1vK−1 − LK−1DK−1ũK ,

where we used the identity ArK−1 = vK−1 from Algorithm 1. This shows that

DK−1ũK = tKL
−1
K−1P

T
K−1vK−1 = tKλK−1.

We substitute the above into (16) and use (2) to obtain

p̂K = u−1K,K

(
tKrK−1 − tKPK−1λK−1

)
= u−1K,KtKpK−1.

Therefore, (14) holds for k = K with aK−1 = u−1K,KtK 6= 0.

It follows from FOM, the induction hypothesis and Lemma 2.1 that

r̂K = r̂K−1 − ζKAp̂K = rK−1 − ζKaK−1ApK−1 = rK−1 − ζKaK−1qK−1. (17)

This along with Lemma 2.6, the induction hypothesis, and (3) gives

0 = r̂TK−1r̂K = rTK−1r̂K = rTK−1rK−1 − ζKaK−1r
T
K−1qK−1

= rTK−1rK−1 − ζKaK−1p
T
K−1qK−1.

By Corollary 2.1 and the positive definiteness of A, pTK−1qK−1 > 0. Thus,

ζKaK−1 =
rTK−1rK−1

pTK−1qK−1
.

Les Cahiers du GERAD G–2022–25 8

By (2) and Lemma 2.3, we obtain

rTK−1rK−1 = (pK−1 + PK−1λK−1)T rK−1 = pTK−1rK−1 + λTK−1P
T
K−1rK−1

= pTK−1rK−1.

We then have ζKaK−1 =
p
T
K−1rK−1

p
T
K−1qK−1

= αK−1. Combining with (17) gives

r̂K = rK−1 − αK−1qK−1 = rK .

Hence, (15) also holds for k = K.

In the following, we show that neither {‖xk − x?‖} nor {‖xk‖} produced by FOM or SCG is

monotonic. Consider

A =

1 0 −2
0 1 0
2 0 2

 and b =

1
0
0

 .

Note that A is positive definite. With x̂0 = 0, we have r̂0 = b and β = ‖r̂0‖ = 1. It follows from (13)

that

v̂1 =

1
0
0

 , v̂2 =

0
0
1

 , H1 = 1, H2 =

(
1 −2
2 2

)
.

Then we have

x̂1 = V̂1y1 = V̂1H
−1
1 (βe1) =

(
1 0 0

)T
,

x̂2 = V̂2y2 = V̂2H
−1
2 (βe1) =

(
1
3 0 − 1

3

)T
= x?.

This implies that ‖x̂0 − x?‖ =
√

2/3, ‖x̂1 − x?‖ =
√

5/3, ‖x̂2 − x?‖ = 0 and ‖x̂0‖ = 0, ‖x̂1‖ = 1,

‖x̂2‖ =
√

2/3. Therefore, the sequences {‖x̂k − x?‖} and {‖x̂k‖} produced by FOM (and SCG) are

not monotonic.

3 Sliding window implementation of SCG

In this section, we study the sliding window implementation of SCG, which is described in Algorithm 4.

Algorithm 4 SWI: Sliding window implementation of SCG

1: Given x0 = 0 and a nonnegative integer m, set r0 = b, p0 = r0 and q0 = Ap0.
2: while a stopping condition is not satisfied do

3: Compute the step size αk = r
T
k pk/p

T
k qk.

Update xk+1 = xk + αkpk and rk+1 = rk − αkqk.

4: Form vk+1 = Ark+1, Lk+1 = P
T
k+1Qk+1 and solve Lk+1λk+1 = P

T
k+1vk+1,

where Pk+1 =
[
pk−mk

. . . pk
]
, Qk+1 =

[
qk−mk

. . . qk
]
, mk = min{k,m}.

5: Update
pk+1 = rk+1 − Pk+1λk+1, qk+1 = vk+1 −Qk+1λk+1. (18)

6: Increment k by 1.
7: end while

Dai and Yuan [9, Algorithm 5.1] proposed the limited-memory left conjugate direction method,

which is theoretically equivalent to SWI, but they did not provide an analysis of the method. In the

following, we derive some properties of SWI and show that it is convergent under reasonable conditions.

As in the proof of Lemma 2.1, we obtain a relation between pk and qk in SWI.

Lemma 3.1. The sequence {pk, qk} produced by SWI satisfies qk = Apk.

Les Cahiers du GERAD G–2022–25 9

Lemma 3.2. The SWI matrices Lk (k ≥ 1) are nonsingular and lower triangular.

Proof. If 1 ≤ k ≤ m + 1, it follows from Lemma 2.2 that Lk is nonsingular and lower triangular.

Assume that Lk is nonsingular and lower triangular for some k ≥ m + 1. Let us now show that the

same is true of Lk+1. Let P̃k =
[
pk−m . . . pk−1

]
, Q̃k =

[
qk−m . . . qk−1

]
and km = k −m− 1. It is

easy to see that
Pk =

(
pkm P̃k

)
, Pk+1 =

(
P̃k pk

)
,

Qk =
(
qkm Q̃k

)
, Qk+1 =

(
Q̃k qk

)
.

(19)

As Lk is nonsingular and lower triangular, we have

Lk = PT
k Qk =

(
pTkm
P̃T
k

)(
qkm Q̃k

)
=

(
pTkmqkm pTkmQ̃k

P̃T
k qkm P̃T

k Q̃k

)
=

(
pTkmqkm 0

P̃T
k qkm P̃T

k Q̃k

)
, (20)

which implies that P̃T
k Q̃k is also nonsingular and lower triangular. Together, (19) and (20) yield

P̃T
k QkL

−1
k PT

k =
(
P̃T
k qkm P̃T

k Q̃k

)(pTkmqkm 0

P̃T
k qkm P̃T

k Q̃k

)−1(
pTkm
P̃T
k

)
= P̃T

k . (21)

Combining (18) with (21) gives P̃T
k qk = P̃T

k vk − P̃
T
k QkL

−1
k PT

k vk = 0. Thus,

Lk+1 =

(
P̃T
k

pTk

)(
Q̃k qk

)
=

(
P̃T
k Q̃k P̃T

k qk
pTk Q̃k pTk qk

)
=

(
P̃T
k Q̃k 0

pTk Q̃k pTk qk

)
is also lower triangular. Using Lemma 3.1 and the fact that A is positive definite, we have pTk qk =

pTkApk > 0. Therefore, Lk+1 is nonsingular.

With all Lk nonsingular, SWI is well defined. Lemma 3.2 also implies the following.

Corollary 3.1. For all i ∈ [max{0, k −m}, k − 1], it holds that pTi qk = 0.

Lemma 3.3. After k iterations in SWI we have PT
k rk = 0.

Proof. If k ≤ m + 1, it follows from Lemma 2.3 that PT
k rk = 0. Now we prove that PT

k rk = 0 also

holds for k > m+ 1. The proof is by induction on k. Assume that PT
k rk = 0 for some k ≥ m+ 1. For

the case of k + 1, it follows from (19) that

PT
k rk =

(
pTkm
P̃T
k

)
rk =

(
pTkmrk

P̃T
k rk

)
= 0.

This together with Corollary 3.1 yields

P̃T
k rk+1 = P̃T

k (rk − αkqk) = P̃T
k rk − αkP̃

T
k qk = 0.

From the expression for αk, we have

pTk rk+1 = pTk (rk − αkqk) = pTk rk − αkp
T
k qk = pTk rk −

rTk pk

pTk qk
pTk qk = 0.

This shows that

PT
k+1rk+1 =

(
P̃T
k

pTk

)
rk+1 =

(
P̃T
k rk+1

pTk rk+1

)
= 0.

The proof follows by induction.

Les Cahiers du GERAD G–2022–25 10

Remark 3.1. It follows from Lemma 3.3 that

rTk pk = rTk (rk − Pkλk) = rTk rk − r
T
k Pkλk = rTk rk. (22)

Hence, the step size αk in SWI can also be updated by αk = rTk rk/p
T
k qk.

Remark 3.2. In the same way as for Lemma 2.4, we can prove that if pk = 0, then rk = 0. Hence,

SWI will not break down unless rk = 0.

In the following, we show that SWI is a Krylov subspace method.

Lemma 3.4. The sequence {xk, rk, pk} produced by SWI satisfies xk ∈ Kk and rk, pk ∈ Kk+1.

Proof. For k = 0, the results hold naturally. Assume that the results hold for some k ≥ 0. Then for

k + 1, it follows from SWI, Lemma 3.1 and the induction hypothesis that

xk+1 = xk + αkpk ∈ Kk+1,

rk+1 = rk − αkqk = rk − αkApk ∈ Kk+2,

pk+1 = rk+1 − Pk+1λk+1 ∈ Kk+2.

The proof follows by induction.

We are now ready to establish the convergence theorem for SWI. For any k ≥ m, let the SVD of

n× (m+ 1) matrix Pk be

Pk = Uk

(
Σk

0

)
V T
k , (23)

where Σk = diag{σ1, σ2, . . . , σm+1} and σj > 0. Also let

UT
kAUk =

(
Ã

(1)
k Ã

(2)
k

Ã
(3)
k Ã

(4)
k

)
∈ Rn×n and UT

k rk =

(
r̃
(1)
k

r̃
(2)
k

)
∈ Rn, (24)

where Ã
(1)
k ∈ R(m+1)×(m+1) and r̃

(1)
k ∈ Rm+1. As A is positive definite, so is UT

kAUk. From [4,

Theorem 3.9], it follows that Ã
(1)
k is also positive definite. We can then define the Schur complement

of Ã
(1)
k :

Sk = Ã
(4)
k − Ã

(3)
k

(
Ã

(1)
k

)−1
Ã

(2)
k . (25)

By [4, Theorem 3.9], we know that Sk is positive definite and

(U
T
kAUk)

−1
=

((
Ã

(1)
k

)−1
+
(
Ã

(1)
k

)−1
Ã

(2)
k S

−1
k Ã

(3)
k

(
Ã

(1)
k

)−1 −
(
Ã

(1)
k

)−1
Ã

(2)
k S

−1
k

−S
−1
k Ã

(3)
k

(
Ã

(1)
k

)−1
S

−1
k

)
. (26)

It follows from the Courant-Fischer min-max theorem that

λ
(
H

S
−1
k

)
≤ λmax

(
H

S
−1
k

)
≤ λmax

(
H

(U
T
kAUk)

−1

)
= λmax

(
H

A
−1

)
,

λ
(
iS

S
−1
k

)
≤ λmax

(
iS

S
−1
k

)
≤ λmax

(
iS

(U
T
kAUk)

−1

)
= λmax

(
iS

A
−1

)
.

Similarly, we have

λ
(
H

S
−1
k

)
≥ λmin

(
H

A
−1

)
and λ

(
iS

S
−1
k

)
≥ λmin

(
iS

A
−1

)
.

Summing up, we have the following results.

Lemma 3.5. The eigenvalues of H
S

−1
k

and S
S

−1
k

satisfy the inequalities

λmin

(
H

A
−1

)
≤ λ

(
H

S
−1
k

)
≤ λmax

(
H

A
−1

)
and

∣∣λ(S
S

−1
k

)∣∣ ≤ ρ(S
A

−1

)
.

Les Cahiers du GERAD G–2022–25 11

Theorem 3.1. If A ∈ Rn×n is positive definite and λmin(H
A

−1) > ρ(S
A

−1), the sequence {xk} produced

by SWI converges to the unique solution x? of Ax = b (1).

Proof. Let dk = x?−xk be the error vector. Without loss of generality, we assume that k > m. Then

mk = min{k,m} = m. From Lemma 3.3 and (23)–(24), we have

0 = PT
k rk = Vk

(
Σk 0

)
UT
k rk = Vk

(
Σk 0

)(r̃(1)k

r̃
(2)
k

)
= VkΣkr̃

(1)
k ,

which leads to r̃
(1)
k = 0.

It follows from SWI, Lemma 3.1, (22), and Adk = rk that

dTk+1Adk+1 = (x? − xk+1)TA(x? − xk+1) = (x? − xk − αkpk)TA(x? − xk − αkpk)

= (dk − αkpk)TA(dk − αkpk) = dTkAdk − αkd
T
kApk − αkp

T
kAdk + α2

kp
T
kApk

= dTkAdk −
rTk pk

pTk qk
dTkApk −

rTk pk

pTk qk
pTkAdk +

(rTk pk)2

(pTk qk)2
pTkApk

= dTkAdk −
rTk pk

pTkApk
dTkApk −

rTk pk

pTkApk
pTk rk +

(rTk pk)2

(pTkApk)2
pTkApk

= dTkAdk −
rTk pk

pTkApk
dTkApk =

(
1− rTk pk

dTkAdk

dTkApk

pTkApk

)
dTkAdk

=

(
1− rTk rk

rTkA
−1rk

dTkApk

pTkApk

)
dTkAdk. (27)

From (23) and (24), we have

UT
kAUk − U

T
kAPk(PT

kAPk)−1PT
kAUk

= UT
kAUk − U

T
kAUk

(
Σk

0

)((
Σk 0

)
UT
kAUk

(
Σk

0

))−1 (
Σk 0

)
UT
kAUk

=

(
0 0
0 Sk

)
. (28)

Note that Uk is unitary. By SWI, Lemma 3.1, (26), and (28), we obtain

UT
kApk = UT

kA
(
I − Pk(PT

kAPk)−1PT
kA
)
rk

=
(
UT
kAUk − U

T
kAPk(PT

kAPk)−1PT
kAUk

)
UT
k rk

=

(
0 0
0 Sk

)(
r̃
(1)
k

r̃
(2)
k

)
=

(
0

Skr̃
(2)
k

)

and UT
k pk = UT

kA
−1UkU

T
kApk = (UT

kAUk)−1UT
kApk =

(
−
(
Ã

(1)
k

)−1
Ã

(2)
k r̃

(2)
k

r̃
(2)
k

)
.

This together with (26) and r̃
(1)
k = 0 yields

pTkApk = (UT
k pk)TUT

kApk =
(
−
(
r̃
(2)
k

)T (
Ã

(2)
k

)T (
Ã

(1)
k

)−T (
r̃
(2)
k

)T)(0

Skr̃
(2)
k

)
=
(
r̃
(2)
k

)T
Skr̃

(2)
k , (29)

Les Cahiers du GERAD G–2022–25 12

dTkApk = rTkA
−TApk = rTk UkU

T
kA
−TUkU

T
kApk

= (UT
k rk)T (UT

kAUk)−TUT
kApk =

(
r̃
(2)
k

)T
S−Tk Skr̃

(2)
k . (30)

Substituting (29)–(30) into (27) gives

dTk+1Adk+1 =

(
1− rTk rk

rTkA
−1rk

(
r̃
(2)
k

)T
S−Tk Skr̃

(2)
k(

r̃
(2)
k

)T
Skr̃

(2)
k

)
dTkAdk. (31)

Let v = Skr̃
(2)
k ∈ Rn−m−1. It follows from Lemma 3.5 and λmin(H

A
−1) > ρ(S

A
−1) that

(
r̃
(2)
k

)T
S−Tk Skr̃

(2)
k(

r̃
(2)
k

)T
Skr̃

(2)
k

=
vT (S−Tk)2v

vTS−Tk v
=
vT (S−1k)2v

vTS−1k v
=
vT
(
H

S
−1
k

+ S
S

−1
k

)2
v

vTH
S

−1
k
v

=
vTH2

S
−1
k
v + vTS2

S
−1
k
v

vTH
S

−1
k
v

≥ λmin(H
S

−1
k

)−
max

{∣∣λmin(S2
S

−1
k

)
∣∣, ∣∣λmax(S2

S
−1
k

)
∣∣}

λmin(H
S

−1
k

)

≥ λmin(H
A

−1)−
ρ(S

A
−1)2

λmin(H
A

−1)
> 0.

This along with the fact that

rTk rk

rTkA
−1rk

=
rTk rk

rTkHA
−1rk

≥ 1

λmax

(
H

A
−1

) > 0

leads to

dTk+1Adk+1 ≤

(
1−

(
λmin(H

A
−1)
)2 − ρ(S

A
−1)2

λmin(H
A

−1)λmax(H
A

−1)

)
dTkAdk.

Hence when λmin(H
A

−1) > ρ(S
A

−1), dTkAdk → 0 as k → ∞. Since A is positive definite, we have

dk → 0.

If A is symmetric positive definite, S
A

−1 = 0 and λmin(H
A

−1) > ρ(S
A

−1) holds naturally, and SWI

converges unconditionally.

If A is a normal matrix, we have A = X∗ΛX, where X is a unitary matrix and Λ = diag{a1 +

ib1, . . . , an + ibn} with 0 < a1 ≤ a2 ≤ · · · ≤ an is the diagonal matrix containing the eigenvalues of A.

Then

λmin(H
A

−1) =
1

2
min
j

{
1

aj + ibj
+

1

aj − ibj

}
= min

j

{
aj

a2j + b2j

}
,

ρ(S
A

−1) =
1

2
max

j

∣∣∣∣ 1

aj + ibj
− 1

aj − ibj

∣∣∣∣ = max
j

{
|bj |

a2j + b2j

}
.

If |bj | � aj for all 1 ≤ j ≤ n, we have

λmin(H
A

−1) ≈ 1

an
and ρ(S

A
−1) ≈ max

j

{
|bj |
a2j

}
≤ 1

a1
max

j

{ |bj |
aj

}
.

Then from Theorem 3.1 we know that SWI is convergent provided

a1
an

> max
j

{ |bj |
aj

}
.

Les Cahiers du GERAD G–2022–25 13

Algorithm 5 DIOM [23, Algorithm 6.8]

1: Given x̂0 = 0 and a positive integer m, set r̂0 = b, β = ‖r̂0‖, v̂1 = r̂0/β.
2: for k = 1, 2, . . . do
3: Compute hik, i = max{1, k −m + 1}, 2, . . . , k + 1 and v̂k+1 using the incomplete orthogonalization process [23,

Algorithm 6.6].

4: Update the LU factorization of Hk, i.e., obtain the last column uk of Ûk.
5: Compute ζk = {if k = 1 then β, else − lk,k−1ζk−1}.
6: Compute p̂k = (v̂k −

∑k−1
i=k−m+1 uikp̂i)/ukk.

7: Compute x̂k = x̂k−1 + ζkp̂k.
8: Compute r̂k = r̂k−1 − ζkAp̂k.
9: end for

3.1 SWI is not equivalent to DIOM

Although SCG and FOM are equivalent, their sliding window implementations are different. DIOM,

the sliding window implementation of FOM, is stated as Algorithm 5.

From Algorithms 4 and 5 we see that the main difference between them is that in DIOM, Saad [23]

applies the sliding window idea to the Arnoldi vectors, whereas in SWI, we apply it to the transformed

search directions {pk}. As the following simple example shows, the directions {p̂k} produced by DIOM

do not satisfy

p̂Ti Ap̂k = 0 (max{0, k −m} ≤ i ≤ k − 1), (32)

which establishes that SWI and DIOM are different.

Consider

A =


1 0 0 0 −1
0 1 0 −1 0
0 0 1 0 0
0 1 0 1 0
1 0 0 0 2

 and b =


1
1
1
0
0

 . (33)

Note that A is positive definite. With m = 2 and x̂0 = 0, we have r̂0 = b and β = ‖r̂0‖ =
√

3. It

follows from DIOM that

H4 =



1 −
√

2
3 0 0√

2
3

3
2 − 1

2
√
21

0

0
√
21
6

17
14 − 9

7
√
6

0 0 2
√
6

7
29
28


, V̂4 =



1√
3

0 − 2√
42
− 3

2
√
7

1√
3

0 − 2√
42

2√
7

1√
3

0 4√
42

− 1
2
√
7

0 1√
2
− 3√

42
− 1

2
√
7

0 1√
2

3√
42

1
2
√
7


.

The LU factors of H4 are

L̂4 =



1√
2
3 1

0
√
21
13 1

0 0 26
√
6

114 1

 , Û4 =


1 −

√
2
3 0 0

13
6 − 1

2
√
21

0

114
91 − 9

7
√
6

101
76

 .

Note that P̂4 = [p̂1, p̂2, p̂3, p̂4] = V̂4Û
−1
4 [23, p155]. Thus,

p̂1 = 1√
3


1
1
1
0
0

 , p̂2 = 2
√
2

13


1
1
1
1
1

 , p̂3 =
√
42

114


−4
−4
9
−6
7

 , p̂4 = 2
101
√
7


−69
64
8
−37
40

 .

Les Cahiers du GERAD G–2022–25 14

Since p̂T3 Ap̂4 =
√
42

114 ·
2

101
√
7
·19 =

√
6

303 6= 0, we know that DIOM does not possess the properties in (32).

In addition, the SWI residuals do not satisfy

rTi rk = 0 (max{0, k −m} ≤ i ≤ k − 1),

a property that the DIOM residuals possess [23, p157]. Indeed, for the same linear system (33) and

the same setting m = 2 and x0 = 0, the SWI residuals {rk} are

r1 =


0
0
0
−1
−1

 , r2 = 1
13


−2
−2
4
−3
3

 , r3 = 1
19


3
−4
1
1
−1

 , r4 = 1
15


−1
0
1
1
−1

 , r5 = 1
289


−1
2
−1
13
13

 .

This implies that rT3 r5 = − 12
5491 6= 0.

4 Numerical experiments

We report numerical experience with SCG (Algorithm 1), SWI (Algorithm 4), FOM (Algorithm 3),

and DIOM (Algorithm 5). For completeness, we include results obtained with GMRES [24], DQGM-

RES [25], and BICGSTAB [30]. All experiments were run using MATLAB R2015b on a PC with an

Intel(R) Core(TM) i7-8550U CPU @ 1.8GHz and 16GB of RAM.

In our implementation, x0 = 0. Each method is terminated when either the number of iterations

exceeds 104 or

Res :=
‖rk‖
‖r0‖

< 10−6.

We compare the performance by reporting the number of iterations, the CPU time and the relative

residual, denoted by “Iter”, “CPU” and “Res”, respectively. For SWI, DIOM, and DQGMRES, we

tested several values of the memory m, and denote the corresponding algorithms SWI(m), DIOM(m),

and DQGMRES(m), respectively.

Example 1. [13, Example 3.1.1] We consider the 2D convection-diffusion equation

−ε∇2u+ ~w · ∇u = 0 in (−1, 1)× (−1, 1),

with boundary conditions

u(x,−1) = x, u(x, 1) = 0, u(−1, y) ≈ −1, u(1, y) ≈ 1.

If ~w = (0, 1), an exact solution is

u(x, y) = x(1− e
y−1
ε)/(1− e−

2
ε),

which satisfies the boundary conditions, save for the last two near y = 1.

In our tests, we set ε = 1/200 and discretize the convection-diffusion equation using the standard

Q1 finite element approximation [14] on uniform grids with grid parameter h = 1/25, 1/26, 1/27,

1/28, 1/29, 1/210. The resulting matrices are unsymmetric positive definite. This discretization was

accomplished using IFISS [14]. We use m = 2, 5, and 10 in SWI, DIOM, and DQGMRES. We report

our numerical results in Figure 1 and Table 1.

Les Cahiers du GERAD G–2022–25 15

0 20 40 60 80 100 120 140

Iter

10-8

10-6

10-4

10-2

100

102

104

R
e

s

BICGSTAB

GMRES

DQGMRES(36)

FOM

SCG

0 10 20 30 40 50 60 70 80

Iter

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

R
e

s

DIOM(5)

DIOM(10)

SWI(2)

SWI(5)

SWI(10)

Figure 1: Evolution of the relative residual of the methods tested on Example 1 with n = 1089

Table 1: Numerical results for Example 1

h 1/2
5

1/2
6

1/2
7

1/2
8

1/2
9

1/2
10

n 1089 4225 16641 66049 263169 1050625

Iter 43 75 149 298 597 1193
GMRES CPU 0.015 0.20 1.21 14.40 347.50 36374.39

Res 4.17e-07 8.11e-07 4.1934e-07 7.98e-07 7.73e-07 8.35e-07

Iter 43 75 149 298 598 1195
FOM CPU 0.010 0.18 1.17 17.46 336.75 36299.16

Res 4.47e-07 8.25e-07 4.35e-07 9.77e-07 6.46e-07 9.09e-07

Iter 49 89 179 363 750 1544
DIOM(5) CPU 0.0039 0.049 0.42 2.81 26.86 192.49

Res 8.25e-07 7.80e-07 5.42e-07 8.97e-07 5.99e-07 9.60e-07

Iter 60 99 166 318 621 1237
DIOM(10) CPU 0.0065 0.062 0.75 4.01 35.74 242.13

Res 2.33e-07 6.89e-08 5.73e-07 3.87e-07 6.74e-07 9.26e-07

Iter 43 75 148 297 594 1185
SCG CPU 0.0036 0.043 0.47 5.25 75.31 21488.05

Res 4.47e-07 8.25e-07 4.46e-07 7.24e-07 6.56e-07 9.23e-07

Iter 71 121 210 417 803 1598
SWI(2) CPU 0.0042 0.049 0.27 1.75 16.90 103.43

Res 8.28e-07 8.54e-07 8.87e-07 5.65e-07 7.04e-07 9.68e-07

Iter 52 95 181 360 728 1435
SWI(5) CPU 0.0042 0.036 0.29 2.33 21.75 145.28

Res 1.58e-07 4.29e-08 8.15e-07 6.33e-07 8.16e-07 9.29e-07

Iter 63 102 178 348 691 1381
SWI(10) CPU 0.0048 0.039 0.57 3.53 26.07 205.36

Res 3.50e-07 2.97e-07 1.87e-07 5.50e-07 9.58e-07 7.70e-07

In Example 1, BICGSTAB and DIOM(2) were not able to solve problems within 104 iterations

when h ≤ 1/26 (DIOM(2) also failed when h = 1/25), so we do not report their results in Table 1.

DQGMRES failed for m = 2, 5, and 10. We found that its performance is highly sensitive to the value

of m. Indeed, while testing other values of m, we observed that the choice of m = 36 is effective but

m = 35 is not when h = 1/25. The value of m for DQGMRES on this example should not be too

much smaller than the number of iterations of GMRES, which is clearly not practical. Figure 1 also

illustrates that the convergence behaviors of SWI and DIOM are different.

Les Cahiers du GERAD G–2022–25 16

In Table 1, the iteration numbers for all tested methods increase in a regular way, each time nearly

twice its previous value, but the CPU times rise sharply. When h = 1/210 (n = 1, 050, 625), the CPU

times of GMRES, FOM, and SCG are more than 100 times those of the sliding window versions. When

h ≤ 1/27, the best performances are by SWI(2). SWI becomes increasingly better as the problem size

increases.

Example 2. We select matrices from the SuiteSparse Matrix Collection [10, 11] and set b so that the

solution is x? = (1, 1, . . . , 1).

The total number of tested matrices in Example 2 is 24, where the matrices arise from applications

such as computational fluid dynamics, circuit simulation, directed weighted graphs, optimization, and

power networks. Their name, dimensions and nature are given in Table 2, where SPD, UPD and UID

mean that the matrix is symmetric positive definite, unsymmetric positive definite and unsymmetric

indefinite.

Table 2: Dimensions and nature of 24 problems in Example 2

Problem n Nature Problem n Nature

ACTIVSg10K 20000 UPD fpga dcop 35 1220 UPD
ACTIVSg2000 4000 UPD majorbasis 160000 UPD
add20 2395 UPD pde2961 2961 UPD
add32 4960 UPD raefsky2 3242 UID
adder dcop 01 1813 UPD raefsky4 19779 SPD
cage12 130228 UPD raefsky5 6316 UPD
cage13 445315 UPD rajat01 6833 UID
crashbasis 160000 UID rajat03 7602 UPD
ex11 16614 UPD rajat13 7598 UID
ex18 5773 UPD rajat16 94294 UPD
ex19 12005 UPD rajat27 20640 UID
ex35 19716 UPD swang1 3169 UPD

For DQGMRES, DIOM and SWI, we use m = 2, 5, 10, and 100. The best of the four results is

presented along with the corresponding value of m. The numerical results are reported in Figures 2

and 3 and Tables 3 to 9, where “-” means that the method failed to solve the problem.

GMRES, FOM and SCG successfully solved all the problems but BICGSTAB, DQGMRES, DIOM

and SWI failed in 5, 9, 5 and 4 cases, respectively. In terms of the CPU time, BICGSTAB, SCG and

SWI perform best in 10, 7, and 4 cases, respectively. Compared to SCG, SWI requires less CPU time
in 14 cases and the improvements are significant. Compared to DQGMRES and DIOM, SWI requires

the least CPU time in 16 cases, while DQGMRES and DIOM require the least in only 2 cases. Hence,

SWI is the most successful of the sliding window implementations.

In Figure 2, performance profiles2 [12] indicate that SCG and SWI are more robust than BICGSTAB,

and also more efficient than other tested methods; the reduction in CPU time for SWI was often sub-

stantial. To see the role of m in SWI’s performance, we also plot performance profiles for SWI with

different m. From Figure 3 it is apparent that larger m leads to fewer iterations for SWI but more

CPU time. Hence, the choice of m to balance iterations and CPU time is crucial for the performance

of SWI.

2
The performance profile %s(τ) is a distribution function for the performance ratio rp,s, with

rp,s = tp,s/min{tp,s : s ∈ S} and %s(τ) =
∣∣{p ∈ P : rp,s ≤ τ

}∣∣ /|P |,
where S is the set of solvers, P is the set of problems, | · | indicates cardinality, and tp,s is the Iter/CPU required to
solve problem p with solver s.

Les Cahiers du GERAD G–2022–25 17

5 10 15 20 25 30

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ
s
(τ

)

BICGSTAB

GMRES

FOM

SCG

(a) Iter

5 10 15 20 25 30 35 40 45

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ
s
(τ

)

BICGSTAB

GMRES

FOM

SCG

(b) CPU

5 10 15 20 25 30

τ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ
s
(τ

)

BICGSTAB

DQGMRES

DIOM

SWI

(c) Iter

20 40 60 80 100 120 140 160 180 200 220

τ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ
s
(τ

)

BICGSTAB

DQGMRES

DIOM

SWI

(d) CPU

Figure 2: Performance profiles for all tested methods on Example 2. Limited-memory methods use the value of m stated
in Tables 7 to 9

1 2 3 4 5 6 7 8 9

τ

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ
s
(τ

)

SWI(2)

SWI(5)

SWI(10)

SWI(100)

(a) Iter

2 4 6 8 10 12 14 16 18

τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ
s
(τ

)

SWI(2)

SWI(5)

SWI(10)

SWI(100)

(b) CPU

Figure 3: Performance profiles for SWI with different values of m on Example 2

Les Cahiers du GERAD G–2022–25 18

Table 3: Numerical results for BICGSTAB on Example 2

Problem Iter CPU Res Problem Iter CPU Res

ACTIVSg10K - - - fpga dcop 35 - - -
ACTIVSg2000 2608 0.42 3.04E-07 majorbasis 110 0.71 8.20E-07
add20 376 0.053 8.59E-07 pde2961 267 0.021 9.12E-07
add32 72 0.0086 8.44E-07 raefsky2 636 0.32 6.92E-07
adder dcop 01 1607 0.072 9.96E-07 raefsky4 29 0.086 7.01E-07
cage12 20 0.11 5.71E-07 raefsky5 129 0.036 7.49E-07
cage13 20 0.40 4.76E-07 rajat01 - - -
crashbasis 244 1.57 9.74E-07 rajat03 2338 0.56 4.08E-07
ex11 1572 3.56 8.94E-07 rajat13 86 0.014 9.52E-07
ex18 1397 0.25 9.89E-07 rajat16 - - -
ex19 4050 2.88 3.79E-07 rajat27 - - -
ex35 1438 1.17 8.15E-07 swang1 22 0.0017 6.14E-07

Table 4: Numerical results for GMRES on Example 2

Problem Iter CPU Res Problem Iter CPU Res

ACTIVSg10K 6130 2690.28 9.98E-07 fpga dcop 35 214 0.29 9.37E-07
ACTIVSg2000 779 16.03 9.71E-07 majorbasis 97 7.49 9.81E-07

add20 195 0.35 9.92E-07 pde2961 189 0.67 9.11E-07
add32 57 0.091 9.42E-07 raefsky2 332 2.71 8.61E-07

adder dcop 01 55 0.023 9.39E-07 raefsky4 22 0.085 4.73E-07
cage12 14 0.16 9.57E-07 raefsky5 34 0.048 8.49E-07
cage13 15 0.65 8.33E-07 rajat01 1894 132.19 9.99E-07

crashbasis 175 22.80 9.93E-07 rajat03 172 1.32 8.98E-07
ex11 571 24.24 9.98E-07 rajat13 22 0.022 9.06E-07
ex18 505 8.75 9.99E-07 rajat16 1116 355.88 9.97E-07
ex19 936 48.60 9.31E-07 rajat27 595 30.20 9.89E-07
ex35 607 29.71 9.99E-07 swang1 19 0.0076 7.15E-07

Table 5: Numerical results for FOM on Example 2

Problem Iter CPU Res Problem Iter CPU Res

ACTIVSg10K 6376 2762.76 9.48E-07 fpga dcop 35 276 0.42 5.26E-07
ACTIVSg2000 814 18.55 9.75E-07 majorbasis 109 9.36 8.54E-07
add20 214 0.40 8.59E-07 pde2961 192 0.63 8.36E-07
add32 59 0.095 6.06E-07 raefsky2 334 2.93 9.72E-07
adder dcop 01 80 0.055 9.41E-07 raefsky4 22 0.16 5.06E-07
cage12 15 0.27 5.12E-07 raefsky5 36 0.077 7.37E-07
cage13 15 0.84 9.47E-07 rajat01 2296 185.61 5.60E-07
crashbasis 196 27.43 9.89E-07 rajat03 173 1.28 7.55E-07
ex11 694 35.94 9.96E-07 rajat13 24 0.025 7.72E-07
ex18 541 9.64 9.62E-07 rajat16 1453 580.32 9.89E-07
ex19 947 47.85 9.41E-07 rajat27 909 68.95 9.45E-07
ex35 847 53.71 9.35E-07 swang1 19 0.0075 8.26E-07

Les Cahiers du GERAD G–2022–25 19

Table 6: Numerical results for SCG on Example 2

Problem Iter CPU Res Problem Iter CPU Res

ACTIVSg10K 6376 1266.00 9.50E-07 fpga dcop 35 276 0.13 5.26E-07
ACTIVSg2000 814 4.34 9.75E-07 majorbasis 109 2.50 8.54E-07
add20 214 0.084 8.59E-07 pde2961 192 0.12 8.36E-07
add32 59 0.020 6.06E-07 raefsky2 334 0.57 9.72E-07
adder dcop 01 80 0.016 9.41E-07 raefsky4 22 0.094 5.06E-07
cage12 15 0.14 5.12E-07 raefsky5 36 0.027 7.37E-07
cage13 15 0.45 9.47E-07 rajat01 2294 70.42 9.75E-07
crashbasis 196 6.14 9.89E-07 rajat03 173 0.24 7.60E-07
ex11 694 8.97 9.96E-07 rajat13 24 0.013 7.72E-07
ex18 541 2.08 9.62E-07 rajat16 1453 158.62 9.98E-07
ex19 947 12.28 9.41E-07 rajat27 912 16.63 7.96E-07
ex35 847 13.47 9.33E-07 swang1 19 0.0056 8.26E-07

Table 7: Numerical results for DQGMRES on Example 2

Problem Iter CPU Res m Problem Iter CPU Res m

ACTIVSg10K - - - - fpga dcop 35 97 7.35 9.81E-07 100
ACTIVSg2000 - - - - majorbasis - - - -
add20 206 0.46 9.98E-07 100 pde2961 - - - -
add32 57 0.094 9.42E-07 100 raefsky2 - - - -
adder dcop 01 55 0.022 9.39E-07 100 raefsky4 22 0.093 4.73E-07 5
cage12 15 0.25 5.65E-07 5 raefsky5 34 0.045 8.49E-07 100
cage13 16 0.79 7.25E-07 5 rajat01 - - - -
crashbasis - - - - rajat03 257 0.17 9.86E-07 5
ex11 893 4.87 9.87E-07 5 rajat13 45 0.071 8.34E-07 10
ex18 798 0.53 9.90E-07 5 rajat16 - - - -
ex19 1897 3.54 9.78E-07 5 rajat27 - - - -
ex35 347 0.029 9.83E-07 5 swang1 19 0.0080 7.44E-07 10

Table 8: Numerical results for DIOM on Example 2

Problem Iter CPU Res m Problem Iter CPU Res m

ACTIVSg10K - - - - fpga dcop 35 587 0.035 6.07E-07 2
ACTIVSg2000 - - - - majorbasis 268 3.98 9.83E-07 2
add20 224 0.038 9.96E-07 5 pde2961 384 0.18 9.58E-07 10
add32 59 0.015 6.26E-07 2 raefsky2 3883 6.05 9.63E-07 10
adder dcop 01 80 0.049 9.41E-07 100 raefsky4 22 0.091 5.06E-07 2
cage12 15 0.17 5.86E-07 2 raefsky5 54 0.068 8.50E-07 10
cage13 16 0.52 4.63E-07 2 rajat01 - - - -
crashbasis 721 10.91 9.96E-07 2 rajat03 281 0.12 6.78E-07 2
ex11 1237 6.04 9.58E-07 2 rajat13 55 0.10 9.54E-07 10
ex18 943 0.45 9.80E-07 2 rajat16 - - - -
ex19 2181 2.97 8.87E-07 2 rajat27 - - - -
ex35 1235 1.90 8.03E-07 2 swang1 19 0.0049 9.46E-07 5

Les Cahiers du GERAD G–2022–25 20

Table 9: Numerical results for SWI on Example 2

Problem Iter CPU Res m Problem Iter CPU Res m

ACTIVSg10K - - - - fpga dcop 35 903 0.053 4.54E-07 2
ACTIVSg2000 1764 9.35 9.94E-07 100 majorbasis 130 1.44 9.78E-07 2
add20 234 0.033 9.46E-07 2 pde2961 255 0.076 9.21E-07 10
add32 59 0.014 6.23E-07 2 raefsky2 2683 1.95 9.95E-07 5
adder dcop 01 80 0.037 9.41E-07 100 raefsky4 22 0.059 5.06E-07 2
cage12 15 0.13 5.28E-07 2 raefsky5 95 0.046 8.29E-07 2
cage13 15 0.40 9.60E-07 2 rajat01 - - - -
crashbasis 428 7.52 9.72E-07 5 rajat03 341 0.12 7.50E-07 2
ex11 1235 3.38 9.05E-07 2 rajat13 53 0.038 9.86E-07 10
ex18 908 0.36 9.64E-07 2 rajat16 - - - -
ex19 2188 2.22 8.52E-07 2 rajat27 - - - -
ex35 1242 1.48 9.36E-07 2 swang1 20 0.0038 9.31E-07 2

5 Conclusions and future work

We introduced the semi-conjugate gradient method (SCG) and its sliding window implementation

(SWI) to solve unsymmetric positive definite linear systems. Both theoretical and numerical studies

of SCG and SWI were conducted. SCG is theoretically equivalent to FOM, but a counter-example

illustrates that their sliding window implementations differ. The numerical results presented are highly

encouraging, though the performance of SWI naturally depends on the window width m.

Future work should aim to develop efficient algorithms for adaptive selection of the window width

m. A possibly feasible approach is changing the value of m dynamically. Another way to improve the

performance of SCG and SWI is to incorporate preconditioning into them and to develop practical

and effective preconditioners. It is also interesting and challenging to extend SCG and SWI to solve

nonlinear problems as has been done for CG [8].

References
[1] W. E. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue problem.

Quarterly Appl. Math., 9(1):17–29, 1951.

[2] O. Axelsson. Conjugate gradient type methods for unsymmetric and inconsistent systems of linear equa-
tions. Linear Algebra and its Applications, 29:1–16, 1980.

[3] O. Axelsson. A generalized conjugate direction method and its application on a singular perturbation
problem. In Numerical Analysis, pages 1–11. Springer, Berlin, Heidelberg, 1980.

[4] O. Axelsson. Iterative Solution Methods. Cambridge University Press, 1996.

[5] R. E. Bank and T. F. Chan. An analysis of the composite step biconjugate gradient method. Numer.
Math., 66(1):295–319, 1993.

[6] O. Burdakov. Conjugate direction methods for solving systems of equations and finding saddle points.
part 1. Engineering Cybernetics, 20(3):13–19, 1982.

[7] O. Burdakov. Conjugate direction methods for solving systems of equations and finding saddle points.
part 2. Engineering Cybernetics, 20(4):23–31, 1982.

[8] O. Burdakov, Y. H. Dai, and N. Huang. On solving saddle-point problems and nonlinear monotone
equations. http://stanford.edu/group/SOL/classics/18oleg-SCG-ismp-bordeaux.pdf. Presentation
at ISMP 2018, Bordeaux, France.

[9] Y. H. Dai and J. Y. Yuan. Study on semi-conjugate direction methods for non-symmetric systems.
International J. Numer. Meth. Eng., 60(8):1383–1399, 2004.

[10] T. A. Davis and Y. F. Hu. The University of Florida sparse matrix collection. ACM Trans. Math. Softw.,
38(1):1–25, 2011.

[11] T. A. Davis, Y. Hu, and S. Kolodziej. The SuiteSparse matrix collection. https://sparse.tamu.edu/,
2015–present.

http://stanford.edu/group/SOL/classics/18oleg-SCG-ismp-bordeaux.pdf
https://sparse.tamu.edu/

Les Cahiers du GERAD G–2022–25 21

[12] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance profiles. Math.
Program., 91(2):201–213, 2002.

[13] H. C. Elman, D. J. Silvester, and A. J. Wathen. Finite Elements and Fast Iterative Solvers: with
Applications in Incompressible Fluid Dynamics. Oxford University Press, Oxford, UK, 2 edition, 2006.

[14] H. C. Elman, A. Ramage, and D. J. Silvester. Algorithm 866: IFISS, a Matlab toolbox for modelling
incompressible flow. ACM Trans. Math. Softw., 33(2):14–es, 2007.

[15] D. C.-L. Fong and M. Saunders. LSMR: An iterative algorithm for least-squares problems. SIAM J. Sci.
Comput., 33(5):2950–2971, 2011. doi: https://doi.org/10.1137/10079687X.

[16] R. W. Freund and N. M. Nachtigal. QMR: A quasi-minimal residual method for non-Hermitian linear
systems. Numer. Math., 60(1):315–339, 1991.

[17] G. H. Golub and C. Van Loan. Unsymmetric positive definite linear systems. Linear Algebra and its
Applications, 28:85–97, 1979.

[18] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. J. Res. Nat.
Bur. Standards, 49(6):409–435, 1952.

[19] T. A. Manteuffel. The Tchebychev iteration for nonsymmetric linear systems. Numer. Math., 28(3):
307–327, 1977.

[20] T. A. Manteuffel. Adaptive procedure for estimating parameters for the nonsymmetric Tchebychev iter-
ation. Numer. Math., 31(2):183–208, 1978.

[21] A. Montoison and D. Orban. BiLQ: An iterative method for nonsymmetric linear systems with a quasi-
minimum error property. SIAM J. Matrix Anal. Appl., 41(3):1145–1166, 2020.

[22] C. C. Paige and M. A. Saunders. LSQR: An algorithm for sparse linear equations and sparse least squares.
ACM Trans. Math. Softw., 8(1):43–71, 1982.

[23] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, 2003.

[24] Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric
linear systems. SIAM J. Sci. and Statist. Comput., 7(3):856–869, 1986.

[25] Y. Saad and K. S. Wu. DQGMRES: A direct quasi-minimal residual algorithm based on incomplete
orthogonalization. Numer. Linear Algebra Appl., 3(4):329–343, 1996.

[26] M. A. Saunders, H. D. Simon, and E. L. Yip. Two conjugate-gradient-type methods for unsymmetric
linear equations. SIAM J. Numer. Anal., 25(4):927–940, 1988.

[27] P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. and Statist.
Comput., 10(1):36–52, 1989.

[28] C. Tong and Q. Ye. Analysis of the finite precision bi-conjugate gradient algorithm for nonsymmetric
linear systems. Math. Comp., 69(232):1559–1575, 2000.

[29] H. A. Van der Vorst. Iterative solution methods for certain sparse linear systems with a non-symmetric
matrix arising from PDE-problems. J. Comp. Physics, 44(1):1–19, 1981.

[30] H. A. Van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of
nonsymmetric linear systems. SIAM J. Sci. and Statist. Comput., 13(2):631–644, 1992.

[31] P. K. Vinsome. Orthomin, an iterative method for solving sparse sets of simultaneous linear equations.
In SPE Symposium on Numerical Simulation of Reservoir Performance. OnePetro, 1976.

[32] D. M. Young and K. C. Jea. Generalized conjugate-gradient acceleration of nonsymmetrizable iterative
methods. Linear Algebra and its Applications, 34:159–194, 1980.

[33] J. Y. Yuan, G. H. Golub, R. J. Plemmons, and W. Cecilio. Semi-conjugate direction methods for real
positive definite systems. BIT Numer. Math., 44(1):189–207, 2004.

	Introduction
	The semi-conjugate gradient method
	Convergence analysis of SCG
	SCG is equivalent to FOM

	Sliding window implementation of SCG
	SWI is not equivalent to DIOM

	Numerical experiments
	Conclusions and future work

