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l’accès au travail et enquêterons sur votre demande.
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Abstract : We formulate an efficient approximation for multi-agent batch reinforcement learning,
the approximated multi-agent fitted Q iteration (AMAFQI). We present a detailed derivation of our
approach. We propose an iterative policy search and show that it yields a greedy policy with respect to
multiple approximations of the centralized, learned Q-function. In each iteration and policy evaluation,
AMAFQI requires a number of computations that scales linearly with the number of agents whereas the
analogous number of computations increase exponentially for the fitted Q iteration (FQI), a commonly
used approaches in batch reinforcement learning. This property of AMAFQI is fundamental for the
design of a tractable multi-agent approach. We evaluate the performance of AMAFQI and compare it
to FQI in numerical simulations. The simulations illustrate the significant computation time reduction
when using AMAFQI instead of FQI in multi-agent problems and corroborate the similar performance
of both approaches.

Keywords : approximate dynamic programming, batch reinforcement learning, Markov decision
process, multi-agent reinforcement learning
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1 Introduction

Reinforcement learning is a framework which considers stochastic, sequential decision-making problems

with unknown dynamics [29]. These problems are modelled as Markov decision processes (MDPs).

In each decision round of an MDP, a decision maker observes the current state of the system and

must provide a decision or equivalently, a control. A scalar reward is subsequently revealed, and

the current state shifts to a new state according to a transition function defined by the dynamics of

the problem. In reinforcement learning, the transition function is unknown. Only the reward, the

initial and resulting states, and the control are used to improve future controls. Batch reinforcement

learning [7, 14, 21] is a subfield of reinforcement learning in which information about the system in

the form of a set of historical transitions is known a priori to the decision maker. This is in contrast

to typical reinforcement learning algorithms, e.g., the Q-learning algorithm [32], in which information

is gathered in an online fashion. Batch reinforcement learning improves over its online counterpart (i)

by reusing the gathered information multiple times (experience replay [17]) to increase the approach’s

convergence speed, (ii) by fitting an approximated function (e.g., Q or value functions) in between

updates to mitigate instabilities, and (iii) by averaging similar transitions from the batch information

to better estimate the MDP’s stochastic model [14]. In batch reinforcement learning, a prevalent

approach [14] is the fitted Q iteration (FQI) [7].

In multi-agent reinforcement learning, agents make sequential decisions to maximize their joint

or individual rewards [4, 34]. The agents can be fully cooperative, i.e., maximizing a joint reward

function, fully competitive, i.e., the agents’ objectives are opposed, or a combination of both [4, 34].

The main challenge when considering the multi-agent reinforcement learning problem comes from the

cardinality of the joint control set as it increases exponentially with the number of agents. This adds to

the difficulty that the curse of dimensionality already poses to (approximate) dynamic programming-

based methods [4, 27, 34]. The design of an approach that relies only on local control sets is, therefore,

highly desirable to enable the implementation of batch reinforcement learning methods in real-world

multi-agent systems, e.g., electric power systems [5]. For example, the approach we present in this

work could extend current methods for demand response or distributed energy resource management

like [19, 25, 30] to multi-agent implementations and increase the benefits for the electric grid without

significantly impacting the computational cost of the approach. Other applications for multi-agent

reinforcement learning include the control of a robot team [28] or of an autonomous vehicle fleet [23],

autonomous driving [26], and stock trading [16]. In this work, we consider the batch reinforcement

learning framework and design the approximated multi-agent fitted Q iteration (AMAFQI), an efficient

approximation of FQI [7] tailored to fully cooperative, multi-agent problems.

Related work

Multi-agent reinforcement learning has been studied by many authors and the main recent advance-

ments to this body of work are reviewed in [4, 12, 22, 33]. Multi-agent extensions to the Q-learning

algorithm [32] are reviewed in [4]. Reference [33] focuses on theory-backed approaches. An overview

of multi-agent deep reinforcement learning is presented in [12, 22]. In our work, we are interested

in multi-agent extensions of batch reinforcement learning [14], and more specifically, of the kernel-

based [21] FQI [7] framework. Multi-agent problems have also been studied under other reinforcement

learning frameworks, e.g., classical Q-learning [2, 15] or actor-critic approaches [11, 34]. We review the

literature relevant to multi-agent FQI next.

To the best of the authors’ knowledge, the only extension of FQI to the multi-agent setting are

presented in [8, 9, 35]. References [8, 9] only consider deterministic problems. The extension relies on

the neural fitted Q (NFQ) algorithm [24]. The NFQ is a modified FQI approach that uses a neural network

instead of a regression tree as the fitting method used to generalize the Q-value to all state-control pairs

(see Section 2.1). Similarly to our approach, their work is based on the ideas of [15] in which an efficient

multi-agent Q-learning algorithm [32], the Distributed Q-learning algorithm, for online, deterministic

settings is presented, to obtain an approach that does not require computations over the joint control
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set. The work of [8, 9] differs from ours because it uses an opportunistic approach enabled by the

deterministic setting. Furthermore, [8, 9] only provide an empirical analysis of their algorithm because

the properties of the neural network are hard to analyze. In our work, we (i) consider general stochastic

problems, (ii) present a detailed derivation for AMAFQI, and (iii) provide a convergence analysis of the

approximated local Q-functions used by our approach. Moreover, we characterize the performance of

the greedy policy for AMAFQI. Lastly, [35] proposes a general, fully decentralized, multi-agent fitted Q

algorithm that accounts for competitive agents and where any function approximator can be used to

approximated the local Q-function. The authors further derive a finite-sample performance guarantee

for their approach. However, [35]’s algorithm requires optimizing local Q-function over the joint control

space which grows exponentially with the number of agents. Our main contribution is to provide an

approach which uses only local control spaces.

Our specific contributions are:

• We formulate the approximated multi-agent fitted Q iteration (AMAFQI). AMAFQI is an efficient

approximation of the FQI algorithm for multi-agent settings. In each iteration, AMAFQI’s compu-

tation scales linearly in the number of agents instead of exponentially as in FQI.

• We propose a policy search for AMAFQI and show that it is a greedy policy with respect to the

approximation of the centralized, learned Q-functions from each agent.

• We derive a very efficient extension of AMAFQI, AMAFQI-L, that further reduces the computation

requirement of the approach.

• We show the convergence of the local Q-function approximations computed by AMAFQI to unique

and finite functions.

• We numerically evaluate the performance of AMAFQI. We show the similar performance and

significant decrease in computation times when AMAFQI and AMAFQI-L are used instead of FQI.

2 Preliminaries

We consider an MDP (X ,U , f, r) where multiple agents must implement a control to maximize their

expected joint cumulative reward. Let m ∈ N be the number of agents. We assume m > 1. Let

X ⊆ Rn×m, U ⊆ Rp×m, and W ⊆ Rs×m where n, p, s ∈ N be the joint state, control, and disturbance

space, respectively. Let x ∈ X be a joint state, u ∈ U be a joint control, and w ∈ W be a random

disturbance. Let f : X×U×W 7→ X express the state transition function of the problem. The function

f maps an initial state, a control and a disturbance to a resulting state. Lastly, let r : X ×U ×W 7→ R
be the function that returns the reward associated with an initial state, control, final state, and

disturbance tuple. We make the following assumption regarding the reward function.

Assumption 1. The reward function r is bounded below and above such that 0 ≤ r(x,u,w) ≤ R < +∞
for all (x,u,w) ∈ X × U ×W.

The assumption on the upper bound of the reward function is a standard assumption for MDPs

in reinforcement learning [7]. The lower bound assumption is mild because if not met, a constant

can be added to the reward function so that it is non-negative. This translation does not change the

optima [15].

To easily differentiate local and joint controls, we define local control variables and spaces. We let

Aj ⊂ Rp be the local control space of agent j where U = ×mj=1Aj . We denote a local control by a ∈ Aj
and add the superscript j to refer to the jth agent if needed.

Formally, the m agents want to cooperatively solve the following problem:

max
{uT∈U}+∞

T=1

E

[
+∞∑
T=1

βT r(xT ,uT ,wT )

]
(1)
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where β ∈ [0, 1) is the discount factor. The variables uT and xT represent the joint control and state

at the decision round T , respectively. The random disturbance at T is represented by wT . Successive

states are obtained from xT+1 = f(xT ,uT ,wT ), where wT ∈ W. The expectation in (1) is taken with

respect to the probability of wT given the state and control at round T .

We consider the batch reinforcement learning framework [7, 14, 21]. In this setting, f is unknown

and only examples of past transitions can be used to solve (1). The decision makers or agents have

access to batch data representing historical transitions [7]. The batch data is used to first compute

an approximation of the Q-function and, second, to evaluate a policy. Let L ∈ N be the number of

available samples in the batch data. The batch data set SL is defined as:

SL =
{(

xl,ul,xl+, r
l
)
∈ X × U × X × R+, l = 1, 2, . . . , L

}
,

where xl+ refers to the state observed after control ul was implemented in state xl. These samples do

not need to be generated from continuous experiments. Specifically, we focus on regression tree-based

FQI approaches [7]. FQI is introduced in detail in the next subsection.

2.1 Fitted Q iteration

We recall the motivation for FQI as presented in [7]. The state-action value orQ-functionQ : X×U 7→ R
is the unique solution to the Bellman equation:

Q (x,u) = E
[
r(x,u,w) + βmax

u′∈U
Q (f(x,u,w),u′)

]
,

where β ∈ [0, 1). The expectation is taken with respect to the probability of w given the state x and

control u. By the contraction mapping theorem [18], the Q-function can be obtained by successively

solving

QN (x,u) = E
[
r(x,u,w) + βmax

u′∈U
QN−1 (f(x,u,w),u′)

]
, (2)

for all N ≥ 1 with the boundary condition Q0 (x,u) = 0 for all (x,u) ∈ X × U . In the deterministic

case, (2) can be expressed as:

QN (x,u) = r(x,u) + βmax
u′∈U

QN−1 (δ(x,u),u′) ,

where δ : X × U 7→ X is the deterministic function that returns the resulting state given a pair state-

control. Given SL and supposing QN−1 is available, then for all data points l = 1, 2, . . . , L, we can

compute

QN
(
xl,ul

)
= rl + βmax

u′∈U
QN−1

(
xl+,u

′) , (3)

because r(xl,ul) = rl and δ(xl,ul) = xl+. The FQI then works in the following way. Pairs of(
xl,ul

)
and their respective QN

(
xl,ul

)
-value can be generated using (3) for all l in the batch data.

Then, an approximation Q̂FQI
N (x,u) of QN (x,u) is obtained by fitting a function over the pairs((

xl,ul
)
, QN

(
xl,ul

))
for l = 1, 2, . . . , L. This is done to estimate the state-action values for all

state-control pairs based on the batch data. Using Q̂FQI
N−1 in (3) instead of QN−1, we can compute

the state-action values at N , fit a function again based on the new pairs and obtain Q̂FQI
N . This pro-

cess is then repeated until convergence. Finally, the authors of [7] argue that the process described

above provides an adequate approximation Q̂FQI
N (x,u) for the stochastic case as well. In the stochas-

tic case, the conditional expectation of (3)’s right-hand side given the current state and control is

required for the update. Least squares regression [7] or the averaging at leaf nodes of regression tree

methods [14] estimates the conditional expectation of the dependent variables given the independent

variables, respectively the Q̂FQI
N (xl,ul) and

(
xl,ul,xl+, r

l
)

in this setting. Least squares and tree

regression methods hence approximate the right-hand side of (3) in the stochastic case [7, 14].
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2.2 Regression tree methods

In this work, we use a regression tree to generalize the local Q-function and state-control pairs. Re-

gression trees are chosen as the regression methods because (i) their properties allow us to establish the

AMAFQI’s convergence (see Section 4) and (ii) they are computationally efficient, scalable and robust

to noisy data [7]. We now introduce regression tree methods. Let I ⊆ Rn+p and O ∈ R be, respec-

tively, the input and output sets of the data set D =
{(
il, ol

)
∈ I ×O, l = 1, 2, . . . , L

}
. Regression tree

methods subdivide the input set into partitions of input points il using binary splits. Each partition is

then given a unique output value. In regression trees, this is typically the average of all output points

ol belonging to the partition. Multiple techniques exist to generate regression trees, e.g., KD-Tree [1],

CART [3], Totally Randomized Trees [10], or Extra-Trees [10]. The reader is referred to [13] for a

detailed description of regression trees. We now state relevant properties and assumptions which we

use in the next sections.

Using a regression tree method, a function ĥ : I 7→ O fitted to the data set D can be expressed as [7]:

ĥ(i) =
∑L
l=1 kernel

(
il; i
)
ol, for i ∈ I. The kernels are defined by: kernel

(
il; i
)

=
I
il∈P(i)∑

(ı̂,ô)∈D I
il∈P(ı̂)

, where

Ix, the indicator function, returns 1 if x is true and 0 otherwise, and P(i) returns the tree partition

input i is part of. For ensemble methods, the kernels are: kernel
(
il; i
)

= 1
e

∑e
k=1

I
il∈Pk(i)∑

(ı̂,ô)∈D I
il∈Pk(ı̂)

,

where the subscript k refers to the kth regression tree of the ensemble which consists of e trees.

In this work, two assumptions about the regression method we use are made. These assumptions

are similar to [7].

Assumption 2. The kernels and batch data used to fit them are the same in all iterations N of AMAFQI.

Assumption 3. The kernels are normalized, i.e.,
∑L
l=1 kernel

(
il; i
)

= 1 ∀i ∈ I.

Moreover, the aforementioned definition of the kernel implies that the sum of the kernel’s absolute

value is also one when Assumption 3 is satisfied because kernels are nonnegative.

As noted by [7], Assumption 2 is satisfied naturally by a tree method like the KD-Tree. If the

partitions generated by the tree method are random or depend on the output, this assumption can be

met by computing the partitions and thus the kernels only once, i.e., when the first AMAFQI iteration

is performed. This is the case, for example, for Totally Randomized Trees [10] which we use in

Section 5. Regression tree approaches satisfy Assumption 3 by construction [7, 20, 21].

3 Approximated multi-agent fitted Q iteration

We now present our multi-agent approximation of FQI, AMAFQI. The fitting iterations and policy

evaluation of AMAFQI only depend on the local control space of the agents and do not necessitate

computations over the joint control space as would require FQI. This allows AMAFQI to be a tractable

multi-agent approach for batch reinforcement learning problems because optimizing a fitted Q-function,

e.g., in (3), must be done by enumeration due to the use of regression trees. The cardinality of

the joint control space increases exponentially with the number of agents and the cardinality of the

local control space. For FQI, this thus leads to a prohibitively large number of calculations when

computing approximated Q-functions and when evaluating the policy in multi-agent settings. In the

next subsections, we derive the AMAFQI algorithm and propose a greedy policy search for our approach.

3.1 Derivation

First, recall the standard Q-learning [32] update for deterministic settings [15]:

QN (x,u) =

{
QN−1 (x,u) , if x 6= xN or u 6= uN

r (x,u) + βmaxu′∈U QN−1 (δ(x,u),u′) , if x = xN and u = uN ,
(4)
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with Q0 (x,u) = 0 for all (x,u) ∈ X × U . We remark that in the deterministic setting, the reward r

is not a function of the disturbance w. Second, consider for all agent j = 1, 2, . . . ,m, the distributed

Q-learning update for deterministic settings [15]:

qjN (x, a) =


qjN−1 (x, a) , if x 6= xN or a 6= uN (j)

max
{
qjN−1 (x, a) , r (x,u)

+βmaxa′∈Aj qjN−1 (δ(x,u), a′)
}
,

if x = xN ,u = uN , and a = uN (j),

(5)

with qj0 (x, a) = 0 for all (x, a) ∈ X × A. We refer to qjN as local q-functions. The proposition below

establishes a relation between the centralized and distributed updates.

Proposition 1. [15, Proposition 1] Let (x, a) ∈ X × A and suppose that r (x,u) ≥ 0 for all (x,u) ∈
X × U . Then, for a deterministic, fully cooperative problem, we have

qjN (x, a) = max
u∈U

u(j)=a

QN (x,u) ,

for all j = 1, 2, . . . ,m and N ∈ N, where QN and qjN are computed using (4) and (5), respectively.

Let N ∈ N and j ∈ {1, 2, . . . ,m}. Consider the sample point
(
xl,ul,xl+, r

l
)
∈ SL. For now, let’s

assume that the function qjN−1 (x, a) is known. We define

ol,jN = qjN
(
xl,ul(j)

)
= max

{
qjN−1

(
xl,ul(j)

)
, rl + β max

a′∈Aj
qjN−1

(
xl+, a

′)} ,
where ul(j) is the jth component of the joint control ul, i.e., the control implemented by agent j.

Proposition 1 leads to

ol,jN = qjN
(
xl,ul(j)

)
= max

u∈U
u(j)=a

QN
(
xl,u

)
,

where QN is computed via (4).

We now depart from prior multi-agent reinforcement learning approaches to derive AMAFQI. We

apply the reasoning behind FQI [7] to compute an approximation q̂j of the local qj-function. This is

done iteratively. First, we compute the qj-function values at each batch data point using (5). Second,

we fit the approximation function q̂jN (x, a) to the set
{((

xl,ul(j)
)
, q̂jN

(
xl,ul(j)

))
, l = 1, 2, . . . , L

}
using a regression tree method. Specifically, at iteration N ∈ N and for all samples l = 1, 2, . . . , L, let,

il,j =
(
xl,ul(j)

)
ol,jN = max

{
q̂jN−1

(
xl,ul(j)

)
, rl + β max

a′∈Aj
q̂jN−1

(
xl+, a

′)} ,
where q̂j0 (x, a) = 0 for all (x, a) ∈ X ×A. Then, we compute

q̂jN (x, a) =RegressionTree
({(

il,j , ol,jN

)
, l = 1, 2, . . . , L

}
; (x, a)

)
(6)

Equivalently, we can express (6) as

q̂jN (x, a) =

L∑
l=1

kernel
((
xl,ul(j)

)
; (x, a)

)
ol,jN , (7)

for all j = 1, 2, . . . ,m. The FQI-based approach is used to generalize the information obtained from the

batch data to all state-control pairs [7]. The regression step estimates values of the local q̂j-function
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and thus approximates the maximum of the Q-function for pairs not found in the batch data. From

the above discussion, we have that

q̂jN (x, a) ≈ max
u∈U

u(j)=a

QN (x,u) , (8)

In other words, q̂jN (x, a) can be interpreted as the maximum of the learned, centralized Q-function

as approximated by agent j when they implement control a. Let Q̂jN be the approximation of the

Q-function for agent j after N iterations given the available batch data. We can redefine q̂jN (x, a) in

terms of the centralized Q-function approximation, Q̂jN , as:

q̂jN (x, a) = max
u∈U

u(j)=a

Q̂jN (x,u) . (9)

The right-hand side of (9) is similar to (8)’s and, hence, approximates the maximum of the central-

ized Q-function by the FQI approach [7]. We assume that Q̂jN be a monotonically increasing. This

assumption is justified by the fact that the Q-function, the q̂j-function, and the FQI approximation

of the Q-function are all monotonic. The monotonicity follows in all three cases from the structure

of the updates when r(x,u) ≥ 0 for all (x,u) ∈ X × U (see Lemma 1). Thus, we assume that an

approximation Q̂jN of the centralized Q-function from each agent should share this property.

Next, we extend the aforementioned approach to the stochastic setting. Let j ∈ {1, 2, . . . ,m} and

N ∈ N. The stochastic analog of (5) [15] is:

qjN (x, a) =


qjN−1 (x, a) , if x 6= xN or a 6= uN (j)

max
{
qjN−1 (x, a) ,E [r (x,u,w)

+βmaxa′∈Aj qjN−1 (f(x,u,w), a′)
]}

,

if x = xN ,u = uN , and a = uN (j).

(10)

The approximation of the local qjN -functions for stochastic problems are evaluated as follows. For all

N ∈ N and l = 1, 2, . . . , L, let

il,j =
(
xl,ul

)
ol,jN = rl + β max

a′∈Aj
q̂jN−1

(
xl+, a

′) ,
where q̂j0 (x, a) = 0 for all (x, a) ∈ X × A. We remark that (10), in comparison to the deterministic

update given in (5), requires the evaluation of an expectation when the local qj-function is updated.

Hence, the pairs il,j and ol,jN cannot be fitted directly as it was done for the deterministic setting.

Similarly to [7], a regression tree can be used to estimate an expectation. In our case, we apply

a regression tree method over the set of joint states and actions to approximate the expectation

from (10)’s second line. We refer to this expectation approximation as the local auxiliary qjN -functions,

q̃jN , which we express as:

q̃jN (x,u) =

L∑
l=1

kernel
((
xl,ul

)
; (x,u)

)
ol,jN , (11)

where kernel
((
xl,ul

)
; (x,u)

)
, l = 1, 2, . . . , L are computed using a regression tree over the joint

control set U . Similarly to [7], a regression tree is used to estimate a conditional expectation. In

our case, we approximate the argument of (10)’s maximum, which we denote q̃jN (x,u). This is

motivated by the fact that a regression tree averages the value of the outputs, viz., r (x,u,w) +

βmaxa′∈Aj qjN−1 (f(x,u,w), a′), corresponding to the inputs in a given leaf node or partition, viz.,

the state-control pairs from the batch data. Alternatively, a linear regression or the Robbins-Monro

approximation can be used to estimate the conditional expectation [7, 15].
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Finally, the approximation of the local qjN -function at (x, a) ∈ X ×A is given by:

q̂jN (x, a) =

L∑
l=1

kernel
((
xl,ul(j)

)
; (x, a)

)
max

{
q̂jN−1

(
xl,ul(j)

)
, q̃jN

(
xl,ul

)}
, (12)

where this time, kernel
((
xl,ul(j)

)
; (x, a)

)
, l = 1, 2, . . . , L are computed using a regression tree over

the local control space Aj . We remark that while q̃jN (x,u) is a function of the joint control space,

we do need to evaluate its maximum over the joint control space and, therefore, q̃jN (x,u) leads to no

scalability issue. Finally, we compute q̂jN , N = 1, 2, . . . , iteratively until a
∥∥∥q̂jN − q̂jN−1∥∥∥∞ < ε, for

some set tolerance ε > 0. A detailed representation of AMAFQI is provided in Algorithm 1. Lastly,

establishing an exact relation between the q̂j-functions and the centralized Q-function as computed by

FQI from Section 2.1 is a topic for future work.

Algorithm 1 Approximated multi-agent fitted Q iteration (AMAFQI)

Parameters: L, SL, β ∈ [0, 1), ε > 0

Initialization: N = 0, q̂j0(x, a) = 0 for all j,x, a.

1: Compute kernel
((
xl,ul(j)

)
; (x,u(j))

)
and kernel

((
xl,ul

)
; (x,u)

)
for all l and j using a regression tree algorithm.

2: while
∥∥∥q̂jN − q̂jN−1

∥∥∥
∞
≥ ε do

3: N = N + 1
4: for j = 1, 2, . . . ,m do
5: for l = 1, 2, . . . , L do
6: Generate the fitting pairs:

il,j =
(
xl,ul(j)

)
ol,jN = rl + β max

a′∈A
q̂jN−1

(
xl
+, a
′
)
.

7: end for
8: end for
9: for j = 1, 2, . . . ,m do

10: Compute the auxiliary q̃jN -function:

q̃jN (x,u) =

L∑
l=1

kernel
((

xl,ul
)

; (x,u)
)
ol,jN .

11: Update the q̂jN -function:

q̂jN (x, a) =
L∑

l=1

kernel
((

xl,ul(j)
)

; (x, a)
)

max
{
q̂jN−1

(
xl,ul(j)

)
, q̃jN

(
xl,ul

)}
.

12: end for
13: end while

3.2 Greedy policy search

Next, we propose a policy search for AMAFQI. We note that there are no guarantees that locally

maximizing q̂j-functions leads to a joint optimal policy, e.g., if there are many joint optimal controls

for a given state, maximizing q̂j across the agents j = 1, 2, . . . ,m can lead to local controls belonging

to different joint optima, thus, resulting in a suboptimal joint control [15]. For this reason, our policy

search sequentially identifies controls that yield an increase in q̂j ’s maximum. The policy search is

presented in Algorithm 2 and is shown to be a greedy policy in Theorem 1. The search can be extended

to decentralized settings using a coordination mechanism [2, 4, 31]. Specifically, the decision set is

ordered and tie breaking within the regression (Algorithm 1, Line 1) or classification (Algorithm 2,

Line 9) trees is done according to this ordering. The batch data is also ordered and made available to

all agents. Using this convention, each agent computes the q̂j-function for all j and uses Algorithm 2

to compute a unique greedy policy. Because the policy is unique, the local control implemented by

agent j leads to a joint greedy control.
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Algorithm 2 Policy search for AMAFQI

Parameters: L, SL, β ∈ [0, 1), 0 < ε ≤ γ, L(x) for all x ∈ X , and p ∈ R.
Initialization: N = 0, π0(xl) = p1 for all l.

1: for all iteration N do
2: for x ∈ X do
3: for l in L(x) do
4: Update policy πN (x) according to (13).
5: end for
6: end for
7: end for

8: if π(x) = p1 for x ∈ X then
9: Generalize the greedy policy:

π̂N (x) =ClassificationTree
({(

xl,π(xl)
)
, l = 1, 2, . . . , L|πN (xl) 6= p1

}
,x
)

10: end if

Let j ∈ {1, 2 . . . ,m}, l ∈ {1, 2, . . . , L}. Let 0 < ε ≤ γ < +∞. The parameter γ governs how the

policy is iteratively updated, and is related to ε, the maximum difference between two consecutive

q̂jN values at convergence (see Algorithm 1, line 2). Parameter γ can be equal to but no smaller

than ε. Choosing γ larger than ε may enable the identification of suboptimal actions in cases where

smaller values of γ lead to an inconclusive policy search. In this sense, by enabling a relaxation of the

stringency of the policy, this parameter provides practical value, however we leave the exploration of

its theoretical properties to future work. Let L(x) =
{
l = 1, 2, . . . , L|x = xl,

(
xl,ul,xl+, r

l
)
∈ SL

}
for

all x ∈ X . The set L(x) identifies sample points l such data xl = x. Let N ∈ N where N ≥ 1. Consider

the policy πN : X 7→ U evaluated at a point from the batch data provided in (13) with π0 (x) = p1

for all x ∈ X .

πN (x) =



ul, if maxa∈Aj q̂jN (x, a)−maxa∈Aj q̂jN−1 (x, a) ≥ γ ∀j ∈ {1, 2, . . . ,m}
and q̂jN

(
x,ul(j)

)
= maxa∈Aj q̂jN (x, a) ∀j ∈ {1, 2, . . . ,m} , s.t. l ∈ L(x)

p1, if maxa∈Aj q̂jN (x, a)−maxa∈Aj q̂jN−1 (x, a) ≥ γ ∀j ∈ {1, 2, . . . ,m}
and q̂jN

(
x,ul(j)

)
6= maxa∈Aj q̂jN (x, a) for j ∈ {1, 2, . . . ,m} , s.t. l ∈ L(x)

πN−1 (x) , otherwise.

(13)

In (13), 1 is an m-dimensional vector consisting only of ones and p is an auxiliary parameter used to

indicate that no control within the data set corresponds to the greedy maximum for state x after the

N th AMAFQI iteration. It is used to restart the search. If πN (x) = p1 when the search ends, then

the policy for state x must be approximated from similar states x′ for which a greedy decision has

been identified, i.e., πN (x′) 6= p1. This will be discussed at the end of this section. We now have the

following results about the policy (13).

Theorem 1. Let l ∈ {1, 2, . . . , L} such that πN
(
xl
)
6= p1 and u ∈ πN

(
xl
)
. Then, for all j =

{1, 2, . . . ,m}, we have:

max
u∈U

Q̂jN
(
xl,u

)
− Q̂jN

(
xl,u

)
< 2γ,

and πN
(
xl
)

is a 2γ-greedy policy at xl with respect to all Q̂jN , the monotonic approximations of the

centralized Q-function from each agent.

The proof of Theorem 1 is presented in A. The above policy search identifies controls using q̂jN -

values that are within 2γ of the Q̂jN ’s maximum for states x that belongs to the batch data. The

search is inconclusive if the optimal control with respect to Q̂jN at state x ∈ X for some agent j is not

in the batch data or if the optimal control performed poorly when sampled to generate the batch data

because of stochasticity.

If π(x) 6= p1 for all x ∈ X , then the policy can be used directly. If π(x) = p1 for some x ∈ X ,

then we use an approximation to generalize the policy to all states similarly to the approach used to
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generalize the q̂-value to all state-control pairs. Let π̂N : X 7→ U be the approximation of the greedy

policy with respect to all Q̂jN , j = 1, 2, . . . ,m:

π̂N (x) =ClassificationTree
({(

xl,π(xl)
)
, l = 1, 2, . . . , L|πN (xl) 6= p1

}
,x
)

(14)

Finally, if π(x) = p1 for all x ∈ X , the batch data does not permit to identify a 2γ-greedy policy with

respect to all Q̂jN -functions. We remark that π̂N only needs to be computed once when the AMAFQI

has converged to the q̂j functions. Thus, a significant advantage of AMAFQI’s policy is that once the

AMAFQI algorithm has converged, little to no computations are required to determine the controls when

the policy is used. In comparison, the maximum over the joint control space U of the approximated Q-

function needs to be computed when FQI is implemented. This must be done by enumeration because

the maximization problem is neither analytically nor numerically solvable. In a multi-agent setting,

the cardinality of the joint control space increases exponentially with the number of agents. Thus,

removing the need to compute this maximum further reduces the computational burden of FQI when

AMAFQI is used.

3.3 AMAFQI-L update

In the previous subsection, we presented a 2γ-greedy policy search with respect to the approximations

of the centralized Q-function of all agents j. This policy search can be modified to only use the

q̂jN -function of a single agent j. We refer to this alternate policy as AMAFQI-L. Because of (8), the

maximum of a single q̂jN still approximates the centralized Q-function’s maximum. The difference is

that AMAFQI-L is now a 2γ-greedy policy with respect to agent j’s approximation of the centralized

Q-function rather than with respect to the approximation of all agents. Thus, this approximation

is looser than the previous one. The main gain is, however, computational efficiency because only a

single q̂j-function must be iteratively computed. The computational requirement is thus constant with

respect to the number of agents whereas it scales linearly and exponentially with the number of agents

for AMAFQI and FQI, respectively.

AMAFQI-L’s algorithm is similar to AMAFQI, except that j is set to a constant value within

{1, 2, . . . ,m} throughout the iterations N and the policy search. The algorithm is presented in Algo-

rithm 3 of B. The AMAFQI-L policy search is identical to AMAFQI’s, but uses (15) instead of (13):

πL
N (x) =



ul, if maxa∈Aj q̂jN (x, a)−maxa∈Aj q̂jN−1 (x, a) ≥ γ
and q̂jN

(
x,ul(j)

)
= maxa∈Aj q̂jN (x, a) , s.t. l ∈ L(x)

p1, if maxa∈Aj q̂jN (x, a)−maxa∈Aj q̂jN−1 (x, a) ≥ γ
and q̂jN

(
x,ul(j)

)
6= maxa∈Aj q̂jN (x, a) , s.t. l ∈ L(x)

πN−1 (x) , otherwise.

(15)

The above discussion is formalized by the following result.

Corollary 1. Consider Theorem 1’s assumptions, and suppose j ∈ {1, 2, . . . ,m}. If u ∈ πL
N

(
xl
)
, then

we obtain: maxu∈U Q̂
j
N

(
xl,u

)
− Q̂jN

(
xl,u

)
< 2γ, and πL

N

(
xl
)

is a 2γ-greedy policy at xl with respect

to Q̂jN .

The proof follows from Theorem 1 for a single j.

4 Convergence

We show that each local q̂jN -function defined in (12) converges to a unique and finite function with

respect to the infinity norm. We first establish the monotonicity of q̂jN for all j.

Lemma 1. Suppose r (x,u,w) ≥ 0 and q̂j0 (x, a) = 0 for all (x, a,w) ∈ X × A ×W, then q̂jN (x, a) ≤
q̂jN+1 (x, a) for all (x, a) ∈ X ×A and N ∈ N.
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We now state the convergence result.

Theorem 2. Suppose Assumptions 1−3 hold and q̂j0(x, a) = 0 for all (x, a,w) ∈ X × A × W and

j = 1, 2, . . . ,m. Then q̂jN (x, a) converges to the unique limit q̂jSL (x, a), i.e., the unique maximum of

the Q̂j-function for x and u(j) = a when estimated using the data set SL. Moreover, for all ε > 0,

there exists n(j) ∈ N such that for all N ≥ n(j),∥∥∥q̂jN − q̂jSL∥∥∥∞ < ε.

The proofs of Lemma 1 and Theorem 2 are in C and D, respectively. Theorem 2 ensures that

there exist unique, finite-valued q̂j-functions for the data set SL which can be used for the policy

search. Thus, q̂jSL-functions for the data set SL can always be computed under the aforementioned

assumptions. We remark that Theorem 2 applies to AMAFQI and AMAFQI-L because it holds for any j.

Similarly to [7], the error due to the regression-tree method (or any other supervised learning

approach) is not modeled explicitly in this work. For AMAFQI, this error would translate in Q̂j-functions

suffering itself from a larger approximation error. We remark that using a regression tree method allows

us to establish the AMAFQI’s convergence. The regression error is a topic for future investigation.

5 Numerical examples

In this section, we compare the performance of AMAFQI and FQI in numerical simulations. Our com-

parison uses FQI because it provides a learned Q-function that is the unique solution to Bellman’s

equation given the batch data [7]. It can, therefore, be considered as an adequate benchmark for

the batch reinforcement learning setting. We test our approach on a multi-agent, multi-state random

problem similar to the example presented in [6, 34].

Let Q̂FQI
N : X × U 7→ R be the approximated Q-function after N iterations evaluated via FQI [7].

Single problem instance simulations are run on a 2.4 GHz Intel Core i5 laptop computer and multiple

instance simulations are run on the Savio computational cluster resource from the Berkeley Research

Computing program. The computations of q̂jN and Q̂FQI
N for all samples l are parallelized to reduce the

full computation time.

5.1 Setting

The multi-agent, multi-state random problem is as follows. We consider m agent having to coordinate

their individual binary decision to reach one of the X joint states and maximize their reward over τ

rounds. The joint binary decision determines the probability of moving from one state to another.

Let P (x) : U × X 7→ X be the transition matrix for state x ∈ X . All transition matrices are

randomly generated according to uniform distributions and then normalized to obtain row-stochastic

matrices. The reward is determined by the joint state at the end of a round. Let the mean reward

for a state x ∈ X be R(x) ∼ Uniform[0,5]. The reward for reaching state x ∈ X is then r(x) ∼
Uniform[R(x)− 1

2 , R(x) + 1
2 ].

5.2 Experiments

We use Totally Randomized Trees [10] for the regression tree. We consider ensembles of 5 trees with

each at a minimum of 10 data points in a leaf node. We let β = 0.5.

5.2.1 5 agents

We let m = 5 and cardX = 5. We uniformly sample L = 2000
(
xl,ul,xl+, r

l
)
-tuples. The convergence

of both AMAFQI and FQI implementations for this numerical experiment is shown in Figure 1. Figure 1
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shows that
∥∥∥q̂jN − q̂jN−1∥∥∥∞ and

∥∥∥Q̂FQI
N − Q̂FQI

N−1

∥∥∥
∞

go to zero as N increases. Thus, both values converge

to their respective unique and finite limits.

Figure 1: Convergence of AMAFQI and FQI in the 5-player, 5-state problem

We compare the approximated value function at x for AMAFQI and FQI using the relative absolute dif-

ference between both maxima, defined as ∆(j,x) =
∣∣∣maxa∈A q̂jN (x,a)−maxu∈U Q̂

FQI
N (x,u)

maxu∈U Q̂
FQI
N (x,u)

∣∣∣, for j = 1, 2, . . . ,m

and x ∈ X .

We sequentially compute the q̂j- and Q̂FQI-functions for 150 different problem instances, each time

sampling a new data set SL. The average ∆(j,x) for all the problem instances are reported in Figure 2.

The average over all problem instances of the relative difference ∆(j,x) is 2.92%.

Figure 2: Average ∆(j,x) over all j,x for 150 random instances of the 5-agent, 5-state problem
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For each problem instance, we compute the reward obtained by the greedy policies over 100 trials

each with a time horizon τ = 100 rounds. For each trial, the initial state is randomly sampled.

The average reward of FQI’s, AMAFQI’s, and AMAFQI-L’s greedy policies are shown in Figure 3. The

relative difference in average cumulative reward between AMAFQI and FQI is small and only 7.17%. The

performance of AMAFQI-L is lower than AMAFQI’s and leads to a 16.79% cumulative reward decrease in

comparison to FQI.

Figure 3: Average cumulative reward for the 5, 9, and 10-agent, 5-state problem over 150, 10, and 5 problem instances,
respectively

We conclude by discussing the computation time of AMAFQI. The average computation time for

a single iteration N and until convergence for FQI, AMAFQI and AMAFQI-L are reported in Table 1

for the 150 problem instances. The numbers from Table 1 given in parentheses and the subsequent

similar tables represent the total computation times which includes the policy search. An iteration of

AMAFQI and AMAFQI-L with and without the policy search has a shorter duration than an FQI iteration.

Because the approximation requires more N iterations, AMAFQI still takes more time to converge. The

amount of time to convergence for AMAFQI-L and FQI are similar. The problem size is still small

given its binary controls and only 5 agents. Hence, an approach tailored to multi-agent settings is not

necessarily needed yet. We provide this example of a small problem instance so that both AMAFQI and

FQI can be simulated repetitively in an acceptable time frame. The comparison’s bottleneck is FQI

which is computationally very time consuming. Thus, given our computing infrastructure, we restrict

our analysis to 10 agents or less as our objective is to compare AMAFQI’s performances to FQI’s on

several instances.

Table 1: Average computation times for the 5-agent, 5-state problem (150 problem instances, 100 trials)

Average time Iteration [s] Convergence (policy) [s]

FQI 23.39 155.00
AMAFQI 12.09 577.20 (658.45)
AMAFQI-L 2.41 115.44 (135.11)

5.2.2 9 and 10 agents

When the number of agents increases, the computational advantage of AMAFQI is clear. Tables 2 and 3

present the computation times for m = 9 with L = 5000 and m = 10 with L = 7000, respectively.

The average ∆(j,x) is 8.17% when m = 9 and 7.90% when m = 10. We note that ∆(j,x) can be
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further reduced by increasing L at the expense of a longer computation time. The averaged cumulative

reward for the 100 trials of each problem instance is provided in Figure 3 for both the 9- and 10-agent

problem.

As shown in Tables 2 and 3, AMAFQI requires much less computation time than FQI to converge

when m increases and only leads to a limited decrease in cumulative reward. In the present case, we

register a 3.40% (m = 9) and 8.57% (m = 10) reduction of the average reward when using AMAFQI.

Moreover, for AMAFQI, the total computation time until convergence includes most of the calculations

required for the evaluation step. AMAFQI-L further reduces the total computation time. For m = 9,

AMAFQI-L requires less than 8 minutes to convergence and to compute the policy instead of 84 minutes

for AMAFQI and 3 hours (177 minutes) for FQI. When considering m = 10, AMAFQI-L needs 14 minutes

whereas AMAFQI and FQI takes, respectively, 3 hours (181 minutes) and 12 hours (723 minutes). The

performance of the AMAFQI-L policy is slightly lower and leads to a decrease in the cumulative reward

of 8.65% (m = 9) and 10.32% (m = 10) with respect to FQI.

Table 2: Average computation times for the 9-agent, 5-state problem (10 problem instances)

Average time Iteration [s] Convergence (policy) [s]

FQI 1660.07 10615.95
AMAFQI 77.31 3766.03 (4998.52)
AMAFQI-L 8.59 418.44 (454.23)

Table 3: Average computation times for the 10-agent, 5-state problem (5 problem instances)

Average time Iteration [s] Convergence (policy) [s]

FQI 6579.77 43421.90
AMAFQI 156.58 7859.76 (10840.89)
AMAFQI-L 15.67 785.98 (785.98)

6 Conclusion

In this work, we propose the AMAFQI algorithm, a tractable multi-agent approximation of FQI for batch

reinforcement learning problems. We design an iterative policy search for AMAFQI and demonstrate

that it is a greedy policy with respect to an approximation of the learned Q-function of all agents. Our

approach performs computations only over local control sets contrarily to FQI that works over the joint

control space. The number of calculations required in each iteration of the algorithm grows linearly

and exponentially with the number of agents, respectively, for AMAFQI and for FQI. Consequently, FQI

is impractical and quickly intractable in presence of multiple agents. Our approach offers an efficient

alternative for multi-agent batch reinforcement learning problems. We present a derivative of our

approach, AMAFQI-L, which further reduces the computational burden of AMAFQI.

We consider a multi-agent batch reinforcement learning problem and compare the performance of

AMAFQI with FQI. Numerical simulations show that the value functions computed by our approximation

and by FQI are similar, e.g., with a discrepancy of 2.92% when m = 5, and that the performance level

is also alike, e.g., with a difference of 7.12%. Lastly, computation times are compared and AMAFQI and

AMAFQI-L outperform significantly FQI when the number of agent increases. For example, AMAFQI and

AMAFQI-L require, respectively, only 181 minutes and 13 minutes against a total computation time of

723 minutes, on average, for FQI when m = 10. In future work, we wish wish to investigate approaches

to reduce the number of N iterations performed in AMAFQI before convergence, e.g., by considering

the growing batch learning paradigm [14] in which an exploration policy is used, and new observed

transitions are periodically incorporated in the batch data. Lastly, we would like to compare AMAFQI to

FQI in a more sophisticated setting and use AMAFQI to dispatch flexible loads for network-safe demand

response in unknown electric grids. This is a topic for future work.
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A Proof of Theorem 1

We base our proof on [15, Proposition 2]. Consider the monotonic approximation of the centralized

Q-functions from all agents, Q̂jN , j = 1, 2, . . . ,m. Let l ∈ {1, 2, . . . , L}. Let 0 ≤ N ′ < N such that for

all j ∈ {1, 2, . . . ,m} we have:

max
u∈U

Q̂jN ′+1

(
xl,u

)
−max

u∈U
Q̂jN ′

(
xl,u

)
≥ γ, (16)

and,

max
u∈U

Q̂jn
(
xl,u

)
−max

u∈U
Q̂jN ′+1

(
xl,u

)
< γ, (17)

for n = N ′ + 2, N ′ + 3, . . . , N . From the approximation definition (9), we equivalently have for all

j ∈ {1, 2, . . . ,m}:
max
a∈Aj

q̂jN ′+1

(
xl, a

)
− max
a∈Aj

q̂jN ′

(
xl, a

)
≥ γ, (18)

and

max
a∈Aj

q̂jn
(
xl, a

)
− max
a∈Aj

q̂jN ′+1

(
xl, a

)
< γ, (19)

for n = N ′ + 2, N ′ + 3, . . . , N . By (18) and (19), the last update to the policy at xl can only occur at

N ′ + 1. Regarding the policy update, if q̂jN+1

(
x,ul(j)

)
= maxa∈Aj q̂jN+1 (x, a) such that l ∈ L(x) for

all j, then this last update was performed when the control ul was considered by the AMAFQI update.

Otherwise, if there exists no l ∈ L(x) such that q̂jN+1

(
x,ul(j)

)
= maxa∈Aj q̂jN+1 (x, a) or the equality

does not hold for all j, the search is inconclusive for the iteration N . By assumption, πN ′+1(xl) 6= p1

and at least one policy update was performed.

Finally, iteration N ′ + 1 coincides to the last time the maximum Q̂j-function changed by at least

γ for all j because of (16) and (17). Thus, for all uN ′+1 ∈ πN ′+1(xl) we have

max
u∈U

Q̂jN ′+1

(
xl,u

)
− Q̂jN ′+1

(
xl,uN ′+1

)
< γ, (20)

for all j ∈ {1, 2, . . . ,m}. The monotonicity of the Q̂jN -function implies that (20) can be re-expressed

as

max
u∈U

Q̂jN ′+1

(
xl,u

)
− Q̂jN

(
xl,uN ′+1

)
< γ. (21)

From (17), we know that

max
u∈U

Q̂jN
(
xl,u

)
− γ < max

u∈U
Q̂jN ′+1

(
xl,u

)
. (22)

Using (22) in (21), we obtain maxu∈U Q̂
j
N

(
xl,u

)
− Q̂jN

(
xl,uN ′+1

)
< 2γ. Lastly, because the pol-

icy is not updated between N ′ + 1 and N , we have that πN ′+1

(
xl
)

= πN
(
xl
)

and thus, we have

maxu∈U Q̂
j
N

(
xl,u

)
− Q̂jN

(
xl,uN

)
< 2γ, where uN ∈ πN

(
xl
)
. Hence, the policy πN

(
xl
)
6= p1 is a

2γ-greedy policy for the approximation of the centralized Q-function of all agents. �
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B AMAFQI-L algorithm

Algorithm 3 Approximated multi-agent fitted Q iteration – Light (AMAFQI-L)

Parameters: L, SL, β ∈ [0, 1), ε > 0, j ∈ {1, 2, . . . ,m}.
Initialization: N = 0, q̂j0(x, a) = 0 for all x, a.

1: Compute kernel
((
xl,ul(j)

)
; (x,u(j))

)
and kernel

((
xl,ul

)
; (x,u)

)
for all l using a regression tree algorithm.

2: while
∥∥∥q̂jN − q̂jN−1

∥∥∥
∞
≥ ε do

3: N = N + 1
4: for l = 1, 2, . . . , L do
5: Generate the fitting pairs:

il,j =
(
xl,ul(j)

)
ol,jN = rl + β max

a′∈A
q̂jN−1

(
xl
+, a
′
)
.

6: end for
7: Compute the auxiliary q̃jN -function:

q̃jN (x,u) =
L∑

l=1

kernel
((

xl,ul
)

; (x,u)
)
ol,jN .

8: Update the q̂jN -function:

q̂jN (x, a) =

L∑
l=1

kernel
((

xl,ul(j)
)

; (x, a)
)

max
{
q̂jN−1

(
xl,ul(j)

)
, q̃jN

(
xl,ul

)}
.

9: end while

C Proof of Lemma 1

We prove this lemma by induction. Let (x, a) ∈ X × A and j ∈ {1, 2, . . . ,m}. For N = 0, we have

q̂j0 (x, a) = 0 for all x, a by assumption. For N = 1, we then have:

q̂j1 (x, a) =

L∑
l=1

kernel
((
xl,ul(j)

)
; (x, a)

)
max

{
q̂j0
(
xl,ul(j)

)
, q̃j1
(
xl,ul

)}
=

L∑
l=1

kernel
((
xl,ul(j)

)
; (x, a)

)
max

{
0, rl

}
because

∑L
l=1 kernel

((
xl,ul

)
; (x,u)

)
= 1 for all (x,u) ∈ X ×U . By assumption, rl ≥ 0 and, therefore,

q̂j0 (x, a) ≤ q̂j1 (x, a). We now show that, the induction hypothesis, q̂jN (x, a) ≤ q̂jN+1 (x, a), holds for

N → N + 1. At N + 1, the q̂j-function is

q̂jN+1 (x, a) =

L∑
l=1

kernel
((
xl,ul(j)

)
; (x, a)

)
max

{
q̂jN
(
xl,ul(j)

)
, q̃jN+1

(
xl,ul

)}
, (23)

where

q̃jN+1(x,u) =

L∑
l=1

kernel
((
xl,ul

)
; (x,u)

) [
rl + βmax

a′∈A
q̂jN
(
xl+, a

′)] (24)

We first use the induction hypothesis in (24) and obtain

q̃jN+1(x,u) ≤
L∑
l=1

kernel
((
xl,ul

)
; (x,u)

) [
rl + βmax

a′∈A
q̂jN+1

(
xl+, a

′)]
≤ q̃jN+2(x,u) (25)
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Second, we use the induction hypothesis and (25) in (23). This leads to

q̂jN+1 (x, a) ≤
L∑
l=1

kernel
((
xl,ul(j)

)
; (x, a)

)
max

{
q̂jN+1

(
xl,ul(j)

)
, q̃jN+2

(
xl,ul

)}
= q̂jN+2 (x, a)

where we last used the definition of q̂jN+2. Thus, we have established that q̂jN (x, a) is monotonically

increasing for all (x, a) ∈ X ×A and all N ∈ N. �

D Proof of Theorem 2

We first show that q̂jN is bounded. By Assumption 1, we have r(x,u,w) ≤ R. Let j ∈ {1, 2, . . . ,m}.
By definition, q̂j0(x, a) = 0 for all (x,u) ∈ X × U . For N = 1, we have

∥∥∥q̂j1 (x, a)
∥∥∥
∞
≤

∥∥∥∥∥
L∑
l=1

kernel
((
xl,ul(j)

)
; (x, a)

)
max

{
0,

L∑
l=1

kernel
((
xl,ul

)
; (xl,ul)

)
R

}∥∥∥∥∥
∞

= max {0, R}

because kernels are non-negative and their sum is normalized. By the same process, we sequentially

bound q̂jN (x, a) for all N ∈ N:

∥∥∥q̂jN (x, a)
∥∥∥
∞
≤

∥∥∥∥∥
L∑
l=1

kernel
((
xl,ul(j)

)
; (x, a)

)
max

{
N−1∑
n=1

βn−1R,R+ β

N−1∑
n=1

βn−1R

}∥∥∥∥∥
∞

(26)

We further bound (26) and obtain:
∥∥∥q̂jN (x, a)

∥∥∥
∞
≤ R

1−β for all N ∈ N. Therefore,
∥∥∥q̂jN (x, a)

∥∥∥
∞

is

bounded from above for all j ∈ {1, 2, . . . ,m}, and N ∈ N. We remark that this is an upper bound and

not necessarily the supremum of q̂jN .

By the monotone convergence theorem, q̂jN (x, a) → q̂j (x, a), where q̂j (x, a) ≤ R
1−β is the supre-

mum of the sequence given in (12) at (x, a) because the sequence is monotonically increasing by

Lemma 1 and is bounded from above. A limit is unique if it exists and therefore q̂j (x, a) is the unique

solution of (7) at (x, a) ∈ X ×A. It follows from (9) that the limit is the maximum of the centralized

Q-function approximation at x and u(j) = a.

Lastly, for all ε > 0, there exists N(x, a) such that for all N ≥ N j(x, a) and we can write∣∣∣q̂jN (x, a)− q̂j (x, a)
∣∣∣ < ε. Consequently, for ε > 0, we have

∥∥∥q̂jN − q̂j∥∥∥∞ < ε. for all N ≥ n(j) =

maxx,aN
j(x, a). �
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