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Citation suggérée : I. Dahmouni, E.M. Parilina, G. Zaccour (Mars
2022). Great fish war with moratorium, Rapport technique, Les
Cahiers du GERAD G– 2022–07, GERAD, HEC Montréal, Canada.
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Abstract : We consider a discrete-time version of the fish war model, where a regulator imposes a
moratorium on fishing activities whenever the stock reaches a predetermined critical low value. The
moratorium will be in place until the fish stock recovers, that is, attains a desirable value. We obtain
conditions on the parameter values such that a moratorium could be avoided, and its optimal duration
when its imposition is deemed necessary. We propose a coordinated harvesting strategy profile and
determine when it matches the Nash equilibrium in linear-state strategies. Numerical examples show
the significant influence of the fish reproduction rate on the length of a moratorium regime and the
equilibrium properties of the coordinated strategy profile.

Keywords: Fish war, moratorium, regulation policy, dynamic games

Résumé : Nous considérons une version en temps discret du modèle de la guerre des poissons,
où un régulateur impose un moratoire sur les activités de pêche lorsque le stock atteint une valeur
basse critique prédéterminée. Le moratoire demeure en vigueur jusqu’à ce que le stock de poissons se
rétablisse, c’est-à-dire jusqu’à ce qu’il atteigne une valeur souhaitable. Nous obtenons des conditions sur
les valeurs des paramètres telles qu’un moratoire pourrait être évité, ainsi que sa durée optimale lorsque
son imposition est jugée nécessaire. Nous proposons un profil de stratégie de récolte coordonnée et
déterminons quand il correspond à l’équilibre de Nash dans les stratégies à état linéaire. Des exemples
numériques montrent l’influence significative du taux de reproduction des poissons sur la durée d’un
régime de moratoire et les propriétés d’équilibre du profil de stratégie coordonnée.

Mots clés : Guerre du poisson, moratoire, politique de régulation, jeux dynamiques
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1 Introduction

We consider a fishery exploited by n firms under the eye of a regulator who would implement a

moratorium on harvesting any time the stock x of the biomass reaches a pre-specified minimum level x.

Our objective is to deal with the following research questions:

1. Under what conditions, if any, a noncooperative harvesting equilibrium is moratorium-free during

the entire (infinite) duration of the game?

2. If a moratorium is not avoidable, what should be its optimal duration, given that the regulator’s

objective is to bring back the stock to suitable level?

3. Can the players design a coordinated harvesting profile such that (i) the corresponding steady-

state value is x; and (ii) the outcome is a Nash equilibrium?

Using the classical fish-war model in Levhari and Mirman (1980), we answer these questions.

In particular, we provide a simple condition on the parameter values under which no moratorium is

imposed during the entire duration of the game. The condition involves the trigger moratorium value x,

the reproduction rate α of the species, the number of players and their intertemporal preferences. When

the players cannot escape a moratorium, we show that its duration is given by a simple formula that

only involves the initial stock x0, x, and α. Finally, although it is easy to determine a harvesting

coordinated profile that avoids a moratorium, it is not always self-supporting, that is, this profile is a

Nash equilibrium, only under some conditions.

1.1 Literature review

Effective fisheries regulations have been critical to meeting the commitments of local and international

jurisdictions in their pledge for protecting the marine wildlife (Mora et al. (2009)). According to

Ostrom et al. (1992), the adoption and enforcement of new regulations should be consistently archi-

tected around spatial and quantitative elements. This could entail the designation of marine protected

areas and no-take marine zones, the allocation of landing quotas and the limitation of fishing effort.

Still, the proven virtues of these actions as ecologically responsible mechanisms have been significantly

sidetracked for a variety of reasons, including the high cost of rollout (McCrea-Strub et al. (2011)),

inadequate tolerance of fishing communities (Sumaila (2021)), and myopia of political leaders (Sala et

al. (2016)). This observation has prompted a number of scholars to explore alternative, and perhaps

simpler, regulations that might be subject to further scrutiny by policymakers, among them the mora-
torium practice (Clark et al. (1979) and Munro (2010)). The distinctive feature of such a policy lies

in its ability to target the protection of certain fish stocks for a given period of time, while the fishing

area remains open to other fishing activities. Additionally, recognizing that most costs are incurred in

implementing and enforcing other policies (Rosenberg (2007)), the moratorium is considerably lighter

in cost (Ding et al. (2021)). It does not require monitoring of fishing areas, weighing of landings or

auditing the operation costs reported by each fishing vessel. It simply requires compliance with the

basic rule, that is, to ensure that the protected species is not landed or sold in the market if it has

been mistakenly harvested.

In practice, the moratorium can take different forms, e.g.: (i) a seasonal fishing moratorium such

as the one in the Pearl River estuary (Wang et al. (2015)); (ii) a partial moratorium similar to that

applied for American shad in Virginia riverine fisheries (Olney and Hoenig (2001)); (iii) a logistical

form akin to the moratorium on high seas transshipment studied in Ewell et al. (2017); (iv) an

administrative form as implemented by the Indonesian government moratorium on fishing licenses for

foreign and ex-foreign fishing vessels (Khan et al. (2018)); or (v) an operational form as imposed by the

United Nations ban and enforced by the North Pacific Anadromous Fish Commission (NPAFC)1 on

all driftnets over 2.5 km in length (Hewison (1994)). Probably, one of the most prominent experiences

1The NPAFC includes Canada, the United States, the Russian Federation, the Republic of Korea and Japan. China
is a co-operating non-party of this organization.
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in the history of fishing restrictions is the moratorium on cod harvesting imposed by the Canadian

government in 1992 (Frank et al. (2005) and Rose and Row (2015)). This occurred as a result of the

stock being severely impoverished under the open-access regime in the 1960s and 1970s. In 1968, the

total harvest was estimated at 820,000 metric tons of cod, of which 700,000 were harvested by foreigners

(Baird et al. (1991)). It was not until 1977 that foreign vessels were banned from Canada’s Exclusive

Economic Zone (EEZ). Yet before the stock had fully rebounded, the number of Canadian vessels

doubled, the number of registered fishers increased, and fish plants tripled their freezing potential

(Schrank (2005)).2 Thirty years later, this moratorium is still effective and scientists are observing an

overall population growth of the species, with full recovery expected by the year 2030, although the

stocks are still in a critical range (Castaneda et al. (2020)).

Clark and Munro (2017) indicate that while a decision to prohibit fishing altogether would have

positive effects on the environment and the preservation of biodiversity, the recourse to a moratorium

can have dramatic consequences. In other words, the recovery of a fishing stock, is only financially

optimized under a very specific and restrictive set of circumstances. This leads us to believe that this

trade-off between ecology and economy is at the heart of the reflection when it comes to declaring

such a severe decision. The most desirable solution would therefore be to avoid such a situation at

all costs and to act in a proactive manner (Munro (2010) and Bjorndal and Munro (2012)). Clark

(1976) advocated that once the fish stock has fallen below a given equilibrium level, then it is ideal

to institute a moratorium on fishing until the stock has increased to reach the desired steady-state

level. Postmortem conduct is as important as its application, as the total harvest should not exceed

the increase in the stock arising from the biological reproduction of the species.

In principle, the onset and length of the moratorium is ascertained on the basis of scientific obser-

vation of fish population dynamics (Frost et al. (1995)). For most species, surveys may be conducted

during periods prior to the spawning season when scientists look for signs reflecting a temporal change

in the structure of fish colonies, such as the predominance of relatively noncommercial, small, fast-

growing species over larger commercial species with a prolonged overlap of generations. In Rice (2000),

various community structure metric techniques used to assess stock dynamics are reviewed, namely:

(i) diversity and similarity indices (Magurran (1988) and Warwick and Clarke (1995)); (ii) ordina-

tion methods (Jongman et al. (1987)); and (iii) metrics of aggregate community properties, such

as abundance-biomass comparison of dominance curves (Warwick (1986) and Warwick and Pearson

(1987)), and size spectra (Sheldon et al. (1972) and Lambshead et al. (1983)). Other methods exist for

specific species such as temporal variation of species composition (Collins et al. (2000)), maturation

rates (Flores et al. (2015) and Jokar (2021)), as well as the environmental DNA (eDNA) technique

(Fukaya et al. (2021)). Each of these approaches has proven to be effective in informing the decisions

of policymakers. Their scientific accuracy, however, relies on comparisons. Nonetheless, their unifying

factor is that the hinge value of the stock level that triggers the start and/or end date decision is

proportional to some stock biomass. Technically, this would be the maximum sustainable yield or the

highest stock level ever measured. According to Warwick (1986) and Warwick and Pearson (1987),

there are three critical stock levels, namely, undisturbed, moderately disturbed, and heavily disturbed.

Therefore, throughout this paper, we consider the level of fish stock that triggers the moratorium to

be proportional to the initial condition. This assumption reflects the situation where the policy maker

begins this exercise by observing the reference fish stock level in the first period and regularly updates

the assessments for the purpose of comparisons.

That said, any extensive review of the literature on fisheries economics recommends preventive

actions over regulations. Nevertheless, the coordination of cooperation among fisherpersons may fail if

no legal framework is put in place (Hardin (1968)). Typically, cooperative behavior must be stimulated

by a central regulator; otherwise, coalition stability can only be achieved by a small subset of players

(Breton and Keoula (2014) and Kwon (2006)). The cooperation in two-player fish war game can be

supported by incentive strategies (see Mazalov and Rettieva (2010)). The nature of fishing practice,

2An estimated number of 30,000 fishermen experienced job losses as a result of this decision.
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which typically involves a large number of players over an infinite time horizon, suggests the importance

of dynamic game principles in designing preventive solutions. In this paper, the interaction between

players and the dynamic nature of shared fish stocks drive our approach in designing the optimal

solution.

Game theory has been widely applied to fisheries over the past four decades.3 In particular,

a considerable number of studies address regime shifts using dynamic game theory principles. For

example, Polasky et al. (2011) analyze how the threat of a potential future regime shift affects optimal

management. They used a simple general growth model to analyze four cases that involve combinations

of stock collapse versus changes in system dynamics, and exogenous and endogenous probabilities

of regime change. In Nævdal, (2003), the model for optimal regulation of a natural resource in

the presence of irreversible threshold effects is proposed. The necessary conditions are presented for

optimal regulation of these problems both when the threshold has a known location in the state

space and when the location of the threshold is unknown. The process of eutrophication is modeled

in Nævdal (2001), where the author takes threshold effects into account, and finds optimal policies

for regulating eutrophication. In this paper, deterministic stock pollutants with threshold effects are

examined. In general, the literature considers two approaches to dynamic threshold problems. The

first is to treat the threshold as a constraint, that is, the threshold is a level that cannot be crossed (see,

e.g., Perrings and Pearce (1994)). The second approach assumes that the threshold can be crossed

(see, e.g., Farzin (1996) and Miller and Nkuiya (2016)). In Shin et al. (2019), the moratorium is

considered as the instrument of a policy maker. The authors develop a bioeconomic model to evaluate

the optimality of a moratorium when labor and capital costs are accounted for. In Long et al. (2017),

a methodology exploring piecewise closed-loop equilibrium strategies in differential games with regime-

switching actions is proposed. This involves the case of a game where two players choose actions that

influence the evolution of a state variable, and decide the time to switch from one regime to another.

The authors apply this methodology to a depletable resource extraction game. Gromov and Gromova

(2017) consider a particular class of bimodal linear-quadratic differential games with two particular

classes of switching rules, time-dependent and state-dependent. The main contribution of the paper is

to formulate optimality conditions needed to determine optimal strategies in the cooperative and non-

cooperative cases. A practically relevant hybrid differential pollution abatement game is considered to

illustrate the results.

In the context of determining the optimal fishing behavior under the threat of a moratorium, the

theoretical results we propose apply to the great fish war game introduced in Levhari and Mirman

(1980). We extend the model by considering n symmetric players. Since we focus only on the nonco-

operative side of the solution, a version of the solution of this game with the Euler equation approach

in Markov strategies could be obtained in González-Sánchez, D., Hernández-Lerma (2013). One ar-

gument in favor of using this model is that it has a proven quality such that there is a stationary

equilibrium in this game that has a turnpike property, which results in higher steady states of stock

and consumption than in the updated games (Nowak (2006)). Our line of inquiry raises some im-

portant questions related to organizational problems. We are interested in finding out how players

decide to stop fishing at a given time, whether it is due to an external random effect or an endogenous

decision. And after the moratorium is in place, how long and how often will it be observed.

The rest of the paper is organized as follows. In Section 2, we describe the model of the great

fish war with moratorium. We examine the conditions under which the moratorium is not announced

in Section 3. The second scenario of the game, when moratorium regime is applied, is considered in

Section 4. We introduce the coordinated strategy profile to avoid moratorium regime and examine the

conditions when this profile is the Nash equilibrium in Section 5. Section 6 briefly concludes.

3For extensive review on the application of game theory to fisheries management we refer the reader to Bailey et al.
(2010); Hannesson (2011) and Gronbæk et al. (2018).
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2 The model

In a fashion similar to the dynamic model of a fish war introduced in Levhari and Mirman (1980),

we consider n players exploiting an open access common resource. Denote by N = {1, 2, . . . , n} the

set of players. Player i ∈ N at t = 0, 1, . . ., harvests an amount of the resource using a level of effort

ui(t) ∈ Ui ⊂ Rmi . So, for each player i ∈ N at any t = 0, 1, . . ., we define a set of control (or decision)

variables Ui. Let u(t) = (u1(t), . . . , un(t)) ∈
∏
i∈N Ui be the strategy profile at time t with

∏
i∈N Ui

being the product control sets.

The state variable x(t) ∈ X = [0, 1] is the fish stock at time t, with initial value x(0) = x0 ∈ X at

time t = 0. The state dynamics is given by

x(t+ 1) = (x(t)− u1(t)− . . .− un(t))α, t = 0, 1, . . . , (1)

where 0 < α < 1 is the reproduction rate of the species and x0 are given.

We assume that there exists a threshold for the state variable x denoted as x, which is a common

knowledge, and falling below this level means the start of the moratorium on fish harvesting. The state

dynamics (1) correspond to the regime without moratorium or normal regime. If there exists a time

period T for which x(T − 1) > x and x(T ) ≤ x, then at time T the moratorium starts, and fishing

activities are forbidden. Therefore, during a moratorium, the state dynamics (1) become

x(t+ 1) = (x(t))α, t = T, . . . , T + t′ − 1, (2)

where t′ is the moratorium duration. The state dynamics (2) corresponds to the moratorium regime.

Remark 1. The steady-state value of the fish stock in the absence of human activities (due to a

moratorium or any other reasons) is one, independently of the initial condition. For this reason, we

assumed that X = [0, 1], but nothing precludes the upper bound to be taken larger than one.

The duration of the moratorium can be defined in the two following ways:

1. Once the moratorium starts, it lasts for a specified number of time periods. Let the duration of

the moratorium be t′ periods. Therefore, moratorium periods are T, T +1, . . . , T + t′−1. During

these periods the state dynamics are given by equation (2). At time T + t′, the moratorium is

cancelled and the system switches to the normal regime with state dynamics (1).

2. Once the moratorium starts, it lasts until the state variable reaches a given level x > x. The

moratorium lasts until period T + t′−1 inclusively. Time T + t′ can be found from (2) given that

x(T ) is known. Again, at time T + t′ the moratorium stops, and the system follows the normal

regime with state dynamics (1). For instance, x can be set equal to the initial level of the fish

stock x0.

In our approach, there is a direct relationship between t′ and x, that is, given the level of the stock

that the regulator wants to reach through a moratorium, we can compute the time it would take. (This

would not be true if t′ and x are not linked to each other.)

Remark 2. In the model, there is an authority or government whose payoff is not taken into account

directly, but its payoff is represented by an announced policy of moratorium. Two types of moratorium

duration introduced above can be both adopted by government or natural resource authorities. A

common example of regime 1 is the Chinese summer moratorium in South China Sea. Perceived as

the most severe fishing moratorium in history (Ding et al. (2021)), this moratorium has a periodic

form as it is automatically implemented each year from May 1 to August 16. Regime 2, on the other

hand, is a biomass-based decision, similar to the Canadian cod moratorium alluded to earlier.

Player i maximizes the discounted sum of stage payoffs, that is,

Ji(x0, u) =

∞∑
t=0

ρtφi(t, x(t), u(t)), (3)
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where ρ ∈ (0, 1) is a common discount factor and

φi(t, x(t), u(t)) =

{
d+ lnui(t), in a normal regime,

0, in a moratorium regime,

where d is a constant, u(t) ∈
∏
i∈N Ui such that the series in the right-handed side of (3) converges

to a finite value. Player i aims to maximize her payoff (3) subject to state dynamics (1) and (2) and

initial state x(0) = x0.

Assumption 1. In a normal regime, we suppose that d+ lnui(t) > 0 for all positive values of ui(t).

This assumption ensures that fishers get larger revenues when the level of activity is positive

than under a moratorium. Note that we could have specified the revenues as φi(t, x(t), u(t)) = d +

ln (1 + ui(t)) , with d > 0, which would have implied that the revenues during a moratorium are given

by the positive constant d. We stick to the lnui(t) to be in line with the literature in this area,

e.g., Breton and Keoula (2014); Breton et al. (2019); Miller and Nkuiya (2016); Fesselmeyer and

Santugini (2013).

We consider a feedback information structure where player i’s strategy ψi is a function of time

and state, i.e., ψi = ψi(t, x). We denote the profile of feedback strategies at time t by ψ(t, x) =

(ψ1(t, x), . . . , ψn(t, x)), and let ψ−i(t, x) = (ψ1(t, x), . . . , ψi−1(t, x), ψi+1(t, x), . . . , ψn(t, x)). For any

time period, strategy ψi(t, x) defines control ui(t) such that ui(t) = 0 if t is a time period in a

moratorium regime. We define this control value as zero for simplicity, because it does not influence

the players’ stage payoffs as φi (t, x(t), u(t)) ≡ 0 for any i ∈ N for all periods t in the moratorium

regime.

Definition 1. A Nash equilibrium in a fish war game with moratorium is the profile of feedback

strategies ψnc(t, x) = (ψnc1 (t, x), . . . , ψncn (t, x)) if

Ji(x0, ψ
nc(·)) ≥ Ji(x0, ψi(·), ψnc−i(·)),

for any admissible feedback strategy ψi(·) of player i ∈ N .

Let the initial state value x(0) = x0 be larger than x. Otherwise, the game starts in a moratorium

regime and we can define a game starting from the initial time t1 > 0 when the desirable stock level

is reached, and the normal regime starts with the corresponding initial state given as a solution of (2)

at time t1.

The game starts in a normal regime and we consider two scenarios:

Scenario 1. The control variable ui(t) for all i ∈ N is such that the corresponding state trajectory,

given as a solution of equation (1), satisfies the properties x(t) > x for any t = 1, 2, . . . and

lim
t→∞

x(t) ≥ x. In this case, the moratorium is never applied and the steady state would be equal

to the threshold x.

Scenario 2. The control variable ui(t) for all i ∈ N is such that the corresponding state trajectory,

given as a solution of equation (1), is such that, there exists a time T at which x(t) > x for any

t < T − 1 and x(T ) = x, then at time T the moratorium starts and lasts for t′ periods. Next,

the normal regime starts, and so on.

In the last scenario, the moratorium could happen an infinite (but countable) number of times and

we apply the “same pattern of strategies”, the players’ behavior will be “periodical”.

In the following, we determine a condition on the parameter values under which Scenario 1 is part

of a Nash equilibrium, and next characterize the equilibrium strategies in Scenario 2. Finally, we show

the existence of a coordinated strategy profile that avoids a moratorium, and is a Nash equilibrium.



Les Cahiers du GERAD G–2022–07 6

3 Always normal regime

We define the Nash equilibrium in the game without moratorium and find the conditions under which x

is never reached. First, we provide auxiliary Propositions 1-2 defining the trajectory of the state

variable and the steady-state values of the fish stock in the class of linear-feedback strategies in the

great fish war game.

Let the strategy of player i consist of harvesting a positive share γi ∈ [0, 1] of the available stock x,

that is,

ui(t) = γix(t), ∀t ≥ 0. (4)

Proposition 1. When the players’ strategies are defined by (4), the trajectory of the state variable is

given by

x(t) = xα
t

0

(
1−

∑
i∈N

γi

)[α(1−αt)
1−α

]
, (5)

and the steady-state value by

x∞ = (1−
∑
i∈N

γi)
[ α
1−α ]. (6)

Proof. The trajectory of the state variable associated with controls ui(t), i ∈ N , is derived by substi-

tuting for ui(t) from (4) in (1), and solving for x(t). Next, we have

lim
t→∞

x(t) = xα
t

0

(
1−

∑
i∈N

γi

)[α(1−αt)
1−α

]
=

(
1−

∑
i∈N

γi

)[ α
1−α ]

,

because limt→∞ αt = 0.

Now, we find the Nash equilibrium in the fish war game and provide the conditions for never reaching

the threshold x when the players implement their Nash equilibrium strategies (despite considering a

game with a moratorium).

In a noncooperative setting, each player individually maximizes the sum of her discounted utility

given in Equation (3). The feedback-Nash equilibrium strategies are derived by solving the following

Hamilton-Jacobi-Bellman (HJB) equation, where Vi(x) is the value function of player i:

Vi(x) = max
ui≥0

(
d+ lnui + ρVi

(
(x−

∑
i∈N

ui)
α

))
. (7)

Proposition 2. Assuming an interior solution and symmetric players, the unique feedback-Nash equi-

librium is given by

γnci =
1− αρ

n(1− αρ) + αρ
, ∀i ∈ N, (8)

and the value function by

V nci (x) = Anci lnx+Bnci , ∀i ∈ N,

where

Anci =
1

1− ρα
,

Bnci =
ρα ln(1− nγnci ) + (1− ρα)(d+ ln γnci )

(1− ρα)(1− ρ)
.
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Proof. See Appendix A.

Evaluating the value function at x0, we obtain the following total discounted payoff of any player i

in the fish war game without moratorium:

V nci (x0) =
d

1− ρ
+

lnx0
1− αρ

+
αρ ln(αρ) + (1− αρ) ln(1− αρ)− ln(n(1− αρ) + αρ)

(1− ρ)(1− αρ)
. (9)

For a moratorium to never be implemented, we must have x0 > x, and ui(t), for all i ∈ N, is such

that the solution of (1) satisfies the properties x(t) > x for all t = 1, 2, . . ., and lim
t→∞

x(t) ≥ x. The

following proposition provides a restriction on the parameter values for such scenario to materialize.

Proposition 3. When symmetric players adopt the unique feedback-Nash equilibrium harvesting strate-

gies, the moratorium is never applied if

n ≤ αρ(1− x 1−α
α )

(1− αρ)x
1−α
α

, (10)

where x is the moratorium level.

Proof. See Appendix B.

The function in the RHS of inequality (10) is defined and nonnegative for any x ∈ (0, 1], decreasing

in x and α, and increasing in the discount factor ρ, that is, it is easier to satisfy the inequality when

the players are more patient. The condition in (10) can never be met if x = 1. Indeed, such value for

x requires n ≤ 0, which we knew already as x = 1 is the steady-state value when harvesting cannot

take place.

4 Normal and moratorium regimes

In this section, we look into the scenario where the inequality (10) is not satisfied. First, we specify

the assumptions and the sequence of events.

1. The moratorium starts at period t = T when the stock level is x(T ) = x, and the objective of

the social planner is to bring back the stock level to x0. (Note that other values than x0 could

be easily considered.) The moratorium regime lasts for t′ periods (from t = T till t = T + t′ − 1

inclusively), where t′ is found by solving

x(T + t′) = x0, (11)

and x(t) satisfies dynamics (2) during moratorium regime applied from T until T + t′ − 1.

Lemma 1. Given x0 and x, the duration of the moratorium regime is given by

t′ =
ln
[
ln x0

ln x

]
lnα

. (12)

Proof. See Appendix C.

Remark 3. We discussed how to define the moratorium level x in the introduction and Remark 2.

If the moratorium level x is defined as a fraction of the initial fish stock, i.e., x = θx0, where

θ ∈ (0, 1), then (12) becomes

t′ = −
ln
[
1 + ln θ

ln x0

]
lnα

.

Clearly, t′ is a decreasing function of θ ∈ (0, 1).
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Time t′ given by (12) may not be a natural number. In practice, it could be rounded to its

closest integer number, that is, set t′ := dt′e.
2. In this scenario, the sequence of events is as follows: In periods t = [0, . . . , T−1], player i harvests

a quantity u∗i (t), i ∈ N. At T , we have x(T ) = x, and a moratorium is implemented in periods

t = [T, . . . , T + t′ − 1], during which the players get zero payoffs. At t = [T + t′], the stock level

is back to the desired level x0, and the players can again harvest. Note that the moment T has

yet to be determined. Player i’s payoff in the game, at which the moratorium regime is firstly

applied at t = T , is

JTi (x0, u) =

T−1∑
t=0

ρt(d+ lnui(t, x(t))) + ρT+t′JTi (x0, u), (13)

from which we get

JTi (x0, u) =
1

1− ρT+t′

T−1∑
t=0

ρt(d+ lnui(t, x(t))), (14)

or equivalently,

JTi (x0, u) =
(1− ρT )d

(1− ρ)(1− ρT+t′)
+

1

1− ρT+t′

T−1∑
t=0

ρt lnui(t, x(t)), (15)

subject to (11) and state dynamics (1) for t = [0, T −1] and (2) for t = [T, . . . , T + t′−1]. Player

i ∈ N maximizes (14) with respect to ui ≥ 0 and T ≥ 0.

Because T > 0 is a natural number, we can define the Nash equilibrium in the closed-loop

strategies u(t, x(t)) = (ui(t, x(t)) : i ∈ N) when player i maximizes (14) for any given T and

then finds the maximum over T .

The duration of the moratorium regime is uniquely defined as a solution of (11) when the morato-

rium level x is given. Therefore, we can vary the duration of the moratorium, that is, t′, by changing x.

Further, the subgame starting at T is qualitatively the same as the initial game, with the only difference

being the base date used to discount the stream of gains.

Proposition 4. The symmetric Nash equilibrium in closed-loop strategies in a T -stage game of fish

war, with x(0) = x0 and x(T ) = x, is given as a unique solution (u(t, x(t)) : t = [0, 1, . . . , T − 1]) of

Bellman equation:

Vi(t, x(t)) = d+ max
ui(t,x(t))∈[0,x(t)]

{
lnui(t, x(t)) (16)

+ ρVi

(
t+ 1,

(
x(t)− ui(t, x(t))−

∑
j∈N,j 6=i

uj(t, x(t))
)α)}

,

with terminal condition

Vi(T − 1, x(T − 1)) = d+ ln

(
x(T − 1)− x 1

α

n

)
,

such that

u(T − 1, x(T − 1)) =
x(T − 1)− x 1

α

n
.

Proof. See Appendix D.
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Remark 4. It is difficult to write down a solution of Bellman equation (16) in an explicit form, but we

can use the following approximation:

ui(t, x(t)) =
x(t)− x1/αT−t

n+
T−t−1∑
k=1

(αρ)k
,

which works well for low α or/and large number of players n. This approximation is obtained in the

proof of Proposition 4.

The algorithm for finding a Nash equilibrium in this scenario, where T is not given, is as follows:

Step 1: Set T = 1. Using Proposition 4, find any player’s equilibrium payoff V (x0, T ), which is

equal to
T−1∑
t=0

ρt(d + lnui(t, x(t))). Next, compute J1
i (x0, u) using (14) for a given moratorium

duration t′.

Step 2: Set T := T + 1 and repeat the calculations in Step 1. Compute J2
i (x0, u) using (14) for a

given moratorium duration t′.

Step 3: Find max
T>0

JTi (x0, u).

5 How to avoid a moratorium?

As mentioned in the introduction, we are interested in checking if the players can agree on harvesting

levels that result in avoiding a moratorium throughout the entire duration of the game. More specifi-

cally, assuming that the harvesting strategy of player i is of the form ui(x) = γix, we seek a γci , for all

i ∈ N , such that the steady state computed with (6) satisfies the condition x∞ = x. If it exists, the

constructed harvesting profile (uc1(x), . . . , ucn(x)) will be referred to as coordinated profile.

Proposition 5. For i ∈ N, the coordinated strategy is given by uci (x) = γci x, where

γci =
1

n

(
1− x

1−α
α

)
, (17)

and the corresponding fish stock by

xc(t) = xα
t

0 x
1−αt , t = 1, 2, . . . , (18)

with initial stock xc(0) = x0.

Player i’s payoff is as follows:

Jci = Ji(x0, u
c) =

d

1− ρ
+

1

1− ρ
ln

(
x(1− x 1−α

α )

n

)
+

1

1− αρ
ln

(
x0
x

)
. (19)

Proof. See Appendix E.

Letting t goes to infinity in (18), we clearly obtain xc∞ = x.

Corollary 1. If inequality (10) is satisfied, then γnci ≤ γci , and the fish stock in the Nash equilibrium is

larger than in the coordinated strategy profile, xnc(t) > xc(t) for all t > 0. Otherwise, γnci > γci and

xnc(t) < xc(t) for any t > 0.

Proof. It immediately follows from comparison of γnci and γci , and using expressions for xnc(t) and

xc(t) from Propositions 2 and 5.
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When inequality (10) is satisfied, we know from Proposition 3 that a moratorium is never imple-

mented in equilibrium. Consequently, there is no reason for seeking a coordinated solution to avoid

it. However, if inequality (10) is not satisfied, which is equivalent to state that the moratorium level

will be exceeded (see Proposition 2), then it becomes relevant to attempt to construct an alternative

solution that avoids the moratorium. This is precisely what the above proposition is doing in the

class of linear-state feedback strategies. Now, as the coordinated solution is not a Nash equilibrium,

nothing ensures that the players will stick to the agreement. In the following proposition, we provide

conditions for the coordinated profile to be a Nash equilibrium in the class of linear-state strategies.

Proposition 6. Let inequality (10) be not satisfied. The coordinated profile uc(x) = (uci (x) : i ∈ N),

where uci (x) = γci x, and γci is given by (17), is the Nash equilibrium in linear-state strategies in the

game with moratorium if

Jci ≥ J ′i ,

where Jci is defined by (19), and

J ′i = max
T

{ 1− ρT

(1− ρ)(1− ρT+t′)

(
d+ ln γ′i +

1

1− αT
lnx− αT

1− αT
lnx0

)
(20)

+
1− (αρ)T

(1− αT )(1− αρ)(1− ρT+t′)
ln

(
x0
x

)}
,

and

γ′i =
1

n
+
n− 1

n
x

1−α
α −

(
x

xα
T

0

) 1−α
α(1−αT )

.

Proof. See Appendix F.

In Proposition 6, we find the conditions under which the individual deviation from the coordinated

strategy profile is not profitable. The non-deviating players do not use trigger strategies but proceed

using their coordinated strategies when the individual deviation is observed. In this case, the mora-

torium plays a trigger role, and the moratorium obviously starts at some period when the deviating

player increases the harvesting level. The deviation is not profitable if the benefit from the deviation

is smaller than the player’s loss in a moratorium regime. The concept of ε-equilibrium can be also

investigated for the model (see, e.g., Radner (1980), Mailath and Samuelson (2006)). Indeed, one can

easily calculate any player’s benefit from individual deviation using Propositions 5 and 6, and find the
minimal level of ε, for which the coordinated strategy profile is an ε-equilibrium.

Corollary 2. When T →∞, then γ′i → γci and JTi (x0, (ui, u
c
−i))→ Jci .

Proof. This result can be easily obtained by finding the limits of γ′i and JTi (x0, (ui, u
c
−i)) given in

Proposition 6.

5.1 An illustrative example

Consider a three-player game with the following parameters: x0 = 0.7, x = 0.2, ρ = 0.9, α = 0.95,

d = 5.

Suppose there is no moratorium in this game and apply the results in Proposition 2. The Nash

equilibrium in linear strategies is defined by γnci = 0.112, and player i’s payoff is 46.872, for all i ∈ N .

The state trajectory is depicted in Figure 1(a). The steady state corresponding to the Nash equilibrium

profile is 0.0004. In Figure 1(a), we see that the moratorium level is crossed by the equilibrium state

trajectory. So, if the players implement the Nash equilibrium strategies given in Proposition 2, then

the moratorium starts at period t = 4. We can easily write condition (10), that is,

n ≤ 0.521246,
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and note that is not satisfied for n = 3. Further, to compute the duration of the moratorium, we use

Equation (12) to get t′ = 30.

0 5 10 15 20 25 30
t0.0

0.2

0.4

0.6

0.8

1.0

xne(t)

(a) The fish stock trajectories with the Nash equilibrium (green
— x0, blue — xnc(t), red — x)

0 5 10 15 20 25 30
t0.0

0.2

0.4

0.6

0.8

1.0

xc(t)

(b) The fish stock trajectories with coordinated strategy profile
(green — x0, blue — xc(t), red — x)

Figure 1: The game with moratorium when α = 0.95

Now, using Proposition 5, we obtain the following coordinated harvesting strategy:

uci (x) = γci x = 0.027x, for all i ∈ N.

The corresponding state trajectory is shown in Figure 1(b). Player i’s payoff in this coordinated

solution is Jci = 6.45316, for all i ∈ N .

To verify if the coordinated strategy profile is the Nash equilibrium in linear-state strategies, we

use Proposition 6. The profit of a deviating player JTi (x0, (ui, u
c
−i)) as a function of T , that is, the first

moment starting from t = 0 when moratorium is applied, is represented in Figure 2. We can notice

that the coordinated strategy profile is not the Nash equilibrium because a deviating player can benefit

and gets the profit J ′i = maxT J
T
i (x0, (ui, u

c
−i)), which is equal to 13.002, when T = 11. Moreover, in

Figure 2 we see that

lim
T↓∞

JTi (x0, (ui, u
c
−i)) = Jci ,

i.e., JTi converges from the right to Jci (see Corollary 2).

0 20 40 60 80 100
t0

2

4

6

8

10

12

14

J
T

Figure 2: Blue: profit of a deviating player JT
i as a function of T ; red: profit in the coordinated strategy profile Jc

i ,
α = 0.95

Consider a second run where we decrease α from 0.95 to 0.8, while keeping the same values for

other parameters. The Nash equilibrium in linear strategies is defined by γnci = 0.179487, and player

i’s payoff is 47.689, for all i ∈ N . The state trajectory is depicted in Figure 3(a), and the steady
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state is 0.045. We see that the moratorium level is crossed by the equilibrium state trajectory. The

condition in (10) reads

n ≤ 1.274,

and is clearly not satisfied for n = 3.

0 5 10 15 20 25 30
t0.0

0.2

0.4

0.6

0.8

1.0

xne(t)

(a) The fish stock trajectories with the Nash equilibrium (green
— x0, blue — xnc(t), red — x)

0 5 10 15 20 25 30
t0.0

0.2

0.4

0.6

0.8

1.0

xc(t)

(b) The fish stock trajectories with coordinated strategy profile
(green — x0, blue — xc(t), red — x)

Figure 3: The game with moratorium when α = 0.8

With this parameter constellation, the moratorium duration is t′ = 7. The coordinated strategy

profile is defined by

γci = 0.110, ∀i ∈ N.

The corresponding state trajectory is depicted in Figure 3(b), and player i’s payoff is Jci = 16.345.

For this run, the condition in Proposition 6 is satisfied and the coordinated strategy profile is the

Nash equilibrium. The profit of a deviating player JTi (x0, (ui, u
c
−i)) as a function of T is represented

in Figure 4. For any T ≥ 1, we have JTi (x0, (ui, u
c
−i)) < Jci . Moreover, in Figure 4 we see that

lim
T ↑∞

JTi (x0, (ui, u
c
−i)) = Jci ,

i.e., JTi converges from the left to Jci .

0 20 40 60 80 100
t0

5

10

15

J
T

Figure 4: Blue: profit of a deviating player JT
i as a function of T ; red: profit in the coordinated strategy profile Jc

i ,
α = 0.8

6 Conclusion

In this paper, we considered a great fish war game with moratorium, and determined the conditions

under which a moratorium is never declared. When these conditions are not satisfied, we provided a
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simple formula that gives its optimal duration. Also, we showed that a coordinated strategy profile

can be defined to avoid the moratorium and found the conditions under which it is Nash equilibrium

in the class of linear-state strategies.

Few extensions to our work would be worth considering. First, having a fishery with multiple

species biologically interacting with each other. Second, letting the central planner be an active player

pursuing a certain objective. Third, allowing for asymmetries between the players. Finally, it would

be interesting to analyze a case where the dynamics are stochastic. Clearly, all these extensions are

computationally challenging, and most likely only a numerical solution approach could be implemented.

Appendix

Appendix A. Proof of Proposition 2

We write the HJB equation for player i, that is

Vi(x) = max
ui≥0

d+ lnui + ρVi

(x−
n∑
j=1

uj)
α

 . (21)

Following Lehvari and Mirman (1980), we assume the value function is of the following form:

V nci (x) = Anci lnx+Bnci , i = 1, . . . , n.

The above form yields

V nci (x) = max
unci ≥0

d+ lnunci + ρAnci ln

(x−
n∑
j=1

uncj )α

+ ρBnci

 . (22)

Finally, maximizing the right-hand side of Equation (22) and assuming symmetric players give

1

unci
− ραAnci
x− nunci

= 0,

which yields the equilibrium stationary strategy

unci (x) =
1− αρ

n(1− αρ) + αρ
x = γnci x, i = 1, . . . , n.

Replacing unci by its value from Equation (4), we obtain

V nci (x) = Anci lnx+Bnci = d+ (1 + ραAnci ) lnx+ ραAnci ln(1− nγnci ) + ρBnci + ln γnci ,

where

Anci =
1

1− ρα
,

Bnci =
ρα ln(1− nγnci ) + (1− ρα)(d+ ln γnci )

(1− ρα)(1− ρ)
.

Substituting for the initial condition x(0) = x0 and the expressions of γnci , Anci , and Bnci in V nci (x(0))

given above, we get after simple algebraic transformations

V nci (x0) =
d

1− ρ
+

lnx0
1− αρ

+
αρ ln(αρ) + (1− αρ) ln(1− αρ)− ln(n(1− αρ) + αρ)

(1− ρ)(1− αρ)
.
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Appendix B. Proof of Proposition 3

We substitute the values of γnci into the steady state expression of the stock given by (6), and requiring

that x∞ ≥ x, we obtain

xnc∞ =

(
1− n(1− αρ)

n(1− αρ) + αρ

) α
1−α

≥ x,

which can be rewritten as

n ≤ αρ(1− x 1−α
α )

(1− αρ)x
1−α
α

.

Appendix C. Proof of Lemma 1

We can easily prove the lemma by solving Equation (11) taking into account the state dynamics

Equation (2) with initial condition x(T ) = x. We obtain that

x(T + t′) = xα
t′

= x0,

from which it follows that

αt
′

=
lnx0
lnx

,

and finally,

t′ =
ln
[
ln x0

ln x

]
lnα

.

Appendix D. Proof of Proposition 4

We find the feedback Nash equilibrium in finite-horizon symmetric game using Bellman equation by

backward induction. We start with the game of one-stage duration and find V (T − 1, x(T − 1)). The

terminal condition is x(T ) = x, and obviously, due to symmetric players, the equilibrium strategy of

any player i ∈ N is ui(T − 1, x(T − 1)) such that

(x(T − 1)− nui(T − 1, x(T − 1)))α = x.

Solving this equation for ui(T − 1, x(T − 1)), we obtain that

ui(T − 1, x(T − 1)) =
x(T − 1)− x1/α

n
.

The value of Bellman function for t = T − 1 is

Vi(T − 1, x(T − 1)) = d+ lnui(T − 1, x(T − 1)) = d+ ln

[
x(T − 1)− x1/α

n

]
.

When t = T − 2, then the Bellman equation is

Vi(T − 2, x(T − 2)) = d+ max
ui(T−2,x(T−2))∈[0,x(T−2)]

{
lnui(T − 2, x(T − 2))

+ ρVi

(
T − 1,

(
x(T − 2)− ui(T − 2, x(T − 2))−

∑
j∈N,j 6=i

uj(T − 2, x(T − 2))
)α)}

.

Substituting Vi(T − 1, x(T − 1)) into the last equation, and using notation ui(T − 2, x(T − 2)) = ui
for simplicity, we solve the maximization problem in the RHS of the last equation. The strategy ui
should satisfy the equation:

1

ui
− αρ (x(T − 2)− nui)α−1

(x(T − 2)− nui)α − x1/α
= 0,
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or equivalently,

(x(T − 2)− nui)α − αρui(x(T − 2)− nui)α−1 = x1/α.

We can rewrite the equation as follows:

(x(T − 2)− nui)α−1(x(T − 2)− (n+ αρ)ui) = x1/α. (23)

This equation has a unique solution ui ∈ [0, x(T − 2)], but it is difficult to write it in an explicit form.

But we can use the following approximation of the solution when n is large and/or α is quite small,

that is

ui = ui(T − 2, x(T − 2)) =
x(T − 2)− x1/α2

n+ αρ
.

If we substitute this approximated solution into (23), then we obtain that( αρ

n+ αρ
x(T − 2) +

n

n+ αρ
x1/α

2
)α−1

x1/α
2

= x1/α,( αρ

n+ αρ

x(T − 2)

x1/α2 +
n

n+ αρ

)α−1
x(α−1)/α

2

x1/α
2

= x1/α,( αρ

n+ αρ

x(T − 2)

x1/α2 +
n

n+ αρ

)α−1
= 1,

which is approximately satisfied if n
n+αρ close to one, which is reached when αρ is small and n is large.

Proceeding with the backward induction we can obtain such an approximation for any t and any

x(t), that is

ui(t, x(t)) =
x(t)− x1/αT−t

n+
T−t−1∑
k=1

(αρ)k
.

Appendix E. Proof of Proposition 5

By definition, the coordinated strategy profile is such that x∞ = x. From Equation (6), solving

(1− nγci )
α

1−α = x,

we find the harvesting share

γci =
1

n

(
1− x

1−α
α

)
, i ∈ N.

Substituting this value into (5), we obtain an expression for the fish stock at any time, that is,

xc(t) = xα
t

0 x
1−αt ,

for any t > 0.

To calculate any player i’s payoff in the coordinated strategy profile, we substitute uci (x) = γci x
c

into the payoff function and get

Jci = Ji(x0, u
c) =

∞∑
t=0

ρt
(
d+ lnuc(x(t))

)
=

d

1− ρ
+

∞∑
t=0

ρt ln
[xαt0 x1−αt

n

(
1− x

1−α
α

) ]
=

d

1− ρ
+

∞∑
t=0

ρt
[

ln
(

1− x
1−α
α

)
+ αt lnx0 + (1− αt) lnx− lnn

]
=

d

1− ρ
+

1

1− ρ
ln

(
x(1− x 1−α

α )

n

)
+

∞∑
t=0

(αρ)t(lnx0 − lnx)

=
d

1− ρ
+

1

1− ρ
ln

(
x(1− x 1−α

α )

n

)
+

1

1− αρ
ln

(
x0
x

)
,

which finishes the proof.
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Appendix F. Proof of Proposition 6

Player i’s payoff, i ∈ N , in the game is Jci = Ji(x0, u
c) given by (19) if players adopt coordinated

strategy profile. We calculate the payoff of player i, who individually deviates from strategy uci (x) =

γci x to linear-state strategy ui(x) = γ′ix, where γ′i 6= γci . We denote this profile by (ui(x), uc−i(x)).

Obviously, if γ′i < γci , then his payoff decreases when all other players use their coordinated strategies

γcj , j ∈ N , j 6= i. It immediately follows from the form of the payoff function (3) and because

the moratorium is not applied as the steady state stock in profile (ui(x), uc−i(x)) is larger than in

profile uc(x).

We consider the case when γ′i > γci . In this case, the moratorium will be applied because the steady

state stock in profile (ui(x), uc−i(x)) will be lower than x. Therefore, there exists a time period T , at

which the moratorium starts and lasts for t′ periods. The duration of moratorium regime t′ is defined

by (12). We calculate the payoff of player i in strategy profile (ui(x), uc−i(x)) and compare it with Jci .

The payoff of the deviating player i in the game is

J ′i = max
T

JTi (x0, (ui, u
c
−i)), (24)

where JTi (x0, (ui, u
c
−i)) satisfies equation

JTi (x0, (ui, u
c
−i)) =

T−1∑
t=0

ρt(d+ lnui(t, x(t))) + ρT+t′JTi (x0, (ui, u
c
−i)), (25)

where ui(t) = γ′ix(t), s.t. state dynamics

x(t+ 1) = (x(t)−
∑

j∈N,j 6=i

ucj(t)− ui(t))α, (26)

t = 0, 1, . . . , T − 1, T + t′, . . . , 2T + t′ − 1, 2T + 2t′, . . .

x(t+ 1) = (x(t))α,

t = T, . . . , T + t′ − 1, 2T + t′, . . . , 2T + 2t′ − 1, . . .

Form (25) we can find JTi (x0, (ui, u
c
−i)), that is

JTi (x0, (ui, u
c
−i)) =

1

1− ρT+t′

T−1∑
t=0

ρt(d+ lnui(x(t))). (27)

As the game is considered in a discrete time, the player can deviate from strategy profile uci by choosing

strategy ui(x) = γ′ix such that γ′i > γci and x(T ) = x for a given T = 1, 2, 3, . . ., where x(t) satisfies

dynamics (26).

First, we find such a strategy ui(x) = γ′ix from the condition x(T ) = x. Substituting coordinated

strategies γcj of all the players j ∈ N , j 6= i into (5), we obtain an equation

x = xα
T

0

1−
∑

j∈N,j 6=i

γcj − γ′i


[
α(1−αT )

1−α

]
,

x = xα
T

0

(
1− n− 1

n

(
1− x

1−α
α

)
− γ′i

)[α(1−αT )
1−α

]
.

Solving this equation, we can find the strategy of player i defined by γ′i as follows:

ln

[
x

xα
T

0

]
=
α(1− αT )

1− α
ln

[
1− n− 1

n

(
1− x

1−α
α

)
− γ′i

]
,
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[
x

xα
T

0

] 1−α
α(1−αT )

= 1− n− 1

n

(
1− x

1−α
α

)
− γ′i,

γ′i =
1

n
+
n− 1

n
x

1−α
α −

[
x

xα
T

0

] 1−α
α(1−αT )

.

We can easily notice that γ′i is a decreasing function of T .

Next, we calculate the duration of moratorium regime by formula (12), that is

t′ =
ln
[
ln x0

ln x

]
lnα

,

which does not depend on players’ strategies. To be precise, as t′ has to be a natural number, we

round it up, and define t′ := dt′e.

So, for any given T = 1, 2, . . ., knowing the moratorium duration t′, we can calculate the strategy

γ′i > γci and payoff of the deviating player by (27), that is

JTi (x0, (ui, u
c
−i)) =

1

1− ρT+t′

T−1∑
t=0

ρt(d+ ln(γ′ix
′(t))),

where x′(t) is defined by equation (5) from Proposition 1 substituting γ′i defined above and coordinated

strategies γcj for j 6= i:

x′(t) = xα
t

0

(
1− n− 1

n

(
1− x

1−α
α

)
− 1

n
− n− 1

n
x

1−α
α +

[
x

xα
T

0

] 1−α
α(1−αT )

)α(1−αt)
1−α

= x
1−αt

1−αT x
αt−αT

1−αT
0

for t = 1, 2, . . . , T .

Substituting expressions of γ′i and x′(t) into JTi (x0, (ui, u
c
−i)) we obtain

JTi =
1

1− ρT+t′

T−1∑
t=0

ρt(d+ ln γ′i + lnx′(t))

=
1

1− ρT+t′

T−1∑
t=0

ρt

(
d+ ln γ′i + ln

(
x

1−αt

1−αT x
αt−αT

1−αT
0

))

=
(1− ρT )

(1− ρ)(1− ρT+t′)

(
d+ ln γ′i +

1

1− αT
lnx− αT

1− αT
lnx0

)
+

1

1− ρT+t′

T−1∑
t=0

ρtαt
1

1− αT
ln

(
x0
x

)
=

(1− ρT )

(1− ρ)(1− ρT+t′)

(
d+ ln γ′i +

1

1− αT
lnx− αT

1− αT
lnx0

)
+

(1− (αρ)T )

(1− αT )(1− αρ)(1− ρT+t′)
ln

(
x0
x

)
.

We should mention that the last expression is an expression of player i’s payoff if she individually

deviates from the coordinated strategy profile.

Obviously, if Jci ≥ J ′i = maxT J
T
i (x0, (ui, u

c
−i)), then the coordinated strategy profile is the Nash

equilibrium in the class of linear-state strategies (4).
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[19] González-Sánchez, D., Hernández-Lerma, O. (2013) Discrete-Time Stochastic Control and Dynamic Po-
tential Games. The Euler-Equation Approach. Springer.

[20] Gromov, D., Gromova, E. (2017). On a Class of Hybrid Differential Games. Dynamic Games and Appli-
cations 7, 266–288.

[21] Gronbæk, L., Lindroos, M., Munro, G., & Pintassilgo, P. (2018). Game theory and fisheries.

[22] Hannesson, R. (2011). Game theory and fisheries. Annu. Rev. Resour. Econ., 3(1), 181–202.

[23] Hardin, G. (1968). The tragedy of the commons: the population problem has no technical solution; it
requires a fundamental extension in morality. science, 162(3859), 1243–1248.

[24] Hewison, G. J. (1994). The Legally Binding Nature of the Moratorium on Large-Scale High Seas Driftnet
Fishing. J. Mar. L. & Com., 25, 557.

[25] Jokar, M., Subbey, S., & Gjøsæter, H. (2021). A logistic function to track time-dependent fish population
dynamics. Fisheries Research, 236, 105840.



Les Cahiers du GERAD G–2022–07 19

[26] Jongman, R. G. H., Ter Braak, C. J. F., & Van Tongeren, O. F. R. (1987). Data Analysis in Community
and Landscape Ecology, -Pudoc, Wageningen, 299pp.

[27] Khan, A. M., Gray, T. S., Mill, A. C., Polunin, N. V. (2018). Impact of a fishing moratorium on a tuna
pole-and-line fishery in eastern Indonesia. Marine Policy, 94, 143–149.

[28] Kwon, O. S. (2006). Partial international coordination in the great fish war. Environmental and Resource
Economics, 33(4), 463–483.

[29] Lambshead, P. J. D., Platt, H. M., & Shaw, K. M. (1983). The detection of differences among assemblages
of marine benthic species based on an assessment of dominance and diversity. Journal of natural History,
17(6), 859–874.

[30] Levhari, D., Mirman, L.J. (1980). The Great Fish War: An Example Using a Dynamic Cournot-Nash
Solution. The Bell Journal of Economics, 11(1), 322–334.

[31] Van Long, N., Prieur, F., Tidball, M., Puzon, K. (2017). Piecewise closed-loop equilibria in differential
games with regime switching strategies. Journal of Economic Dynamics and Control, 76, 264–284.

[32] Magurran, A. E. (1988). Ecological diversity and its measurement. Princeton university press.

[33] Mailath, G. J., Samuelson, L. (2006). Repeated Games and Reputations: Long-Run Relationships. Oxford
University Press.

[34] Mazalov, V.V., Rettieva, A.N. (2010). Fish wars and cooperation maintenance. Ecological Modelling.
221(12), 1545–1553.

[35] McCrea-Strub, A., Zeller, D., Sumaila, U. R., Nelson, J., Balmford, A., & Pauly, D. (2011). Understanding
the cost of establishing marine protected areas. Marine Policy, 35(1), 1–9.

[36] Miller, S., & Nkuiya, B. (2016). Coalition formation in fisheries with potential regime shift. Journal of
Environmental Economics and Management, 79, 189–207.

[37] Mora, C., Myers, R. A., Coll, M., Libralato, S., Pitcher, T. J., Sumaila, R. U., ... & Worm, B. (2009).
Management effectiveness of the world’s marine fisheries. PLoS biology, 7(6), e1000131.

[38] Munro, G. (2010). The economics of overcapacity and the management of capture fishery resources: a
review. International Review of Environmental and Resource Economics, 4(2), 93–122

[39] Nævdal, E. (2001). Optimal Regulation of Eutrophying Lakes, Fjords and Rivers, Amer. J. Agric. Econ.
83, 972–984.

[40] Nævdal, E. (2003). Optimal regulation of natural resources in the presence of irreversible threshold effects.
Natural resource modeling. 16(3), 305–333.

[41] Nowak, A. (2006). A note on an equilibrium in the great fish war game. Economics Bulletin, 17(2), 1–10.

[42] Olney, J. E., & Hoenig, J. M. (2001). Managing a fishery under moratorium: assessment opportunities
for Virginia’s stocks of American shad. Fisheries, 26(2), 6–12.

[43] Ostrom, E., Walker, J., & Gardner, R. (1992). Covenants with and without a sword: Self-governance is
possible. American political science Review, 86(2), 404–417.

[44] Perrings, C., Pearce, D. (1994). Threshold Effects and Incentives for the Conservation of Biodiversity,
Environ. Resource Econ. 4, 13–28.

[45] Polasky, S., de Zeeuw, A., Wagener, F. (2011). Optimal management with potential regime shifts. Journal
of Environmental Economics and Management 62, 229–240.

[46] Radner, R. (1980). Collusive behavior in non-cooperative epsilon-equilibria of oligopolies with long but
finite lives. Journal of Economic Theory. 22, 136–156.

[47] Rice, J. C. (2000). Evaluating fishery impacts using metrics of community structure. ICES Journal of
marine Science, 57(3), 682–688.

[48] Rose, G. A., Rowe, S. (2015). Northern cod comeback. Canadian Journal of Fisheries and Aquatic Sciences,
72(12), 1789–1798.

[49] Rosenberg, A. A. (2007). Fishing for certainty. Nature, 449(7165), 989–989.

[50] Schrank, W. E. (2005). The Newfoundland fishery: ten years after the moratorium. Marine Policy, 29(5),
407–420.

[51] Sala E. , Costello C., Parme J. D. B., Fiorese M., Heal G., Kelleher K., Moffitt R., et al. 2016. Fish banks:
an economic model to scale marine conservation. Marine Policy, 73: 154–161.

[52] Sheldon, R. W., Prakash, A., & Sutcliffe Jr, W. (1972). The size distribution of particles in the Ocean 1.
Limnology and oceanography, 17(3), 327–340.

[53] Shin, B. B., Conrad, J. M., Lawell, C. Y. C. L. (2019). On the optimality of a fishery moratorium. Working
Paper. Cornell University.



Les Cahiers du GERAD G–2022–07 20

[54] Sumaila, U. R. (2021). Infinity Fish: Economics and the Future of Fish and Fisheries. Elsevier.

[55] Warwick, R. (1986). A new method for detecting pollution effects on marine macrobenthic communities.
Marine biology, 92(4), 557–562.

[56] Wang, Y., Duan, L., Li, S., Zeng, Z., & Failler, P. (2015). Modeling the effect of the seasonal fishing
moratorium on the Pearl River Estuary using ecosystem simulation. Ecological Modelling, 312, 406–416.

[57] Warwick, R. M., & Clarke, K. R. (1995). New biodiversity measures reveal a decrease in taxonomic
distinctness with increasing stress. Marine ecology progress series, 129, 301–305.

[58] Warwick, R. M., and T. H. Pearson (1987). Detection of pollution effects on marine macrobenthos: further
evaluation of the species abundance/biomass method. Marine biology, 95(2), 193–200.


	Introduction
	Literature review

	The model
	Always normal regime
	Normal and moratorium regimes
	How to avoid a moratorium?
	An illustrative example

	Conclusion

