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Abstract : In an effort to reduce power system-caused wildfires, utilities carry out public safety
power shutoffs (PSPS) in which portions of the grid are de-energized to mitigate the risk of ignition.
The decision to call a PSPS must balance reducing ignition risks and the negative impact of service
interruptions. In this work, we consider three PSPS scheduling scenarios, which we model as dynamic
programs. In the first two scenarios, we assume that N PSPSs are budgeted as part of the investment
strategy. In the first scenario, a penalty is incurred for each PSPS declared past the N th event. In
the second, we assume that some costs can be recovered if the number of PSPSs is below N while
still being subject to a penalty if above N . In the third, the system operator wants to minimize
the number of PSPS such that the total expected cost is below a threshold. We provide optimal
or asymptotically optimal policies for each case, the first two of which have closed-form expressions.
Lastly, we establish the applicability of the first PSPS model’s policy to critical-peak pricing, and
obtain an optimal scheduling policy to reduce the peak demand based on weather observations.

Keywords: Dynamic programming, public safety power shutoffs, optimal policy, wildfires
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1 Introduction

Electric power systems have caused a number of recent wildfires, for example, in California, USA (2017,

2018), in Texas, USA (2011), and in Victoria, AU (2009) (Abatzoglou et al. 2020, Jazebi et al. 2019,

Jeffery et al. 2019, Rhodes et al. 2020, Russell et al. 2012, Teague et al. 2010). The consequences of these

events are exacerbated by the extreme weather conditions during which they often occur (Keeley and

Syphard 2018, Miller et al. 2017). To mitigate fires, utilities like Northern California’s Pacific Gas &

Electricity (PG&E) have implemented precautionary grid de-energization events, i.e., intentional load

shedding (Abatzoglou et al. 2020, Pacific Gas & Electricity 2020b, Rhodes et al. 2020). These events

are referred to as public safety power shutoffs (PSPSs) by PG&E and in the literature. However, de-

energizing part of the grid has important consequences on the affected areas, e.g., temporary business

and school closures, medical baseline customers, and loss of revenue (Abatzoglou et al. 2020, Pacific

Gas & Electricity 2022, Rhodes et al. 2020).

In this work, we formulate dynamic programs for PSPS scheduling in a specific geographic area of

a power grid. The models use observations of natural phenomena to balance estimated wildfire risks

with the cost of de-energization. Our models assume that initial mitigation investments are made, for

example, tree-trimming, better line insulation, and under-grounding of lines (Pacific Gas & Electricity

2021). We study the following three scenarios:

1. N PSPSs are budgeted. We assume that the system operator is allowed to exceed the budget but

is penalized for each extra PSPS, e.g., due to contractual agreements regarding equipment rental

and associated extension costs, and to fixed on-the-ground staff expenditures (Section 2.1).

2. The system operator can recover part of their incurred costs if the number of PSPS is below

the budget. For example, community resource centers which are used to support the population

during outages do not need to be deployed and costs of personnel salary and food are avoided,

and portable back-up generators or hotel ticket vouchers do not need to be provided to medical

baseline consumer (Pacific Gas & Electricity 2020a) (Section 2.2).

3. The system operator minimizes the number of PSPSs such that the total expected cost is below

a threshold that depends on the wildfire mitigation strategy investment. This scenario applies

to, for example, jurisdictions where the system operator is not able to forecast its needs in term

of PSPSs, e.g., due to limited experience in regions having not faced powerline-caused wildfire

in the recent past (Section 2.3).

For each case, we provide the optimal scheduling policy or an asymptotically equivalent form of it.

We show that first model’s asymptotic policy is optimal for critical-peak pricing (CPP) (Siano

2014). Loads enrolled in CPP see very high electricity prices when the utility needs to reduce demand,

e.g., due to extreme hot or cold weather, and pay a discounted rate at other times (Chen et al. 2013,

Herter 2007). CPP events are called a day ahead by the utility (Vardakas et al. 2014). The total

number of CPP events must not exceed a contracted limit, which we show is equivalent to the first

PSPS scenario’s relaxed model. We use its optimal policy for scheduling CPP events based on natural

phenomenon observations.

Related work. Scheduling PSPSs is a topic of relatively recent interest. For example, PG&E only

started using large-scale PSPSs in 2019 (Abatzoglou et al. 2020). In their work, Rhodes et al. (2020)

formulated an optimal PSPS scheduling problem in which the wildfire risks are balanced with the

costs of power outages. In (Astudillo et al. 2022), a multiperiod optimal PSPS scheduling problem

was formulated as a deterministic mixed-integer linear program. Energy storage was considered in

their formulation to increase grid reliability when subject to PSPSs. In (Rhodes and Roald 2022),

the authors used a rolling horizon formulation to include new information about wildfires. The cost

of line re-energization was also considered in (Rhodes and Roald 2022). Fairness considerations were

added in (Kody et al. 2022b)’s PSPS scheduling formulation which is expressed as mixed-integer linear

model predictive control problem. Learning-based approaches were used in (Umunnakwe et al. 2022)
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to estimate wildfire risks, the outputs of which were then used to plan preventive line outages or

load shedding events. Reference (Hong et al. 2022) developed a data-driven decision-making method

for efficiently planning load shedding and PSPS events based on a data set generated from optimal

power flow computations. In related work, (Kody et al. 2022a) formulated an optimal infrastructure

investment strategy to reduce both wildfire risks and PSPS impacts. Our work differs from the above

in that the decision-making is sequential and natural phenomena are modeled as stochastic processes.

We now review the literature on CPP scheduling. Reference (Joo et al. 2007) combines market price

prediction and swing options to call CPPs in a way that maximizes the profit of the system operator.

In (Zhang et al. 2009), load price elasticity is used to balance utility profits and load costs when calling

CPP. CPP scheduling was framed as a dynamic program in (Chen et al. 2013) and threshold policies

for different types of CPPs were proposed. Our work differs from (Chen et al. 2013) in that multiple

natural phenomena can be considered in the decision-making process. We also prove that the threshold

policy is optimal for fixed-period CPP, which was not done in (Chen et al. 2013). However, we remark

that (Chen et al. 2013) can accommodate a number of variants that our approach cannot, e.g., variable

peak pricing, variable-period CPP, and multiple-group CPP.

We obtain our optimal policies by adapting dynamic programming-based techniques for the multiple

secretary problem (Arlotto and Gurvich 2019, Babaioff et al. 2007, Kleinberg 2005). This problem

is an extension of the secretary problem first published in a scientific journal by (Lindley 1961) in

which the N ≥ 2 best candidates with random abilities must be selected. References (Ferguson 1989,

Freeman 1983) provide detailed surveys of the secretary problem.

The remainder of the paper is as follows. The PSPS scheduling problem is introduced in Section 2.

Our three models and their respective policies are presented in Sections 2.1, 2.2, and 2.3. We provide

detailed and original derivations of Scenario 1 and 2’s policies in Sections 3.1 and 3.2, and leverage

the results of (Chen and Blankenship 2004, Chen and Feinberg 2007) to provide an optimal policy for

Scenario 3 in Section 3.3. In Section 4, we apply the results of Section 2.1 to CPP. Section 5 presents

numerical simulations for the first two PSPS and the CPP models. We conclude in Section 6.

2 PSPS scenarios

We now present our novel PSPS scheduling models and their respective optimal or asymptotically

optimal policies. We consider a sequence of days indexed by t = 1, 2, . . . , T . Let CI > 0 be the initial

investment in infrastructure upgrades made to reduce wildfire risks. We consider a single geographic
area prone to powerline-caused wildfires, e.g., supplied by aging or hardly accessible transmission lines.

Let ut = 1 be the decision taken at day t to call for a PSPS in this region for the next day, i.e., at

t + 1. Let ut = 0 be the complementary decision to operate the grid normally for the next day. Let

u = (u1, u2, . . . , uT )
⊤ ∈ {0, 1}T . For the first two scenarios, we let 0 ≤ k < N be the remaining PSPS

budget at round t:

k = N −
t−1∑
i=0

ui.

Let Xt ∈ Rn be a random vector made of observations and measurements from n ∈ N different

natural phenomena and other factors impacting wildfire ignitions. The variable Xt is observed at the

end of day t. The entries of Xt can represent factors such ambient temperature or wind speed (Pacific

Gas & Electricity 2020a). We assume that Xt is a discrete-time, finite-state Markov process with

known transition probabilities. Let X ⊂ Rn be the state space of Xt. Let P ∈ Rn×n be the transition

matrix. We denote the probability of moving from state y ∈ X to x ∈ X by Pr [Xt+1 = x|Xt = y].

For t = 1, 2, . . . , T , let ft : Rn 7→ {0, 1} be a function mapping Xt to a binary output indicating

the high risk (ft(Xt) = 1) or low risk (ft(Xt) = 0) of ignition given that the lines are energized during

day t. The function ft is assumed to be deterministic, known, and set according to the system operator
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needs and knowledge of its geographical area and infrastructure. For example, ft could take the form:

ft (Xt) =

{
1, if Xt(i) ≥ ∆t(i), i = 1, 2, . . . , n

0, otherwise,
(1)

where ∆t(i) is the risk threshold for observation i. This function is inspired by PG&E’s ‘minimum

fire conditions’ (Pacific Gas & Electricity 2020b). For example, PG&E uses thresholds like: 40 km/h

for sustained wind speed, 72 km/h for wind gust, and an air humidity below 20% (Pacific Gas &

Electricity 2020a). Hence, if the entries of Xt are greater or equal to these values for the wind speed

and gust, and less or equal to for the humidity, then ft(Xt) = 1.

Let At > 0 be the estimated cost of powerline-caused wildfires at time t. This represents loss of life,

material damage, reconstruction and repair, and service interruption. The powerline-induced wildfire

damage cost at t is then given by Atft(Xt), i.e., the estimated cost weighted by the risk indicator func-

tion. Let at > 0 be the revenue loss of the utility when de-energizing the grid at time t. Let s1,t > 0 and

s2,t > 0 be, respectively, the cost of de-energizing and re-energizing the grid. The scalar coefficient s1,t
includes, for example, the costs of crews and special equipment dispatched to de-energize the grid. The

scalar coefficient s2,t also includes the costs related to the personnel on the field in addition to the cost

of specialized equipment required to inspect the network before re-energization (Pacific Gas & Electric-

ity 2020b). We model the cost of a de/re-energizing as: max {s1,t+1 (ut − ut−1) , s2,t+1 (ut−1 − ut)}.
We assume that the grid is energized before and after the time range, i.e., u0 = uT+1 = 0.

2.1 Scenario 1: Cost penalty for additional PSPSs

We assume that the wildfire mitigation strategy does not strictly rely on infrastructure upgrades, and

PSPSs can be scheduled to reduce the strategy’s total costs, CI . In the first two scenarios, we assume

that CI is decomposed into two components: (i) a reduced budget for infrastructure upgrades and

PSPS-induced financial losses when N PSPSs have been planned for, which we denote CI(N) < CI ,

and (ii) the operational and/or damage costs associated with calling a PSPS or not, at each day. We

can use, for example, the value of lost load (Kariuki and Allan 1996, Ratha et al. 2013, Willis and

Garrod 1997) for a day to model the financial losses from the former component.

In Scenario 1, we assume that additional costs are incurred for each PSPS after the budget, N , has

been reached. These costs represent, for example, the value of lost load per extra day without power

and the cost of personnel and equipment contract extensions. These costs are not recovered if the

number of PSPS is below N because of contracted obligations, e.g., surveillance personnel and hired
equipment like helicopters for post-PSPS inspections (Pacific Gas & Electricity 2021). Let γ > 0 be

the cost penalty per extra power shutoff. We model the additional costs as: γmax
{
0,
∑T

t=1 ut −N
}
.

The total cost with penalty for Scenario 1 is:

cp (N,u) =

T∑
t=1

(at+1ut +At+1ft+1 (Xt+1) (1− ut) + max {s1,t+1 (ut − ut−1) , s2,t+1 (ut−1 − ut)})

+ γmax

{
0,

T∑
t=1

ut −N

}
+ CI(N).

(2)

Our objective is to minimize the expectation of cp (N,u) given CI(N). We hereon omit CI(N) in

both Scenario 1’s and 2’s objective functions because it does not influence their optima. The PSPS

scheduling problem is expressed as the following problem, which we later rewrite as a dynamic program:

min
ut

t=1,2,...,T

E [cp (N,u)]

subject to ut ∈ {0, 1}
u0 = uT+1 = 0,

(3)

Note that the expectation is taken with respect to the random variables Xt, t = 1, 2, . . . , T .
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Problem (3) is approximately solved by the following closed-form, easily-implementable policy.

Proposition 1’s policy is optimal for an asymptotically equivalent form of Problem (3). This will be

shown in Section 3.1.2.

Proposition 1. Consider problem (3). Let d = T − t and the current day’s observations be Xd = x.

Then, ud = 1 if

E [fd−1 (Xd−1)|Xd = x] ≥ 1

Ad−1

(
gd−1(k − 1|1,x)− gd−1(k|0,x) + ad−1

+ (1− ud+1) s1,d−1 − ud+1s2,d−1

)
,

where

gd(k|ud+1 = u,Xd+1 = x) =
∑
ξ∈X

min {gd−1(k|0, ξ) + E [Ad−1fd−1 (Xd−1)|Xd = ξ] + us2,d−1,

gd−1(k − 1|1, ξ) + ad−1 + (1− u)s1,d−1}Pr [Xd = ξ|Xd+1 = x] ,

(4)

with

g0(k|u,x) = us2,T+1 +
∑
ξ∈X

E [AT+1fT+1 (XT+1)|XT = ξ] Pr [XT = ξ|XT−1 = x] (5)

gd(0|u,x) = us2,d−1 +

d∑
i=0

∑
ξ∈X

E [AT−i+1fT−i+1 (XT−i+1)|XT−i = ξ]P
(i+1)
x,ξ , (6)

for all x ∈ X , u ∈ {0, 1} , k ≥ 1 and d ≥ 1, and where P
(i+1)
x,ξ = Pr [Xn+i+1 = ξ|Xn = x] for any n.

2.2 Scenario 2: Cost adjustment

In the second scenario, the decision-maker is subject to a cost adjustment if the number of shutdowns

differs from N . As in Scenario 1, there is a penalty if the number of shutoffs is above N . Conversely,

if this number is below N , part of the anticipated value of load lost is recovered due to reduced

outages, e.g., due to on-call personnel or avoided need for the extra fuel. We model the adjustment as

proportional to the value of lost load for a day, λ > 0, and express it as: λ
(∑T

t=1 ut −N
)
.

In Scenario 2, the total cost with adjustment is defined as:

ca (N,u) =

T∑
t=1

(at+1ut +At+1ft+1 (Xt+1) (1− ut) + max {s1,t+1 (ut − ut−1) , s2,t+1 (ut−1 − ut)})

+ λ

(
T∑

t=1

ut −N

)
+ CI(N), (7)

where the cost penalty in (2) has been replaced by the cost adjustment. The PSPS scheduling problem

with cost adjustment is given by:

min
ut

t=1,2,...,T

E [ca (N,u)]

subject to ut ∈ {0, 1}
u0 = uT+1 = 0.

(8)

The solution to Problem (8) is given by the following proposition. We later establish Proposition 2’s

optimality in Section 3.2.
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Proposition 2. Consider problem (8). On day d = T − t, after receiving the current observations,

Xt = x, then ud = 1 if

E [fd−1 (Xd−1)|Xd = x] ≥ 1

Ad−1

(
hd−1(1,x)−hd−1(0,x)+ad−1+λ+(1− ud+1) s1,d−1−ud+1s2,d−1

)
,

(9)

where

hd(ud+1 = u,Xd+1 = x) =
∑
ξ∈X

max {hd−1(1, ξ) + E [Ad−1fd−1 (Xd−1)|Xd = ξ] + us2,d−1,

hd−1(0, ξ) + ad−1 + λ+ (1− u)s1,d−1}Pr [Xd = ξ|Xd+1 = x] ,

with h0(u,x) =
∑

ξ∈X E [AT+1fT+1 (XT+1)|XT = ξ] Pr [XT = ξ|XT−1 = x] + us2,T+1.

Similarly to the first scenario, Proposition 2 provides a closed-form optimal policy for the PSPS

scheduling with cost adjustment problem that can be readily implemented by system operators.

2.3 Scenario 3: Minimum number of PSPSs

In the third scenario, no budget for PSPSs has been set. Instead, we suppose that the system operator

wishes to minimize the expected number of PSPS events such that the expected cost of the whole

wildfire prevention strategy is below a threshold, which is itself less or equal to CI . Similarly to

previous sections, the strategy models both the initial, reduced investment and the costs of PSPSs.

We suppose that a reduced investment C̃I < CI was made to upgrade the power infrastructure and

passively reduce wildfire risks. We let α > 0 be the difference between (i) the nominal investment CI

and the (ii) the initial infrastructure investment C̃I . The system operator must then schedule PSPSs

such that the additional costs incurred are less or equal to α = CI − C̃I and powerline-caused wildfire

risks are mitigated in a cost-effective manner. We include Scenario 3 for completeness although it does

not admit a readily implementable, closed-form policy. We consider Scenario 3 because it may be of

interest when the number of PSPSs is not constrained and difficult to forecast. Although we have not

identified a readily implementable, closed-form policy at this time, we provide a value function-based

analysis to optimally schedule PSPSs when its number is minimized.

Let ct+1 : {0, 1} 7→ R be the operating cost function, i.e., the cost function without adjustment or

penalty terms, for a single day t+ 1:

ct+1 (ut) = at+1ut +At+1ft+1 (Xt+1) (1− ut) + max {s1,t+1 (ut − ut−1) , s2,t+1 (ut−1 − ut)} .

The minimum number of PSPS scheduling problem is:

min
ut

t=1,2,...,T

E

[
T∑

t=1

ut

]
subject to ut ∈ {0, 1}

u0 = uT+1 = 0

E

[
T∑

t=1

ct+1 (ut)

]
≤ α,

(10)

The optimal scheduling policy for problem (10) is presented in Proposition 3.

Proposition 3. Consider the minimum number of PSPS scheduling problem (10) and assume it is

feasible for X1 = x. Let

αt =

{
α, if t = 1

ϕ⋆
t (Xt = x), if t ≥ 2,

(11)
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where ϕ⋆
t (Xt = x) is defined by the following recursion

(
u⋆
t , ϕ

⋆
t+1

)
=



(
1, argminϕ′(x′)∈ΦT−t(x

′)

∑
x′∈X Pr[X′

t+1 = x′
∣∣Xt = x]VT−t−1 (x

′, ϕ′(x′))
)
,

if E [ct+1(0)|Xt = x] +
∑

x′∈X bT−t−1(x
′) Pr[X′

t+1 = x′
∣∣Xt = x] > αt

and E [ct+1(1)|Xt = x] +
∑

x′∈X bT−t−1(x
′) Pr[X′

t+1 = x′
∣∣Xt = x] ≤ αt(

0, argminϕ′(x′)∈ΦT−t(x′)

∑
x′∈X Pr[X′

t+1 = x′
∣∣Xt = x]VT−t−1 (x

′, ϕ′(x′))
)
, otherwise,

(12)

for t = 1, 2, . . . , T and where ΦT−t(x, α), bT−t(x, α), and VT are respectively define in (40), (42),

and (41) from Section 3.3.1.

Then, at day t, after receiving the current day’s observations, Xt = x, it is optimal to declare a

PSPS for the next day if u⋆
t = 1.

The derivation of Proposition 3’s policy is given in Section 3.3. We remark that while the problem

formulation is of interest, to the author’s best knowledge it does not admit a closed-form policy. This

is a topic for future work.

3 Analysis of policies

In this section, we provide a comprehensive derivation for each optimal or asymptotically optimal

policy.

3.1 Asymptotically optimal policy for Scenario 1

We now show that (3) is a relaxation of a modified multiple secretary problem (Arlotto and Gurvich

2019), which has a closed-form optimal policy. Then, we establish the asymptotic exactness of the

relaxation under certain conditions in Section 3.1.2.

3.1.1 Problem reformulation

In this section, we state the problem to which (3) is a relaxation.

We observe that for any γ > 0, (3) can be shown via the Lagrangian to be a relaxation of the
following constrained problem:

min
ut

t=1,2,...,T

E

[
T∑

t=1

at+1ut +At+1ft+1 (Xt+1) (1− ut) + max {s1,t+1 (ut − ut−1) , s2,t+1 (ut−1 − ut)}

]
subject to ut ∈ {0, 1}

u0 = uT+1 = 0

E

[
T∑

t=1

ut

]
≤ N.

(13)

In (13), the cost penalty for additional PSPS is now modelled as an expected budget constraint.

We also consider (14) in which the expected constraint has been replaced by a deterministic constraint:
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min
ut

t=1,2,...,T

E

[
T∑

t=1

at+1ut +At+1ft+1 (Xt+1) (1− ut) + max {s1,t+1 (ut − ut−1) , s2,t+1 (ut−1 − ut)}

]
subject to ut ∈ {0, 1}

u0 = uT+1 = 0

T∑
t=1

ut ≤ N.

(14)

We remark that (13) is a relaxation of (14) because the deterministic constraint implies that the

expected one is satisfied. This follows from the fact that the (13) entails that the budget constraint

holds for all random variable sequence {Xt}Tt=1 outcomes. The differs from (14), which can allow

a PSPS budget above or below N for some sequences as long as the budget constraint holds in the

expected sense over all random variable sequences. We use the law of iterated expectations (Ross 2014,

Proposition 5.1) to rewrite the objective of (14) as:

min
ut

t=1,2,...,T

E

[
T∑

t=1

E
[
at+1ut +At+1ft+1 (Xt+1) (1− ut)

+max {s1,t+1 (ut − ut−1) , s2,t+1 (ut−1 − ut)}|Xt

]]
s.t. ut ∈ {0, 1}

u0 = uT+1 = 0

T∑
t=1

ut ≤ N.

(15)

We re-write (15) as an equivalent dynamic program as in (Arlotto and Gurvich 2019). Let w ∈ R be

the cumulative cost incurred as of round t, i.e.,

w =

t−1∑
i=1

ai+1ui +Ai+1fi+1 (xi+1) (1− ui) + max {s2,i+1 (ui−1 − ui) , s1,i+1 (ui − ui−1)} ,

where xi is the realization of Xi at round i. Let d = T − t be the number of remaining days before the

end of the PSPS program. To facilitate the analysis of the problem in its dynamic programing form,

for the remainder of this subsection, all subscripts refer to the remaining number of decisions d, e.g.,

d = 0 or d = −1 is equivalent to t = T and t = T + 1, respectively. Then, given decision ud+1 and

observations xd+1, i.e., the decision and observations from the previous round, the value function is

vd (w, k |u,x ) =
∑
ξ∈X

min{vd−1 (w + E [Ad−1f (Xd−1)|Xd = ξ] + us2,d−1, k| 0, ξ) ,

vd−1 (w + ad−1 + (1− u)s1,d−1, k − 1| 1, ξ)}Pr [Xd = ξ|Xd+1 = x] ,

(16)

with the boundary conditions at d = 0 and d− 1 = −1:

v0(w, k|u,x) = w + E [A−1f (X−1)|X0 = ξj ] + us2,−1, (17)

for all w ∈ R, k = 1, 2, . . . , N,x ∈ X, u ∈ {0, 1} , and d = 1, 2, . . . , T , and

vd(w, 0|u,x) = w +

d∑
i=0

∑
ξ∈X

E [Ai−1fi−1 (Xi−1)|Xi = ξ]P
(i+1)
x,ξ + us2,d−1, (18)

for all w ∈ R,x ∈ X, u ∈ {0, 1} , and d = 1, 2, . . . , T .
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The dynamic program (16)–(18) admits a closed-form, easily-implementable optimal policy. We

then show that problem (14), which is equivalent to (16)–(18), is asymptotically equivalent to the

original problem (3) under certain conditions. Problem (16)–(18) can be interpreted as an instance

of the multiple secretary problem (Arlotto and Gurvich 2019) with the addition of a switching cost

and a regularizer. The switching cost further adds a time-dependent constraint to the problem. This

will lead to more conservative decision-making in general but to a more sensitive policy immediately

following a PSPS. The regularizer takes the form of an offset which penalizes the worst decision that

can be taken, i.e., selecting a day with low expected wildfire risks. It can be interpreted as a sparsity

regularizer. Consequently, it may lead to decision sequences for which the budget may not be fully

used, which was not considered in prior multiple secretary formulations. We adapt the results (Arlotto

and Gurvich 2019, Appendix C) to include switching costs and the regularizer and obtain the optimal

policy for (16)–(18), as shown above in Proposition 1.

Proof of Proposition 1. Let ed−1(ξ) =E [Ad−1fd−1 (Xd−1)|Xd =ξ] and px(ξ) =Pr [Xd =ξ|Xd+1 =x]

to simplify notation. We first show that

vd (w, k |u,x ) = w + gd(k|u,x), (19)

for d = 0, 1, . . . , T . We proceed by induction. In the base case d = 0, (19) holds trivially because of

the boundary conditions and for d = 1, we have two instances: k = 0 and k ≥ 1. For k = 0,

v1(w, 0|u,x) = w +
∑
ξ∈X

E [A0f0 (X0)|X1 = ξ] Pr [X1 = ξ|X2 = x] + us2,0. (20)

For k ≥ 1,

v1(w, k|u,x) =
∑
ξ∈X

min{v0 (w + e0(ξ) + us2,0, k| 0, ξ) , v0 (w + a0 + (1− u)s1,0, k − 1| 1, ξ)}px(ξ)

=
∑
ξ∈X

min{w + e0(ξ) + us2,0, w + a0 + (1− u)s1,0 + s2,−1}px(ξ)

=w +
∑
ξ∈X

min{e0(ξ) + us2,0, a0 + (1− u)s1,0 + s1,−1}px(ξ) (21)

where the second equality follows from the boundary condition (17). Similarly, for g1(k|u,x), we have

for k = 0:

g1(0|u,x) =
∑
ξ∈X

E [A0f0 (X0)|X1 = ξ] Pr [X1 = ξ|X2 = x] + us2,0. (22)

For k ≥ 1, we have

g1(k|u,x) =
∑
ξ∈X

max {g0(k|0, ξ) + e0(ξ) + us2,0, g0(k − 1|1, ξ) + a0 + (1− u)s1,0} px(ξ)

=
∑
ξ∈X

max {e0(ξ) + us2,0, a0 + (1− u)s1,0 + s2,−1} px(ξ), (23)

where we last used the boundary conditions (5). Using (22) in (20) and (21) in (23), we obtain

v1 (w, k |u,x ) = w + g1(k|u,x),

which establishes the base case. Now, let d → d+ 1. Then for k = 0, by definition we have

vd+1(w, 0|u,x) = w +

d+1∑
i=0

∑
ξ∈X

E [Ai−1fi−1 (Xi−1)|Xi = ξ]P
(i+1)
x,ξ + us2,d (24)

gd+1(0|u,x) =
d∑

i=0

∑
ξ∈X

E [Ai−1fi−1 (Xi−1)|Xi = ξ]P
(i+1)
x,ξ + us2,d. (25)
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For k ≥ 1, we obtain

vd+1 (w, k |u,x ) =
∑
ξ∈X

min{vd (w + ed(ξ) + us2,d, k| 0, ξ) , vd (w + ad + (1− u)s1,d, k − 1| 1, ξ)}px(ξ)

= w +
∑
ξ∈X

min{vd (w + ed(j) + us2,d, k| 0, ξ) + ed(ξ) + us2,d − w − ed(ξ)− us2,d,

vd (w + ad + (1− u)s1,d, k − 1| 1, ξ) + ad + (1− u)s1,d − w − ad − (1− u)s1,d}px(ξ)

= w +
∑
j∈X

min{gd (k| 0, ξ) + ed(ξ) + us2,d, gd (k − 1| 1, ξ) + ad + (1− u)s1,d}px(ξ)

= w + gd+1 (k|u,x) ,

where we used the induction hypothesis (19) and the definition of g given in (4) to obtain the third

and final equality, respectively. This completes the induction proof and we have established (19) for

d = 0, 1, . . . , T .

We now derive an optimal policy using (4). The structure of vd (w, k |ud+1,Xd+1 ) implies that

ud = 1 if and only if:

vd−1 (w + E [Ad−1f (Xd−1)|Xd = x] + ud+1s2,d−1, k| 0,x) ≥
vd−1 (w + ad−1 + (1− ud+1)s1,d−1, k − 1| 1,x) .

Substituting (19) yields

gd−1 (k| 0,x) + w + E [Ad−1f (Xd−1)|Xd = x] + ud+1s2,d−1 ≥
gd−1 (k − 1| 1,x) + w + ad−1 + (1− ud+1)s1,d−1.

Thus, we have ud = 1 if and only if

E [f (Xd−1)|Xd = x] ≥
1

Ad−1
(gd−1 (k − 1| 1,x)− gd−1 (k| 0,x) + ad−1 + (1− ud+1)s1,d−1 − ud+1s2,d−1) ,

which completes the proof.

In the above policy, the difference gd−1 (k| 0,x) − gd−1 (k − 1| 1,x) ensures a PSPS is scheduled

only if the cost of the wildfire at the next round weighted by the expected risk is greater than the

expected cost reduction of a PSPS when k have been previously called. This is done to account for

the budget constraint. The other terms modify the threshold to account for fixed costs of calling

PSPS. In particular, the switching costs promotes consecutive over isolated de-energization events.

The regularizer integrates the fact that the optimal strategy may be to call less than N PSPSs. This

differs from (Arlotto and Gurvich 2019) in which the optimal solution always uses the full budget.

3.1.2 Asymptotically exact relaxation

We now show that under certain conditions, the average cost or per-round form of (14), in which

the total expected cost is scaled by the time horizon, is asymptotically equivalent to the original

problem (3)’s per-round form, i.e., the latter is an asymptotically exact relaxation of the former.

We first establish sufficient conditions for (13) to be an exact relaxation of (3) in Lemma 1. To

this end, let r : {0, 1}T 7→ R be the objective function of (14). Let P : {0, 1}T 7→ R+ where

P (u) = E
[
max

{
0,
∑T

t=1 ut −N
}]

be the penalty for additional PSPSs. Recall that γ is the coefficient

of the penalty term in (3).
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Lemma 1. Suppose N < T . Let

α = min

{
r(u)

∣∣∣∣∣u ∈ {0, 1}T , u0 = uT+1 = 0,E

[
T∑

t=1

ut

]
≤ N

}
−min

{
r(u)

∣∣∣u ∈ {0, 1}T , u0 = uT+1 = 0
}
.

Then for all γ > α, (3) is an exact relaxation of (13).

Proof of Lemma 1. We first observe that:

min

{
P (u)

∣∣∣∣∣u ∈ {0, 1}T , u0 = uT+1 = 0,E

[
T∑

t=1

ut

]
> N

}
= 1.

Then by (Sinclair 1986, Theorem 1), for γ > α, the optima of (3) are also optima of (13).

Second, we show the converse which was omitted in (Sinclair 1986), i.e., the optima of (13) are

optimal for (3) when γ > α. Let o(3) and o(13) be the optimal value of (3) and (13), respectively. Let

u⋆ be an optimum of (13). For all γ > 0, we have

o(13) = r(u⋆)

= r(u⋆) + γP (u⋆),

because u⋆ is feasible for (13), i.e., satisfies E
[∑T

t=1 ut

]
≤ N and, thus, P (u⋆) = 0. By (Sinclair 1986,

Theorem 1), o(3) = o(13) for γ > α. Hence,

r(u⋆) + γP (u⋆) = o(3),

and u⋆ is also an optimum of (3). Therefore, if γ > α, then (3) and (13) have the same optima. It

follows that (3) is an exact relaxation of (13) under this condition.

Lemma 1 states that if the marginal cost of being over the PSPS budget is large enough, then the

relaxation is exact.

We now show that (14)’s and (13)’s per-round forms are equivalent, almost surely, when the number

of days and the budget constraint threshold N grow to infinity with a fixed ratio ρ ∈ (0, 1).

Consider the Markov decision processes (X , {0, 1} ,P, rt) used in (13) and (14). Then, the Markov

chain induced by any policy is the same for both MDPs because Xt, t = 1, 2, . . . , T , models natural

phenomena and its evolution is independent of the decisions u. Let MX denote this Markov chain.

Recall that MX is ergodic if it is recurrent and aperiodic. An ergodic Markov chain MX possesses

a unique stationary distribution s ∈ Rn
+ such that s = sP and 1⊤s = 1. Finally, MX is stationary if

the initial state of the Markov chain is distributed according to s, i.e., X0 ∼ s. For MX stationary,

we therefore have Xt
d
= X

d
= X0 ∼ s for all t ≥ 0, where

d
= means that they are equal in distribution.

Let Π be the policy space. Let Π(14) be the set of all feasible policies for Problem (14). We now

present a lemma stating an equivalent average per-round constraint for policies in Π(14).

Lemma 2. Suppose MX is ergodic and stationary, and consider the policy π(14) ∈ Π. Let T,N → ∞,

where T is an integer and N = ρT . Then π(14) ∈ Π(14) if and only if E
[
π(14)(X)

]
≤ ρ almost surely.

Proof of Lemma 2. Let π(14) ∈ Π(14). By definition, we have for all T,N ≥ 1,

T∑
t=1

uπ(14)

t ≤ N,
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and therefore

1

T

T∑
t=1

π(14)(Xt) ≤
N

T
,

where we now consider the per-round average constraint and used the fact that uπ(14)

t = π(14)(Xt).

We take the limit as T,N → ∞, with T ∈ N and N/T kept constant at ρ. We have

lim
T,N→+∞
s.t.T∈N
N=ρT

1

T

T∑
t=1

π(14)(Xt) ≤ lim
T,N→+∞
s.t.T∈N
N=ρT

N

T
,

= ρ (26)

Using a strong law of large number for ergodic Markov chains (Serfozo 2009, Chapter 1, Theorem 74)

we obtain for the left-hand side:

lim
T,N→+∞
s.t.N=ρT

1

T

T∑
t=1

π(14)(Xt) =
∑
x∈X

π(14)(x)s(x) almost surely,

if the right-hand term is absolutely convergent. This condition is met in (14) because π(14)(X) ∈ {0, 1}
for all x ∈ X and cardX is finite. We rewrite (26) as

EX∼s

[
π(14)(X)

]
≤ ρ almost surely. (27)

Hence, if T,N → ∞ such that T ∈ N and ρ = N/T , then the constraint defining Π(14) is equivalent

to (27). It follows that π(14) ∈ Π(14) if and only if E
[
π(14)(X)

]
≤ ρ.

Similarly, we now present the per-round constraint that defines all policies in Π(13).

Lemma 3. Suppose MX is ergodic and stationary and let π(13) ∈ Π. As T,N → +∞, where T is an

integer and N = ρT , π(13) ∈ Π(13) if and only if E
[
π(13)(X)

]
≤ ρ.

Proof of Lemma 3. The first steps are similar to Lemma 2’s proof. Let Π(13) be the set of all feasible

policies for (13). Let π(13) ∈ Π(13). Be definition,

E

[
T∑

t=1

uπ(13)

t

]
≤ N (28)

⇐⇒
T∑

t=1

E
[
uπ(13)

t

]
≤ N

⇐⇒ 1

T

T∑
t=1

E
[
uπ(13)

t

]
≤ N

T

⇐⇒ 1

T

T∑
t=1

E
[
π(13)(Xt)

]
≤ N

T

We evaluate the limit on both sides as T,N → +∞ when T ∈ N and the ratio ρ = N/T is kept

constant. We have

lim
T,N→+∞
s.t.N=ρT

1

T

T∑
t=1

E
[
π(13)(Xt)

]
≤ lim

T,N→+∞
s.t.N=ρT

N

T

= ρ. (29)
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Because MX is stationary, we have Xt
d
= X ∼ s for all t ≥ 0 and thus

lim
T,N→+∞
s.t.N=ρT

1

T

T∑
t=1

E
[
π(13)(Xt)

]
= lim

T,N→+∞
s.t.N=ρT

1

T

T∑
t=1

E
[
π(13)(X)

]
= E

[
π(13)(X)

]
. (30)

Using (29) and (30) leads to

E
[
π(13)(X)

]
≤ ρ, (31)

and we have showed that (28) is equivalent to (31). It follows that π(13) ∈ Π(13) if and only if

E
[
π(13)(X)

]
≤ ρ as T → ∞ and N = ρT .

Next, we establish the asymptotic relationship between round-averaged forms of (13) and (14).

Theorem 1. Suppose MX is ergodic and stationary. The per-round average form of (13) is an asymp-

totically exact relaxation of (14)’s round-averaged formulation, almost surely, as T,N → ∞ with

ρ = N/T , T ∈ N.

Proof of Theorem 1. From Lemmas 2 and 3, we have π(14) ∈ Π(14) if and only if E
[
π(14)(X)

]
≤ ρ

almost surely and π(13) ∈ Π(13) if and only if E
[
π(13)(X)

]
≤ ρ when T,N → ∞ with ρ = N/T .

Therefore, Π(13) = Π(14) almost surely as T,N → ∞ with ρ = N/T . This implies that the per-round

average form of problems (13) and (14) are asymptotically equivalent almost surely because their

objective functions are the same. In other words, the per-round form of (13) is an asymptotically

exact relaxation of the (14)’s per-round form.

Lastly, we relate the original problem (3) to the final form (14) for which we have an optimal PSPS

scheduling policy.

Theorem 2. If γ > α and MX is ergodic and stationary, then, the per-round form of (3) is an exact

relaxation of (14)’s, almost surely, as T,N → ∞ where T is an integer and N = ρT . Otherwise, the

expected minimum cumulative loss of (14) is greater than or equal to the minimum of (3).

Proof of Theorem 2. We remark that the averaged problem, i.e., dividing the objective function

by T , only scales down the objective, which remains finite as T → ∞. First, we prove the asymptotic

exactness of the relaxation when γ > α and MX is stationary and as T,N → ∞ such that N = ρT .

Problem (3) is a relaxation of (13). Because we have assumed γ > α, Lemma 1 ensures that the

relaxation is exact. Thus, (13)’s optima are also optimal for (3). Problem (13) is in turn a relaxation

of (14). Under the theorem’s assumption, we can invoke Theorem 1, which establishes that the per-

round form of (13) is an asymptotically exact relaxation of the per-round problem (14). Similarly, (14)’s

optima are asymptotically optimal for (13) almost surely as T,N → ∞ such that N = ρT . The optima

of (14) are, therefore, asymptotically optimal for (3) almost surely as well when γ > α. The relaxation

is, therefore, exact asymptotically.

Finally, we discuss the case for which the assumptions are not satisfied. From the above justification,

we have that regardless of the values of γ, N and T , and the stationarity of MX, (3) is a relaxation

of (14). Problem (14)’s optimal cost are, therefore, either greater than or equal to the minimum

of (3).

We note that under any conditions, the decisions provided by Proposition 1’s policy are always

feasible for PSPS scheduling and lead to a minimum that is equal to or greater than (3). This is

because (16) is a reformulation of (3) for which Proposition 1 provides the optimal solution.
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3.2 Optimal policy for Scenario 2

We now prove Proposition 2. We remove CI(N) and −λN from the problem formulation because they

are constants and do not impact the minima. We write (8) as

min
ut

t=1,2,...,T

E

[
T∑

t=1

at+1ut +At+1ft+1 (Xt+1) (1− ut) + λut

+max {s2,t+1 (ut−1 − ut) , s1,t+1 (ut − ut−1)}

]
subject to ut ∈ {0, 1}

u0 = uT+1 = 0.

(32)

Using the law of iterated expectation (Ross 2014, Proposition 5.1), as in (15), gives

min
ut

t=1,2,...,T

E

[
T∑

t=1

E
[
at+1ut +At+1ft+1 (Xt+1) (1− ut) + λut

+max {s2,t+1 (ut−1 − ut) , s1,t+1 (ut − ut−1)}
∣∣Xt

]]
subject to ut ∈ {0, 1}

u0 = uT+1 = 0.

(33)

Problem (33) represents a Markov decision process, in which a decision maker observes the random

variable Xt at time t and then make the decision, ut, to call a PSPS for the next day. Similarly

to Section 3.1, let d = T − t and let all subscripts now refer to the backward time index d. Let

zd (w |ud+1,Xd+1 ) be the expected total cost given the past decision ud+1 and the observation vector

Xd+1, when d days remains and the accumulated cost is w. Problem (33) can be expressed as the

following dynamic program:

zd (w |u,x ) =
∑
ξ∈X

min{zd−1 (w + E [Ad−1f (Xd−1)|Xd = ξ] + us2,d−1| 0, ξ) ,

zd−1 (w + ad−1 + λ+ (1− u)s1,d−1| 1, ξ)}Pr [Xd = ξ|Xd+1 = x] , (34)

with the boundary conditions:

z0 (w |u,x ) = w +
∑
ξ∈X

E [A−1f−1 (X−1)|X0 = ξ] Pr [X0 = ξ|X1 = x] + us2,−1,

for all w ∈ R,x ∈ X , and u ∈ {0, 1}. The optimal policy for the cost adjustment problem is given in

Proposition 2 of Section 2.2. Its proof is stated next.

Proof of Proposition 2. Proposition 2 follows from the same proof technique as for Proposition 1, in

which we use the relation:

zd(w |u,x ) = w + hd(u,x)

for all w ∈ R, u ∈ {0, 1}, x ∈ X and d = T, T −1, . . . , 1, 0. Then, given the structure of zd(w, u,x), the

optimal policy is given by a threshold policy as well. Using the recursion and solving for

E [fd−1 (Xd−1)|Xd = x] yields (9).
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3.3 Optimal policy for Scenario 3

We discuss Scenario 3 in which the number of PSPSs is minimized. Problem (10) can be re-written as

min
ut

t=1,2,...,T

E

[
T∑

t=1

E [ut|Xt]

]
subject to ut ∈ {0, 1}

u0 = uT+1 = 0

E

[
T∑

t=1

E [ct+1 (ut)|Xt]

]
≤ α,

(35)

where we have used the law of iterated expectations (Ross 2014, Proposition 5.1) to re-express the

objective and the constraint functions. Problem (35) can be solved using value iteration as in (Chen and

Blankenship 2004) and computing the optimal policy as in (Chen and Feinberg 2007). Adopting (Chen

and Blankenship 2004)’s notation, we let Φτ (x) be the set of feasible constraint thresholds for a problem

starting at day t, defined as

Φτ (Xt = x) =

{
α ∈ R | ∃ u ∈ {0, 1}τ , u0 = uT+1 = 0 such that

t+τ∑
i=t

E [ci+1 (ui)|Xt] ≤ α

}
. (36)

Let ϕ : X 7→ Rn be the constraint threshold for the initial state x ∈ X . Let V ≥ 0 be a large scalar.

Let Vτ (x, α) be the value function or total expected cost for problem (35) with the time horizon τ ,

initial state x, and constraint threshold α. Based on (Chen and Blankenship 2004, Theorem 3.1), we

re-express (35) as the dynamic program

Vτ+1(x, α) = TFτ (x,α)Vτ (x, α), (37)

for τ ≥ 1, where the operator TFτ
is defined as:

TFτ (x,α)V (x, α)=

{
min(u,ϕ′)∈Fτ (x,α)

{
u+

∑
x′∈X V (x′, ϕ′(x′)) Pr[X′ =x′|X =x]

}
, if Fτ (x, α) ̸= ∅

V , if Fτ (x, α) = ∅,
(38)

and the set Fτ (x, α) is given by

Fτ (x, α) =

{
(u, ϕ′)

∣∣∣∣∣u ∈ U , ϕ′(x′) ∈ Φτ (x
′) ∀ x′ ∈ X ,

E [cτ+t+1(ut)|X = x] +
∑
x′∈X

ϕ′(x′) Pr[X′ = x′|X = x] ≤ α

}
. (39)

Next, we present a detailed description of the value function and use it to compute an optimal

policy for (10).

3.3.1 Value function

We evaluate (36)–(39) for the objective and constraints of (35) to obtain the following value function.

First, for a time horizon of τ = 1 where the last decision is taken at day T , we have

V1(x, α) =


0, if E [cT+1(0)|XT = x] ≤ α

1, if E [cT+1(0)|XT = x] > α and E [cT+1(1)|XT = x] ≤ α

V , if b1(x) ≡ minu∈{0,1} E [cT+1(u)|XT = x] > α.
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for all x ∈ X and α ∈ R. For a time horizon τ ≥ 2, we let

bτ (x)= min
u1∈{0,1}

E [cT−τ+2(u1)|XT−τ+1 =x] +

τ∑
t=2

min
ut

{∑
x′∈X

E [cT−t+2(ut)|XT−t+1 = x′]Pt−1
x,x′

}
.

(40)

The value function is Vτ (x, α) if bτ (x) > α or otherwise given by:

Vτ (x, α) = min
u,ϕ′(x′)

u+
∑
x′∈X

Pr[X′
T−τ+2 = x′∣∣XT−τ+1 = x]Vτ−1 (x

′, ϕ′(x′))

s.t. u ∈ {0, 1}
ϕ′(x′) ∈ Φτ−1(x

′)

E [cT−τ+2(u)|XT−τ+1 = x] +
∑
x′∈X

ϕ′(x′) Pr[X′
T−τ+2 = x′∣∣XT−τ+1 = x] ≤ α,

(41)

where

Φτ (x) = [bτ (x),+∞[ . (42)

3.3.2 Optimal policy

We compute an optimal policy for (35) and, therefore, for (10) using the value function given in the

previous section and (Chen and Feinberg 2007)’s approach. Let ft : {(x, α) ∈ X × ΦN−t (x)} 7→ U×Rn

such that ft (x, α) =
(
fu
t (x, α) , fϕ

t (x, α)
)
=
(
ut, ϕt

)
∈ FT−t(x, α) where

(
ut, ϕt

)
= argmin

(u,ϕ′)∈FT−t(x,α)

{
u+

∑
x′∈X

VT−t(x
′, ϕ′(x′)) Pr[X′

t+1 = x′∣∣Xt = x]

}
,

for t ∈ {1, 2, . . . , T}. By (Chen and Feinberg 2007, Theorem 4), if VT (x, α) < V , then optimal policy

at time t ∈ {1, 2, . . . , T} is

u⋆
t = fu

t (xt, αt) .

The next round’s constraint threshold is given by

αt+1 = fϕ
t (xt, αt) (xt+1),

for t = 1, 2, . . . , T − 1 and α1 = α, the constraint threshold specified in the problem for the whole time

horizon. Lastly, after evaluating (41) for τ = 1, 2, . . . , T , we compute u⋆
t and αt+1 using (11)–(12) for

Xt = x.

Finally, the optimal PSPS scheduling policy is presented in Proposition 3. For completeness, the

proof is given below.

Proof of Proposition 3. By assumption, VT (X1 = x, α) < V and the problem is feasible. By (Chen

and Blankenship 2004, Theorem 2) and (Chen and Feinberg 2007, Theorem 4), the policy (11)–(12) is

an optimal policy for (37). The policy is, therefore, optimal for (10).

4 Critical peak pricing

CPP is used to reduce peak demand by temporarily increasing electricity prices. Price increases must

be declared a day ahead based on current observations. The maximum number of CPP events, M , is

constrained by contracts between the loads and the operator. Consider, for example, Hydro-Québec’s

CPP program which is in effect during the Winter period from December 1st to March 31st (referred

to as rate flex D) (Hydro-Québec 2021b). During this period, the nominal electricity price is reduced
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by 30% from 6.08¢/kWh to 4.28¢/kWh for the first 40 kWh multiplied by the number of days in the

month, and by 22% from 9.38¢/kWh to 7.36¢/kWh above this monthly consumption threshold. When

a CPP is called, the price increases to 50¢/kWh from 6 am to 9 am and/or 4 pm to 8 pm. Finally,

CPP can be called for a maximum of 100 hours, i.e., between 25 and 33 times a year. The objective

of CPP scheduling is, therefore, to identify the M days that, without intervention, would have the

highest demand. The load demand is correlated with several factors, e.g., weather parameters (Herter

et al. 2007, Hor et al. 2005) like temperature, wind speed, precipitation, etc., day of the week (Hahn

et al. 2009), and prior demand.

In this section, we formulate a model for CPP scheduling based on weather and demand observa-

tions. The objective is to minimize peak demand costs. The model has a similar structure as PSPS

Scenario 1’s reformulation (14) from Section 2.1 and admits the same optimal policy. We note that (14)

is not a model for PSPS scheduling. It is only used to derive an optimal, closed-form policy because the

per-round formulations of problem (14) and PSPS Scenario 1 is shown to be asymptotically equivalent

under certain conditions in Theorem 2.

We use the same notation as in the previous sections and, for example, let ut = 1 denote the decision

to call for CPP during day t+1. We letXt ∈ X ⊂ Rn be the vector collecting the weather and day of the

week at time t. Similarly, we assume that Xt is a Markov process with known transition probabilities

for all states. Let qt : Rn 7→ R be a function mapping the n weather readings to an estimated

peak demand level (Hahn et al. 2009, Herter et al. 2007, Hor et al. 2005) at time t. We model the

cost of supplying power to the grid as a quadratic function of the demand. This function, denoted

cpower
t : X , 7→ R+ includes, for example, generation, import, startup, and shutdown costs. Let Bt ≥ 0,

Ct ≥ 0, and Dt ≥ 0 be, respectively, the second, first and zeroth-order coefficient of the cost function.

Let y > 0 be the load curtailed during a CPP event. We assume that y is constant and known, e.g.,

an averaged historical value of total curtailment as estimated by the system operator (Hydro-Québec

2021a). In future work, we will model y as uncertain as well. Lastly in this section, we let at ∈ R be

the revenue loss due to high prices.

We formulate the CPP scheduling problem as:

min
ut

t=1,2,...,T

E

[
T∑

t=1

cpower
t+1 (qt+1 (Xt+1)) (1− ut) + cpower

t+1 (qt+1 (Xt+1)− y)ut + at+1ut

]
subject to ut ∈ {0, 1}

T∑
t=1

ut ≤ M.

(43)

Using the law of iterated expectation (Ross 2014, Proposition 5.1), we obtain

min
ut

t=1,2,...,T

E

[
T∑

t=1

E
[
cpower
t+1 (qt+1 (Xt+1)) (1− ut) + cpower

t+1 (qt+1 (Xt+1)− y)ut + at+1ut

∣∣Xt

]]
subject to ut ∈ {0, 1}

T∑
t=1

ut ≤ M,

(44)

In other words, based on the observation vector at time t, Xt, the system operator wishes to select up

to M days for which the cost of supplying the peak demand is highest and in excess of the revenue

losses minus the cost reduction induced by CPP. Recall that d = T − t. Let vd(w, k|Xd+1) be the

expected cumulative costs at round d given the observations Xd+1 when the cumulative cost is w and

k out of M CPPs can still be called. The associated dynamic program is

vd(w, k|Xd+1 = x) =
∑
ξ∈X

min
{
vd−1(w + E

[
cpower
d−1 (qd−1 (Xd−1))

∣∣Xd = ξ
]
, k|Xd+1), (45)
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vd−1(w + ad−1 + E
[
cpower
d−1 (qd−1 (Xd−1)− y)

∣∣Xd = ξ
]
, k − 1|Xd+1)

}
Pr [Xd = ξ|Xd+1 = x] ,

with the boundary conditions:

v0(w, k|X1 = x) = w +
∑
ξ∈X

E
[
cpower
−1 (q−1 (X−1))

∣∣X0 = ξ
]
Pr [X0 = ξ|X1 = x]

vd(w, 0|Xd+1 = x) = w +

d∑
i=0

∑
ξ∈X

E
[
cpower
i−1 (qi−1 (Xi−1))

∣∣Xi = ξ
]
Pi+1

x,ξ ,

for all w ∈ R, k = 0, 1, . . . ,M and x ∈ X . The optimal CPP scheduling policy is given next in

Proposition 4.

Proposition 4. Consider the CPP scheduling problem (44). At day d = T − t, given the observations

Xd = x, a CPP event is called for the following day, i.e., ud = 1, if

E [qd−1 (Xd−1)|Xd = x] >
1

2yBd−1

(
gd−1 (k − 1|x)− gd−1 (k|x) + ad−1 − Cd−1y +Bd−1y

2
)
.

where

gd(k|Xd+1 = x)=
∑
ξ∈X

min
{
gd−1(k|ξ) + E

[
cpower
d−1 (qd−1 (Xd−1))

∣∣Xd = ξ
]
,

gd−1(k − 1|ξ) + ad−1 + E
[
cpower
d−1 (qd−1 (Xd−1)− y)

∣∣Xd =ξ
]}

Pr [Xd =ξ|Xd+1 =x] ,

with the boundary conditions:

g0(k|x) =
∑
ξ∈X

E
[
cpower
−1 (q−1 (X−1))

∣∣X0 = ξ
]
Pr [X0 = ξ|X1 = x]

gd(0|x) =
d∑

i=0

∑
ξ∈X

E
[
cpower
i−1 (qi−1 (Xi−1))

∣∣Xi = ξ
]
Pi+1

x,ξ ,

for all x ∈ R, k ≥ 1, and d ≥ 1.

Proof of Proposition 4. We use the same proof technique as in Proposition 1 with s1,d = s2,d = 0 and

replace E [f (Xd−1)|Xd−1 = ξ] and ad−1 with E
[
cpower
d−1 (qd−1 (Xd−1))

∣∣Xd = ξ
]
and ad−1, respectively.

This implies that ud = 1 if

gd−1 (k| 0,x) + w + E
[
cpower
d−1 (qd−1 (Xd−1))

∣∣Xd = ξ
]
>gd−1 (k − 1| 1,x) + w + ad−1

+ E [f (Xd−1 − y)|Xd−1 = ξ] .

Letting cpower
d−1 (z) = Bd−1z

2 + Cd−1z+Dd−1 and solving for E [qd−1 (Xd−1)|Xd = ξ], we obtain

E [qd−1 (Xd−1)|Xd = ξ] >
1

2yBd−1

(
gd−1 (k − 1| 1,x)− gd−1 (k| 0,x) + ad−1 − Cd−1y +Bd−1y

2
)
,

which completes the proof.

Proposition 4 provides an optimal policy for scheduling CPPs. The policy establishes that above

a peak demand provided by its right-hand term, the decision maker should call a CPP, see Figure 2.

Our approach accounts for peak events that can be absorbed by the grid without raising prices, e.g.,

by cheap imports. Our CPP model differs from (Chen et al. 2013) as it includes the quadratic cost

of the demand and the revenue loss from curtailing the load. Moreover, our policy is shown to be

optimal, which was not done in (Chen et al. 2013).
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5 Numerical examples

We now provide numerical examples for PSPS Scenarios 1 and 2, and CPP scheduling policies. We

restrict ourselves to a comparison between closed-form policies. As mentioned above, we do not

consider PSPS Scenario 3 in this section because it does not possess useful analytical structure, and

as a result is significantly more computationally intensive and, therefore, not readily implementable

by system operators in comparison with the other scenarios. A closed-form policy may be obtainable

via approximations. This is a topic for future work.

5.1 PSPS

We consider four types of weather observations to evaluate the risk of wildfire ignition: temperature,

relative humidity, sustained wind, and wind gusts (Pacific Gas & Electricity 2020a). We use historical

observations from 2011 to 2020 from the Sacramento International Airport weather station to model

Northern California. We use data from 2011 to 2018 and from 2019 and 2020 as training and testing

sets, respectively. We consider the months of June to September as the scheduling horizon and set

T = 122. The risk thresholds of (1) are set to greater than 30◦C, lower than 20%, greater than 25km/h,

and greater than 40km/h, for respectively the temperature, the relative humidity, and the sustained

wind and wind gust speeds. These values are more risk-averse compared to PG&E’s from Section 2.

We note that we also consider daily maximum temperature observations in the wildfire risk function

but omit the low fuel moisture, red flag warning, and on-the-ground observation thresholds (Pacific

Gas & Electricity 2020b) due to the lack of available historical data. The weather phenomenon’s

transition matrices are calculated using the training data according to eight discretized states.

We let At = 1B$ and at = 0.2M$ for all t. The numerical value of At is set to be a fraction

of PG&E’s liability for recent wildfires, which was in the tens of billions (Abatzoglou et al. 2020,

Rhodes et al. 2020). We set N = 10 and s1 = s2 = 2M$. Finally, we set the cost adjustment

λ = 40.5M$, i.e., 15% of the total value of lost load (VoLL) times the average daily demand (ADD),

where VoLL = 9000$/MWh (Sullivan et al. 2018) and ADD = 30GWh (California Energy Commission

2021) for the state of California and Sacramento County, respectively.

The performances of P1 and P2, the policies for Scenarios 1 and 2, for summers 2019 and 2020 are

presented in Figures 1a and 1b. The policies are compared to a historical policy which calls a PSPS on

days with a wildfire risk probability (WRP) greater than the average N th highest WRP day for every

year of the training data. The expected costs for P1, P2, and the historical policy for 2019 and 2020
are shown in Table 1. We refer to the argument of the outer expectation of, for example, Problem (15)

as the expected cost, viz., the cumulative conditional expected cost of each decision given the current

state. Next, we apply P1, P2, and the historical policy (average 10th highest WRP in simulated years)

to 100 simulated years randomly generated using the estimated weather distribution. The average

number of events and expected costs are presented in Table 2. The policies P1 and P2 successfully

select the days with the highest expected WRP as shown in Figure 1. Tables 1 and 2 show that P1

and P2 outperform the historical policy in terms of expected costs, thus leading to safer operation of

the power grid.

Table 1: Number of PSPS events called and expected costs for 2019 and 2020

Policy
2019 2020

Number of PSPS Expected costs [B$] Number of PSPS Expected costs [B$]

P1 10 1.140 10 1.786

P2 5 1.072 15 1.660

Historical 6 1.240 10 1.917
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Figure 1: PSPS scheduling results for P1 and P2 (ut = 1 if the solid green line is above the threshold. A threshold stops
when its budget is depleted)

Table 2: Number of PSPS events called and expected costs for 100 simulated years [avg (std)]

Policy Number of PSPS Expected costs [B$]

P1 9.91 (0.32) 1.232 (0.231)

P2 7.78 (3.68) 1.176 (0.249)

Historical 8.23 (2.40) 1.269 (0.214)

5.2 CPP

We now present numerical results for CPP scheduling. We consider four independent weather obser-

vations: the temperatures and precipitations for both Montréal, Canada and Québec City, Canada, in

addition to a week day/weekend state. We estimate qt using a linear regression (Hor et al. 2005) on

2008-2018 data for the CPP period spanning December 1st to March 31st. We discretize X’s compo-

nents and determine the number of states using leave-one-out cross-validation. We use 12 and 7 states

for temperature and precipitation observations, respectively.
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We set M = 25 and consider 105 clients participating to the CPP program. Each peak event is

set to last 3.5 hours and we assume that participating clients reduce their power demand by 1kW, on

average (Hydro-Québec 2021a). Accordingly, we let at = 3.5h · 1kW · 0.0428$/kWh · 105 = 15k$ and

y = 1kW · 105 = 100MW. We set Bt, Ct, and Dt to 0.00245$/MW2, 45.5$/MW, and 800k$ for all t,

respectively, so the generation cost may be higher than the price paid by customers on days with high

demand.

The performance of our policy for 2018-2019’s and 2019-2020’s winters is presented in Figures 2a

and 2b. In Figure 2, our policy is compared to a historical policy which selects days with a demand

greater than the average power demand for the M th highest value for every year of the training data.

The relative total cost reduction with respect to a policy selecting the days with the highest demand

in hindsight is 84.1% and 88.2% in 2018-2019 and 78.6% and 35.3% in 2019-2020, respectively, for our

policy and the historical policy. Figure 2a shows that the historical policy can outperform ours in

particularly cold winters, because they differ significantly from the historical data on which our policy

is based. A larger training data set and an increased number of states could address this issue. This

is a topic for future work.

0 20 40 60 80 100 120
Day t

20000

22500

25000

27500

30000

32500

35000

37500

40000

Po
we

r d
em

an
d 

[M
W

]

Expected demand
Actual demand
Policy threshold
Historical threshold

CPP event with policy
CPP event with historical
Identified optimal CPP
Missed optimal CPP

(a) 2018-2019

0 20 40 60 80 100 120
Day t

20000

22500

25000

27500

30000

32500

35000

37500

40000

Po
we

r d
em

an
d 

[M
W

]

(b) 2019-2020

Figure 2: CPP scheduling results (ut = 1 if the solid green line is above the threshold. A threshold stops when its budget
is depleted)
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Lastly, we test our policy on 100 simulated years. Figure 3 shows the constantly high relative cost

reduction with respect to the hindsight policy. Our policy leads to a 98.0% average reduction with a

standard deviation of 1.67% and outperforms the historical policy, which leads to an 85.9% average

reduction with a standard deviation of 17.2%. The performance of our policy is thus higher and less

volatile than the historical policy’s.
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Figure 3: Cost reduction distribution for 100 simulated years

6 Conclusion

In this work, we formulate three dynamic programming models for PSPS scheduling to reduce power

system-caused wildfires. We consider the trade-off between wildfire mitigation and the impacts of

de-energizing communities by including the costs of wildfires, of PSPS operation costs, and of revenue

losses for both the grid and the population. We assume that the system operator makes an initial

investment to reduce wildfire risks and uses PSPSs to further decrease the risks. We consider three

scenarios. First, we suppose that N PSPSs are planned to reach a desired risk level and the operator

must pay a penalty if the total number of PSPSs is above N . Second, under the same PSPS budget

and penalty conditions, we assume that costs are recovered if the number of PSPS is below N . In the

third model, the expected number of PSPSs is minimized subject to a total expected cost constraint.

The first two scenarios are instances or variations of the multiple secretary problem. In each case

we adapt recent results from Arlotto and Gurvich (2019) to obtain an optimal scheduling policy

for either the exact model or an asymptotically equivalent model. Lastly, we apply the first model

to CPP and obtain an optimal scheduling policy. We numerically evaluate the performance of our

approaches. Our simulations show that Scenario 1 and Scenario 2’s policies successfully balance wildfire

risk and expected costs by selecting days with the highest expected wildfire probability. P1 and P2

outperform the historical policy in test years and in simulated years. Lastly, the CPP scheduling policy

outperforms the historical policy in simulated years, on average attaining higher savings with lower

variance. However the historical policy may perform better under conditions that significantly differ

from the training data, e.g., very cold winters.

Future work will focus on improving the weather model, e.g., with a larger training data set, the

peak demand estimation function, and the wildfire risk probability function, e.g., with a larger number

of natural phenomena, more spatial granularity, and data on actual ignitions and fire size, all of which

will improve the selection of CPP and PSPS days.
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