
Les Cahiers du GERAD ISSN: 0711–2440

A fast dual bound for power allocation

A. Girard

G–2022–22

May 2022

La collection Les Cahiers du GERAD est constituée des travaux de
recherche menés par nos membres. La plupart de ces documents de
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André Girard a
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Abstract : In this paper, we propose a fast algorithm to compute a bound for the problem of
optimizing the power of a number of users sharing a set of wireless channels. We define an equivalent
problem and show how computing the dual function of this problem can be separated into a number of
independent non-convex sub-problems in two variables only. We then give an analytic expression for
the optimal value of the sub-problems so that the dual function can be evaluated in low polynomial
time.

Keywords: Power allocation, wireless, lagrangian relaxation, non-convex optimization

Résumé : Nous proposons dans cet article un algorithme rapide pour calculer une borne supérieure
au problème de la gestion de la puissance des utilisateurs d’un ensemble de canaux sans fil. Nous
définissons un problème équivalent et montrons comment le calcul de la fonction duale de ce problème se
décompose en sous-problèmes non convexes en deux variables. Nous calculons ensuite analytiquement
la solution optimale des sous-problèmes, ce qui permet un calcul rapide de la fonction duale.

Mots clés : Contrôle de puissance, sans-fil, relaxation lagrangienne, optimisation nonconvexe
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1 Introduction

An essential element in the design of communication systems is to maximize the network throughput

by optimally allocating power to a number of users sharing a set of wireless transmission channels.

This non-convex optimization problem has been the subject of much work, first for digital subscriber

loops in the mid-2000s and later, in the context of cellular and other wireless communication networks,

where it often shows up as part of a more general design problem.

While there is a number of primal algorithms available to compute approximate solutions, there

has also been an interest in a dual approach to computing the optimal power. Unfortunately, the non-

convexity of the problem makes it difficult to compute a dual bound and only approximate solutions

have been available so far.

In this paper, we provide an exact dual bound for the power allocation problem that can be

computed in low polynomial time. In order to do this, we first state in Section 2 the power allocation

problem and briefly review in Section 3 the work that has been done on this topic. The core of the

paper is found in Section 4 where we first define an equivalent problem. We then show how to evaluate

its dual function in polynomial time and provide an analytic expression for the value of the dual

functions. We discuss in Section 5 some further research directions that are now possible and we then

conclude in Section 6.

2 Power allocation with interference

In this paper, we consider a generic power allocation problem where a number of users are allowed to

transmit over a given set of channels. The objective is to maximize the total rate subject to a minimum

rate constraint for each user and a power limit for the transmission of each user on all channels.

2.1 Definitions and notation

We use the model of [11] as a typical power allocation problem. There are K users, or mobile terminal,

and N channels that these users can use to transmit.

As a rule, an upper index refers to a channel, and is denoted by n, while lower indices refer to users

and are denoted by k and j whenever needed. First, define the known network parameters

K Number of users, indexed with k or j

N Number of channels, indexed with n

Gnk,j The channel gain between the transmitter of user j and the receiver of user k

σnk The noise power for terminal k on channel n

P k The maximum power available to user k.

rk The minimum bit rate per Hz needed by user k.

Next, we define the decision variables and some intermediate variables that depend on them

Pnk The transmission power of user k on channel n.

rnk The bit rate per Hz of user k on channel n

We can compute rnk , the Shannon limit for the rate received by user k on channel n

rnk = log

(
1 +

Gnk,kP
n
k∑

j 6=kG
n
k,jP

n
j + σnk

)
(1)

where rnk and rk are the actual rate and bound multiplied by a log(2) factor to simplify the notation.

In the following, we will use a vector notation whenever this is more convenient to denote some subset
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of variables xnk as the case may be, e.g., x is the set of all xnk for n = 1 . . . N , k = 1 . . .K, xn is the set

xnk for k = 1 . . .K and xk is the set xnk for n = 1 . . . N .

2.2 Problem definition

We now define what we will call the original Problem P0, in the form of a non-convex maximization

max
P

Z =

N∑
n=1

K∑
k=1

rnk (Pn) (2)

N∑
n=1

rnk (Pn) ≥ rk ∀k = 1 . . .K (3)

P k ≥
N∑
n=1

Pnk ∀k = 1 . . .K. (4)

In all that follows, we assume that we can find a feasible solution for P0, if there is one. This is

easily done with any general-purpose nonlinear solver for convex problems, which will produce a local

optimum. If needed, we can try to improve this solution by giving the solver different starting points

and keeping the best one.

3 Previous work

Problem (2–4) is of interest in its own right but also because it shows up as part of some more general

planning problems [3, 4, 6, 7, 9, 12, 13, 14, 15, 16, 17]. Given that it is not convex, computing an exact

solution in reasonable time is not possible for realistic problems. Only approximations are available

and a bound is needed to evaluate their accuracy.

3.1 Dual methods

One way to reduce the difficulty of P0 to use Lagrangian relaxation [2]. Dualizing the constraints (3–4)

with multipliers νk and µk yields the Lagrangian

L0(P,ν,µ) =
∑
k,n

rnk

+
∑
k

νk

[∑
n

rnk − rk

]
+
∑
k

µk

[
P k −

∑
n

Pnk

]
(5)

=
∑
n

Ln0 (Pn,νn,µn)

were we have defined for each n

Ln0 (Pn,νn,µn) =
∑
k

rnk (6)

+
∑
k

νk [rnk − rk] +
∑
k

µk
[
P k − Pnk

]
.

We see that the lagrange function (5) is separable in n so that the evaluation of the dual function

requires the maximization of N non-convex Lagrange functions (6) in K variables each. While this

is simpler that solving one non-convex problem in KN variables, there still remains the fact that the

partial sub-problems remain non-convex and thus hard to solve.

The sub-problem maximization was done by exhaustive search in [2]. The evaluation of the dual

function was approximated in [10] by replacing the simultaneous maximization over all k by a coordi-

nate search method which does not guarantee an optimal solution.
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3.2 Scope and contributions

From the previous discussion, given a set of multipliers, there does not currently exist a way of

computing a dual bound of the problem in reasonable time for non-trivial cases, let alone minimizing

the dual function. This means that Lagrangian techniques cannot be used to solve the power allocation

problem. The contribution of this paper is thus to address the issue of computing a bound for a given

set of multipliers, an essential element of the Lagrangian relaxation method.

The question of minimizing the dual function over the dual variables is definitely not in the scope

of this short paper. Still, we give a short discussion of this problem in Section 5 and present some

limited numerical results showing the relevance of this paper for solving the dual problem.

4 Extended problem

Because computing the dual function is intractable for the dual of P0, we define a different primal

problem PE that has two properties: 1) The primal solution of PE is the same as that of P0 and 2)

we can compute ΦE , the Lagrange function for PE , very quickly. By weak duality, we know that ΦE
is a bound on the optimal value of PE and thus is also a bound on the optimal value of P0.

First, we add a new set of independent variables

Ink the total interference power received by user k on channel n

which is given by

Ink =
∑
j 6=k

Gnk,jP
n
j . (7)

We then re-define

rnk (Pnk , I
n
k ) = log

(
1 +

Gnk,kP
n
k

Ink + σnk

)
(8)

explicitly as a function of both P and I. Note that rnk now depends only on the Ink and Pnk variables.

It is an increasing function of Pnk and decreasing with Ink with a limit of 0 at infinity. We also define

the redundant bound constraints

Pnk ≤ P
k ∀k = 1 . . .K (9)

Ink ≤ I
n

k =
∑
j 6=k

Gnj,kP j ∀k = 1 . . .K. (10)

We now write the extended problem Problem PE

max
P,I

Z =

N∑
n=1

K∑
k=1

rnk (Pnk , I
n
k )

subject to (3, 4, 7, 9, 10).

We have added (7) as a separate constraint to take into account the fact that the I variables are not

really independent but are related to the P variables. The redundant bounds (9–10) are needed for

reasons explained in Appendix A. We now find a global bound for PE , which is by definition also a

global bound for P0.

4.1 Lagrangian relaxation

We denote as LE the Lagrangian corresponding to PE and the dual function as ΦE . We now relax

constraints (3), (4) and (10) and construct the Lagrangian

LE(P, I,ν,µ,λ) =
∑
k,n

rnk +
∑
k,n

λnk

Ink −∑
j 6=k

Gnk,jP
n
j


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+
∑
k

νk

[∑
n

rnk − rk

]
+
∑
k

µk

[
P k −

∑
n

Pnk

]

where multipliers µ ≥ 0, ν ≥ 0 and λ is of arbitrary sign. Note that the term
∑
j 6=kG

n
k,jP

n
j introduces

a coupling between users on each channel. We can decouple this term if we write∑
k

λnk
∑
j 6=k

Gnk,jP
n
j =

∑
k

Pnk
∑
j 6=k

λnjG
n
j,k

so that the Lagrangian becomes

LE(P, I,ν,µ,λ) =
∑
k,n

rnk +
∑
k,n

[λnkI
n
k − Pnk Λnk ] (11)

+
∑
k

νk

[∑
n

rnk − rk

]
+
∑
k

µk

[
P k −

∑
n

Pnk

]
(12)

where we have defined

Λnk =
∑
j 6=k

λnjG
n
j,k. (13)

Regrouping terms, we get

LE(P, I,ν,µ,λ) =
∑
n,k

Lnk (Pnk , I
n
k ,ν,µ,λ)

Lnk (Pnk , I
n
k ) =(1 + νk)rnk (Pnk , I

n
k )− (µk + Λnk )Pnk

+ λnkI
n
k −

[
νkrk − µkP k

]
. (14)

The evaluation of the dual function for a given set of multipliers (ν,µ,λ) is then

ΦE(ν,µ,λ) = max
P,I
LE(P, I,ν,µ,λ)

= max
P,I

∑
n,k

Lnk (Pnk , I
n
k ,ν,µ,λ)

=
∑
n,k

max
Pn

k ,I
n
k

Lnk (Pnk , I
n
k ,ν,µ,λ)

subject to constraints (9–10). This separates into NK independent non convex subproblems in two

variables Pnk and Ink , something much simpler than solving the N subproblems in K variables each.

In fact, in the present case, we can do much better than this.

4.2 Solving the sub-problem

We now consider the subproblem for a given pair n, k. To simplify the notation, we drop the indices

for all variables and denote G = Gnk,k. After dropping the terms that do not depend on P or I, the

sub-problem maximization becomes

max
I,P

f(I, P ) =(1 + ν) log

(
1 +

GP

I + σ

)
− (µ+ Λ)P + λI (15)

0 ≤ I ≤ I 0 ≤ P ≤ P .

We can now compute an analytic solution for (15). Suppose that we are given some value of P . In

that case, we can show that f(I) is a convex function of I so that the maximum has to be at one of

the two boundaries and we need to solve (15) only at the two boundary points I = 0 and I = I.
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Based on this, consider the solution of problem (15) for a fixed I. We need to solve

max
0≤P≤P

f(P ) =(1 + ν) log

(
1 +

GP

I + σ

)
− (µ+ Λ)P + λI. (16)

In what follows, we denote the optimal power as P ∗(I). Note also that f is concave in P . We consider

two cases.

First, if µ + Λ ≤ 0, f(P ) is monotone increasing so that the solution P ∗ is independent of I and

given by

P ∗(I) = P . (17)

If µ+ Λ > 0, the solution is either at one of the end points or somewhere in the interval at the KKT

point, denoted PK , given by

PK(I) =

[
1 + ν

µ+ Λ
− I + σ

G

]
. (18)

The solution is then

P ∗(I) =


0 if PK(I) ≤ 0

P if PK(I) ≥ P
PK(I) otherwise.

(19)

Finally, the optimal value is given by

f∗ = max
{
f(P ∗(I = 0), f(P ∗(I = I)

}
. (20)

From this, we see that the interference term will always be either 0 or I. The second point is that P

also will be either 0, P or some intermediate value given by the third condition of (19). For this to

happen, we must have µ+ Λ > 0. In addition, PK must lie between 0 and P for the two values I = 0

and I = I. This can be written as

I + σ

G
<

1 + ν

µ+ Λ
< P +

σ

G

which define the region of the dual space where we can have intermediate values for P . Note that this

is possible only if the upper bound is actually larger than the lower bound, i.e.,∑
j 6=k

Gj,kP j ≤ Gk,kP k.

This stands a good chance of happening when the off-diagonal terms of the gain matrix are smaller

than the diagonal ones, which will be the case in practice since users tend to be served by base stations

that are not too far away. Note however that the left-hand side is the sum of the interference powers

generated by all users other than k so that this term will get larger as K increases.

To summarize, we have shown that given some values for the multipliers, we can compute quickly

the value of the dual function at that point by computing a globally optimal solution to the non-convex

subproblem.

4.3 Complexity

The complexity of the dual function evaluation depends only on K and N . This is because the

computation time of (17–20) is a constant independent of the problem data. In the terminology of

complexity theory, this is said to be O(1) complexity. This calculation has to be done KN times so

that the overall complexity is KNO(1).
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4.4 Dual bound and no-interference solution

There is an interesting relationship between the ΦE and the primal problem. Define PS as the simplified

version of problem (2–4) where we set the interference term to zero.

max
P

Zs =

N∑
n=1

K∑
k=1

log

(
1 +

Gnk,kP
n
k

σnk

)
(21)

N∑
n=1

log

(
1 +

Gnk,kP
n
k

σnk

)
≥ rk (22)

P k ≥
N∑
n=1

Pnk . (23)

This problem is convex so that the optimal Zs can easily be computed. It is unique and barring

degeneracy, so are the optimal P s. Let Φs be the dual function of Ps. We can write the Lagange

function

L =

N∑
n=1

K∑
k=1

(1 + uk) log

(
1 +

Gnk,kP
n
k

σnk

)

−
N∑
n=1

K∑
k=1

vkP
n
k +

(
K∑
k=1

vkP k − ukrk

)

with multipliers uk ≥ 0 for (22) and vk ≥ 0 for (23).

The evaluation of Φs(u,v) is given by the maximization of L which separates into NK independent

sub-problems of the form

max
0≤P≤P

(1 + u) log

(
1 +

GP

σ

)
− Pv.

We can see that this is precisely (15) where we have set λnk = 0 for all N and K so that ΦE(ν,µ,λ = 0)

= Φs = Zs.

This last remark is of practical importance because 1) it can be used to check a numerical imple-

mentation of the dual function calculation and 2) it can be used as a starting solution for solving the

dual problem.

4.5 Bound quality

We can put a limit on the accuracy of the bound by viewing the transformation from P0 to PE as a

two-step procedure. First, we construct the dual of P0 by dualizing (3–4). This yields the Lagrange

function (5) which is the sum of n independent Lagrange functions Ln(Pn,νn,µn) where

Ln =
∑
k

(1 + νk)rnk (Pn)−
∑
k

µkP
n
k +

∑
k

[
µkP k − νkrk

]
The dual function is then

Φ0 = max
P

n∑
Ln =

n∑
max
Pn
Ln(Pn) =

n∑
Φn0 .

Define PD0 as the computation of Φ0 at some point µ, ν. This requires N global optimizations of a

non-convex function Ln in K variables.

Because the computation of Φ0 is too difficult, the second step of the procedure is compute an

upper bound to this function. For this, we define a new problem PD1 equivalent to PD0 using the



Les Cahiers du GERAD G–2022–22 7

transformation (7–8). The evaluation of ΦD1 , the dual function of PD1 , is now the maximization of

a non-convex function in K(N + 2) variables. Given that the two problems are equivalent, we have

ΦD1 = Φ0.

Because PD1 is hard, we compute a dual bound for it by dualizing the coupling constraints (7). Call

this dual function ΦD2 . We then have ΦD2 ≥ ΦD1 so that algogether, we have

ΦD2 ≥ ΦD1 = ΦD0 ≥ Z∗.

In other words, the algorithm of section 4.2 computes ΦD2 which cannot be a better bound than the

actual dual Φ0. The trade-off is the potential increase of the gap of ΦD2 vs the large cpu time required

for Φ0.

5 Numerical results and future work

The validity of the bound (20) can be checked in two ways. One is with the no-interference solution as

discussed in Section 4.4. Another way is to solve (15) exactly with a global solver such as Baron [8].

This has been done and the bound is found to be correct in both cases.

We can take advantage of this fast computation of the dual function to re-consider solution algo-

rithms for the dual problem that were not previously possible and some potential improvements of the

model.

20 15 10 5 0 5 10 15 20
lambda(1, 0)

20

15

10

5

0

5

10

15

20

la
m

bd
a(

1,
 1

)

Figure 1: Dual function contours

First, we can make plots of the dual function to get an idea of the difficulty of the dual problem.

An example is given on Figure 1 where we show the contours of the dual function for a small case with

K = 2 and N = 5. The plot is shown in the λ11 and λ12 plane with all other dual variables fixed. We

can see the sharp corners where the function is not differentiable but also some regions where the dual

function value is independent of one of the variables.

Minimizing such a function is not trivial. The standard single-step subgradient algorithm [1] is

unlikely to give good results since it is subject to jamming, is known to converge very slowly and the

final solution depends on the algorithm parameters, e.g., the step size. With the fast bound, we can

now use any one of a number of solution techniques for non-differentiable problems [5]. As mentioned

in Section 3.2, this is outside the scope of this paper but is nonetheless an interesting avenue that is

now possible for further research.

Another potential research avenue is to try and improve the extended model by adding other valid

constraints in addition to (9–10) which may yield a better value of the optimal dual.
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6 Conclusion

We have shown that it is possible to compute a global bound to the power allocation problem in

KNO(1) time. This opens up a number of research avenues both in the modeling of the extended

problem and the algorithm used for solving the dual problem.

The technique presented here has been developed for a simple power allocation problem but it

could be extended to more complex models, for instance, the power allocation and channel assignment

problem. This kind of problem is generally solved by a decomposition method where one set of variables

is kept fixed while the other is optimized. The bounds can then be computed for power optimization

part even with large problems.

A Redundant constraints: an example

As an example of the usefulness of redundant constraints, consider the two upper bounds (9–10), which

are clearly not needed. Suppose that we write an extended problem without these bounds. If λ > 0,

the solution is at I = ∞ and f = ∞. Because we need to minmize the dual function, this value of

λ cannot be an optimal solution and we need to impose an additional condition λ ≤ 0 on the dual

variables.

Suppose now that we start the dual minmization problem with a dual solution λ = 0. We need to

solve the subproblem

max
I,P

f(I, P ) = (1 + ν) log

(
1 +

GP

I + σ

)
− µP.

Clearly, for any given P , the optimal solution is at I = 0. We are then left with the problem

max
P

f(P ) = (1 + ν) log

(
1 +

GP

σ

)
− µP

which is simply the power allocation with no interference with solution (18) with Λ = I = 0. We get
a solution where P ≥ 0 and I = 0 so that the subgradient at that point gλn,k ≤ 0. Because we are

minimizing the dual function, we need to move in a direction −gλn,k which is positive so that λ will
increase, which is impossible since we must always have λ ≤ 0. In other words, without the upper
bounds, the optimal solution of the dual is the no-interference solution. Only by adding the bounds
can we improve on this value.
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