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Abstract : We formulate an efficient approximation for multi-agent batch reinforcement learning,
the approximated multi-agent fitted Q iteration (AMAFQI). We present a detailed derivation of our
approach. We propose an iterative policy search and show that it yields a greedy policy with respect to
multiple approximations of the centralized, learned Q-function. In each iteration and policy evaluation,
AMAFQI requires a number of computations that scales linearly with the number of agents whereas the
analogous number of computations increase exponentially for the fitted Q iteration (FQI), a commonly
used approaches in batch reinforcement learning. This property of AMAFQI is fundamental for the
design of a tractable multi-agent approach. We evaluate the performance of AMAFQI and compare it
to FQI in numerical simulations. The simulations illustrate the significant computation time reduction
when using AMAFQI instead of FQI in multi-agent problems and corroborate the similar performance
of both approaches.

Keywords : approximate dynamic programming, batch reinforcement learning, Markov decision
process, multi-agent reinforcement learning
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1 Introduction

Reinforcement learning is a framework which considers stochastic, sequential decision-making problems
with unknown dynamics [29]. These problems are modelled as Markov decision processes (MDPs).
In each decision round of an MDP, a decision maker observes the current state of the system and
must provide a decision or equivalently, a control. A scalar reward is subsequently revealed, and
the current state shifts to a new state according to a transition function defined by the dynamics of
the problem. In reinforcement learning, the transition function is unknown. Only the reward, the
initial and resulting states, and the control are used to improve future controls. Batch reinforcement
learning [7, 14, 21] is a subfield of reinforcement learning in which information about the system in
the form of a set of historical transitions is known a priori to the decision maker. This is in contrast
to typical reinforcement learning algorithms, e.g., the @-learning algorithm [32], in which information
is gathered in an online fashion. Batch reinforcement learning improves over its online counterpart (i)
by reusing the gathered information multiple times (experience replay [17]) to increase the approach’s
convergence speed, (i) by fitting an approximated function (e.g., @ or value functions) in between
updates to mitigate instabilities, and (iii) by averaging similar transitions from the batch information
to better estimate the MDP’s stochastic model [14]. In batch reinforcement learning, a prevalent
approach [14] is the fitted @ iteration (FQI) [7].

In multi-agent reinforcement learning, agents make sequential decisions to maximize their joint
or individual rewards [4, 34]. The agents can be fully cooperative, i.e., maximizing a joint reward
function, fully competitive, i.e., the agents’ objectives are opposed, or a combination of both [4, 34].
The main challenge when considering the multi-agent reinforcement learning problem comes from the
cardinality of the joint control set as it increases exponentially with the number of agents. This adds to
the difficulty that the curse of dimensionality already poses to (approximate) dynamic programming-
based methods [4, 27, 34]. The design of an approach that relies only on local control sets is, therefore,
highly desirable to enable the implementation of batch reinforcement learning methods in real-world
multi-agent systems, e.g., electric power systems [5]. For example, the approach we present in this
work could extend current methods for demand response or distributed energy resource management
like [19, 25, 30] to multi-agent implementations and increase the benefits for the electric grid without
significantly impacting the computational cost of the approach. Other applications for multi-agent
reinforcement learning include the control of a robot team [28] or of an autonomous vehicle fleet [23],
autonomous driving [26], and stock trading [16]. In this work, we consider the batch reinforcement
learning framework and design the approximated multi-agent fitted @ iteration (AMAFQI), an efficient
approximation of FQI [7] tailored to fully cooperative, multi-agent problems.

Related work

Multi-agent reinforcement learning has been studied by many authors and the main recent advance-
ments to this body of work are reviewed in [4, 12, 22, 33]. Multi-agent extensions to the Q-learning
algorithm [32] are reviewed in [4]. Reference [33] focuses on theory-backed approaches. An overview
of multi-agent deep reinforcement learning is presented in [12, 22]. In our work, we are interested
in multi-agent extensions of batch reinforcement learning [14], and more specifically, of the kernel-
based [21] FQI [7] framework. Multi-agent problems have also been studied under other reinforcement
learning frameworks, e.g., classical Q-learning [2, 15] or actor-critic approaches [11, 34]. We review the
literature relevant to multi-agent FQI next.

To the best of the authors’ knowledge, the only extension of FQI to the multi-agent setting are
presented in [8, 9, 35]. References [8, 9] only consider deterministic problems. The extension relies on
the neural fitted @ (NFQ) algorithm [24]. The NFQ is a modified FQI approach that uses a neural network
instead of a regression tree as the fitting method used to generalize the Q)-value to all state-control pairs
(see Section 2.1). Similarly to our approach, their work is based on the ideas of [15] in which an efficient
multi-agent @Q-learning algorithm [32], the Distributed @Q-learning algorithm, for online, deterministic
settings is presented, to obtain an approach that does not require computations over the joint control
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set. The work of [8, 9] differs from ours because it uses an opportunistic approach enabled by the
deterministic setting. Furthermore, [8, 9] only provide an empirical analysis of their algorithm because
the properties of the neural network are hard to analyze. In our work, we (i) consider general stochastic
problems, (ii) present a detailed derivation for AMAFQI, and (iii) provide a convergence analysis of the
approximated local Q-functions used by our approach. Moreover, we characterize the performance of
the greedy policy for AMAFQI. Lastly, [35] proposes a general, fully decentralized, multi-agent fitted @
algorithm that accounts for competitive agents and where any function approximator can be used to
approximated the local @-function. The authors further derive a finite-sample performance guarantee
for their approach. However, [35]’s algorithm requires optimizing local Q-function over the joint control
space which grows exponentially with the number of agents. Our main contribution is to provide an
approach which uses only local control spaces.

Our specific contributions are:

e We formulate the approximated multi-agent fitted @ iteration (AMAFQI). AMAFQI is an efficient
approximation of the FQI algorithm for multi-agent settings. In each iteration, AMAFQI’s compu-
tation scales linearly in the number of agents instead of exponentially as in FQI.

e We propose a policy search for AMAFQI and show that it is a greedy policy with respect to the
approximation of the centralized, learned Q-functions from each agent.

e We derive a very efficient extension of AMAFQI, AMAFQI-L, that further reduces the computation
requirement of the approach.

e We show the convergence of the local @-function approximations computed by AMAFQI to unique
and finite functions.

e We numerically evaluate the performance of AMAFQI. We show the similar performance and
significant decrease in computation times when AMAFQI and AMAFQI-L are used instead of FQI.

2 Preliminaries

We consider an MDP (X, U, f,r) where multiple agents must implement a control to maximize their
expected joint cumulative reward. Let m € N be the number of agents. We assume m > 1. Let
X CR™™ Y CRP*™ and W C R**™ where n,p, s € N be the joint state, control, and disturbance
space, respectively. Let x € X be a joint state, u € U be a joint control, and w € W be a random
disturbance. Let f : X xU xW — X express the state transition function of the problem. The function
f maps an initial state, a control and a disturbance to a resulting state. Lastly, let r : X xU x W — R
be the function that returns the reward associated with an initial state, control, final state, and
disturbance tuple. We make the following assumption regarding the reward function.

Assumption 1. The reward function r is bounded below and above such that 0 < r(x,u,w) < R < 400
for all (x,u,w) € X xU x W.

The assumption on the upper bound of the reward function is a standard assumption for MDPs
in reinforcement learning [7]. The lower bound assumption is mild because if not met, a constant
can be added to the reward function so that it is non-negative. This translation does not change the
optima [15].

To easily differentiate local and joint controls, we define local control variables and spaces. We let
A7 C RP be the local control space of agent j where U = X7y AJ. We denote a local control by a € A’
and add the superscript j to refer to the j*™ agent if needed.

Formally, the m agents want to cooperatively solve the following problem:

~—

+oo
max E Z BT r(xr,ur, wr) (1
{uTeu};iol T—1
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where 8 € [0,1) is the discount factor. The variables ur and x7 represent the joint control and state
at the decision round 7T, respectively. The random disturbance at T is represented by wp. Successive
states are obtained from xr41 = f(x7,ur, wr), where wp € W. The expectation in (1) is taken with
respect to the probability of wp given the state and control at round 7.

We consider the batch reinforcement learning framework [7, 14, 21]. In this setting, f is unknown
and only examples of past transitions can be used to solve (1). The decision makers or agents have
access to batch data representing historical transitions [7]. The batch data is used to first compute
an approximation of the @Q-function and, second, to evaluate a policy. Let L € N be the number of
available samples in the batch data. The batch data set Sy, is defined as:

Sp={(x,ulx,, ) € X xUx X xRy, 1=1,2,...,L},

where xl+ refers to the state observed after control u' was implemented in state x*. These samples do
not need to be generated from continuous experiments. Specifically, we focus on regression tree-based
FQI approaches [7]. FQI is introduced in detail in the next subsection.

2.1 Fitted Q iteration

We recall the motivation for FQI as presented in [7]. The state-action value or @Q-function @ : X xU — R
is the unique solution to the Bellman equation:

Q(x,u) =E [r(x,u,w) +6$25Q(f(x,u,w),u')} ,

where 8 € [0,1). The expectation is taken with respect to the probability of w given the state x and
control u. By the contraction mapping theorem [18], the @Q-function can be obtained by successively
solving

Qn(x,u) =E {r(x, u,w)+ 5$2§QN_1 (f(x,u,w),u’)} , (2)

for all N > 1 with the boundary condition Qg (x,u) = 0 for all (x,u) € X x Y. In the deterministic
case, (2) can be expressed as:

QN (Xa ll) = T(Xv ll) + 6 $2§ QN—l (6(){7 u)v u/) )

where § : X x U — X is the deterministic function that returns the resulting state given a pair state-

control. Given Sy, and supposing QQn_1 is available, then for all data points [ = 1,2,..., L, we can
compute
Qn (x' ) =r + ﬁmai{i Q-1 (X, ), (3)
u’'e
because r(x',u’) = r! and §(x',u') = x!.. The FQI then works in the following way. Pairs of

(xl7 ul) and their respective @y (xl, ul)—value can be generated using (3) for all [ in the batch data.
Then, an approximation QIFVQI(x,u) of Qn(x,u) is obtained by fitting a function over the pairs
((xl,ul) , QN (xl,ul)) for I = 1,2,...,L. This is done to estimate the state-action values for all
state-control pairs based on the batch data. Using QFNQ_Il in (3) instead of Qn_1, we can compute
the state-action values at N, fit a function again based on the new pairs and obtain QIFVQI. This pro-
cess is then repeated until convergence. Finally, the authors of [7] argue that the process described
above provides an adequate approximation QFNQI(X, u) for the stochastic case as well. In the stochas-
tic case, the conditional expectation of (3)’s right-hand side given the current state and control is
required for the update. Least squares regression [7] or the averaging at leaf nodes of regression tree
methods [14] estimates the conditional expectation of the dependent variables given the independent
variables, respectively the Q]FVQI(XI ,u') and (Xl,ul ,xi,rl) in this setting. Least squares and tree
regression methods hence approximate the right-hand side of (3) in the stochastic case [7, 14].
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2.2 Regression tree methods

In this work, we use a regression tree to generalize the local @Q-function and state-control pairs. Re-
gression trees are chosen as the regression methods because (i) their properties allow us to establish the
AMAFQI’s convergence (see Section 4) and (ii) they are computationally efficient, scalable and robust
to noisy data [7]. We now introduce regression tree methods. Let Z C R"*? and O € R be, respec-
tively, the input and output sets of the data set D = {(i',0') € Z x 0,1 =1,2,...,L}. Regression tree
methods subdivide the input set into partitions of input points i’ using binary splits. Each partition is
then given a unique output value. In regression trees, this is typically the average of all output points
o' belonging to the partition. Multiple techniques exist to generate regression trees, e.g., KD-Tree [1],
CART [3], Totally Randomized Trees [10], or Extra-Trees [10]. The reader is referred to [13] for a
detailed description of regression trees. We now state relevant properties and assumptions which we
use in the next sections.

Using a regression tree method, a function h: T — O fitted to the data set D can be expressed as [7]:

. Lico,
h(i) = Zle kernel (i';4) o', for i € Z. The kernels are defined by: kernel (i';i) = %, where
7,6)€D NileP(3)
I, the indicator function, returns 1 if x is true and 0 otherwise, and P(i) returns the tree partition
Licp
input ¢ is part of. F sembl thods, the kernels are: kernel (i';7) = 1377 LER
input 7 is part of. For ensemble methods, the kernels are: kernel (i';4) = 1370, Somenticra’

where the subscript k refers to the k' regression tree of the ensemble which consists of e trees.

In this work, two assumptions about the regression method we use are made. These assumptions
are similar to [7].
Assumption 2. The kernels and batch data used to fit them are the same in all iterations N of AMAFQI.

Assumption 3. The kernels are normalized, i.e., ElL:l kernel (il;i) =1Viel.

Moreover, the aforementioned definition of the kernel implies that the sum of the kernel’s absolute
value is also one when Assumption 3 is satisfied because kernels are nonnegative.

As noted by [7], Assumption 2 is satisfied naturally by a tree method like the KD-Tree. If the
partitions generated by the tree method are random or depend on the output, this assumption can be
met by computing the partitions and thus the kernels only once, i.e., when the first AMAFQI iteration
is performed. This is the case, for example, for Totally Randomized Trees [10] which we use in
Section 5. Regression tree approaches satisfy Assumption 3 by construction [7, 20, 21].

3 Approximated multi-agent fitted Q iteration

We now present our multi-agent approximation of FQI, AMAFQI. The fitting iterations and policy
evaluation of AMAFQI only depend on the local control space of the agents and do not necessitate
computations over the joint control space as would require FQI. This allows AMAFQI to be a tractable
multi-agent approach for batch reinforcement learning problems because optimizing a fitted Q-function,
e.g., in (3), must be done by enumeration due to the use of regression trees. The cardinality of
the joint control space increases exponentially with the number of agents and the cardinality of the
local control space. For FQI, this thus leads to a prohibitively large number of calculations when
computing approximated @Q-functions and when evaluating the policy in multi-agent settings. In the
next subsections, we derive the AMAFQI algorithm and propose a greedy policy search for our approach.

3.1 Derivation
First, recall the standard @-learning [32] update for deterministic settings [15]:

QN(X,u):{QNl (x,u), if x# x)y oru#uy "

r(x,u) + Bmaxy ey Qn-1 (6(x,u),0’), if x=xy and u=uy,
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with Qo (x,u) = 0 for all (x,u) € X x . We remark that in the deterministic setting, the reward r
is not a function of the disturbance w. Second, consider for all agent j = 1,2,...,m, the distributed
Q-learning update for deterministic settings [15]:

Gy (60), i x#xy ora# uy())
max {q{v_l (x,a),r(x,u)

iy g (B0 u).a)}

if x = xy,u=uy, and a = uyn(j),

QgV (X7 a) =

(5)

with qé (x,a) =0 for all (x,a) € X x A. We refer to q{v as local g-functions. The proposition below
establishes a relation between the centralized and distributed updates.

Proposition 1. /15, Proposition 1] Let (x,a) € X x A and suppose that r (x,u) > 0 for all (x,u) €
X xU. Then, for a deterministic, fully cooperative problem, we have

ng(xv a) = rll;leal/}{( QN (Xv u) )

u(j)=a
forallj=1,2,...,m and N € N, where Qx and qf\, are computed using (4) and (5), respectively.

Let N € Nand j € {1,2,...,m}. Consider the sample point (Xl,ul,xi,rl) € Sp. For now, let’s
assume that the function ¢} _; (x,a) is known. We define

oy = a (x',u'())

s {0 o+ s ()

where u'(j) is the j*® component of the joint control u', i.e., the control implemented by agent j.
Proposition 1 leads to

where @y is computed via (4).

We now depart from prior multi-agent reinforcement learning approaches to derive AMAFQI. We
apply the reasoning behind FQI [7] to compute an approximation ¢/ of the local ¢’/-function. This is
done iteratively. First, we compute the ¢-function values at each batch data point using (5). Second,

we fit the approximation function (j{v (x,a) to the set {((xl,ul(j)) ,zjfv (xl,ul(j))) JA=1,2,... ,L}
using a regression tree method. Specifically, at iteration NV € N and for all samples I =1,2,..., L, let,

b = (xl,ul(j))
o = e { ey (<00 '+ 9 e 8 )}
where q% (x,a) =0 for all (x,a) € X x A. Then, we compute
quv (x,a) =RegressionTree ({ (il’j, ol[;,J) JA=1,2,... ,L} i (%, a)) (6)

Equivalently, we can express (6) as

L
gy (x,a) = Zkernel ((x"d'(); (x,a)) ok,], (7)

1=1
forall j =1,2,...,m. The FQI-based approach is used to generalize the information obtained from the

batch data to all state-control pairs [7]. The regression step estimates values of the local ¢’-function
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and thus approximates the maximum of the @-function for pairs not found in the batch data. From
the above discussion, we have that

(jgv (x,a) & max Qn (x,u), (8)
ucld
u(j)=a
In other words, ‘ﬁv (x,a) can be interpreted as the maximum of the learned, centralized Q-function
as approximated by agent j when they implement control a. Let Q% be the approximation of the
Q-function for agent j after N iterations given the available batch data. We can redefine ¢} (x,a) in

terms of the centralized Q-function approximation, Ci)gv, as:

¢ (x,a) = max Q% (x,u). (9)
ueld
u(j)=a
The right-hand side of (9) is similar to (8)’s and, hence, approximates the maximum of the central-
ized Q-function by the FQI approach [7]. We assume that @} be a monotonically increasing. This
assumption is justified by the fact that the Q-function, the ¢’-function, and the FQI approximation
of the Q-function are all monotonic. The monotonicity follows in all three cases from the structure
of the updates when r(x,u) > 0 for all (x,u) € & x U (see Lemma 1). Thus, we assume that an

approximation Qg\, of the centralized @Q-function from each agent should share this property.

Next, we extend the aforementioned approach to the stochastic setting. Let j € {1,2,...,m} and
N € N. The stochastic analog of (5) [15] is:

vy (x,0), if x #£xy or a#un(j)

i) — max {qfv_l (x,a),E[r(x,u,w) 0
w ( ’a) +Bmax, e 45 qgvfl (f(X, u, W)? CLI):| } ’ ( )

if x =xy,u=uy, and a = uyn(j).

The approximation of the local q{v—functions for stochastic problems are evaluated as follows. For all
NeNandl=1,2,...,L, let

b — (xl,ul)

okl =rl 4 ﬁa/mee%_ vy (x4, d),

where @) (x,a) = 0 for all (x,a) € X x A. We remark that (10), in comparison to the deterministic
update given in (5), requires the evaluation of an expectation when the local ¢/-function is updated.
Hence, the pairs i/ and oé{,j cannot be fitted directly as it was done for the deterministic setting.
Similarly to [7], a regression tree can be used to estimate an expectation. In our case, we apply
a regression tree method over the set of joint states and actions to approximate the expectation
from (10)’s second line. We refer to this expectation approximation as the local auxiliary qfv—functions,
(j{v, which we express as:

L
‘ﬁv (x,u) = Zkernel ((xl7 ul) ; (x,u)) 05{73'7 (11)
=1

where kernel ((xl7ul) 5 (x, u)), I = 1,2,...,L are computed using a regression tree over the joint

control set Y. Similarly to [7], a regression tree is used to estimate a conditional expectation. In
our case, we approximate the argument of (10)’s maximum, which we denote cﬁ\, (x,u). This is
motivated by the fact that a regression tree averages the value of the outputs, viz., r (x,u,w) +
Bmax, ¢ ai qfv_l (f(x,u,w),a’), corresponding to the inputs in a given leaf node or partition, viz.,
the state-control pairs from the batch data. Alternatively, a linear regression or the Robbins-Monro
approximation can be used to estimate the conditional expectation [7, 15].
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Finally, the approximation of the local qf\,—function at (x,a) € X x A is given by:

L
quv (x,a) = Zkernel ((xl, ul(j)) : (x,a)) max {qgv_l (xl, ul(j)) N (xl, ul)} , (12)
1=1

where this time, kernel ((Xl7 u! (])) 5 (x, a)), l=1,2,...,L are computed using a regression tree over
the local control space A7. We remark that while g (x,u) is a function of the joint control space,
we do need to evaluate its maximum over the joint control space and, therefore, ¢} (x,u) leads to no
G —dhoa|| <e for
some set tolerance € > 0. A detailed representation of AMAFQI is provided in Algorithmool. Lastly,

establishing an exact relation between the ¢/-functions and the centralized Q-function as computed by
FQI from Section 2.1 is a topic for future work.

scalability issue. Finally, we compute qﬂ‘\,, N = 1,2,..., iteratively until a

Algorithm 1 Approximated multi-agent fitted () iteration (AMAFQI)
Parameters: L, Sp, 83€[0,1),e>0
Initialization: N =0, ¢} (x,a) = 0 for all j,x, a.

1: Compute kernel ((xl7 u! (])) 5 (x, u(]))) and kernel ((xl7 ul) ; (%, u)) for all [ and j using a regression tree algorithm.

2: while H(ﬁv - quV—lH > ¢ do
33 N=N+1 -
4: forj=1,2,...,mdo
5: for!=1,2,...,L do
6: Generate the fitting pairs:

it = (x',ul ()

U ~j ( 1 /)

N r+,6’£§1§,§‘qN_1 xy,a ).
T end for
8: end for
9: forj=1,2,...,mdo )
10: Compute the auxiliary (jgv-function:

gy (x,u) = Zkernel ((xl, ul) ; (%, u)) 05{,].
=1
11: Update the qgv—function:
(jg\, (x,a) = Zkernel ((xl,ul(j)) ; (%, a)) max {(jfvil (xl,ul(j)) ,qjv (xl,ul)} .
=1

12:  end for

13: end while

3.2 Greedy policy search

Next, we propose a policy search for AMAFQI. We note that there are no guarantees that locally
maximizing ¢’-functions leads to a joint optimal policy, e.g., if there are many joint optimal controls
for a given state, maximizing ¢’ across the agents j = 1,2,...,m can lead to local controls belonging
to different joint optima, thus, resulting in a suboptimal joint control [15]. For this reason, our policy
search sequentially identifies controls that yield an increase in ¢7’s maximum. The policy search is
presented in Algorithm 2 and is shown to be a greedy policy in Theorem 1. The search can be extended
to decentralized settings using a coordination mechanism [2, 4, 31]. Specifically, the decision set is
ordered and tie breaking within the regression (Algorithm 1, Line 1) or classification (Algorithm 2,
Line 9) trees is done according to this ordering. The batch data is also ordered and made available to
all agents. Using this convention, each agent computes the ¢’-function for all j and uses Algorithm 2
to compute a unique greedy policy. Because the policy is unique, the local control implemented by
agent j leads to a joint greedy control.
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Algorithm 2 Policy search for AMAFQI

Parameters: L, S, B €[0,1),0 < e <+, L(x) for all x € X, and p € R.
Initialization: N = 0, mwo(x!) = p1 for all I.

: for all iteration N do
for x € X do
for [ in £(x) do
Update policy 7y (x) according to (13).
end for
end for
end for

: if w(x) = pl for x € X then
Generalize the greedy policy:

7ty (x) =ClassificationTree ({ (xl,ﬂ(xl)) ,1=1,2,... L] TI'N(Xl) #+ pl} ,x)

10: end if

Let j € {1,2...,m}, 1 € {1,2,...,L}. Let 0 < € <y < 400. The parameter v governs how the
policy is iteratively updated, and is related to e, the maximum difference between two consecutive
cﬁv values at convergence (see Algorithm 1, line 2). Parameter vy can be equal to but no smaller
than e. Choosing v larger than € may enable the identification of suboptimal actions in cases where
smaller values of v lead to an inconclusive policy search. In this sense, by enabling a relaxation of the
stringency of the policy, this parameter provides practical value, however we leave the exploration of
its theoretical properties to future work. Let L£(x) = {l =1,2,...,Lx =x!, (xl, u',x!,, Tl) € SL} for
all x € X. The set £(x) identifies sample points [ such data x! = x. Let N € N where N > 1. Consider
the policy wy : X — U evaluated at a point from the batch data provided in (13) with 7 (x) = pl
for all x € X.

u!, if max,e 4s ‘ﬁv (x,a) — maxge 45 ‘j‘?\rq (x,a) >~y Vje{l,2,...,m}
and G4 (x,u'(j)) = max,e4i % (x,a) Vj € {1,2,...,m}, s.t. | € L(x)
7N (x) = pL, if max,eai Gy (%,a) —max,e s Gy (x,0) 2y Vj € {1,2,...,m}

and @y (x,u'(j)) # max,e4i ¢ (x,a) for j € {1,2,...,m}, s.t. | € L(x)
mn_1(x), otherwise.
(13)
In (13), 1 is an m-dimensional vector consisting only of ones and p is an auxiliary parameter used to
indicate that no control within the data set corresponds to the greedy maximum for state x after the
N*h AMAFQI iteration. It is used to restart the search. If my (x) = pl when the search ends, then
the policy for state x must be approximated from similar states x’ for which a greedy decision has
been identified, i.e., 7wy (x') # pl. This will be discussed at the end of this section. We now have the
following results about the policy (13).
Theorem 1. Let | € {1,2,...,L} such that wn (x') # pl and 0 € mwy (x'). Then, for all j =
{1,2,...,m}, we have: B B
max Qy (x',u) — Q) (x',) < 27,
and TN (xl) is a 2y-greedy policy at x' with respect to all ng, the monotonic approrimations of the
centralized Q-function from each agent.

The proof of Theorem 1 is presented in A. The above policy search identifies controls using cﬂ\,—
values that are within 2y of the Q% ’s maximum for states x that belongs to the batch data. The
search is inconclusive if the optimal control with respect to Qz\, at state x € X' for some agent j is not
in the batch data or if the optimal control performed poorly when sampled to generate the batch data
because of stochasticity.

If w(x) # pl for all x € X, then the policy can be used directly. If w(x) = pl for some x € X,
then we use an approximation to generalize the policy to all states similarly to the approach used to
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generalize the ¢-value to all state-control pairs. Let wx : X — U be the approximation of the greedy
policy with respect to all Q%, j =1,2,...,m

#n (x) =ClassificationTree ({ (x', 7w (x")) , 1 =1,2,..., L|wn(x") # p1},x) (14)

Finally, if w(x ) pl for all x € X, the batch data does not permit to identify a 2y-greedy policy with
respect to all QJ -functions. We remark that # only needs to be computed once when the AMAFQI
has converged to the ¢/ functions. Thus, a significant advantage of AMAFQI’s policy is that once the
AMAFQT algorithm has converged, little to no computations are required to determine the controls when
the policy is used. In comparison, the maximum over the joint control space U of the approximated Q-
function needs to be computed when FQI is implemented. This must be done by enumeration because
the maximization problem is neither analytically nor numerically solvable. In a multi-agent setting,
the cardinality of the joint control space increases exponentially with the number of agents. Thus,
removing the need to compute this maximum further reduces the computational burden of FQI when
AMAFQI is used.

3.3 AMAFQI-L update

In the previous subsection, we presented a 2v-greedy policy search with respect to the approximations
of the centralized @Q-function of all agents j. This policy search can be modified to only use the
cﬁv—function of a single agent j. We refer to this alternate policy as AMAFQI-L. Because of (8), the
maximum of a single quv still approximates the centralized @-function’s maximum. The difference is
that AMAFQI-L is now a 27v-greedy policy with respect to agent j’s approximation of the centralized
@-function rather than with respect to the approximation of all agents. Thus, this approximation
is looser than the previous one. The main gain is, however, computational efficiency because only a
single ¢7-function must be iteratively computed. The computational requirement is thus constant with
respect to the number of agents whereas it scales linearly and exponentially with the number of agents
for AMAFQI and FQI, respectively.

AMAFQI-L’s algorithm is similar to AMAFQI, except that j is set to a constant value within
{1,2,...,m} throughout the iterations N and the policy search. The algorithm is presented in Algo-
rithm 3 of B. The AMAFQI-L policy search is identical to AMAFQI’s, but uses (15) instead of (13):

u, if max,e a5 G (x,a) - MaX,e A7 Gy (x,0) >y
and ¢y (x,u'(j)) = max,c4i Gy (x,a), s.t. [ € L(x)
Ty () = qpl, i maxeew Gy (X,0) — maxeen Gy (X,0) > (15)

and ¢y (x,u'(j)) # max,c 4 @3 (x,a), s.t. | € L(x)
mn—1 (X), otherwise.

The above discussion is formalized by the following result.

Corollary 1. Consider Theorem 1’s assumptions, and suppose j € {1,2,...,m}. Ifu € wk (xl), then
we obtain: maxycy Qg\, (xl7 u) Q] (x u) < 27, and 7§ (xl) is a 2y-greedy policy at x' with respect
to ng

The proof follows from Theorem 1 for a single j.

4 Convergence

We show that each local qg\, function defined in (12) converges to a unique and finite function with
respect to the infinity norm. We first establish the monotonicity of ¢} for all j.

Lemma 1. Suppose r (x,u,w) > 0 and (jg (x,a) =0 for all (x,a,w) € X Xx Ax W, then ‘ﬁv (x,a) <
‘j{v+1 (x,a) for all (x,a) € X x A and N € N.
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We now state the convergence result.
Theorem 2. Suppose Assumptions 1—3 hold and q%()ga) = 0 for all (x,a,w) € X x Ax W and
j=1,2,...,m. Then ¢4 (x,a) converges to the unique limit QJSL (x,a), i.e., the uniqgue mazimum of
the Qj—function for x and u(j) = a when estimated using the data set S;,. Moreover, for all € > 0,
there exists n(j) € N such that for all N > n(j),

< €.

oo

~J ~J
aN — qSL

The proofs of Lemma 1 and Theorem 2 are in C and D, respectively. Theorem 2 ensures that
there exist unique, finite-valued ¢7-functions for the data set S; which can be used for the policy
search. Thus, q%L-functions for the data set S; can always be computed under the aforementioned
assumptions. We remark that Theorem 2 applies to AMAFQI and AMAFQI-L because it holds for any j.

Similarly to [7], the error due to the regression-tree method (or any other supervised learning
approach) is not modeled explicitly in this work. For AMAFQI, this error would translate in Qj -functions
suffering itself from a larger approximation error. We remark that using a regression tree method allows
us to establish the AMAFQI’s convergence. The regression error is a topic for future investigation.

5 Numerical examples

In this section, we compare the performance of AMAFQI and FQI in numerical simulations. Our com-
parison uses FQI because it provides a learned Q-function that is the unique solution to Bellman’s
equation given the batch data [7]. It can, therefore, be considered as an adequate benchmark for
the batch reinforcement learning setting. We test our approach on a multi-agent, multi-state random
problem similar to the example presented in [6, 34].

Let QR?I : X XU — R be the approximated @-function after N iterations evaluated via FQI [7].
Single problem instance simulations are run on a 2.4 GHz Intel Core i5 laptop computer and multiple
instance simulations are run on the Savio computational cluster resource from the Berkeley Research
Computing program. The computations of cj{v and QA;{?I for all samples [ are parallelized to reduce the

full computation time.

5.1 Setting

The multi-agent, multi-state random problem is as follows. We consider m agent having to coordinate
their individual binary decision to reach one of the X joint states and maximize their reward over 7
rounds. The joint binary decision determines the probability of moving from one state to another.
Let P(x) : U x X — X be the transition matrix for state x € X. All transition matrices are
randomly generated according to uniform distributions and then normalized to obtain row-stochastic
matrices. The reward is determined by the joint state at the end of a round. Let the mean reward
for a state x € X be R(x) ~ Uniform[0,5]. The reward for reaching state x € X is then r(x) ~
Uniform[R(x) — %, R(x) + 3].

5.2 Experiments

We use Totally Randomized Trees<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>