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Abstract : We describe a procedure to compute a projection of w ∈ Rn into the intersection of the
so-called zero-norm ball kB0 of radius k, i.e., the set of k-sparse vectors, with a box centered at a
point of kB0. The need for such projection arises in the context of certain trust-region methods for
nonsmooth regularized optimization. Although the set into which we wish to project is nonconvex, we
show that a solution may be found in O(n log(n)) operations. We describe our Julia implementation
and illustrate our procedure in the context of two trust-region methods for nonsmooth regularized
optimization.

Résumé : Nous proposons une procédure pour calculer une projection de w ∈ Rn dans l’intersection
de la soi-disant boule en norme zéro kB0 de rayon k, c’est-à-dire l’ensemble des vecteurs ayant au
plus k composantes non nulles, et d’une boîte centrée en point de kB0. Cette projection est nécessaire
dans le contexte de certaines méthodes de région de confiance pour l’optimisation non lisse régularisée.
Bien que l’ensemble dans lequel on projette est non convexe, il est possible d’obtenir une solution
en O(n log(n)) opérations. Nous décrivons notre implémentation dans le langage Julia et illustrons
la procédure dans le context de deux méthodes de région de confiance pour l’optimisation non lisse
régularisée.

Acknowledgements: The author wishes to thank Aleksandr Aravkin and Robert Baraldi for fruitful
discussions that made this research possible.
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1 Introduction

We describe a procedure to compute a projection of a point in Rn into the intersection of the set of
k-sparse vectors with a box centered at a k-sparse vector.

Specifically, let ∆B∞ be the `∞-norm ball of radius ∆ ≥ 0 and centered at the origin, and x+∆B∞
be the same ball centered at x ∈ Rn. The set of k-sparse vectors in Rn, otherwise known as the `0-
pseudonorm “ball” of radius k ∈ {0, 1, . . . , n}, is denoted kB0 and is the set of vectors with at most k
nonzero components. Assume that x ∈ kB0. For given w ∈ Rn, we seek to compute

p(w) ∈ P (w) := argmin {‖w − y‖2 | y ∈ C} C := kB0 ∩ (x+ ∆B∞). (1)

Because C is closed, P (w) 6= ∅, but because C is nonconvex, P (w) may contain several elements.
In (1), we seek a global minimum—local nonglobal minima sometimes exist, but are of no particular
interest here. Although it may appear as though the problem has exponential complexity due to the
combinatorial nature of k-sparsity, we show that a solution may be found in O(n log(n)) operations.
We describe our Julia implementation and illustrate our procedure in the context of two trust-region
methods for nonsmooth regularized optimization.

Context

The computation of (1) occurs in the evaluation of proximal operators encountered during the iterations
of the trust-region method of Aravkin et al. [1] for nonsmooth regularized optimization. Their method
is designed for problems of the form

minimize
x∈Rn

f(x) + h(x), (2)

where f : Rn → R has Lipschitz-continuous gradient and h : Rn → R∪{±∞} is lower semi-continuous
and proper. In large-scale data fitting and signal reconstruction problems, h(x) = χ(x | kB0) encodes
sparsity constraints and is of interest if one is to recover a solution with at most k nonzero elements,
where χ(· | A) is the indicator of A ⊆ Rn, i.e.,

χ(x | A) =

{
0 if x ∈ A,
∞ otherwise.

All iterates xj generated are feasible in the sense that xj ∈ kB0. At iteration j, a step s is computed
in

argmin
u

1
2‖u− v‖22 + h(xj + u) + χ(u | ∆jB∞),

where v ∈ Rn is given and ∆jB∞ is the trust region centered at the origin of radius ∆j > 0. With
the change of variables z := xj + u, we may rewrite the above as

argmin
z

1
2‖z − w‖22 + χ(z | kB0) + χ(z | xj + ∆jB∞)− {xj},

where w := xj + v, which precisely amounts to (1) with xj in the role of x and ∆j in the role of ∆

because the two indicators may be combined into the indicator of the intersection.

Because nonsmooth regularized problems often involve a nonlinear least squares smooth term,
Aravkin et al. [2] develop a Levenberg-Marquardt variant of their trust region method. The latter
requires the same projections as just described.

Notation

Let supp(x) := {i = 1, . . . , n | xi 6= 0} be the support of x. If A ⊆ Rn is closed and A 6= ∅, we denote

proj(w | A) := argmin {‖w − y‖2 | y ∈ A},
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the projection of w into A, which is a set with at least one element.

When the projection of w into A is unique, such as happens when A is convex, we slightly abuse
notation and write y = proj(w | A) instead of {y} = proj(w | A).

If B ⊆ Rn, the notation proj(proj(w | A) | B) refers to the set {z ∈ proj(y | B) for some y ∈
proj(w | A)}.

If S ⊆ {1, . . . , n}, the cardinality of S is denoted |S|, and its complement is Sc. For such S and
for x ∈ Rn, we denote xS the subvector of x indexed by S and AS := {x ∈ Rn | xSc = 0}. Clearly,
0 ∈ AS for any such S.

Because
kB0 =

⋃
{AS | S ⊆ {1, . . . , n}, |S| = k},

[5, p. 175], we refer to AS as a piece of kB0.

Related research

Duchi et al. [11] describe how to project efficiently into the `1-norm ball. The `1-norm is probably the
most widely used convex approximation of the `0 norm as minimizing ‖x‖1 promotes sparsity under
certain conditions—see, e.g., [10] and the vast ensuing compressed sensing literature.

Gupta et al. [12] describe how to project into the intersection of an `1-norm ball with a box, which
may be seen as a relaxation of (1). Thom and Palm [17] and Thom et al. [18] propose a linear-time
and constant space algorithm to compute a projection into a hypersphere with a prescribed sparsity,
where sparsity is measured by the ratio of the `1 to the `2 norm.

Beck and Eldar [6] provide optimality conditions for the minimization of a smooth function over
kB0. Beck and Hallak [7] provide optimality conditions for problems of the form (1) where the box is
replaced with a symmetric set satisfying certain conditions. Unfortunately, (1) does not satisfy those
conditions unless x = 0, at which point it is easy to see that a solution simply consists in chaining
the projection into kB0 with that into ∆B∞. That is what Luss and Teboulle [15, Proposition 4.3] do
with 1B2 instead of ∆B∞.

Bolte et al. [9, Proposition 4] show how to project into the intersection of kB0 with the nonnegative
orthant.

Kyrillidis et al. [13] explain how to compute a sparse projection into the simplex, which is probably
the most closely related research to our objectives. The simplex necessarily intersects all pieces of kB0,
which need not be the case for (1).

2 Geometric intuition

Naively chaining the projection into one set with that into the other, in either order, does not necessarily
yield a point into the intersection of the two sets, even if the latter are convex. Figures 1 and 2 illustrates
two situations that we may encounter when k = 1 and n = 2.

A few simple observations about Figures 1 and 2 reveal some difficulties associated with the com-
putation of p(w):
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1. because both components of w1 are equal in absolute value, as indicated by the thin diagonal in
Figure 2, proj(w1 | kB0) is a set with two elements, and projecting those into x + ∆B∞ yields
p(w1) (the correct global minimum) and p2 (a spurious local minimum);

2. moving w1 up slightly would preserve p(w1), but projecting into 1B0 first would lead to p2;
3. moving w1 slightly to the right would result in a projection that is slightly to the right of p(w1)

on the figure, but projecting into 1B0 first would lead to p2;
4. moving w1 further to the right would result in P (w1) = {p(w1), p2} and moving it further still

would result in P (w1) = {p2};
5. in the rightmost plot, chaining the projections either way leads to a point that does not even lie

in the intersection.

x

w1

w2

w3

p1

p(w1)

p2

p3 ∈ P(w3)

p4

x

w

p1 ∈ p(w)

p2

Figure 1: The set composed of the two axes is 1B0 in R2, the box is x+ ∆B∞ and the green set is their intersection.
Left: P (w1) = {p(w1)}, and P (w2) = {p1}. With respect to w1, the other cardinal points are p2, a local minimum,
p3, a local maximum, and p4, a global maximum. Right: the intersection of 1B0 with x+ ∆B∞ is entirely determined
by supp(x), P (w) = {p1} while p2 is a global maximum.

x

w1

w2

p(w2)

p(w1)

p2

x

w

p1 ∈ p(w)

Figure 2: Simply composing the projection into 1B0 with that into x+∆B∞, in either order, may lead to an erroneous
projection.

Note that 1B0 is a special case for any value of n: its intersection with x+ ∆B∞ consists in either
a single line segment, or n segments. Indeed, the first possibility is that the nonzero component of x is
|xi| > ∆. In that case, any y ∈ 1B0 with yj 6= 0 and i 6= j satisfies ‖y−x‖∞ ≥ |xi| > ∆, and therefore
y 6∈ x+ ∆B∞. The only other possibility is that |xi| ≤ ∆, in which case 0 ∈ x+ ∆B∞, and therefore,
all pieces of 1B0 intersect the box.

For 1 < k < n, however, the intersection may consist in any number of pieces between 1 and
(
n
k

)
.
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Figure 3 illustrates situations that may arise for k = 1 or 2 and n = 3.

x
x

x

Figure 3: Left: the green segment represents a possible intersection of 1B0 with a box in R3. The gray plane sections
only serve to position the segment visually in three dimensions. Center: another possible intersection of 1B0 with a
box in R3. The box either intersects a single axis, or all of them. Right: the green region is a possible intersection of
2B0 with a box in R3. The gray segment only serves as a visual aid and is part of the intersection.

3 Background and preliminary results

The unique projection y of any w into x+ ∆B∞ has components

yi = max(xi −∆,min(wi, xi + ∆)), i = 1, . . . , n.

Given S ⊆ {1, . . . , n}, we obtain the unique projection of any w into AS by setting wi = 0 for all
i ∈ Sc.

A projection y of any w into kB0 is a vector that has the same k largest components in absolute
value as w, and the rest of its components set to zero [5, Lemma 6.71].

In the vein of Beck and Eldar [6], it is possible to state necessary optimality conditions for the
more general problem

minimize
y∈Rn

f(y) subject to y ∈ C, (3)

of which (1) is a special case. Despite the fact that our algorithm is not based on such necessary
conditions, they are relevant in their own right, and we now review and specialize them to (1).
Lemma 1. Let y? be a solution of (3) where f is continuously differentiable.

1. If ‖y?‖0 < k, then for all i = 1, . . . , n,

∂f(y?)

∂yi


≤ 0 if y?i = xi + ∆

≥ 0 if y?i = xi −∆

= 0 otherwise;

2. if ‖y?‖0 = k, the same conditions hold for all i ∈ supp(y?).

Proof. The proof follows that of [6, Theorem 2.1]. If ‖y?‖0 < k, then for all i = 1, . . . , n,

0 ∈ argmin
t∈R

{g(t) | ‖y? + tei − x‖∞ ≤ ∆},

where ei is the i-th column of the identity, and g(t) := f(y? + tei).

Because y? ∈ x+ ∆B∞, the constraint above reduces to |y?i + t− xi| ≤ ∆. The conclusion follows
directly from the standard KKT conditions by noting that g′(0) = ∂f(y?)/∂yi.

If ‖y?‖0 = k, the same reasoning goes for all i ∈ supp(y?).
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By analogy with [6, Theorem 2.1], a candidate satisfying the conditions of Lemma 1 is called a
basic feasible point. The following corollary follows directly from Lemma 1 with f(y) := 1

2‖w − y‖22.
Corollary 1. Let y? be a solution of (1).

1. If ‖y?‖0 < k, then for all i = 1, . . . , n,

y?i


≤ wi if y?i = xi + ∆

≥ wi if y?i = xi −∆

= wi otherwise;

2. if ‖y?‖0 = k, the same conditions hold for all i ∈ supp(y?).

Lemma 1 and Corollary 1 are only necessary conditions, and they are rather weak; there often
exist vectors satisfying the conditions stated that are not solutions of (3) or (1). Consider for example
k = 1 in R2, x = (0,−1), ∆ = 2, and w = (2, 3). Then, y = (2, 0) satisfies the conditions of
Corollary 1: ‖y‖0 = 1, supp(y) = {1} and y1 = x1 + ∆ ≤ w1. However, P (w) = {(0, 1)}. Indeed,
‖w − (0, 1)‖ = 2

√
2 < 3 = ‖w − y‖.

Observe that thanks to [6, Lemma 2.1], the number of basic feasible points of (1) is finite. Therefore,
so is the cardinality of P (w).

For a constant L > 0, Beck and Eldar define y ∈ C to be L-stationary for (3) if it satisfies
y ∈ proj(y−L−1∇f(y) | C), a condition insipired by optimality conditions for convex problems. They
state the following result, whose proof remains valid for (3).
Lemma 2 (6, Lemma 2.2). For any L > 0, y ∈ Rn is L-stationary for (3) if and only if y ∈ C and

∂f(y)

∂yi
= 0 (i ∈ supp(y)) and

∣∣∣∣∂f(y)

∂yi

∣∣∣∣ ≤ LMk(y) (i 6∈ supp(y)),

where Mk(y) is the kth largest component of y in absolute value.

With f(y) := 1
2‖w − y‖22, L-stationarity reads y ∈ proj(y − L−1(y − w) | C). Due to the simple

form of ∇f(y) = y − w, Lemma 2 specializes as follows.
Corollary 2. For any L > 0, y ∈ Rn is L-stationary for (1) if and only if y ∈ C and

wi = yi (i ∈ supp(y)), and |wi| ≤ LMk(y) (i 6∈ supp(y)).

As a special case of Corollary 2, if ‖y‖0 < k, then Mk(y) = 0 and we obtain wi = 0 for i 6∈ supp(y).
In that case, L-stationarity turns out to be independent of L and requires that y = w, i.e., there is a
unique L-stationary point if w ∈ C, and there are no L-stationary points if w 6∈ C.

L-stationarity is stronger than basic feasibility in the sense that if y is L-stationary for (3) for any
L > 0, then y is also a basic feasible point [6, Corollary2.1].

Under a Lipschitz assumption, solutions of (3) are L-stationary, as stated in the following result.
Proposition 1 (6, Theorem 2.2). Assume ∇f is Lipschitz continuous with constant Lf and y solves (3).
Then, for any L > Lf ,

1. y is L-stationary;
2. proj(y − L−1∇f(y) | C) is a singleton.

Proof. The proof follows by verifying that [6, Lemma 2.4] continues to hold for (3) and the proof of
[6, Theorem 2.2] holds unchanged.

Proposition 1 clearly applies to (1) as the gradient of f(y) := 1
2‖w − y‖22 is Lipschitz continuous

with constant Lf = 1. Thus, solutions of (1) are L-stationary for L > 1.
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Based on L-stationarity, Beck and Eldar [6] study the iteration y+ ∈ proj(y − L−1∇f(y) | C)

and show convergence to an L-stationary point for (3) under the assumption that ∇f is Lipschitz
continuous. Unfortunately, in the case of (1), solving the subproblem is as difficult as solving (1)
directly.

Finally, Beck and Eldar define the concept of componentwise (CW) optimality as follows: y ∈ C is
CW-minimum for (3) if

1. ‖y‖0 < k and f(y) = mint f(y + tei) for i = 1, . . . , n, or
2. ‖y‖0 = k and f(y) ≤ mint f(y − yiei + tej) for i ∈ supp(y) and j = 1, . . . , n.

They observe that any solution is a CW-minimum [6, Theorem 2.3] and that any CW-minimum is
a basic feasible point [6, Lemma 2.5]. The concept of CW-minimum allows them to show that any
solution of (3) is L-stationary for a value L that can be significantly smaller than Lf . Based on those
observations, they propose two coordinate descent-type methods that converge to a CW-minimum.

In the next section, we present a number of properties of (1) and an algorithm that identifies a
solution directly, without resort to the above stationarity conditions.

4 Computing the projection

We begin with a few simple observations.
Lemma 3. Let S ⊆ {1, . . . , n} such that |S| = k. If y ∈ x + ∆B∞ and z = proj(y | AS), then
‖z − x‖∞ ≤ ‖y − x‖∞ and, in particular, z ∈ x+ ∆B∞.

Proof. Without loss of generality, we may write z = (yS , 0). Observe now that

∆ ≥ ‖y−x‖∞ = max(‖yS−xS‖∞, ‖ySc−xSc‖∞) = max(‖yS−xS‖∞, ‖ySc‖∞) ≥ ‖yS−xS‖∞ = ‖z−x‖∞,

because xSc = 0.

Lemma 3 holds because of the geometry of kB0 respective to B∞ and is specific to the `∞-norm.
Indeed, consider for example a ball defined in the `2-norm and set x = (0,−1) ∈ 1B0 and ∆ = 2.
For y1 = ( 3

4 ,− 1
4 ), we have z1 = proj(y1 | 1B0) = ( 3

4 , 0) and ‖z1 − x‖2 > ‖y − x‖2. In this example,
z1 ∈ x+ ∆B2, but consider now y2 = (2,−1). Then, z2 = proj(y2 | 1B0) = (2, 0) 6∈ x+ ∆B2.
Lemma 4. If w ∈ x+ ∆B∞, then P (w) = proj(w | kB0).

Proof. Any y ∈ proj(w | kB0) has the same k largest components in absolute value as w, and the
rest of its components set to zero. Thus, there must exist S ⊆ {1, . . . , n} with |S| = k such that
y = proj(w | AS). By Lemma 3, ‖y − x‖∞ ≤ ‖w − x‖∞ ≤ ∆ so that y ∈ x+ ∆B∞, and hence, y ∈ C.
If there were z ∈ C such that ‖z − w‖2 < ‖y − w‖2, because z ∈ kB0, there would be a contradiction
with the definition of y. Therefore, y is a closest point to w in C.

Lemma 5. C = Asupp(x) ∩ (x+ ∆B∞) if and only if |xi| > ∆ for all i ∈ supp(x).

Proof. The result follows from the observation that for any i ∈ supp(x), there is no y ∈ x + ∆B∞
with yi = 0. Indeed, if yi = 0, ‖y − x‖∞ ≥ |yi − xi| = |xi| > ∆.

Lemma 6. For any S ⊆ {1, . . . , n} and any w ∈ Rn,

proj(w | AS ∩ (x+ ∆B∞)) = proj(proj(w | x+ ∆B∞) | AS) = proj(proj(w | AS) | x+ ∆B∞),

whose unique element is the vector y such that yS = proj(wS | xS + ∆B∞) and ySc = 0.

In particular, if C = Asupp(x) ∩ (x+ ∆B∞), then P (w) = {proj(proj(w | x+ ∆B∞) | Asupp(x))}.
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Proof. The projection is unique because AS∩(x+∆B∞) is convex. If y := proj(w | x+∆B∞) observe
that z := proj(y | AS) ∈ AS ∩ (x+ ∆B∞) by Lemma 3.

In order to show that z ∈ proj(w | AS ∩ (x + ∆B∞)), pick any other z̄ ∈ AS ∩ (x + ∆B∞). By
construction, z̄ = (ȳS , 0) for some ȳ. Among the infinitely many possible ȳ, we may choose the one
such that ȳSc = ySc . Then,

‖w − y‖22 = ‖wS − yS‖22 + ‖wSc − ySc‖22 = ‖wS − zS‖22 + ‖wSc − ySc‖22,

and
‖w − ȳ‖22 = ‖wS − ȳS‖22 + ‖wSc − ȳSc‖22 = ‖wS − z̄S‖22 + ‖wSc − ySc‖22.

By definition of y, ‖w − y‖2 ≤ ‖w − ȳ‖2 and the above therefore implies ‖wS − zS‖22 ≤ ‖wS − z̄S‖22.
Because zSc = z̄Sc = 0, we may add ‖wSc‖22 to both sides of the previous inequality to obtain
‖w − z‖2 ≤ ‖w − z̄‖2.

Lemma 5 provides an easily computable criterion to determine that C = Asupp(x) ∩ (x + ∆B∞),
and, thanks to Lemma 6, we find an element of P (w) by setting all components of proj(w | x+ ∆B∞)

that are not in supp(x) to zero. Such situation is represented in the rightmost plot of Figure 1.

By Lemma 5, if there is |xi| ≤ ∆, then x+ ∆B∞ intersects other pieces of kB0 than Asupp(x). We
now determine which pieces, and their number. Let

s(x) := {i ∈ supp(x) | |xi| ≤ ∆} and `(x) := {i ∈ supp(x) | |xi| > ∆}

be the small and large nonzero components of x.

In the special case where s(x) = supp(x), i.e., all nonzero components of x are small, x + ∆B∞
intersects all pieces of kB0 because 0 ∈ C. Unfortunately, there are(

n

k

)
=

n!

k! (n− k)!

of them. As it turns out, it is possible to compute p(w) ∈ P (w) for any w ∈ Rn in O(n log(n))

operations. In view of Lemma 4, we assume that w 6∈ x+ ∆B∞.

We may decompose (1) as suggested in [13] and observe that y? ∈ proj(w | C) if and only if S? and
y? are in

argmin
S⊆{1,...,n}
|S|=k

argmin
y∈AS∩(x+∆B∞)

‖w − y‖22. (4)

In the case of B∞, we know that y ∈ AS ∩ (x+ ∆B∞) if and only if y ∈ x+ ∆B∞ and ySc = 0, i.e., if
and only if yS ∈ xS + ∆B∞ and ySc = 0. Thus, we may rewrite (4) as

argmin
S⊆{1,...,n}
|S|=k

argmin
y∈x+∆B∞
ySc=0

‖wS − yS‖22 + ‖wSc‖2 = argmin
S⊆{1,...,n}
|S|=k

argmin
yS∈xS+∆B∞

ySc=0

‖wS − yS‖22 − ‖wS‖2.

For fixed S, the unique solution of the inner problem is y = y(S) such that yS = proj(wS | xS + ∆B∞)

and ySc = 0. Thus, the problem reduces to finding the optimal piece, determined by

S? ∈ argmax
S⊆{1,...,n}
|S|=k

‖wS‖2 − ‖wS − yS‖2. (5)

Because (5) requires examining all pieces of kB0, it may be solved by noting that

‖wS‖2 − ‖wS − yS‖2 = eT z, e = (1, 1, . . . , 1), zi = w2
i − (wi − yi)2

, i ∈ S,
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i.e., the objective is the sum of the components of z with indices in S. Without any further restriction
on S, one possibility is to compute y = proj(w | x + ∆B∞), zi for all i = 1, . . . , n and retain the k
largest entries, as those will yield the largest sum. Applying the procedure described in Algorithm 4.1
with L = ∅ corresponds to the steps just outlined. By π−1(1), we mean the element of F that is
permuted to first position in the ordering. The main cost is the computation of π, which can be
obtained in O(n log(n)) operations.

Algorithm 4.1 Compute the projection of w into C := kB0 ∩ (x+ ∆B∞).

Require: w ∈ Rn, w 6∈ x+ ∆B∞, L ⊆ {1, . . . , n}, |L| ≤ k supp(proj(w | C)) must contain L
1: compute y := proj(w | x+ ∆B∞)
2: if |L| = k then return L and proj(y | AL) Lemmas 5 and 6
3: set F := Lc and form w2

F , wF − yF , (wF − yF )2, and z := w2
F − (wF − yF )2 componentwise

4: compute a permutation π that sorts the components of z in decreasing order
5: set S := L ∪ {π−1(1), . . . , π−1(k − |L|)} L and the indices of the k − |L| largest elements of z
6: set ySc = 0
7: return S and y.

Consider now the case where `(x) 6= ∅. If i ∈ `(x), x + ∆B∞ cannot intersect any AS such that
i 6∈ S. Indeed, any y ∈ Rn such that yi = 0 satisfies ‖y − x‖∞ ≥ |yi − xi| = |xi| > ∆. If s(x) = ∅,
we are in the context of Lemma 6. Thus, we may focus on the case where both s(x) and `(x) are
nonempty. Necessarily, 1 < |s(x)|+ |`(x)| ≤ k and |`(x)| < k. Constraining S ⊆ {1, . . . , n} to contain
`(x) leaves k − |`(x)| indices to be chosen among the remaining n− |`(x)|, for a total of(

n− |`(x)|
k − |`(x)|

)
=

(n− |`(x)|)!
(k − |`(x)|)! (n− k)!

possibilities. Again, it appears as though the complexity of identifying S is exponential in n in the
worst case. However, the only difference with (5) is that S? is now constrained to contain `(x). It
follows that we may apply Algorithm 4.1 with L = `(x). If m := n − |`(x)|, the procedure has
O(m log(m)) = O(n log(n)) complexity.

5 Implementation and numerical results

We implemented Algorithm 4.1 in the Julia language [8] version 1.7 as part of the ShiftedProximal-
Operators package of Baraldi and Orban [4], whose main objective, as the name implies, is to collect
proximal operators of nonsmooth terms with one or two shifts, i.e., h(xk + sj + t), with and without a
trust-region constraint, where xk and sj are fixed iterates set during an outer and an inner iteration.
ShiftedProximalOperators is used inside the RegularizedOptimization package of Baraldi and Orban
[3], which implements, among others, the trust-region methods for nonsmooth regularized problems of
Aravkin et al. [1, 2].

We employ Algorithm 4.1 to solve (1) inside two trust-region methods for nonsmooth regularized
problems of the form (2). The trust region is defined in the `∞-norm in both, and provides the box
x+ ∆B∞, where x is the current iterate and ∆ the trust-region radius. At iteration j of the method
of Aravkin et al. [1], a step sj is computed as an approximate solution of the model

minimize
s

q(s) + ψ(s;xj) + χ(s | ∆B∞), q(s) := ∇f(xj)
T s+ 1

2s
TBjs,

where Bj = BTj ∈ Rn×n is a limited-memory LBFGS or LSR1 approximation of the Hessian of f , and
ψ(s;xj) ≈ h(xj + s). Below, we choose ψ(s;xj) = h(xj + s) = χ(xj + s | kB0) for an appropriate value
of k ∈ N. sj is computed using an adaptive stepsize variant of the proximal gradient algorithm named
R2 [1] that generates inner iterates sj,l, starting with sj,0 := sj . At iteration l of R2, we compute a
step tl that solves

minimize
t

∇q(sj,l−1)T t+ 1
2σl‖t‖22 + ψ(sj,l−1 + t;xj) + χ(sj,l−1 + t | ∆B∞),
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where σl > 0. If we complete the square and perform the change of variables y = xj + sj,l−1 + t, we
obtain a problem of the form (1). We refer to the method outlined above as TR.

The second trust-region method is a variant specialized to the case f(x) = 1
2‖F (x)‖22, where

F : Rn → Rm inspired from the method of Levenberg [14] and Marquardt [16], where we redefine
q(s) := 1

2‖J(x)s+ F (x)‖22. We refer to the latter as LMTR.

In both methods, the decrease in the model achieved by sj is denoted ξ. Of particular interest
is the decrease achieved by sj,1—the first step in the inner iterations—which is denoted ξ1. It is
possible to show that

√
ξ1 may be used as a criticality measure for (2). Each method stops as soon as√

ξ1 ≤ ε+ ε
√
ξ1,0 where ξ1,0 is the ξ1 observed at the first outer iteration and ε = 10−6.

We illustrate the behavior of the trust-region methods on the LASSO / basis pursuit denoise
problem, in which we fit a linear model to noisy observations Ax ≈ b, where the rows of A ∈ Rm×n are
orthonormal. We set b = Ax? + ε, where ‖x?‖0 = k with its nonzero components set to ±1 randomly
and ε ∼ N (0, 0.01). In our experiment, we set m = 200, n = 512, and k = 10. We formulate the
problem as

minimize
x∈Rn

1
2‖Ax− b‖22 + χ(x | kB0). (6)

We report results in the form of the solver output in Listings 1 to 3, where outer is the outer iteration
counter j, inner is the number of inner R2 iterations at each outer iteration, f(x) and h(x) are the
value of the smooth and nonsmooth part of the objective, respectively,

√
(ξ1) is our criticality measure,

sqrtξ is the square root of the decrease achieved the by step sj , ρ is the ratio of actual versus predicted
reduction used to accept or reject the step, ∆ is the trust-region radius, ‖x‖ and ‖s‖ are the `∞-norm
of the iterate and step, respectively, ‖Bj‖ is the spectral norm of Bj , and 1/ν is the regularization
parameter σl in the R2 model. In Listing 1, Bj is a limited-memory SR1 operator with memory 5. In
Listing 2, Bj is a limited-memory BFGS operator with memory 5. All methods use the initial guess
x0 = 0.

Listing 1: TR iterations with L-SR1 on (6).� �
outer inner f(x) h(x)

√
ξ1

√
ξ ρ ∆ ‖x‖ ‖s‖ ‖

Bj ‖
1 2 1.9e+00 0.0e+00 8.9e-01 8.9e-01 1.5e+00 1.0e+00 0.0e+00 4.7e-01 1.0e+00
2 9 7.4e-01 0.0e+00 4.8e-01 7.2e-01 1.2e+00 1.4e+00 4.7e-01 5.4e-01 1.0e+00
3 12 1.0e-01 0.0e+00 1.8e-01 2.3e-01 1.4e+00 1.6e+00 1.0e+00 3.3e-01 1.0e+00
4 17 3.0e-02 0.0e+00 8.7e-02 1.4e-01 1.0e+00 1.6e+00 1.1e+00 2.9e-01 1.0e+00
5 22 1.0e-02 0.0e+00 1.6e-02 2.6e-02 1.0e+00 1.6e+00 1.0e+00 3.3e-02 1.0e+00
6 18 9.5e-03 0.0e+00 2.7e-03 4.4e-03 1.0e+00 1.6e+00 1.0e+00 6.0e-03 1.0e+00
7 8 9.4e-03 0.0e+00 3.6e-04 3.7e-04 1.5e+00 1.6e+00 1.0e+00 2.6e-04 1.0e+00
8 10 9.4e-03 0.0e+00 2.0e-04 3.0e-04 1.0e+00 1.6e+00 1.0e+00 3.5e-04 1.0e+00
9 6 9.4e-03 0.0e+00 2.0e-05 3.3e-05 1.0e+00 1.6e+00 1.0e+00 4.5e-05 1.0e+00
10 1 9.4e-03 0.0e+00 2.1e-06 2.4e-06 1.2e+00 1.6e+00 1.0e+00 2.7e-06 1.0e+00
TR: terminating with ξ1 = 1.3038641262246793e-6
TR relative error
norm(TR_out.solution - sol) / norm(sol) = 0.014710272483962346� �
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Listing 2: TR iterations with L-BFGS on (6).� �
outer inner f(x) h(x)

√
ξ1

√
ξ ρ ∆ ‖x‖ ‖s‖ ‖

Bj ‖
1 2 1.9e+00 0.0e+00 8.9e-01 8.9e-01 1.5e+00 1.0e+00 0.0e+00 4.7e-01 1.0e+00
2 18 7.4e-01 0.0e+00 3.6e-01 7.1e-01 1.0e+00 1.4e+00 4.7e-01 5.4e-01 1.7e+00
3 23 2.1e-01 0.0e+00 7.1e-02 1.0e-01 1.6e+00 1.6e+00 1.0e+00 9.0e-02 1.8e+00
4 14 2.0e-01 0.0e+00 4.3e-02 2.7e-01 1.6e+00 1.6e+00 1.0e+00 3.6e-01 2.1e+00
5 12 8.6e-02 0.0e+00 1.1e-01 2.4e-01 1.2e+00 1.6e+00 1.1e+00 5.0e-01 2.3e+00
6 18 1.6e-02 0.0e+00 2.9e-02 6.6e-02 1.2e+00 1.6e+00 1.1e+00 1.3e-01 2.5e+00
7 23 1.1e-02 0.0e+00 1.4e-02 2.7e-02 1.4e+00 1.6e+00 1.1e+00 3.2e-02 2.6e+00
8 20 9.8e-03 0.0e+00 7.4e-03 1.7e-02 1.1e+00 1.6e+00 1.0e+00 2.4e-02 2.6e+00
9 14 9.5e-03 0.0e+00 1.7e-03 3.7e-03 1.2e+00 1.6e+00 1.0e+00 5.3e-03 2.7e+00
10 14 9.4e-03 0.0e+00 7.7e-04 1.6e-03 1.2e+00 1.6e+00 1.0e+00 1.6e-03 2.5e+00
11 15 9.4e-03 0.0e+00 3.0e-04 6.1e-04 1.2e+00 1.6e+00 1.0e+00 6.1e-04 2.4e+00
12 9 9.4e-03 0.0e+00 8.9e-05 2.0e-04 1.2e+00 1.6e+00 1.0e+00 3.1e-04 2.5e+00
13 8 9.4e-03 0.0e+00 3.1e-05 6.2e-05 1.3e+00 1.6e+00 1.0e+00 7.6e-05 2.5e+00
14 8 9.4e-03 0.0e+00 1.4e-05 3.0e-05 1.2e+00 1.6e+00 1.0e+00 3.0e-05 2.5e+00
15 4 9.4e-03 0.0e+00 4.3e-06 8.6e-06 1.1e+00 1.6e+00 1.0e+00 5.5e-06 2.6e+00
16 3 9.4e-03 0.0e+00 2.5e-06 5.8e-06 1.0e+00 1.6e+00 1.0e+00 4.3e-06 2.6e+00
TR: terminating with ξ1 = 1.0999297328606739e-6
TR relative error
norm(TR_out.solution - sol) / norm(sol) = 0.014709629662551134� �

Listing 3: LMTR iterations on (6).� �
outer inner f(x) h(x)

√
ξ1

√
ξ ρ ∆ ‖x‖ ‖s‖

1/ν
1 9 1.9e+00 0.0e+00 8.9e-01 1.4e+00 1.0e+00 1.0e+00 0.0e+00 1.0e+00 1.0

e+00
2 11 1.1e-02 0.0e+00 2.3e-02 4.1e-02 1.0e+00 3.0e+00 1.0e+00 7.0e-02 1.0

e+00
3 11 9.4e-03 0.0e+00 3.8e-04 6.8e-04 1.0e+00 3.0e+00 1.0e+00 1.2e-03 1.0

e+00
4 4 9.4e-03 0.0e+00 7.0e-06 1.2e-05 1.0e+00 3.0e+00 1.0e+00 1.8e-05 1.0

e+00
LMTR: terminating with ξ1 = 2.797637121965124e-12
LMTR relative error
norm(LMTR_out.solution - sol) / norm(sol) = 0.014710437655962767� �

Figure 4 shows the exact solution x?, and the objective history of each solver. All three solvers find a
solution where the amplitude of the peaks are within 10−2 of the correct amplitude. It is not surprising
that LMTR, which exploits the least-squares structure of (6) performs better than TR; its model is
exact at each iteration, which is reflected in the fact that ρ = 1 at each iteration in Listing 3. TR also
performs well, although, surprisingly, the potentially indefinite L-SR1 Hessian approximations of the
positive definite Hessian ATA yield fewer iterations than the positive-definite L-BFGS approximation.

From a computation cost point of view, each outer TR iteration costs one evaluation of f and, if
the step is accepted, one evaluation of ∇f . In Listings 1 and 2, every step is accepted. Each inner R2
iteration in TR costs a product between the limited-memory quasi-Newton approximation and a vector,
and an execution of Algorithm 4.1. Each outer LMTR iteration costs one evaluation of F (x). Each
inner R2 iteration in LMTR costs a Jacobian-vector product, a transposed-Jacobian-vector product,
and an executation of Algorithm 4.1.

In each method, each step is a sum of R2 steps, each of which is a projection of the form (1).
Figure 5 shows the first three LMTR steps. At iteration 1 (leftmost plot), the trust-region constraint
is active, i.e., the step norm ‖s‖∞ = ∆, which means that at least one of the projections computed
during the R2 iterations resulted in a point in kB0 at the boundary of x+∆B∞. At subsequent LMTR
iterations, ‖s‖∞ < ∆, which is expected in trust-region methods as convergence occurs, and means
that at least the final projection computed during the R2 iterations resulted in a point lying strictly
inside x+ ∆B∞.



Les Cahiers du GERAD G–2022–12 11

0 200 400

−1

−0.5

0

0.5

1

index

solution

exact

0 200 400

0

0.01

0.02

0.03

index

errors

TR-LSR1-B0

TR-LBFGS-B0

LMTR-B0

0 5 10 15

10−2

10−1

100

kth ∇f call

objective decrease

TR-LSR1-B0

TR-LBFGS-B0

LMTR-B0

Figure 4: Exact solution of (6) (left), absolute errors (center), and objective decrease history as a function of the
number of ∇f evaluations (right).
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Figure 5: First three steps generated during the iterations of LMTR applied to (6). At iteration 1, the trust-region
constraint is active (left). It is inactive at subsequent iterations.

6 Closing remarks

Although C is a nonconvex set, there exists an efficient projection into it, and the latter can be used to
design proximal methods for nonsmooth regularized problems [1, 2]. Algorithm 4.1 makes it possible
to solve sparsity-constrained problems by way of trust-region methods. It also makes it conceivable to
tackle the more general problem (3) by way of one of the algorithms proposed by [6].

Possible extensions of this work include balls defined by other norms, such as other `p norms or
elliptical norms. However, it is not clear that Algorithm 4.1 generalizes in a straightforward way.
Indeed, the key is that the projection into x + ∆B∞ is defined componentwise. It is not difficult to
sketch an example where the same procedure using the Euclidean norm yields an erroneous projection.

Another possible generalization is to consider x 6∈ kB0, as might occur in an infeasible method.

The exploration of such generalizations is the subject of ongoing research.
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