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Abstract : The procurement of freight services is an important element for the supply chain man-
agement of a shipper (i.e., a manufacturer or retailer) that sources transportation services from the
third-party logistics market. Motivated by a practical freight procurement problem faced by shippers,
we provide a holistic approach to designing freight procurement strategies for transportation-inventory
systems that captures the interconnections between freight procurement, transportation, and inven-
tory management. In view of the supply and demand uncertainties, we consider the problem in a
multi-stage decision process that complies with the revealing process of the uncertain data. To han-
dle instances of realistic size, we propose an enhanced stochastic dual dynamic programming solution
approach. We conduct extensive numerical experiments to test the performance of the approach. The
results demonstrate that our approach scales to huge instances with up to 5018 scenarios and that
the proposed enhancement strategies significantly improve its performance. Compared to methods
commonly adopted to solve similar problems, our approach could potentially help reduce the total cost
for shippers by 7.5% to 47.2% based on our generated instances from real-world data and simulations.

Keywords : Freight procurement, transportation-inventory management, multi-stage stochastic op-
timization, stochastic dual dynamic programming
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1 Introduction

Effective distribution and storage of commodities are crucial for any company acting as a shipper in

a supply chain. While some have their own capabilities, many shippers rely on the transportation

market (i.e., third-party logistics, 3PL) for distributing commodities. 3PL services play a vital part

in global trade and the 3PL market is valued at more than one trillion US dollars (USD) worldwide

(Allied Market Research 2019).

In the transportation market, shippers procure freight services from carriers (i.e., 3PL service

providers). The basic elements in freight service procurement are lanes, and a lane is an origin-

destination pair with transportation demand over a period. Freight service procurement on a lane

is an auction process with shippers acting as auctioneers and carriers acting as bidders (Lim et al.

2008). Results in the auction on a lane are capacity contracts negotiated between the shipper and

carriers who win the auction. A capacity contract specifies the number and schedule of shipments to

be performed by the carrier on the lane, the capacity of each shipment, as well as the freight rate

payable by the shipper. On top of capacity contracts, freight services for single shipments can also be

acquired through non-contractual freight rates. For serving the same lane, the freight rates of capacity

contracts are typically lower than the non-contractual freight rates.

Normally, the service period of a capacity contract on a lane ranges from several months to two years

(Sheffi 2004). Considering its long service period, typically, a capacity contract has to be determined by

a shipper without fully knowing the transportation demand on the lane. Therefore, when determining

the capacity contracts on a lane, the shipper should consider the uncertainty in transportation demand

and the necessary adjustments under different demand scenarios.

This paper introduces a joint freight procurement and transportation-inventory management prob-

lem (FPTMP) under supply and demand uncertainty faced by a shipper. The supply and demand

information is assumed to be gradually disclosed to the shipper at different time periods during the

planning horizon. We, therefore, consider the resulting stochastic FPTMP (SFPTMP) in a multi-

stage process. In the first stage, freight service procurement decisions are made such that the capacity

contracts between the shipper and the carriers must be determined. The loading quantity for each

shipment in the capacity contracts, the volume to be transported through a non-contractual rate on

each lane in each period, and the inventory and backlog levels at various sites are decided in the

subsequent stages after the supplies and demands in these stages become known. The objective of the

problem is to minimize the expected total cost incurred by procuring freight services, distributing the
commodity, holding inventories, and backlogging supplies and demands.

1.1 Background

This study is motivated by the transportation and inventory management of iron ore at a large Chinese

steel manufacturer. The manufacturer imports iron ore from two loading ports in Australia and Brazil

to its two unloading ports in China (i.e., there are four physical shipping lanes in total). Iron ore is

stored at both the mine yards and the steel plants.

The manufacturer buys freight services from bulk shipping companies, mainly through contracts

of affreightment (COAs) and voyage charters (VCs). COAs are capacity contracts in bulk shipping.

The COAs for shipping iron ore are typically signed or renewed at the beginning of a year and a

COA typically covers a service period of a year. Supply and demand information for an entire year

is not fully known to the manufacturer when signing the COAs. Nevertheless, historical supply and

demand data for estimating the distribution is available. In a COA, the shipping company is required

to perform multiple shipments between a pair of loading and unloading ports during the service period.

For each shipment in a COA, the shipping company is required to provide a ship with the same (or

similar) capacity. In practice, loading times of shipments in a COA will be evenly spread over the

service period.
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Unlike COAs, VCs are for single shipments. They are more flexible and can be obtained whenever

shipping demands arise. Both COAs and VCs stipulate freight rates payable by the shippers. For

shipping cargoes between the same pair of ports, the freight rate in a COA is typically much lower

than that in a VC. For concrete examples of COAs and VCs, we refer to the template contracts for

bulk cargo COAs (i.e., VOLCOA and GENCOA) and VCs (e.g., GENCON and NUVOY) and to the

explanatory notes provided by BIMCO (2024), which is the largest international shipping association

representing shipowners.

The manufacturer thus faces an SFPTMP for arranging its iron ore transportation. This problem

typically involves a one-year planning horizon where COAs are determined at the beginning and

arrangements of non-contractual shipments (i.e., VCs) are made at the subsequent periods when the

relevant demand and supply information becomes known.

1.2 Contributions

Our study makes four main contributions:

1. We study a joint freight procurement, transportation, and inventory control problem under

supply and demand uncertainty motivated by a real-world application. Such a problem commonly

arises in the supply chain management of a manufacturer or a retailer. We prove that this problem

is NP-hard.

2. We develop a solution approach based on stochastic dual dynamic programming (SDDP) that

decomposes the problem into stage-wise subproblems and captures the complex connections

between different stages. We propose novel feasibility inequalities for these subproblems to

enhance the computational efficiency of the method.

3. We propose two additional computational enhancements for the SDDP approach: optimality

inequalities formulated based on smaller scenario trees, and a primal-dual lower bound lifting

procedure based on stage-wise convergence.

4. We conduct extensive experiments using instances generated from an existing benchmark suite.

The results show that the approach scales to instances with up to 18 stages and 50 scenarios per

stage (i.e., 5018 scenarios) and demonstrate that multi-stage stochastic optimization can reduce

the overall costs of a transportation-inventory system by more than 30%.

1.3 Outline

The remainder of this paper is structured as follows. Section 2 reviews relevant literature. We formally

describe the SFPTMP in Section 3 and formulate it as a compact mixed-integer linear programming

(MILP) model in Section 4. The SDDP approach for solving the problem as well as the enhancement

strategies are described in Section 5. Computational experiments are reported in Section 6, followed

by conclusions in Section 7. We provide all mathematical proofs in EC.3 of the electronic companion.

2 Literature review

In this section, we first review studies focusing on freight procurement problems that are related to

the SFPTMP considered in this paper. Subsequently, we review the applications of SDDP in the

literature.

2.1 Review of studies on freight procurement

The SFPTMP is related to the transportation procurement problem (TPP), especially the TPP under

uncertainty. The TPP is also referred to as the winner determination problem (WDP) of freight
services (Jones and Koehler 2005). The problem was introduced by Caplice and Sheffi (2003). The
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decisions considered in the problem are to procure freight services (or select bids) from carriers to

match the given transportation plan at the lowest cost. The TPP with uncertain lane demands was

considered by Ma et al. (2010), Zhang et al. (2014), and Meng et al. (2015) under the assumption

that the distribution of the uncertain parameters is known and by Remli and Rekik (2013), Zhang

et al. (2015), Remli et al. (2019), and Lee et al. (2021) under the assumption that the distribution

information is not fully available.

The most closely related studies in the literature are Bertazzi et al. (2015) and Boujemaa et al.

(2022). In the problem considered by Bertazzi et al. (2015), a single commodity is shipped from a

single supplier to multiple customers with stochastic demands in a finite discrete-time planning horizon.

Transportation between the supplier and the customers is outsourced such that a 3PL carrier performs

all deliveries on all lanes (with an unlimited capacity on each lane) in one period at a fixed cost.

Boujemaa et al. (2022) considered a shipment assignment problem on a distribution network in a finite

discrete-time planning horizon. The commodities are distributed by a set of (contracted) core carriers

under guaranteed capacities and freight rates and a set of spot carriers. It is assumed that both the

selection of the core carriers and their service conditions have been decided. Demands are stochastic

and are dynamically revealed in the planning horizon. The objective is to formulate the best shipment

strategy that minimizes the expected total cost incurred by inventories, backlogs, and shipments.

The SFPTMP is different from the TPP and the problems considered by Bertazzi et al. (2015) and

Boujemaa et al. (2022), as it integrates and co-optimizes transportation decisions (including commodity

delivery and inventory and backlog management) with freight service procurement.

2.2 Review of studies on SDDP

We solve the SFPTMP through SDDP. The approach was introduced by Pereira and Pinto (1991)

and is an extension of the nested Benders or L-shaped decomposition method proposed by Birge

(1985). SDDP has been widely adopted in energy operations, especially the hydrothermal generation

scheduling problem (HGSP), which manages power generation across hydro and thermal plants to

meet variable energy demands (Pereira and Pinto 1991, Shapiro et al. 2013). The HGSP involves a

multi-stage decision process. Each decision stage in the HGSP (usually a month) involves determining

the water outflow for power generation and spillage. Other applications include portfolio optimization

in finance (Valladão et al. 2019, Bhattacharya et al. 2023) and lot sizing in manufacturing management

(Quezada et al. 2023, Thevenin et al. 2022). It has been shown that SDDP can well solve the HGSP or

other multi-stage stochastic optimization problems with “simple” inter-stage linkages. In particular,

in the HGSP, stages are connected such that the storage level at the end of each stage provides an

initial storage level for the next stage.

Compared with the HGSP and other problems typically solved by SDDP, the SFPTMP has two

salient features that make it more difficult to solve. First, the decisions in a stage of the SFPTMP

may be affected by a series of decisions made in multiple previous stages, including the freight services

procured in the first stage, the shipping volumes decided in previous stages (shipments may take

multiple periods), and the last-period inventory and backlog levels in the preceding stage. Second, each

decision stage in the SFPTMP is still a multi-period decision problem, involving a set of interrelated

decisions in shipping management and inventory and backlog control. These challenges limit the

effectiveness of traditional SDDP methods (refer to Section 6). We thus devised tailored methods for

enhancing the performance of the basic SDDP approach (refer to Sections 5.2.2 and 5.4). To the best

of our knowledge, we are the first to develop a highly scalable framework with convergence guarantees

for such a challenging problem in transportation-inventory management.
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3 Problem description and notation

In the SFPTMP, a single commodity is shipped from a set of supply sites (suppliers) IS to a set

of demand sites (customers) ID over a discrete and finite time horizon which consists of a set T =

{1, 2, .., t} of periods. Let I = IS ∪ID be the set of all sites. The commodity’s production or demand

at site i ∈ I in period t ∈ T is given by di,t, where di,t ≥ 0 if i ∈ IS and di,t ≤ 0 if i ∈ ID. Each

site i ∈ I has a maximum inventory limit qi and starts with an initial inventory q0i at the beginning

of the planning horizon. Excess supply or unmet demand can be backlogged, incurring higher costs

for backlogged supplies due to additional warehousing and for delayed production due to backlogged

demands. Unit inventory holding costs are hi, and unit backlogging penalty costs are ei with ei > hi

for all i ∈ I. Let L = {(i, j)|i ∈ IS , j ∈ ID} be the set of (directed) lanes between the supply and the

demand sites. It takes oi,j ∈ Z+ periods to complete one shipment on lane (i, j) ∈ L.

For freight procurement, the shipper makes inquiries to carriers regarding their services on the

lanes in L and the carriers respond by providing a group of bids on each lane. Capacity contracts (e.g.,

COAs in sea transportation) for freight services are negotiated based on these bids. Let Bi,j be the set

of bids for lane (i, j) ∈ L and B =
⋃

(i,j)∈L Bi,j . Let i(b) ∈ IS and j(b) ∈ ID represent the supply site

and the demand site associated with the bid b ∈ B. Each bid b ∈ B contains a set Rb of shipments.

Let R =
⋃

b∈B Rb. Let t1(r) ∈ T and t2(r) ∈ T denote the periods in which the shipment starts and

ends in shipment r ∈ R.

All shipments in a bid b ∈ B have the same capacity within the range [mb,mb] ⊆ R+. A fixed cost

Fb is incurred once a capacity contract is settled for a bid b and an additional cost gb is paid per unit

shipped under that bid. In addition to capacity contracts, the shipper can also transport the commodity

through non-volume-based freight rates (referred to as non-contractual freight rates) without capacity

limits. We denote by ci,j the non-contractual freight rate on lane (i, j) ∈ L. Typically, at a given

point in time, the non-contractual rate on a lane is higher than the contractual rates for the same

lane (HandyBulk LLC 2023). Furthermore, for a regular shipper, non-contractual rates are typically

hedged through the adoption of freight futures contracts in practice (Beullens et al. 2023). Since the

non-contractual rates are available at the time of capacity contract decisions, they are deterministic

parameters in the problem.

In practice, the supplies or demands (di,t) are uncertain at the time of negotiating capacity contracts

and are typically revealed gradually during the planning horizon. To characterize this uncertainty, we

define vectors dt = (di,t|i ∈ I) for each period t and d = (dt|t ∈ T ) for the entire horizon. We assume

that d evolves as a discrete-time stochastic process with finite support. The process contains a set

P = {1, ..., p} of stages. Each stage p ∈ P spans a set Tp = {tp, ..., tp} ⊆ T of periods. We have⋃
p∈P Tp = T and Tp ∩ Tp′ = ∅, ∀p, p′ ∈ P, p ̸= p′.

At the beginning of each stage p ∈ P, the shipper observes the realizations of (dt)
tp
t=1. The possible

realizations of (dt)
tp
t=tp

in stage p ∈ P is captured through a set of scenarios Ωp. For a scenario ω ∈ Ωp,

dωi,t represents the realized supply or demand at site i for period t ∈ Tp. The scenarios across different

stages are independent, with ϱω denoting the probability of scenario ω in Ωp. Note that while the

stage-wise independence assumption requires the distribution of scenarios to be memoryless, any trend

or seasonality of dt can still be represented using the scenarios (Fattahi and Govindan 2018).

The full set of scenarios for all stages in the problem can be represented by a scenario tree. Figure 1

shows an example scenario tree with three stages (i.e., |P| = 3). Each stage contains three periods

and two scenarios (i.e., |Tp| = 3 and |Ωp| = 2). The path from a node in stage 1 to a node in stage

p, denoted by {ω1, ..., ωp}, where ωp ∈ Ωp, ∀p ∈ P, corresponds to a scenario ξ for a realization

of d. Let Ξ be the set of all such scenarios. For each scenario ξ ∈ Ξ, let dξi,t denote the supply

or demand at site i ∈ I in period t ∈ T under this scenario. The probability of scenario ξ ∈ Ξ

is denoted by ρξ. For ease of presentation, in this paper, we will refer to scenarios in Ξ simply as

scenarios and refer to scenarios ω in any Ωp as stage scenarios. For each scenario ξ ∈ Ξ, we let



Les Cahiers du GERAD G–2022–19 – Revised 5

ωp(ξ) ∈ Ωp denote the index of the stage scenario in stage p ∈ P associated with this scenario.

To impose the non-anticipativity constraints in the SFPTMP, for each p ∈ P, we introduce the

set Λp = {(ξ1, ξ2) ∈ Ξ × Ξ|ωp′(ξ1) = ωp′(ξ2),∀p′ = 1, ..., p} which contains all pairs of scenarios

(ξ1, ξ2) ∈ Ξ × Ξ that are indistinguishable in stage p. In the SFPTMP, the shipper makes decisions

Scenarios

Time
t=1 t=2 t=3

p=1

t=4 t=5 t=6

p=2

t=7 t=8 t=9

p=3

stage scenarios

realizations of supply and demand at all sites in a period

paths in a scenario tree

1=

2=

3=

4=

5=

6=

7=

8=

Figure 1: An illustration of a Scenario Tree.

in 1 + p stages. We refer to the first decision stage as stage 0 and let P+ = {0} ∪ P denote the full

set of decision stages. In stage 0, without knowing any accurate supply or demand information, the

shipper selects bids and determines the shipment capacities by signing capacity contracts. In stage

p ∈ P, the specific amount of supply and demand, (dt)
tp
t=1, has been revealed up to this stage. Given

the decisions made in the previous stages and the observed supplies and demands in the current stage,

the shipper determines how to: (i) allocate the loading quantity for each shipment in the capacity

contracts that starts in this stage, (ii) determine the quantity to be transported through the non-

contractual freight rate on each lane in each period within this stage, (iii) control the inventory levels

at each site in each period within this stage, and (iv) determine the backlogged supply or demand

at each site in each period within this stage. The objective is to formulate a joint freight service

procurement and transportation-inventory plan with the minimum expected total cost, which includes

expenses incurred by freight procurement (both contractual and non-contractual), inventory storage,

and backlog management. The complexity of the SFPTMP is given in the following theorem:

Theorem 1. The SFPTMP is NP-hard.
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4 Model formulation

To formulate the SFPTMP, we first construct a space-time network.

4.1 Space-time network

The space-time network is given by G = (N ,A), where N and A represent the set of nodes and

arcs, respectively. Set N consists of |T | copies of each site i ∈ I, i.e., N = {(i, t)|i ∈ I, t ∈ T}.
Let N S = {(i, t) ∈ N|i ∈ IS} and ND = {(i, t) ∈ N|i ∈ ID} be the sets of nodes associated with

supply and demand sites, respectively. The arc set is defined as A = A1 ∪ A2. Set A1 contains

arcs that represent shipments in capacity contracts and is defined as A1 =
⋃

b∈B A1
b , where for each

bid b ∈ B, A1
b = {((i, t1), (j, t2))|(i, t1), (j, t2) ∈ N , i = i(b), j = j(b), t1 = t1(r), t2 = t2(r), r ∈

Rb}. Set A2 represents shipments through the non-contractual freight rates and is defined as A2 =

{((i, t1), (j, t2))|t2 = t1 + oi,j , (i, t1) ∈ NS , (j, t2) ∈ ND}. Let Np = {(i, t) ∈ N|t ∈ Tp} and Ap =

{((i, t1), (j, t2)) ∈ A|(i, t1) ∈ Np} represent the sets of nodes and arcs associated with stage p ∈ P,

respectively.

For notational simplicity, we use n and (i, t) interchangeably to represent a node, and use a and

((i, t1), (j, t2)) interchangeably to represent an arc. Given any node n ∈ N , the sets of its outgoing and

incoming arcs are written as A+(n) = {((i, t1), (j, t2)) ∈ A|(i, t1) = n} and A−(n) = {((i, t1), (j, t2)) ∈
A|(j, t2) = n}, respectively.

With slight abuse of notation, we redefine some parameters to cast them into the network structure.

First, for each node n = (i, 1) ∈ N , let q0n = q0i be the initial inventory and for each node n = (i, t) ∈ N ,

let qn = qi be the upper bound of the inventory. Second, we use dω,n = dωi,t to represent the supply

or demand at node n = (i, t) ∈ Np under stage scenario ω ∈ Ωp in any stage p ∈ P. We also use

dξ,n = dξi,t to represent the supply or demand at node n = (i, t) ∈ N under scenario ξ ∈ Ξ. Third, for

each node n = (i, t) ∈ N , let hn = hi denote its unit inventory holding cost and let en = ei denote the

unit penalty cost associated with the backlogged supply or demand. Finally, for each arc a ∈ A, we

use ca to represent the unit (variable) transportation cost on this arc. For each a ∈ A, ca is set as:

ca =

{
gb, if a ∈ A1

b , b ∈ B,
ci,j , if a = ((i, t1), (j, t2)) ∈ A2.

4.2 The compact model

We formulate the problem as a multi-stage stochastic optimization model in a compact form. Table 1

lists the decision variables used in the model.

Table 1: Decision Variables in the SFPTMP.

Decision variables in stage 0:

xb binary variable taking value 1 if and only if the shipper accepts bid b ∈ B.
yb continuous variable representing the capacity purchased for each shipment associated with bid b ∈ B.

Decision variables in stages p ∈ P:

zξ,a continuous variable representing the volume of the commodity allocated on arc a ∈ A under scenario ξ ∈ Ξ.
uξ,n continuous variable representing the inventory level at node n ∈ N under scenario ξ ∈ Ξ.
vξ,n continuous variable representing the volume of the supply or demand backlogged at node n ∈ N under

scenario ξ ∈ Ξ.



Les Cahiers du GERAD G–2022–19 – Revised 7

The SFPTMP can be formulated as an MILP model denoted by P as follows:

P = min
∑
b∈B

Fbyb +
∑
ξ∈Ξ

ρξ

(∑
n∈N

(hnuξ,n + envξ,n) +
∑
a∈A

cazξ,a

)
(1)

s.t. yb ≥ mbxb ∀b ∈ B (2)

yb ≤ mbxb ∀b ∈ B (3)

zξ,a ≤ yb ∀a ∈ A1
b ,∀b ∈ B,∀ξ ∈ Ξ (4)

uξ,n1
+ vξ,n1

= dξ,n1
+ uξ,n2

+ vξ,n2
−

∑
a∈A+(n1)

zξ,a ∀n1 = (i, t), n2 = (i, t− 1) ∈ NS ,∀ξ ∈ Ξ (5)

uξ,n + vξ,n = dξ,n + q0n −
∑

a∈A+(n)

zξ,a ∀n = (i, 1) ∈ NS ,∀ξ ∈ Ξ (6)

uξ,n1
− vξ,n1

= dξ,n1
+ uξ,n2

− vξ,n2
+

∑
a∈A−(n1)

zξ,a ∀n1 = (i, t), n2 = (i, t− 1) ∈ ND,∀ξ ∈ Ξ (7)

uξ,n − vξ,n = dξ,n + q0n +
∑

a∈A−(n)

zξ,a ∀n = (i, 1) ∈ ND,∀ξ ∈ Ξ (8)

uξ,n ≤ qn ∀n ∈ N ,∀ξ ∈ Ξ (9)

zξ1,a = zξ2,a ∀a ∈ Ap,∀(ξ1, ξ2) ∈ Λp,∀p ∈ P (10)

xb ∈ {0, 1} ∀b ∈ B (11)

yb ≥ 0 ∀b ∈ B (12)

uξ,n, vξ,n, zξ,a ≥ 0 ∀n ∈ N ,∀a ∈ A,∀ξ ∈ Ξ. (13)

The objective function (1) aims to minimize the total cost, including the cost of purchasing freight

services using capacity contracts and the expected total cost incurred by holding inventories and

backlogging supplies or demands and sending flows on the arcs. Constraints (2) and (3) set the

lower bound and upper bound for the capacity of each shipment associated with each bid, respectively.

Constraints (4) ensure that under any scenario, the actual transport volumes on the arcs associated with

shipments in capacity contracts do not exceed their contractual capacities. Constraints (5)–(8) define

the relationship among inventory levels and backlogged quantities at the nodes and the flow volumes

allocated on the relevant arcs. Constraints (9) require the inventory level at a node to not exceed

its upper bound. Constraints (10) are non-anticipativity constraints. Finally, constraints (11)–(13)

define the domains for the decision variables. In the model, non-anticipativity requirements are imposed

only on flow variables zξ,a, through constraints (10). Proposition 1 shows that these constraints are

sufficient to impose non-anticipativity requirements for the SFPTMP.

Proposition 1. Problem P satisfies the non-anticipativity requirements in the SFPTMP.

Given a scenario tree, the above formulation forms a deterministic optimization problem. However,

the scale of the problem grows exponentially with the number of stages (|P|) and the number of stage

scenarios (|Ωp|, p ∈ P). As a result, only very small instances of the model can be directly solved using

a general-purpose MILP solver. In next section, we propose an SDDP approach for solving instances

of very large scale.

5 A stochastic dual dynamic programming approach

The SDDP approach follows an iterative procedure and each iteration in the approach consists of a

sampling step, a forward step, and a backward step. The framework of the SDDP approach for solving

the SFPTMP is presented in Section EC.1 of the electronic companion.
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5.1 The sampling step

In iteration l, a subset of scenarios (denoted by Ξl) is sampled from the original set Ξ. The scenarios

in Ξl are sampled randomly from the original scenario set Ξ based on the distribution {ρξ : ξ ∈ Ξ}.

5.2 The forward step

In the forward step of iteration l, we solve problem P under each scenario ξ ∈ Ξl by decomposing

the problem into |P+| subproblems, each corresponding to a decision stage. We let P0 denote the

first-stage problem, and let Pξ,p denote the problems in stages p ∈ P under each scenario ξ ∈ Ξl.

As a problem in a stage is partially defined by the decisions made in the previous stages, the

communication between problems in different stages must be carefully established. Also, because of

the stage-wise solution procedure, such inter-stage communication only exists between problems in

adjacent stages. In particular, given a scenario ξ ∈ Ξl, the problem Pξ,p in any stage p ∈ P, is

characterized by a set of state variables derived from the solution of its parent problem i.e., problem

Pξ,p−1 or P0. We next explain how to derive these state variables.

To begin with, given a scenario ξ ∈ Ξl, the capacities of shipments in the capacity contracts

parameterized in problem Pξ,p in any stage p ∈ P should remain consistent with those determined in

the parent problem in stage p − 1. We let ȳξ,p−1 = (ȳξ,p−1,b|b ∈ B) be the vector of such capacities

obtained by solving the parent problem.

In addition, suppose p ≥ 2, then the problem Pξ,p (for any ξ ∈ Ξl) is also subject to the inventory

levels, backlogged supplies or demands of certain nodes, and the flows of certain arcs that are deter-

mined in its parent problem. In order to characterize this information, we define the following sets of

nodes and arcs that are critical for transferring information between stages. First, for the nodes, we let

Ñp = {n|n = (i, tp) ∈ Np} denote the set of nodes whose inventory levels and backlogged supplies or

demands are passed on to the next stage, ∀p ∈ P\{p}. Especially, for stage 0, we define Ñ0 = {(i, 0)|i ∈
I}. Second, as for the arcs, we use

−→
A (p1,p2) = {a|a = (n1, n2) ∈ A, n1 ∈ Np1 , n2 ∈ Np2} to represent

the set of arcs directed from nodes in stage p1 to nodes in stage p2, where p1, p2 ∈ P and p2 > p1.

Further, ∀p ∈ P, let Ãp =
⋃p

p1=1

⋃p
p2=p+1

−→
A (p1,p2) be set of arcs that link nodes n ∈

⋃p
p1=1 Np1

with

nodes n ∈
⋃p

p2=p+1 Np2
. Also, we especially have Ã0 = ∅ and Ãp = ∅.

Based on these sets of nodes and arcs, for problem Pξ,p (where p ∈ P and ξ ∈ Ξl), we define the

following state variables that are determined in its parent problem (i.e., Pξ,p−1 or P0) and affect this

problem. First, for each node n ∈ Ñp−1, we let ūξ,p−1,n and v̄ξ,p−1,n denote the inventory level and

the backlogged quantity at node n that are determined by solving the parent problem in stage p− 1.

Especially, for p− 1 = 0, we define ūξ,0,n = q0i and v̄ξ,0,n = 0, ∀n = (i, 0) ∈ Ñ0. Besides, for each arc

a ∈ Ãp−1, we use z̄ξ,p−1,a to represent the flow on this arc determined by solving the parent problem

in stage p − 1. Let ūξ,p = (ūξ,p,n|n ∈ Ñp), v̄ξ,p = (v̄ξ,p,n|n ∈ Ñp), and z̄ξ,p = (z̄ξ,p,a|a ∈ Ãp). To

further simplify the notation, we define χ̄ξ,p = ((ȳξ,p)
⊤, (ūξ,p)

⊤, (v̄ξ,p)
⊤, (z̄ξ,p)

⊤)⊤.

5.2.1 The Problem in the bidding stage

Decisions made in the bidding stage of the problem (i.e., P0) include the selection of bids and the

purchase of capacities for the shipments associated with the bids. The associated decision variables

are given in the vectors x = (xb|b ∈ B) and y = (yb|b ∈ B). The problem is also formulated based on

a cost-to-go function, denoted by Ψ0(y), which approximates the expected total cost incurred in the

subsequent stages and is defined as follows:

Ψ0(y) = min{η0 :

η0 ≥ 0, (14)

η0 ≥ (µk
0 + (νk

0)
⊤y), ∀k ∈ K0}, (15)
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where µk
0 ∈ R and νk

0 ∈ R|B| are parameters, and K0 denotes the initial set of valid inequalities for the

cost-to-go functions Ψ0.

Problem P0 can be formulated as the following MILP model:

P0(Ψ0) = min
x,y,η0

∑
b∈B

Fbyb + η0 (16)

s.t. (2), (3), (11), (12), (14), (15).

Objective function (16) minimizes the sum of the cost of capacity purchase and the value of the

cost-to-go function.

Let y∗ be the vector of optimal solution values of the y variables obtained by solving the above

model. We then obtain χ̄ξ,0 for characterizing the problems in stage 1 by letting ȳξ,0,b = y∗b , ∀b ∈
B,∀ξ ∈ Ξl.

5.2.2 Problems in the shipping stages

In stage p ∈ P of the shipping stages, we solve a problem denoted by Pξ,p under scenario ξ ∈ Ξl in

the forward step of iteration l. Decision variables used for formulating the problem can be partitioned

into two groups.

The first group consists of variables in the following vectors: uξ,p = (uξ,n|n ∈ Np), vξ,p =

(vξ,n|n ∈ Np), and zξ,p = (zξ,a|a ∈ Ap). These variables control inventory levels, determine back-

logged quantities, and allocate flows for the nodes and arcs in Np and Ap, respectively.

Variables in the second group are auxiliary variables that make local copies of the variables

determined in the parent problem of Pξ,p. In particular, we use the set of variables in vector

y′
ξ,p = (y′ξ,p,b|b ∈ B) to represent the “copied” capacity of each shipment in the bids. Besides, for

the nodes n ∈ Ñp−1, we use variables in u′
ξ,p = (u′

ξ,p,n|n ∈ Ñp−1) and v′
ξ,p = (v′ξ,p,n|n ∈ Ñp−1),

respectively, as the local copies of the inventory and backlogging decisions determined in the parent

problem of Pξ,p. For each arc a ∈ Ãp−1, we introduce the variable z′ξ,p,a to copy the flow allocated

on it and let z′
ξ,p = (z′ξ,p,a|a ∈ Ãp−1). Finally, for notational simplicity, we use Xξ,p to represent the

vector that includes all the decision variables from these two groups in problem Pξ,p.

Problem Pξ,p is also characterized by a cost-to-go function denoted by Ψp(Xξ,p) which approxi-

mates the expected total cost incurred in the subsequent stages and is defined as follows:

Ψp(Xξ,p) = min{ηξ,p :

ηξ,p ≥ 0, (17)

ηξ,p ≥ µk
p + (νk

p)
⊤Xξ,p,∀k ∈ Kp}, (18)

where µk
p ∈ R and νk

p ∈ RN are parameters with N = |B|+2|Np|+ |Ap|+2|Ñp−1|+ |Ãp−1|+ |Np∩ND|.
Especially, we have Kp = ∅, if p = p.

Deriving feasibility inequalities. A notable difficulty in formulating problems in shipping stages is

that these problems can be infeasible. In particular, given any problem Pξ,p, consider any two stages

p1 and p2 such that p1, p2 ∈ P, p1 < p, and p2 = p, the flows on the arcs in the set
−→
A (p1,p2) are

determined in the problem in stage p1 without explicitly considering the inventory restrictions for the

corresponding head nodes in Np in stage p. This is insufficient to ensure feasibility of problem Pξ,p as

such flows can lead to inventories at certain nodes in Np exceeding their upper bounds.

To avoid infeasibilities caused by arc flows between stages, a common method in SDDP is to use

large costs (big-M) to penalize the amounts of overflowed inventories (i.e., inventories beyond qn).

However, the use of big-M terms leads to poor solutions generated in the forward step and weak cuts
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for cost-to-go functions obtained in the backward step. To resolve this issue, we propose using valid

inequalities to impose the feasibility of the stage-wise problems. The feasibility inequalities are derived

as follows.

Consider any Pξ,p1 , with ξ ∈ Ξl and p1 ∈ P \ {p̄}. After solving Pξ,p1 , we obtain χ̄ξ,p1
, which

defines Pξ,p2
where p2 = p1 + 1. Additionally, χ̄ξ,p1

may influence the formulations of any problem

Pξ,p2
where p2 > p1 + 1. To ensure the feasibility of these subsequent problems, the inventory level

at each node (j, t), j ∈ ID, t ∈ Tp2 : p2 ≥ p1 must be able to remain within the limit q̄j . To this

end, it is sufficient to maintain this constraint for any node (j, t) under the scenario with the minimum

cumulative demand from tp1+1 to t, where t ∈ Tp2
. In view of this, let dj,p1,t be the minimum amount

of demand at node (j, t) accumulated from the first period in stage p1 (i.e., tp1
) to any period t ∈ Tp2

where p1, p2 ∈ P and p2 ≥ p1 under all scenarios ξ ∈ Ξ. dj,p1,t can be calculated by:

dj,p1,t =

p2−1∑
p=p1

max
ω∈Ωp

tp∑
t′=tp

dωj,t′ + max
ω∈Ωp2

t∑
t′=tp2

dωj,t′ . (19)

Using these minimum accumulated demands, we have the following Lemma.

Lemma 1. The following inequalities are valid for problem P:

uξ,n1
− vξ,n1

+

t2∑
t=tp+1

∑
n=(i,t)∈N

p∑
p′=1

∑
a∈A−(n)∩Ap′

zξ,a + di,p+1,t2 ≤ qn2

∀n1 = (i, tp), n2 = (i, t2) ∈ ND, t2 ≥ tp+1,∀p ∈ P \ {p},∀ξ ∈ Ξ. (20)

Based on Lemma 1, we derive the feasibility inequalities (21) that are valid for problems Pξ,p,

where p ∈ P \ {p} and ξ ∈ Ξ:

uξ,n1
− vξ,n1

+

t2∑
t=tp+1

∑
n=(j,t)∈N

∑
a∈A−(n)∩Ap

zξ,a +

t2∑
t=tp+1

∑
n=(j,t)∈N

∑
a∈A−(n)∩Ãp−1

z′ξ,p,a + dj,p+1,t2 ≤ qn2

∀n1 = (j, tp), n2 = (j, t2) ∈ ND,∀((i, t1), (j, t2)) ∈ Ãp. (21)

The formulation. We are now ready to present the formulation for problem Pξ,p, which is an LP

model written as follows:

Pξ,p(χ̄ξ,p−1,Ψp) = min
Xξ,p,ηξ,p

∑
n∈Np

(hnuξ,n + envξ,n) +
∑
a∈Ap

cazξ,a + ηξ,p (22)

s.t. (17), (18), (21)

zξ,a ≤ y′ξ,p,b ∀a ∈ A1
b ∩ Ap,∀b ∈ B (23)

uξ,n1
+ vξ,n1

= dξ,n1
+ uξ,n2

+ vξ,n2
−

∑
a∈A+(n1)

zξ,a

∀n1 = (i, t), n2 = (i, t− 1) ∈ Np ∩N S (24)

uξ,n1
+ vξ,n1

= dξ,n1
+ u′

ξ,p,n2
+ v′ξ,p,n2

−
∑

a∈A+(n1)

zξ,a

∀n1 = (i, tp) ∈ Np,∀n2 = (i, tp−1) ∈ Ñp−1,∀i ∈ IS (25)

uξ,n1
− vξ,n1

= dξ,n1
+ uξ,n2

− vξ,n2
+

∑
a∈A−(n1)∩Ãp−1

z′ξ,p,a +
∑

a∈A−(n1)∩Ap

zξ,a

∀n1 = (i, t), n2 = (i, t− 1) ∈ Np ∩ND (26)
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uξ,n1 − vξ,n1 = dξ,n1 + u′
ξ,p,n2

− v′ξ,p,n2
+

∑
a∈A−(n1)∩Ãp−1

z′ξ,p,a +
∑

a∈A−(n1)∩Ap

zξ,a

∀n1 = (i, tp) ∈ Np,∀n2 = (i, tp−1) ∈ Ñp−1,∀i ∈ ID (27)

uξ,n ≤ qn ∀n ∈ Np (28)

y′ξ,p,b = ȳξ,p−1,b ∀b ∈ B (29)

u′
ξ,p,n = ūξ,p−1,n ∀n ∈ Ñp−1 (30)

v′ξ,p,n = v̄ξ,p−1,n ∀n ∈ Ñp−1 (31)

z′ξ,p,a = z̄ξ,p−1,a ∀a ∈ Ãp−1 (32)

uξ,n, vξ,n, zξ,a ≥ 0 ∀n ∈ Np,∀a ∈ Ap. (33)

The objective function (22) minimizes the sum of three terms, including the total inventory holding

cost and the total backlogging cost at the nodes in Np, the total shipping cost for sending flows on

the arcs in Ap, and the value of the cost-to-go function. Constraints (23) set upper bounds for the

flows on the arcs associated with shipments in the bids. Constraints (24) and (25) track the inventory

levels and backlogged supplies at the nodes associated with the supply sites in stage p. Similarly,

constraints (26) and (27) track the inventory levels and backlogged demands at the nodes associated

with the demand sites in stage p. Constraints (28) require that the inventory stored at each node be

maintained under the upper limit. Constraints (29)–(32) link the decision variables determined in the

parent problem with their local copies in problem Pξ,p. The last set of constraints define the domains

of the decision variables.

Proposition 2. Problems Pξ,p are always feasible, ∀p ∈ P, ∀ξ ∈ Ξ.

Finally, let X∗
ξ,p be the vector of the solution values of the decision variables in Xξ,p obtained by

solving Pξ,p. If p < p, we obtain χ̄ξ,p, which will be used for defining problem Pξ,p+1, by letting (i)

ȳξ,p,b = y′,∗ξ,p,b, ∀b ∈ B, (ii) ūξ,p,n = u∗
ξ,n, ∀n ∈ Ñp, (iii) v̄ξ,p,n = v∗ξ,n, ∀n ∈ Ñp, (iv) z̄ξ,p,a = z∗ξ,a,

∀a ∈ Ãp ∩ Ap, and (v) z̄ξ,p,a = z′,∗ξ,p,a, a ∈ Ãp \ Ap.

5.3 The backward step

When all the forward-step problems for each sampled scenario ξ ∈ Ξl are solved in iteration l, the

backward step starts from the last stage p = p. It then moves backward, stage by stage, until reaching

stage p = 1. In each stage, a set of problems are solved. The goal of the backward step is to update

the cost-to-go functions for problems in the forward step.

5.3.1 Problems in backward step

In iteration l of the SDDP approach, for each sampled scenario ξ ∈ Ξl, we solve |Ωp| problems in the

backward step in stage p ∈ P. Each of the problems corresponds to a stage scenario ω ∈ Ωp in stage

p in the original scenario tree. Let Qξ,ω,p denote the problem that is associated with scenario ξ ∈ Ξl

and stage scenario ω ∈ Ωp in stage p ∈ P in the backward step.

Given ξ ∈ Ξl, and ω ∈ Ωp in stage p ∈ P, problem Qξ,ω,p and problem Pξ,p in the forward step

are characterized by the same set of state variables obtained by solving the parent problem Pξ,p−1 (or

P0) and the same cost-to-go function (i.e., χ̄ξ,p−1 and Ψp).

The decision variables for Qξ,ω,p include those contained in the vector Xω,p and variable ηω,p.

Here, there is a one-to-one correspondence between variables in Xω,p and those in Xξ,p of problem

Pξ,p in the forward step. To be more specific, for every variable defined for the scenario ξ in Xξ,p,

there is a corresponding variable in Xω,p defined for the stage scenario ω. In addition, ηω,p represents

the value returned by the cost-to-go function Ψp.
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By respectively replacing the variables in Xξ,p and ηξ,p and the parameters in dξ,p = (dξ,n|n ∈ Np)

with their counterparts in Xω,p, ηω,p, and dω,p = (dω,n|n ∈ Np) in constraints (17), (18), (21),

(23)–(28), and (33), problem Qξ,ω,p can be formulated as the following LP model:

Qξ,ω,p(χ̄ξ,p−1,Ψp) = min
Xω,p,ηω,p

∑
n∈Np

(hnuω,n + envω,n) +
∑
a∈Ap

cazω,a + ηω,p (34)

s.t. (17), (18), (21), (23)− (33).

5.3.2 Update of cost-to-go functions

In the SDDP, we solve the dual problem of Qξ,ω,p, denoted by Dξ,ω,p, ∀p ∈ P, ω ∈ Ωp, ξ ∈ Ξl to

generate valid inequalities for updating the cost-to-go functions. In particular, by solving Dξ,ω,p to

optimality, let ζξ,ω,p be the optimal objective function value of Dξ,ω,p, and let ϕξ,ω,p,b (∀b ∈ B), πξ,ω,p,n

(∀n ∈ Ñp−1), ϖξ,ω,p,n (∀n ∈ Ñp−1), and θξ,ω,p,a (∀a ∈ Ãp−1) be the optimal solution values of the

dual variables associated with constraints (29)–(32) of Qξ,ω,p, respectively. Given these results, we

update the cost-to-go functions as follows.

First, for the cost-to-go function Ψ0 in stage 0, the following set of inequalities are valid:

η0 ≥
∑
ω∈Ω1

ϱωζξ,ω,1 +
∑
ω∈Ω1

ϱω
∑
b∈B

ϕξ,ω,1,b(yb − ȳξ,0,b) ∀ξ ∈ Ξl. (35)

Let K+
0 denote the set of these inequalities. We update the cost-to-go function Ψ0(y) by letting

K0 = K0 ∪ K+
0 .

Similarly, for any scenario ξ′ ∈ Ξ, we obtain the following set of valid inequalities for the cost-to-go

functions Ψp in stage p ∈ P \ {p}:

ηξ′,p ≥
∑

ω∈Ωp+1

ϱωζξ,ω,p+1 +
∑

ω∈Ωp+1

ϱω
∑
b∈B

ϕξ,ω,p+1,b(y
′
ξ′,p,b − ȳξ,p,b)

+
∑

ω∈Ωp+1

ϱω
∑
n∈Ñp

πξ,ω,p+1,n(uξ′,n − ūξ,p,n) +
∑

ω∈Ωp+1

ϱω
∑
n∈Ñp

ϖξ,ω,p+1,n(vξ′,n − v̄ξ,p,n)

+
∑

ω∈Ωp+1

ϱω
∑

a∈Ãp∩Ap

θξ,ω,p+1,a(zξ′,a − z̄ξ,p,a)

+
∑

ω∈Ωp+1

ϱω
∑

a∈Ãp\Ap

θξ,ω,p+1,a(z
′
ξ′,p,a − z̄ξ,p,a) ∀ξ ∈ Ξl. (36)

Let K+
p denote the set of inequalities (36) for problems in stage p ∈ P \ {p}. We update the cost-to-go

functions Ψp(Xξ′,p) by letting Kp = Kp ∪ K+
p .

5.4 Enhancements to the SDDP approach

In this section, we describe several important enhancements to the SDDP approach.

5.4.1 Optimality inequalities

In the SDDP, the quality of the lower bound depends on the quality of the cost-to-go functions

which are obtained by solving problems Qξ,ω,p in the backward step. Note that problems Qξ,ω,p are

parameterized by solutions obtained from solving problems P0 and Pξ,p in the forward step. Therefore,

having high-quality solutions for problems P0 and Pξ,p is critical for generating high-quality cost-to-go

functions. However, due to the stage-wise solution procedure, especially in the initial iterations of the

SDDP approach, both the lower bound and solutions of problems in the forward step tend to have low

quality.
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To address these issues, we propose to improve the lower bound and the quality of solutions to

problems P0 and Pξ,p through the use of optimality inequalities. In particular, for problem P0 or Pξ,p,

the associated optimality inequalities estimate the lower bound of the cost incurred in the subsequent

stages. Our method of generating optimality inequalities is inspired by Theorem 1 in Chapter 10

of Birge and Louveaux (2011), which derives a valid lower bound of a multi-stage stochastic linear

program based on consistent partitions of the stage scenarios. We extend this idea by constructing

an approximate scenario tree for each stage p ∈ P+ \ {p} and formulating the optimality inequalities

based on the approximate scenario tree.

Approximate scenario tree construction. For generating the optimality inequalities, for each stage

p ∈ P+ \ {p} in the original scenario tree (original tree), we construct an approximate scenario tree

(approximate tree), denoted by Tp. This construction is achieved by employing a consistent partition

of the stage scenarios from stages p + 1 to p. A consistent partition ensures that in the approximate

tree, the aggregation of the original scenarios preserves the same stage-wise relationships between the

scenarios in the original tree (Birge and Louveaux 2011).

Each approximate tree Tp, p ∈ P+ \ {p}, consists of a set P̂p of stages, where P̂p = {p + 1, .., p}.
There is a set Ω̂k of stage scenarios in stage k ∈ P̂p of the approximate tree Tp. Each stage scenario

ω̂ ∈ Ω̂k maps a subset of stage scenarios in Ωk in the original tree, which is denoted by Ωk(ω̂) ⊆ Ωk. For

any k ∈ P̂p and p ∈ P+\{p}, the mapping between ω̂ ∈ Ω̂k and ω ∈ Ωk satisfies (i)
⋃

ω̂∈Ω̂k
Ωk(ω̂) = Ωk,

and (ii) Ωk(ω̂1) ∩ Ωk(ω̂2) = ∅, ∀ω̂1, ω̂2 ∈ Ω̂k, ω̂1 ̸= ω̂2. Figure 2 provides an example of generating

an approximate tree for stage 1 (i.e., T1), illustrated in Figure 2(b), from the original tree shown in

Figure 2(a) using a consistent partition.

stage 1 stage 2 stage 3

1
1

1

2
1

3
1

2
2

3
2

2 3

(a) original tree

stage 1 stage 2 stage 3

1
1

2
1 3

1

1
2

2
2

3
2

(b) approximate tree with a consistent partition

1
1

2
1

3
1

2
2

3
2

2
1

2
2

3
1
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Figure 2: Example of constructing approximate scenario trees.

Given a stage scenario ω̂ ∈ Ω̂k in stage k ∈ P̂p of an approximate tree Tp, we set its realization

probability ϱ̂ω̂ as ϱ̂ω̂ =
∑

ω∈Ωk(ω̂) ϱω. The supply or demand of each node n ∈ Nk under stage scenario

ω̂ ∈ Ω̂k, denoted by d̂ω̂,n, is set as d̂ω̂,n =
∑

ω∈Ωk(ω̂)
ϱω

ϱ̂ω̂
dω,n.

For an approximate tree Tp, any path in the form of {ω̂p+1, ..., ω̂p} in the tree, where ω̂k ∈ Ω̂k,

represents an approximate scenario. Let Ξ̂p be the set of approximate scenarios associated with Tp.

For each ξ̂ ∈ Ξ̂p, we denote by ω̂k(ξ̂) ∈ Ω̂k the index of the stage scenario in stage k ∈ P̂p associated

with this scenario in the approximate tree Tp. Accordingly, the probability of each scenario ξ̂ ∈ Ξ̂p,
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denoted by ρ̂ξ̂, is calculated by ρ̂ξ̂ =
∏

k∈P̂p
ϱ̂ω̂k(ξ̂)

. The supply or demand of any node n ∈ Nk

for any k ∈ P̂p in the scenario tree Tp under scenario ξ̂ ∈ Ξ̂p is denoted by d̂ξ̂,n and is set equal

to d̂ω̂k(ξ̂),n
. Further, for each scenario tree Tp, p ∈ P+ \ {p}, we define the set Λ̂p,k = {(ξ̂1, ξ̂2) ∈

Ξ̂p × Ξ̂p|ω̂k′(ξ̂1) = ω̂k′(ξ̂2),∀k′ = p + 1, ..., k} which contains all pairs of scenarios (ξ̂1, ξ̂2) ∈ Ξ̂p × Ξ̂p

that are indistinguishable in stage k ∈ P̂p in the approximate tree.

One can verify that for any stage scenario ω ∈ Ωp, p ∈ P+ \ {p̄}, the approximate tree Tp forms a

consistent partition (Birge and Louveaux 2011) of the stage scenarios in the subtree associated with

ω in the original tree.

Deriving optimal inequalities. The optimal inequalities for problems P0 and Pξ,p are then derived

based on the approximate trees Tp, where p ∈ P+ \ {p̄}. Details of the derivation are explained in

EC.2 of the electronic companion.

Note that given any approximate tree Tp, where p ∈ P+ \ {p̄}, if we have |Ω̂k| = 1 for any stage

k ∈ P̂p, then the optimal inequalities are defined based on a single scenario determined by the average

supplies and demands across all scenarios. We have the following proposition showing the value of

constructing approximate trees with multiple stage scenarios.

Proposition 3. The optimality inequalities defined on any Tp, are at least as strong as those defined

for Tp with |Ω̂k| = 1 for any k ∈ P̂p and p ∈ P+ \ {p̄}.

5.4.2 Primal-dual lifting

In any iteration l of the SDDP approach, given a forward-step problem Pξ,p in stage p ∈ P \ {p}
under scenario ξ ∈ Ξl, let η∗ξ,p be the optimal solution value of variable ηξ,p of the problem, and

let ζ∗ξ,ω,p+1 be the optimal objective function values of the dual backward-step problems Dξ,ω,p+1,

∀ω ∈ Ωp+1. The primal-dual lifting method strengthens Pξ,p by iterating between solving problem

Pξ,p and problems Dξ,ω,p+1 (ω ∈ Ωp+1) to generate inequalities (36) for the cost-to-go function Ψp

until a local convergence is reached such that we have:

η∗ξ,p ≥ (1− ϵ)
∑

ω∈Ωp+1

ϱωζ
∗
ξ,ω,p+1, (37)

where ϵ ∈ [0, 1] is a preset parameter. Note that convergence is guaranteed due to the limited number
of extreme points of the polyhedral feasible regions for the problems Dξ,ω,p+1 (Benders 1962).

6 Computational experiments

In this section, we first introduce the experimental settings in Section 6.1. Section 6.2 explains how

the testing instances were generated. We then discuss computational results in two parts: Section 6.3

evaluates the impacts of the enhancement techniques on the performance of the SDDP approach, and

Section 6.4 compares the performance of the approach with that of other commonly used solution

methods. Interested readers can find our code implementation, data sets used, detailed results, and

associated user instructions at https://github.com/LingxiaoWu2021/SFPTMP.

6.1 Computational settings

In order to provide a thorough computational assessment of our proposed SDDP approach, we have

implemented the following three variants of the SDDP approach:

1. S0 solves the problem using the basic SDDP approach proposed in Sections 5.1−5.3;

2. S1 is similar to S0 but also uses the optimality inequalities of Section 5.4.1;

3. S2 is similar to S1 but also uses the primal-dual lifting strategy of Section 5.4.2.

https://github.com/LingxiaoWu2021/SFPTMP
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All variants of the approach were implemented in a three-phase framework. In the first phase,

the integrality constraints of P0 are dropped. In the second phase, integrality constraints on P0 are

imposed. In the last phase, we solve problem P0 with the (final) updated cost-to-go function Ψ0 to

obtain the final lower bound and solutions to P0.

To ensure fair comparisons, we allocated the same computational times for three variants of the

SDDP on any instance. In particular, given any instance with p̄ stages, we set the computational times

to be 360p̄ and 1200p̄ seconds for the first and second phases, respectively. The time limit for solving

the MILP model of P0 in any iteration of any phase is set to 1,200 seconds.

We implemented our algorithms in C++, and all the experiments were conducted on the Cedar

cluster of Compute Canada with 128GB of RAM in a single-threaded Linux environment. We used

CPLEX 20.1.0 for solving the MILP and LP models.

6.1.1 Lower bounds and upper bounds

In order to evaluate the performance of an approach, we derive the lower bound (LB) and upper bound

(UB) obtained by the approach for an instance as follows.

Let Z∗
0 and δ be the (sub)optimal objective function value and the optimality gap obtained by

solving problem P0 in the third phase of the SDDP approach. Let also y∗ be the solutions of yb
variables obtained by solving this problem.

The lower bound of the instance is calculated as LB = Z∗
0 (1 − δ). To obtain the upper bound,

a sample set Ξ′ ⊆ Ξ is created. If |Ξ| ≤ 10, 000, we let Ξ′ = Ξ. Otherwise, we independently and

randomly sample 10,000 scenarios from Ξ to construct Ξ′. The probability of each scenario ξ ∈ Ξ′ is

set as ρ′ξ =
ρξ∑

ξ∈Ξ′ ρξ
. Then, for each scenario ξ ∈ Ξ′ we solve problems Pξ,p in each stage p ∈ P with

the given y∗. Let γ∗
ξ,p and η∗ξ,p be the optimal objective function value and the optimal solution value

of ηξ,p obtained by solving problem Pξ,p, respectively. We let Z∗
ξ,p = γ∗

ξ,p − η∗ξ,p, which represents the

total cost associated with the decisions made in stage p under scenario ξ. Let also µξ =
∑

p∈P Z∗
ξ,p,

µ̂ =
∑

ξ∈Ξ′ ρ′ξµξ, and σ2 = 1
|Ξ′|−1

∑
ξ∈Ξ′(µξ − µ̂)2.

Finally, for the case with |Ξ| ≤ 10, 000, we set UB =
∑

b∈B Fby
∗
b + µ̂, which is the “true” upper

bound for the instance. For the case with |Ξ| > 10, 000, we set UB =
∑

b∈B Fby
∗
b + µ̂ + 1.96 σ2√

|Ξ′|
,

which represents a 95%-confidence statistical upper bound for the instance. Given LB and UB, the

optimality gap of the instance is calculated by GAP = 100(UB − LB)/LB.

6.2 Instance generation

To test the performance of the SDDP approaches, we generate 450 instances. These instances were

generated from five cases, each of which represents a deterministic FPTMP instance (i.e., an SFPTMP

instance with a sole scenario). The cases were adapted from the instances originally created by Papa-

georgiou et al. (2014) for the maritime inventory routing problem (MIRP) and have been widely used

in the literature.

In each case, we let a period represent one week and each stage contains six periods (i.e., six

weeks). In each instance, we let the number of stages |P| ∈ {3, 6, 9, 12, 15, 18}. For the number of

stage scenarios at each stage, we let |Ωp| ∈ {10, 20, 50}. The stage scenarios in any Ωp (p ∈ P) were

generated by a Monte-Carlo simulation in which the demand of each demand site i ∈ ID in each period

t ∈ T is independent and generated through the uniform distribution U [d̄it(1−∆), d̄it(1 +∆)], where

d̄it is the nominal demand in a case and ∆ ∈ {0.1, 0.2, 0.3, 0.4, 0.5} is a selected deviation ratio. Hence,

there are 90 (6 × 3 × 5) different combinations of |P|, |Ωp|, and ∆, and we accordingly generated 90

SFPTMP instances based on each case, leading to 450 instances in total.
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Details of the cases and the settings of other parameters in the SFPTMP instances are explained

in Section EC.4 of the electronic companion.

6.3 Impacts of enhancements

We have implemented approaches S0, S1, and S2 to solve the instances. To better present the results,

we classify all instances into three categories: small instances (with 3 and 6 stages), medium instances

(with 9 and 12 stages), and large instances (with 15 and 18 stages). The results of small, medium,

and large instances are reported in Tables 2, 3, and 4, respectively. In these tables, the results of five

instances sharing the same |P|, |Ωp| and ∆ are reported as a group. The first three columns show the

settings of |P|, |Ωp| and ∆ of each instance group. Columns LB, UB and GAP report the average lower

bound, average upper bound and average optimality gap generated by these approaches, respectively.

For each group, we use boldface to indicate the best results obtained among the three approaches.

Table 2: Computational Results of the SDDP Algorithms on Small Instances.

|P| |Ωp| ∆
LB (×103) UB (×103) GAP (%)

S0 S1 S2 S0 S1 S2 S0 S1 S2

3 10 0.1 200.5 200.4 200.4 201.1 201.0 201.0 0.3 0.3 0.3
3 10 0.2 201.5 201.6 201.6 202.9 203.0 202.6 0.7 0.7 0.5
3 10 0.3 205.0 205.1 205.0 206.1 206.1 206.2 0.6 0.5 0.6
3 10 0.4 206.8 206.8 206.7 208.4 208.4 208.2 0.8 0.8 0.8
3 10 0.5 205.8 205.8 205.7 206.7 207.1 207.0 0.5 0.7 0.6

Average 203.9 203.9 203.9 205.1 205.1 205.0 0.6 0.6 0.6

3 20 0.1 200.4 200.4 200.4 201.8 201.0 201.1 0.7 0.3 0.4
3 20 0.2 202.7 202.9 202.8 203.9 204.1 203.8 0.6 0.6 0.5
3 20 0.3 204.8 204.9 204.8 205.8 205.7 205.9 0.5 0.4 0.5
3 20 0.4 206.3 206.4 206.3 208.3 207.7 207.6 1.0 0.7 0.7
3 20 0.5 209.3 209.4 209.3 210.8 210.6 210.9 0.7 0.6 0.8

Average 204.7 204.8 204.7 206.1 205.8 205.9 0.7 0.5 0.6

3 50 0.1 201.7 202.0 202.0 203.8 202.9 202.9 1.0 0.4 0.4
3 50 0.2 200.6 201.1 201.0 202.9 202.4 202.6 1.2 0.7 0.8
3 50 0.3 205.1 205.4 205.3 207.1 207.4 206.9 1.0 1.0 0.8
3 50 0.4 206.8 207.0 206.9 209.3 209.3 209.7 1.2 1.1 1.4
3 50 0.5 209.3 209.4 209.3 211.7 211.5 211.8 1.2 1.1 1.3

Average 204.7 205.0 204.9 207.0 206.7 206.8 1.1 0.9 0.9

6 10 0.1 329.2 329.9 329.8 334.1 331.7 331.7 1.5 0.6 0.6
6 10 0.2 329.5 330.2 330.4 334.2 333.6 332.9 1.4 1.0 0.8
6 10 0.3 335.0 335.6 335.8 340.5 340.8 339.8 1.6 1.5 1.2
6 10 0.4 339.7 340.1 340.3 345.2 343.9 343.8 1.6 1.1 1.0
6 10 0.5 341.9 342.2 342.6 349.5 348.5 348.5 2.2 1.8 1.8

Average 335.0 335.6 335.8 340.7 339.7 339.3 1.7 1.2 1.1

6 20 0.1 328.3 329.8 330.0 335.7 332.6 332.4 2.3 0.9 0.8
6 20 0.2 328.5 329.9 330.3 336.7 333.9 334.3 2.5 1.2 1.2
6 20 0.3 334.9 335.9 336.4 342.6 341.7 341.1 2.3 1.7 1.4
6 20 0.4 339.4 340.2 340.3 344.9 345.0 345.0 1.7 1.4 1.4
6 20 0.5 345.9 346.5 346.9 354.7 352.7 352.5 2.6 1.8 1.6

Average 335.4 336.5 336.8 342.9 341.2 341.1 2.3 1.4 1.3

6 50 0.1 325.6 328.9 329.1 338.1 331.6 331.7 3.8 0.8 0.8
6 50 0.2 328.3 330.9 331.0 337.4 334.5 334.4 2.8 1.1 1.0
6 50 0.3 330.9 332.9 333.3 339.5 338.0 339.6 2.6 1.5 1.9
6 50 0.4 337.5 339.0 339.2 346.3 345.2 346.3 2.6 1.8 2.1
6 50 0.5 344.0 345.1 345.5 353.8 353.0 353.7 2.9 2.3 2.4

Average 333.2 335.4 335.6 343.0 340.4 341.2 2.9 1.5 1.7
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Table 3: Computational Results of the SDDP Algorithms on Medium Instances.

|P| |Ωp| ∆
LB (×103) UB (×103) GAP (%)

S0 S1 S2 S0 S1 S2 S0 S1 S2

9 10 0.1 462.6 465.4 465.5 473.4 468.7 468.9 2.4 0.7 0.7
9 10 0.2 469.1 470.9 471.5 480.2 477.0 477.0 2.4 1.3 1.2
9 10 0.3 475.8 477.8 478.9 487.2 485.5 486.2 2.4 1.6 1.5
9 10 0.4 480.2 481.6 482.6 490.9 491.2 492.4 2.2 2.0 2.1
9 10 0.5 484.8 485.9 486.8 494.7 494.7 495.1 2.1 1.8 1.7

Average 474.5 476.3 477.1 485.3 483.4 483.9 2.3 1.5 1.4

9 20 0.1 461.7 465.7 465.9 475.8 468.8 469.0 3.1 0.7 0.7
9 20 0.2 464.6 469.1 469.5 481.3 477.6 476.7 3.6 1.8 1.5
9 20 0.3 472.4 475.3 476.2 485.6 485.7 484.5 2.8 2.2 1.7
9 20 0.4 481.4 483.5 484.7 495.6 493.3 491.6 3.0 2.0 1.4
9 20 0.5 493.1 494.6 496.0 507.7 507.7 505.5 3.0 2.7 1.9

Average 474.6 477.6 478.5 489.2 486.6 485.4 3.1 1.9 1.5

9 50 0.1 454.3 463.1 463.3 480.9 466.8 466.8 6.0 0.8 0.8
9 50 0.2 460.1 467.2 468.0 481.9 475.0 475.2 4.7 1.7 1.5
9 50 0.3 466.2 472.5 473.8 488.5 483.9 484.2 4.8 2.5 2.2
9 50 0.4 476.3 479.6 481.0 494.9 492.1 492.2 4.0 2.6 2.3
9 50 0.5 492.8 494.9 496.5 508.5 510.0 508.8 3.2 3.0 2.5

Average 470.0 475.5 476.5 491.0 485.6 485.4 4.5 2.1 1.9

12 10 0.1 612.8 617.9 618.0 639.3 623.4 623.4 4.5 0.9 0.9
12 10 0.2 615.4 618.6 620.3 632.6 628.3 626.7 2.8 1.6 1.1
12 10 0.3 622.2 626.0 627.8 641.3 638.6 636.6 3.1 2.0 1.4
12 10 0.4 627.9 630.6 633.1 649.5 646.8 643.8 3.5 2.6 1.7
12 10 0.5 644.8 646.2 649.2 668.1 663.2 662.7 3.6 2.7 2.1

Average 624.6 627.9 629.7 646.2 640.1 638.6 3.5 2.0 1.4

12 20 0.1 609.3 615.9 616.2 635.7 622.2 621.8 4.3 1.0 0.9
12 20 0.2 612.7 621.0 621.8 646.2 631.8 631.9 5.5 1.8 1.6
12 20 0.3 618.8 625.1 627.6 645.9 639.6 638.5 4.5 2.4 1.8
12 20 0.4 631.0 635.7 638.2 661.9 654.5 650.5 5.2 3.1 2.0
12 20 0.5 647.8 650.6 652.8 670.5 665.9 665.5 3.5 2.4 2.0

Average 623.9 629.7 631.3 652.0 642.8 641.6 4.6 2.1 1.7

12 50 0.1 599.3 612.6 612.7 642.7 618.4 618.4 7.4 1.0 0.9
12 50 0.2 608.4 620.6 621.7 654.4 633.4 633.5 7.7 2.1 2.0
12 50 0.3 618.5 629.0 630.9 654.7 644.8 645.3 5.9 2.5 2.3
12 50 0.4 629.0 638.1 640.7 667.8 659.6 657.3 6.4 3.4 2.7
12 50 0.5 643.2 649.3 653.3 679.6 678.9 672.4 5.7 4.5 2.9

Average 619.7 629.9 631.9 659.9 647.0 645.4 6.6 2.7 2.2

By comparing the results of approaches S0 and S1 in Tables 2–4, we found that incorporating

optimality inequalities improves the lower and upper bounds in addition to reducing the optimality

gaps across all instances. As instance scale increases, the improvement in optimality gaps becomes

more noticeable. For S1 and S2, the differences in lower bounds, upper bounds, and optimality gaps

are not significant in small-scale instances. However, we can see that S2, which uses the primal-dual

lifting technique, reports the best lower bounds and secures the smallest optimality gaps in all but one

of the medium and large-scale instances. The technique is of greater value for instances with longer

planning horizons and greater uncertainties in demand and supply.

6.4 Comparisons with alternative methods

We next compare the performance of the SDDP approach with that of three alternative solution

methods, including a commonly used optimization solver (CPLEX) solving the compact MILP model

and two benchmark methods that simulate common decision policies used in practice.
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Table 4: Computational Results of the SDDP Algorithms on Large Instances.

|P| |Ωp| ∆
LB (×103) UB (×103) GAP (%)

S0 S1 S2 S0 S1 S2 S0 S1 S2

15 10 0.1 750.8 759.2 759.6 793.2 766.0 765.4 5.8 0.9 0.8
15 10 0.2 757.0 765.6 767.2 791.9 781.0 780.1 4.8 2.0 1.7
15 10 0.3 771.3 776.3 778.9 800.3 793.7 792.6 3.8 2.2 1.8
15 10 0.4 784.1 789.4 793.1 821.7 810.2 811.3 4.8 2.7 2.4
15 10 0.5 802.2 804.9 808.4 829.1 825.3 822.7 3.4 2.5 1.8

Average 773.1 779.1 781.4 807.2 795.2 794.4 4.5 2.1 1.7

15 20 0.1 744.5 758.8 758.8 788.7 766.1 765.9 6.1 1.0 1.0
15 20 0.2 751.8 766.3 767.0 798.5 780.1 780.5 6.4 1.8 1.8
15 20 0.3 765.9 776.3 778.5 805.8 795.7 796.2 5.4 2.5 2.3
15 20 0.4 781.5 787.9 792.4 819.9 816.6 808.9 5.0 3.7 2.1
15 20 0.5 801.9 806.6 811.1 840.0 834.2 829.0 4.9 3.5 2.3

Average 769.1 779.2 781.6 810.6 798.5 796.1 5.6 2.5 1.9

15 50 0.1 731.9 758.7 758.8 805.9 765.0 765.5 10.2 0.9 0.9
15 50 0.2 745.3 765.4 766.2 813.8 780.3 778.3 9.5 2.0 1.6
15 50 0.3 757.6 779.6 782.7 826.5 806.6 803.0 9.3 3.6 2.7
15 50 0.4 770.5 784.3 788.9 825.2 819.3 809.5 7.2 4.6 2.7
15 50 0.5 803.0 812.1 817.4 855.5 850.1 839.8 6.8 4.7 2.8

Average 761.6 780.0 782.8 825.4 804.3 799.2 8.6 3.1 2.1

18 10 0.1 894.3 909.4 910.0 947.3 919.0 918.6 6.0 1.1 1.0
18 10 0.2 904.6 916.0 917.3 948.3 935.0 933.5 4.9 2.1 1.8
18 10 0.3 913.8 923.4 927.5 965.5 949.4 945.6 5.8 2.8 2.0
18 10 0.4 925.6 933.8 939.1 974.5 967.7 961.9 5.4 3.7 2.5
18 10 0.5 954.7 958.4 965.1 995.1 993.6 991.3 4.4 3.7 2.9

Average 918.6 928.2 931.8 966.1 952.9 950.2 5.3 2.7 2.0

18 20 0.1 881.5 902.6 902.7 941.0 911.6 911.8 6.9 1.0 1.0
18 20 0.2 895.6 913.0 914.0 952.4 929.9 930.0 6.5 1.9 1.8
18 20 0.3 907.8 926.2 929.8 982.0 954.0 951.2 8.3 3.0 2.3
18 20 0.4 927.4 940.8 946.1 992.3 976.6 971.8 7.2 3.8 2.8
18 20 0.5 957.7 964.5 971.4 1007.9 1008.6 994.4 5.4 4.6 2.4

Average 914.0 929.4 932.8 975.1 956.1 951.9 6.8 2.9 2.1

18 50 0.1 869.9 906.7 907.0 977.6 916.0 915.5 12.8 1.0 1.0
18 50 0.2 879.0 912.1 913.1 1000.9 932.9 931.0 14.5 2.3 2.0
18 50 0.3 894.4 921.3 925.4 996.6 954.2 950.4 11.9 3.6 2.7
18 50 0.4 917.5 937.8 944.7 997.2 978.0 973.8 8.8 4.2 3.1
18 50 0.5 950.3 963.4 970.4 1016.9 1003.9 999.2 7.1 4.2 3.1

Average 902.2 928.2 932.1 997.8 957.0 954.0 11.0 3.1 2.4

6.4.1 Comparisons with CPLEX

We applied CPLEX on the MILP model of problem P to solve the instances. The maximum computa-

tional time of CPLEX is set to be 1800× p̄ for any instance with p̄ stages, while other computational

settings remain the same as described in Section 6.1. Table 5 summarizes the results produced by

CPLEX and S2. Columns LB and UB report the average lower bound and upper bound obtained

by CPLEX and S2, respectively. Column UBG reports the average gaps (in percentage) of the upper

bounds obtained by S2 against those obtained by CPLEX.

As shown in Table 5, due to the memory limit, CPLEX can only obtain feasible solutions for the

smallest instances with three stages and 10 stage scenarios. For these instances, S2 can also obtain

near-optimal solutions. Furthermore, as shown in Tables 2–4, for instances that are out of the capacity

of CPLEX, the SDDP approach serves as a highly reliable and efficient alternative.
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Table 5: Computational Results of CPLEX and S2.

|P| |Ωp| ∆
LB (×103) UB(×103)

UBG (%)
CPLEX S2 CPLEX S2

3 10 0.1 200.6 200.4 200.6 201.0 0.2
3 10 0.2 201.9 201.6 201.9 202.6 0.3
3 10 0.3 205.4 205.0 205.4 206.2 0.4
3 10 0.4 207.3 206.7 207.3 208.2 0.5
3 10 0.5 206.2 205.7 206.2 207.0 0.4

Average 204.3 203.9 204.3 205.0 0.3

3 20 0.1 198.3 200.4 − 201.1 −
3 20 0.2 198.8 202.8 − 203.8 −
3 20 0.3 199.7 204.8 − 205.9 −
3 20 0.4 201.2 206.3 − 207.6 −
3 20 0.5 203.6 209.3 − 210.9 −

Average − 204.7 − 205.9 −

6 10 0.1 − 329.8 − 331.7 −
6 10 0.2 − 330.4 − 332.9 −
6 10 0.3 − 335.8 − 339.8 −
6 10 0.4 − 340.3 − 343.8 −
6 10 0.5 − 342.6 − 348.5 −

Average − 335.8 − 339.3 −

“−”: CPLEX failed to generate feasible solutions due to the memory limit.

6.4.2 Comparisons with other benchmark methods

We have also compared the performance of the SDDP approach with that of two benchmark solution

methods. The first method (BM1) simulates a decision policy ignoring capacity contracts, and the

second method (BM2) is a two-stage stochastic optimization solution approach that simulates a myopic

decision policy. Details of these two methods are explained in EC.5 of the electronic companion. For an

instance, the upper bound obtained by BM1 or BM2 is derived using a large set of scenarios generated

by the method as described in Section 6.1.1. To evaluate the savings generated by the SDDP approach,

in Table 6, we report the average gaps of upper bounds produced by BM1 and BM2 against those

produced by S2, respectively, in columns UBG1 and UBG2.

From Table 6, we find that securing long-term capacities with the carriers (as in S2) rather than
transporting all commodities using non-contractual freight rates (as in BM1) can reduce the total cost

for a shipper by 17.3% to 27.9%. Additionally, in BM2, we formulate the SFPTMP as a myopic two-

stage stochastic model, which overlooks the interconnection between multiple decision stages. The

performance of S2 against BM2 demonstrates the value of multi-stage stochastic optimization for

solving the SFPTMP.

7 Conclusions

In this study, we have introduced an SFPTMP in the supply chain management of a shipper that

sources freight services from the 3PL carriers. We have formulated the problem as a multi-stage

stochastic programming model and have developed an SDDP approach for solving the model. We

have embedded valid feasibility inequalities in the stage-wise problems of the approach. To improve

the performance of the approach, we have further derived optimality inequalities into the stage-wise

problems and proposed a primal-dual lifting procedure. Using synthetic instances, we have demon-

strated that the enhancement strategies can significantly improve the performance of the approach.

These results also demonstrated that the approach can obtain near-optimal solutions to instances of

realistic scale and that it significantly outperforms other solution methods commonly used in practice.
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Table 6: Improvements Generated by SDDP Against the Benchmark Methods.

|P| |Ωp| ∆ UBG1 (%) UBG2 (%) |P| |Ωp| ∆ UBG1 (%) UBG2 (%) |P| |Ωp| ∆ UBG1 (%) UBG2 (%)

3 10 0.1 20.0 9.1 3 20 0.1 19.8 10.9 3 50 0.1 19.3 7.5
3 10 0.2 19.6 8.6 3 20 0.2 18.9 12.6 3 50 0.2 19.4 11.0
3 10 0.3 18.4 13.5 3 20 0.3 18.8 7.8 3 50 0.3 18.4 7.5
3 10 0.4 17.9 12.2 3 20 0.4 18.2 11.5 3 50 0.4 17.3 10.6
3 10 0.5 17.8 10.0 3 20 0.5 17.3 9.6 3 50 0.5 17.3 8.8

Average 18.7 10.7 Average 18.6 10.5 Average 18.3 9.1

6 10 0.1 24.0 31.8 6 20 0.1 23.8 24.4 6 50 0.1 23.9 26.4
6 10 0.2 23.9 29.5 6 20 0.2 23.5 25.3 6 50 0.2 23.7 28.9
6 10 0.3 22.9 24.4 6 20 0.3 22.4 23.9 6 50 0.3 22.7 23.1
6 10 0.4 22.0 26.9 6 20 0.4 22.0 30.0 6 50 0.4 21.5 27.7
6 10 0.5 20.8 31.5 6 20 0.5 20.8 23.9 6 50 0.5 20.6 27.4

Average 22.7 28.8 Average 22.5 25.5 Average 22.5 26.7

9 10 0.1 26.0 32.0 9 20 0.1 25.9 23.1 9 50 0.1 26.3 34.4
9 10 0.2 25.1 30.2 9 20 0.2 25.1 35.1 9 50 0.2 25.3 29.2
9 10 0.3 23.8 40.2 9 20 0.3 24.3 31.0 9 50 0.3 24.2 29.4
9 10 0.4 23.4 34.6 9 20 0.4 23.4 32.5 9 50 0.4 23.5 30.5
9 10 0.5 23.1 40.9 9 20 0.5 22.4 27.1 9 50 0.5 21.5 34.9

Average 24.3 35.6 Average 24.2 29.7 Average 24.2 31.7

12 10 0.1 26.1 31.6 12 20 0.1 26.3 28.8 12 50 0.1 26.7 30.2
12 10 0.2 25.9 27.9 12 20 0.2 25.5 33.2 12 50 0.2 25.2 42.0
12 10 0.3 25.0 34.0 12 20 0.3 24.9 46.7 12 50 0.3 24.2 32.7
12 10 0.4 24.4 38.0 12 20 0.4 23.8 34.9 12 50 0.4 23.3 41.2
12 10 0.5 23.2 31.7 12 20 0.5 22.6 37.3 12 50 0.5 22.2 41.4

Average 24.9 32.7 Average 24.6 36.2 Average 24.3 37.5

15 10 0.1 27.3 44.3 15 20 0.1 27.3 46.2 15 50 0.1 27.4 34.5
15 10 0.2 26.2 47.2 15 20 0.2 26.3 42.5 15 50 0.2 26.5 35.7
15 10 0.3 25.4 26.3 15 20 0.3 25.2 46.9 15 50 0.3 24.5 44.7
15 10 0.4 24.3 29.8 15 20 0.4 24.4 30.5 15 50 0.4 24.3 36.5
15 10 0.5 23.5 41.6 15 20 0.5 23.1 47.1 15 50 0.5 22.4 38.9

Average 25.3 37.8 Average 25.3 42.6 Average 25.0 38.1

18 10 0.1 27.3 33.8 18 20 0.1 27.9 32.9 18 50 0.1 27.7 32.8
18 10 0.2 26.5 35.1 18 20 0.2 26.7 33.5 18 50 0.2 26.9 37.1
18 10 0.3 25.7 45.8 18 20 0.3 25.4 46.0 18 50 0.3 25.5 37.4
18 10 0.4 25.1 45.2 18 20 0.4 24.3 47.1 18 50 0.4 24.2 34.5
18 10 0.5 23.3 35.4 18 20 0.5 23.4 40.1 18 50 0.5 23.2 40.7

Average 25.6 39.1 Average 25.5 39.9 Average 25.5 36.5

While this study assumes that the probabilistic distribution of the uncertain parameters is available,

this distribution can be unknown in practice especially due to limited data. Hence, future research

should investigate robust optimization methods for solving the FPTMP under uncertainty such that

the distribution information of uncertain parameters is not fully available.

Appendix

A1 The SDDP framework

This section presents the pseudocode of the SDDP approach.
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Algorithm A1 Stochastic Dual Dynamic Programming (SDDP).

1: Initialize: LB ← −∞, l← 1, and initial cost-to-go functions Ψp, p ∈ P+

2: while Some stopping criterion is not satisfied do
3: /*Sampling step*/
4: Sample a set of scenarios Ξl ⊆ Ξ
5: /*Forward step*/
6: Solve the problem P0(Ψ0)
7: Collect χ̄ξ,0, ∀ξ ∈ Ξl

8: Set LB equal to the optimal value of P0(Ψ0)
9: for ξ ∈ Ξl do
10: for p = 1, ..., p do
11: Solve the problem Pξ,p(χ̄ξ,p−1,Ψp)
12: Collect χ̄ξ,p
13: end for
14: end for
15: /*Backward step*/
16: for ξ ∈ Ξl do
17: for p = p, ..., 1 do
18: for ω ∈ Ωp do
19: Solve the dual of problem Qξ,ω,p(χ̄ξ,p−1,Ψp)
20: end for
21: Update Ψp−1 by adding valid cuts
22: end for
23: end for
24: l← l + 1
25: end while

A2 Deriving optimality inequalities

The optimality inequalities for problems P0 and Pξ,p in the SDDP are generated based on the ap-

proximate trees Tp, where p ∈ P+ \ {p} and ξ ∈ Ξ. Given an approximate tree Tp and its associated

approximate scenario set Ξ̂p (p ∈ P+ \ {p}), the associated optimality inequalities make use of the

following additional variables:

ẑ
ξ̂,a

continuous variable, which represents the volume of the commodity allocated on arc a ∈ Ak, k ∈ P̂p

under scenario ξ̂ ∈ Ξ̂p;

û
ξ̂,n

continuous variable, which represents the inventory level at node n ∈ Nk, k ∈ P̂p under scenario ξ̂ ∈ Ξ̂p;

v̂
ξ̂,n

continuous variable, which represents the volume of the supply or demand backlogged at node n ∈ Nk,
k ∈ P̂p under scenario ξ̂ ∈ Ξ̂p.

For problem P0, where P̂0 = P, we have the following valid inequalities:

η0 ≥
∑
ξ̂∈Ξ̂0

ρ̂ξ̂

(∑
n∈N

(
hnûξ̂,n + env̂ξ̂,n

)
+
∑
a∈A

caẑξ̂,a

)
(A1)

ẑξ̂,a ≤ yb ∀a ∈ A1
b ,∀b ∈ B,∀ξ̂ ∈ Ξ̂0 (A2)

ûξ̂,n1
+ v̂ξ̂,n1

= d̂ξ̂,n1
+ ûξ̂,n2

+ v̂ξ̂,n2
−

∑
a∈A+(n1)

ẑξ̂,a

∀n1 = (i, t), n2 = (i, t− 1) ∈ NS ,∀ξ̂ ∈ Ξ̂0 (A3)

ûξ̂,n + v̂ξ̂,n = d̂ξ̂,n + q0n −
∑

a∈A+(n)

ẑξ̂,a ∀n = (i, 1) ∈ NS ,∀ξ̂ ∈ Ξ̂0 (A4)

ûξ̂,n1
− v̂ξ̂,n1

= d̂ξ̂,n1
+ ûξ̂,n2

− v̂ξ̂,n2
+

∑
a∈A−(n1)

ẑξ̂,a

∀n1 = (i, t), n2 = (i, t− 1) ∈ ND,∀ξ̂ ∈ Ξ̂0 (A5)

ûξ̂,n − v̂ξ̂,n = d̂ξ̂,n + q0n +
∑

a∈A−(n)

ẑξ̂,a ∀n = (i, 1) ∈ ND,∀ξ̂ ∈ Ξ̂0 (A6)

ûξ̂,n ≤ qn ∀n ∈ N ,∀ξ̂ ∈ Ξ̂0 (A7)
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ẑξ̂1,a = ẑξ̂2,a ∀a ∈ Ak,∀(ξ̂1, ξ̂2) ∈ Λ̂0,k,∀k ∈ P̂0 (A8)

ûξ̂,n1
− v̂ξ̂,n1

+

t2∑
t=tp+1

∑
n=(j,t)∈N

∑
a∈A−(n)

ẑξ̂,a + dj,p+1,t2 ≤ qn2

∀n1 = (j, tp), n2 = (j, t2) ∈ ND,∀((i, t1), (j, t2)) ∈ Ãp,∀p ∈ P \ {p},∀ξ̂ ∈ Ξ̂0 (A9)

ûξ̂,n, v̂ξ̂,n, ẑξ̂,a ≥ 0 ∀n ∈ N ,∀a ∈ A,∀ξ̂ ∈ Ξ̂0. (A10)

Proposition 4. The optimality inequalities (A1)–(A10) are valid for problem P0.

Proof of Proposition 4. Given any feasible solution (x,y) from stage 0, consider the problems R(x,y)

and R̂(x,y) which are formulated as follows:

R(x,y) =min
∑
ξ∈Ξ

ρξ

(∑
n∈N

(hnuξ,n + envξ,n) +
∑
a∈A

cazξ,a

)
(A11)

s.t.(4)− (10), (13)

R̂(x,y) =min
∑
ξ̂∈Ξ̂0

ρ̂ξ̂

(∑
n∈N

(
hnûξ̂,n + env̂ξ̂,n

)
+
∑
a∈A

caẑξ̂,a

)
(A12)

s.t.(A2)− (A10).

One can easily verify that these problems are feasible and bounded. Let Z1 and Z2 denote the optimal

objective function values of R and R̂, respectively. Then, because of Theorem 1 in Chapter 10 of

Birge and Louveaux (2011), we have Z2 ≤ Z1. The validity of the optimality inequalities (A1)–(A10)

follows directly from the result.

Moreover, for problems Pξ,p with p ∈ P \ {p} and ξ ∈ Ξ, we have the following valid inequalities:

ηξ,p ≥
∑
ξ̂∈Ξ̂p

ρ̂ξ̂

∑
k∈P̂p

( ∑
n∈Nk

(
hnûξ̂,n + env̂ξ̂,n

)
+
∑
a∈Ak

caẑξ̂,a

) (A13)

ẑξ̂,a ≤ y′ξ,p,b ∀a ∈ A1
b ∩ Ak,∀k ∈ P̂p,∀b ∈ B,∀ξ̂ ∈ Ξ̂p (A14)

ûξ̂,n1
+ v̂ξ̂,n1

= d̂ξ̂,n1
+ ûξ̂,n2

+ v̂ξ̂,n2
−

∑
a∈A+(n1)

ẑξ̂,a

∀n1 = (i, t), n2 = (i, t− 1) ∈ Nk ∩N S ,∀k ∈ P̂p,∀ξ̂ ∈ Ξ̂p (A15)

ûξ̂,n1
+ v̂ξ̂,n1

= d̂ξ̂,n1
+ uξ,n2 + vξ,n2 −

∑
a∈A+(n1)

ẑξ̂,a

∀n2 = (i, tp), n1 = (i, tp+1) ∈ NS ,∀ξ̂ ∈ Ξ̂p (A16)

ûξ̂,n1
− v̂ξ̂,n1

= d̂ξ̂,n1
+ ûξ̂,n2

− v̂ξ̂,n2
+

∑
a∈A−(n1)∩Ãp−1

z′ξ,p,a +
∑

a∈A−(n1)∩Ap

zξ,a

+
∑
k∈P̂p

∑
a∈A−(n1)∩Ak

ẑξ̂,a ∀n1 = (i, t), n2 = (i, t− 1) ∈ Nk ∩ND,∀k ∈ P̂p,∀ξ̂ ∈ Ξ̂p(A17)

ûξ̂,n − v̂ξ̂,n = d̂ξ̂,n1
+ uξ,n2

− vξ,n2
+

∑
a∈A−(n1)∩Ãp−1

z′ξ,p,a +
∑

a∈A−(n1)∩Ap

zξ,a

+
∑
k∈P̂p

∑
a∈A−(n1)∩Ak

ẑξ̂,a ∀n2 = (i, tp), n1 = (i, tp+1) ∈ ND,∀ξ̂ ∈ Ξ̂p (A18)

ûξ̂,n ≤ qn ∀n ∈ Nk,∀k ∈ P̂p,∀ξ̂ ∈ Ξ̂p (A19)

ẑξ̂1,a = ẑξ̂2,a ∀a ∈ Ak,∀(ξ̂1, ξ̂2) ∈ Λ̂p,k,∀k ∈ P̂p (A20)
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ûξ̂,n1
− v̂ξ̂,n1

+

t2∑
t=tk+1

∑
n=(j,t)∈N

 ∑
a∈A−(n)∩Ãp−1

z′ξ,p,a+
∑

a∈A−(n)∩Ap

zξ,a+
∑

k′∈P̂p

∑
a∈A−(n)∩Ak′

ẑξ̂,a


+dj,k+1,t2 ≤ qn2

∀n1 = (j, tk), n2 = (j, t2) ∈ ND,∀((i, t1), (j, t2)) ∈ Ãk,∀k ∈ P̂p \ {p},∀ξ̂ ∈ Ξ̂p (A21)

ûξ̂,n, v̂ξ̂,n, ẑξ̂,a ≥ 0 ∀n ∈ Nk,∀a ∈ Ak,∀k ∈ P̂p,∀ξ̂ ∈ Ξ̂p. (A22)

Proposition 5. The optimality inequalities (A13)–(A22) are valid for problem Pξ,p, where p ∈ P \ {p}
and ξ ∈ Ξ.

The proof is similar to that of Proposition 4 and is thus omitted here.

A3 Mathematical proofs

This section presents the proofs to the theorems, propositions, and lemmas introduced in the main

text.

A3.1 Proof of Theorem 1

Proof. We only need to prove the case with a single scenario and a single period (i.e., |Ξ| = 1 and

|T | = 1), to which any case with |Ξ| ≥ 1 and |T | ≥ 1 can be reduced. To prove its NP-hardness, we

use a reduction from the following NP-complete problem (Garey and Johnson 1983).

Subset Sum Problem (SSP). Given a finite set N = {1, ..., n}, size di ∈ Z+, ∀i ∈ N , and a

positive integer B, is there a subset N ′ ⊆ N such that
∑

i∈N ′ di = B? We only consider the case with∑
i∈N di > B, as otherwise, the problem is trivial.

For any arbitrary instance of SSP with
∑

i∈N di > B, consider the following polynomial reduction

to an instance of the SFPTMP with |Ξ| = 1 and |T | = 1. Let each element i ∈ N indicate a supply

site with supply di, then we have IS = {1, ..., n}. Let ID = {D1, D2} be the set of demand sites with

demand dD1 = −B and dD2 = B −
∑

i∈IS di. We set the initial inventory levels q0i = 0, ∀i ∈ I. The

upper bounds for holding inventories are set as q̄i = 0, ∀i ∈ I.

Let L = {(i, j)|i ∈ IS , j ∈ ID} be the set of lanes, and each lane (i, j) ∈ L has a shipment time
oi,j = 0 (i.e., shipments can be completed within one period). Lane (i, j) ∈ L is associated with only

one bid and let B(i,j) = {b(i,j)}. The capacity range of any bid b(i,j) is set as [di, di], ∀(i, j) ∈ L. Further,
the bid b(i,j) of any lane (i, j) ∈ L contains one shipment r(i,j) such that t1(r(i,j)) = t2(r(i,j)) = 1. For

any lane (i, j) ∈ L, we set the freight rate for purchasing capacity from the bid b(i,j) as fb(i,j) = 1/di.

Besides, the variable shipping costs in the bids are set to be gb(i,j) = 0, ∀(i, j) ∈ L. In addition, for any

site i ∈ I, we set the unit inventory holding cost and the unit backlog cost to be hi = 2n and ei = 3n,

respectively. Finally, the non-contractual freight rates are set as ci,j = 2n, ∀(i, j) ∈ L. Now we prove

that the minimum total cost of the instance is at most n if and only if the answer to the SSP is “yes”.

On the one hand, suppose there exists such a subset N ′ for the SSP. Let xb ∈ {0, 1} denote whether

a bid b ∈ B is selected in the solution of the SFPTMP instance. Then for any i ∈ N ′, we select bid

b(i,D1) (i.e., xb(i,D1)
= 1) and set its capacity to be di. Meanwhile for any i ∈ N \ N ′, we select bid

b(i,D2) (i.e., xb(i,D2)
= 1) and set its capacity to be di. Let z1(i,j) and z2(i,j) denote the volume of the

commodity shipped on lane (i, j) ∈ L through the shipment r(i,j) in bid b(i,j) and the non-contractual

freight rate, respectively. We then set z1(i,j) = di, if xb(i,j) = 1 and z1(i,j) = 0, otherwise, ∀(i, j) ∈ L.
Meanwhile, we let z2(i,j) = 0, ∀(i, j) ∈ L. Because

∑
i∈N ′ di = −dD1 ,

∑
i∈N\N ′ di = −dD2 , and∑

i∈N di = −(dD1
+ dD2

), the demand at each demand site is exactly satisfied with zero inventories

and backlogs at all sites. Therefore, this is a feasible solution. From the settings of the cost components,

the total cost is n, indicating that the instance has a minimum total cost no larger than n.
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On the other hand, suppose that we have an optimal solution to the SFPTMP instance with a

total cost no larger than n. Consider the subset N ′ = {i ∈ IS |xb(i,D1)
= 1}. We next prove that∑

i∈N ′ di = B, indicating that the answer to the SSP is “yes”. To this end, we first show that for any

supply site i ∈ IS , the equation xb(i,D1)
+ xb(i,D2)

= 1 must hold in the optimal solution. We prove

this by contradiction.

First, suppose that in the optimal solution, there exists a supply site i′ ∈ IS such that xb(i′,D1)
+

xb(i′,D2)
= 0. In this case, let δi′ denote the remaining (unshipped) supply at this site, indicating that

a total volume of (di′ −δi′) is shipped from this site through the non-contractual rates. As a result, the

shipping cost of this solution should at least be 2n(di′ − δi′). In addition, because q0i = 0 and q̄i = 0

with i ∈ I, the backlog level at site i′ equals δi′ . Further, because
∑

i∈IS di = −(dD1 + dD2), the total

backlog volume at the demand sites must also at least be δi′ . These indicate that the backlog cost of

the solution is at least 6nδi′ . Summing these costs, we have that the total cost of this solution should

at least be 2ndi′+4nδi′ > n, which forms a contradiction. Therefore, the equation xb(i,D1)
+xb(i,D2)

≥ 1

must hold for any i ∈ IS in the optimal solution.

Second, suppose there exists a supply site i′ ∈ IS such that xb(i′,D1)
+ xb(i′,D2)

= 2. For any lane

(i, j) ∈ L, bid b(i,j) is associated with a freight rate 1/di and a capacity range [di, di], which indicates

that the cost of selecting any bid equals 1. Therefore, the total cost of selecting bids in the solution

can be calculated as
∑

i∈IS\{i′}(xb(i,D1)
+ xb(i,D2)

) + xb(i′,D1)
+ xb(i′,D2)

. Since we have proved that

xb(i,D1)
+xb(i,D2)

≥ 1, ∀i ∈ IS , if xb(i′,D1)
+xb(i′,D2)

= 2, the cost of bid selection in this solution should

at least be n+1, which again forms a contradiction. Therefore, we have xb(i,D1)
+ xb(i,D2)

= 1, for any

i ∈ IS in the optimal solution.

Because xb(i,D1)
+ xb(i,D2)

= 1, ∀i ∈ IS , the cost for bid selection in the solution equals n. This

further indicates that the inventory and backlog levels at all sites should be zero and the volume of

the shipment acquired through the non-contractual freight rate at any lane should also be zero in the

solution. For these conditions to hold, the solution must satisfy
∑

i∈N ′ di = B. This completes the

proof.

A3.2 Proof of Proposition 1

Let x∗ = (x∗
b |b ∈ B), y∗ = (y∗b |b ∈ B), z∗ = (z∗ξ,a|a ∈ A, ξ ∈ Ξ), u∗ = (u∗

ξ,n|n ∈ N , ξ ∈ Ξ), and

v∗ = (v∗ξ,n|n ∈ N , ξ ∈ Ξ) be the vectors for the values of variables xb, yb, zξ,a, uξ,n, and vξ,n in an

optimal solution (denoted by X∗) of P. We have the following lemma.

Lemma 2. X∗ satisfies the following equalities:

min{v∗ξ,n, qn − u∗
ξ,n} = 0 ∀n ∈ NS ,∀ξ ∈ Ξ, (A23)

min{u∗
ξ,n, v

∗
ξ,n} = 0 ∀n ∈ ND,∀ξ ∈ Ξ. (A24)

Proof of Lemma 2. Supposing (A23) do not hold, for some n ∈ N S , we must have u∗
ξ,n < qn and

v∗ξ,n > 0. Let σ = min{v∗ξ,n, qn − u∗
ξ,n}. We have σ > 0.

Consider a solution (denoted by X ′) for problem P in which uξ,n = u∗
ξ,n+σ and vξ,n = v∗ξ,n−σ and

other variables remain the same as in X∗. It is easy to check that X ′ is feasible. Let Z ′ and Z∗ denote

objective function values associated with X ′ and X∗, respectively. We have Z ′ − Z∗ = (hn − en)σ.

Because hn < en, Z
′ − Z∗ < 0, which is a contradiction of the optimality of X∗. Therefore, (A23)

must hold for any optimal solution of P.

The process to show that (A24) must hold for any optimal solution of P is similar, and thus we

omit it here.

Proof of Proposition 1. From the definition of Λp, we have (ξ1, ξ2) ∈ Λp if and only if (ξ1, ξ2) ∈ Λp′ ,

∀p′ ∈ {1, ..., p}, where p ∈ P. Then, given any (ξ1, ξ2) ∈ Λp and p ∈ P, due to constraints (10), one



Les Cahiers du GERAD G–2022–19 – Revised 25

must have

z∗ξ1,a = z∗ξ2,a ∀a ∈ Ap′ ,∀p′ ∈ {1, ..., p}. (A25)

It is therefore easy to infer that∑
a∈A+(n)

z∗ξ1,a =
∑

a∈A+(n)

z∗ξ2,a ∀n ∈ Np′ ,∀p′ ∈ {1, ..., p}, (A26)

∑
a∈A−(n)

z∗ξ1,a =
∑

a∈A−(n)

z∗ξ2,a ∀n ∈ Np′ ,∀p′ ∈ {1, ..., p}. (A27)

Further, combining these two equations with constraints (5)–(8) gives us:

u∗
ξ1,n + v∗ξ1,n = u∗

ξ2,n + v∗ξ2,n ∀n ∈ Np′ ∩N S ,∀p′ ∈ {1, ..., p}, (A28)

u∗
ξ1,n − v∗ξ1,n = u∗

ξ2,n − v∗ξ2,n ∀n ∈ Np′ ∩ND,∀p′ ∈ {1, ..., p}. (A29)

Finally, from the results in Lemma 2 and equations (A28) and (A29), we have

u∗
ξ1,n = u∗

ξ2,n ∀n ∈ Np′ ,∀p′ ∈ {1, ..., p}, (A30)

v∗ξ1,n = v∗ξ2,n ∀n ∈ Np′ ,∀p′ ∈ {1, ..., p}. (A31)

Therefore, by solving P to optimality, we have identical decisions under scenarios ξ1, ξ2 ∈ Λp in any

stage p′ ∈ {1, ..., p}. This completes the proof.

A3.3 Proof of Lemma 1

Proof. Given any site i ∈ ID, let ω̄i
p = argmaxω∈Ωp

∑tp
t=tp

dωi,t, and let ω̄i
p,t = argmaxω∈Ωp

∑t
t′=tp

dωi,t′ ,

where t ∈ Tp and p ∈ P.

Given any stages p1, p2 ∈ P with p2 > p1 and a period t2 ∈ Tp2
, for any i ∈ ID, let Ξ0 be the set

of scenarios such that ∀ξ ∈ Ξ0, ωp(ξ) = ω̄i
p, ∀p ∈ {p1 + 1, ..., p2 − 1} and ωp2

(ξ) = ω̄i
p2,t2 . By summing

constraints (7) for site i under any scenario ξ0 ∈ Ξ0 over all periods t′ ∈ {tp1+1, ..., t2} we have

uξ0,n2
− vξ0,n2

= uξ0,n1
− vξ0,n1

+ d̄i,p1+1,t2 +

t2∑
t′=tp1+1

∑
n=(i,t′)∈N

∑
a∈A−(n)

zξ0,a ∀ξ0 ∈ Ξ0,(A32)

where n1 = (i, tp1
) and n2 = (i, t2).

Because vξ0,n2
≥ 0 and zξ0,a ≥ 0, ∀a ∈ A−(n) the following inequality holds:

uξ0,n2
≥ uξ0,n1

− vξ0,n1
+ d̄i,p1+1,t2 +

t2∑
t′=tp1+1

∑
n=(i,t′)∈N

p1∑
p′=1

∑
a∈A−(n)∩Ap′

zξ0,a ∀ξ0 ∈ Ξ0.(A33)

Due to constraints (9), we have

uξ0,n1
− vξ0,n1

+ d̄i,p1+1,t2 +

t∑
t′=tp1+1

∑
n=(i,t′)∈N

p1∑
p′=1

∑
a∈A−(n)∩Ap′

zξ0,a ≤ qn2
∀ξ0 ∈ Ξ0. (A34)

Further, given any ξ0 ∈ Ξ0, let Ξ(ξ0) ⊆ Ξ be the set of scenarios such that Ξ(ξ0) = {ξ ∈ Ξ|ξ =

ξ0 ∨ (ξ, ξ0) ∈ Λp1
}. From Proposition 1, we have

uξ,n1 − vξ,n1 + d̄i,p1+1,t2 +

t∑
t′=tp+1

∑
n=(i,t′)∈N

p1∑
p′=1

∑
a∈A−(n)∩Ap′

zξ,a ≤ qn2
∀ξ ∈ Ξ(ξ0),∀ξ0 ∈ Ξ0. (A35)

In addition, the structure of the scenario tree implies that
⋃

ξ0∈Ξ0 Ξ(ξ0) = Ξ, and the final result

follows directly.
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A3.4 Proof of Proposition 2

Proof. We show that problem P′
ξ,p, where p ∈ P and ξ ∈ Ξ, is feasible by constructing a feasible

solution (S) to the problem as follows.

First, in S, we let zξ,a = 0, ∀a ∈ Ap. In the sequel, for the solution to be feasible, we must have

uξ,n2
= ūξ,p−1,n1

+ v̄ξ,p−1,n1
+

t∑
t′=tp

∑
n=(j,t′)∈N

dξ,n − vξ,n2

∀n1 = (j, tp−1), n2 = (j, t) ∈ N ,∀j ∈ IS ,∀t ∈ Tp, (A36)

uξ,n2
= ūξ,p−1,n1

− v̄ξ,p−1,n1
+

t∑
t′=tp

∑
n=(j,t′)∈N

(dξ,n +
∑

a∈A−(n)∩Ãp−1

z̄ξ,p−1,a) + vξ,n2

∀n1 = (i, tp−1), n2 = (j, t) ∈ N ,∀j ∈ ID,∀t ∈ Tp. (A37)

To show that such a feasible S exists, it suffices to show that for any n2 = (j, t) ∈ Np there exists

a vξ,n2
≥ 0 such that:

ūξ,p−1,n1 + v̄ξ,p−1,n1 +

t∑
t′=tp

∑
n=(j,t′)∈N

dξ,n − vξ,n2 ≥ 0, (A38)

ūξ,p−1,n1
+ v̄ξ,p−1,n1

+

t∑
t′=tp

∑
n=(j,t′)∈N

dξ,n − vξ,n2
≤ qn2

, (A39)

if j ∈ IS and

ūξ,p−1,n1
− v̄ξ,p−1,n1

+

t∑
t′=tp

∑
n=(j,t′)∈N

(dξ,n +
∑

a∈A−(n)∩Ãp−1

z̄ξ,p−1,a) + vξ,n2
≥ 0, (A40)

ūξ,p−1,n1 − v̄ξ,p−1,n1 +

t∑
t′=tp

∑
n=(j,t′)∈N

(dξ,n +
∑

a∈A−(n)∩Ãp−1

z̄ξ,p−1,a) + vξ,n2 ≤ qn2
, (A41)

if j ∈ ID, where n1 = (j, tp−1) ∈ N .

One can easily verify that inequalities (A38)–(A41) hold as long as we have:

ūξ,p−1,n1 − v̄ξ,p−1,n1 +

t∑
t′=tp

∑
n=(j,t′)∈N

(dξ,n +
∑

a∈A−(n)∩Ãp−1

z̄ξ,p−1,a) ≤ qn2
(A42)

for the case j ∈ ID.

Note that dξ,n ≤ 0, ∀n ∈ ND and qn2
= qj , ∀n2 = (j, t) ∈ ND. Hence, if p = 1, we have Ã0 = ∅

and (A42) holds directly as long as the original problem P is feasible. If p > 1, (A42) holds if we have:

ūξ,p−1,n1
− v̄ξ,p−1,n1

+

t∑
t′=tp

∑
n=(j,t′)∈N

∑
a∈A−(n)∩Ãp−1

z̄ξ,p−1,a +

t∑
t′=tp

∑
n=(j,t′)∈N

dξ,n ≤ qn2

∀n1 = (i, tp−1), n2 = (j, t2) ∈ ND,∀((i, t1), (j, t2)) ∈ Ãp−1. (A43)

By definition, we have
∑t

t′=tp

∑
n=(j,t′)∈N

dξ,n ≤ d̄j,p,t. Therefore, from constraints (21), we have

that (A42) is valid for P′
ξ,p with p > 1. This completes the proof.
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A3.5 Proof of Proposition 3

Proof. We prove correctness of the proposition only for inequalities (A1)−(A10), as the result can

be easily extended to inequalities (A13)−(A22). Let T0 and Ξ̂0 denote the approximate tree for

stage 0 and the set of scenarios associated with it, respectively. Consider the problem R̂(x,y) which

is formulated as follows:

R̂(x,y) = min
∑
ξ̂∈Ξ̂0

ρ̂ξ̂

(∑
n∈N

(
hnûξ̂,n + env̂ξ̂,n

)
+
∑
a∈A

caẑξ̂,a

)
(A44)

s.t. (A2)− (A10).

Additionally, let T ′
0 be an approximate tree for the same stage such that |Ω̂k| = 1 for any stage

k ∈ P̂0. Following Proposition 4, the inequalities (A1)−(A10) defined on T ′
0 are valid for the problem

R̂(x,y). This completes the proof.

A4 Details of instance generation

All instances were created from five cases which were generated based on five instances selected from

the instance set provided by Papageorgiou et al. (2014) for the maritime inventory-routing problem

(MIRP). In each of the five selected MIRP instances, there are one supply port and eight demand

ports. Each instance covers a planning horizon of 360 days and the (deterministic) daily supply or

demand generated at each port is provided.

We proceed as follows to convert an MIRP instance into an SFPTMP case. To begin with, each

supply (demand) port in the MIRP instance corresponds to a supply (demand) site in a case. Second,

in each case, we let a period t ∈ T contain seven consecutive days (a week) and the planning horizon

consists of 54 periods (378 days). The nominal demand d̄it at site i ∈ ID in period t ∈ T is set equal

to the sum of the daily demands of the corresponding port that are associated with period t in the

MIRP instance (we set the daily demands of the days later than the 360th day equal to those of the

360th day in the MIRP instance).

Other parameters in a case were generated as follows. The initial (q0i ) and maximum inventory

levels (qi) at each site i ∈ I were set equal to those at the corresponding port in the related MIRP

instance. The unit inventory cost hi was set to 0 for all sites i ∈ I, aligning with the MIRP instance

settings. For sites in IS , the unit backlogging cost ei was set at 0.05. For sites in ID, it was set at

1.1(maxj∈IS cj,i), where cj,i represents the non-contractual freight rate on lane (j, i) ∈ L.

The commodity can be shipped on the lane between any supply site and any demand site. We

let the shipping time oi,j = ⌈ōi,j/7⌉ for all (i, j) ∈ L, where ōi,j (in days) is the travel time between

the corresponding ports in the associated MIRP instance. The non-contractual freight rate on each

lane (i, j) ∈ L is set as ci,j = 0.0005DISi,j , where DISi,j represents the distance (km) between the

corresponding ports in the original MIRP instance.

The bids were created as follows. Each bid is characterized by a shipment capacity range and a

shipment frequency. Let C be the maximum of the vessel capacities in the original MIRP instance,

and let Qj = min{C, qj}, ∀j ∈ I. For generating the bids on a lane (i, j) ∈ L, three shipment capacity

ranges were used, which are [⌊0.25Qj⌋, ⌊0.5Qj⌋], [⌊0.5Qj⌋+1, ⌊0.75Qj⌋], and [⌊0.75Qj⌋+1, ⌊Qj⌋]. We

also used three shipping frequencies, where the intervals between two consecutive shipments in a bid

are set to two, four, and six periods. There are thus nine combinations of capacity ranges and shipping

frequencies, and for each combination, we generate a bid. Hence, we have |Bi,j | = 9, ∀(i, j) ∈ L. The

freight rate fb of a bid b ∈ Bi,j was set as follows:

fb =


0.8ci,j , if [mb,mb] = [⌊0.25Qj⌋, ⌊0.5Qj⌋],
0.7ci,j , if [mb,mb] = [⌊0.5Qj⌋+ 1, ⌊0.75Qj⌋],
0.6ci,j , if [mb,mb] = [⌊0.75Qj⌋+ 1, ⌊Qj⌋].
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Further, the variable transportation cost in each bid b ∈ B was set as gb = 0. As for the shipment

schedules, given any bid b, the start time of its first shipment was randomly selected from the set

of periods {1, 2, 3} and the start times of subsequent shipments were set according to the shipping

frequency. The number of shipments in the bid was set to the maximum number of shipments that

can be completed within the planning horizon, which was determined by the start time of the first

shipment, the shipping frequency, and the transportation time of a shipment in the bid.

In any SFPTMP instance, supplies are generated only in the first period (tp) in any stage p ∈ P.

That is, we let dωi,t = 0, ∀t ∈ Tp \ {tp}, ∀p ∈ P, ∀i ∈ IS . We assume that supplies and demands

are balanced in each stage. In particular, in any of these instances, given a stage p ∈ P and a stage

scenario ω ∈ Ωp, the supply produced in the (sole) supply site in period tp under this scenario was set

equal to −
∑

i∈ID

∑
t∈Tp

dωi,t.

A5 Details of benchmark methods

We adopted two benchmark methods for solving the SFPTMP. Their implementation details are ex-

plained below.

When applying BM1 to solve an instance, we run the SDDP approach (i.e., S2) in which the x

variables in problem P0 are set to zero. Besides, when applying BM2 to solve an instance, we first solve

a two-stage stochastic optimization version of problem P for selecting the bids. In two-stage stochastic

optimization, the shipper determines which bids to accept at the first stage while the second stage

contains |Ω1| shipment subproblems. Each shipment subproblem is associated with a stage scenario

ω ∈ Ω1. For the subproblem associated with ω ∈ Ω1, let d′ω,n denote the demand or supply at node

n ∈ N . We have d′ω,n = dω,n, ∀n ∈ N1 and d′ω,n =

∑
ω∈Ωp

dω,n

|Ωp| , ∀n ∈ Np, p ∈ {2, ..., p̄}.
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