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recherche du Québec – Nature et technologies.
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Abstract : We study a predisaster relief network design problem with uncertain demands. The aim
is to determine the prepositioning and reallocation of relief supplies. Motivated by the call of the
International Federation of Red Cross and Red Crescent Societies (IFRC) to leave no one behind, we
consider three important practical aspects of humanitarian operations: shortages, equity, and uncer-
tainty. We first employ a measure that we call the Shortage Severity Measure to evaluate the severity
of the shortage caused by uncertain demand. Because shortages often raise concerns about equity, we
then formulate a mixed-integer lexicographic optimization problem with non-convex objectives and
propose a new branch-and-bound algorithm to identify the exact solution. We also propose two ap-
proaches for identifying optimal postdisaster adaptable resource reallocation: an exact approach and
a conservative approximation that is more computationally efficient. Numerical studies on the 2010
Yushu earthquake positively demonstrate the value of our methodology in alleviating geographical
inequities and reducing shortages. Our case study also provides several other interesting insights that
may be useful for humanitarian organizations for disaster preparedness.
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1 Introduction

The number of disasters reported worldwide and their impact on the population has increased in

recent decades. Extreme events such as tornadoes, earthquakes, or hurricanes can strike a community

without warning and cause massive damage and many casualties. For example, the Emergency Events

Database has recorded 7,348 natural disasters over the last twenty years (2000–2019), affecting over 4

billion people (many on more than one occasion), and causing economic losses of $2.97 trillion around

the world (EM-DAT, 2020). The massive-scale social and economic damages caused by disasters have

brought increasing attention to the need for effective disaster relief management.

Prepositioning of emergency supplies can be an effective mechanism for improving response to

natural disasters (Salmerón and Apte, 2010). In the fall of 2019, hurricane Dorian was estimated to

have caused up to $3 billion in losses in the Caribbean (CNBC, 2019), and highlighted the inadequacy

of existing prepositioning strategies. This paper focuses on the prepositioning strategy in disaster

relief systems and considers the Predisaster Relief Network Design Problem (PRNDP) to prepare for

sudden disasters. This problem determines the locations and capacities of the response facilities and

the inventory levels at each facility, as well as reallocations of relief supplies to distribution locations

in order to improve the effectiveness of the postdisaster relief operations.

A good location and emergency inventory prepositioning strategy is critical for disaster relief oper-

ations, since lack of relief supplies may cause suffering and loss of life among victims. However, disaster

preparedness is subject to considerable uncertainty because it is not known where events will occur (or

if they will occur at all). As a result, disaster-stricken areas often face shortages of emergency supplies.

For example, the Fritz Institute reported that there was a massive shortage of supplies and medical

personnel during the 2004 tsunami in Southeast Asia (Fritz Institute, 2005). Food and water short-

ages also appeared in the Philippines after being hit by a super typhoon Haiyan in 2013 (Uichanco,

2021). Furthermore, in the winter of 2016/2017, an extreme dzud (a kind of dreaded severe weather)

exposed more than 255,000 herders in Mongolia to water and food shortages and killed millions of

animals (BBC, 2016). To alleviate the suffering caused by shortages, since 2011, appeals for funding

by humanitarian organizations (HOs) have steadily increased, but more than 55% of the requirements

have still not been met (Besiou and Van Wassenhove, 2020).

Shortages of relief supplies often raise concerns about the equity of disaster relief systems. Specifi-

cally, on 1 January 2016, the world officially began implementation of the 2030 Agenda for Sustainable

Development and pledged to leave no one behind (UNSDG, 2019). In addition, many large inter-
national HOs, such as the IFRC, began to call on leaving no one behind in humanitarian response

(IFRC, 2018). However, there is little research to-date on the equity regarding predisaster deployment

decisions. We attempt to bridge this gap in our research.

1.1 Research questions

This study mainly attempts to answer the following research questions:

How to measure the severity of possible shortages in the presence of demand uncertainty? Predis-

aster deployment decisions are often constrained by demand uncertainty and limited budgets

(Eftekhar et al., 2021), which may lead to shortages of supplies in certain affected areas after

a disaster. The impact of the shortage varies from region to region. If a region has a strong

industrial foundation, an adequate labor force, and advanced technology, it can quickly carry out

postdisaster reconstruction to overcome a current shortage. However, some of the most vulner-

able people in the world cannot bear the impact of temporary shortages in food and medicine.

Therefore, humanitarian practitioners need to measure the severity of the shortage according to

local conditions under demand uncertainty to make effective predisaster deployment decisions.

How to allocate limited resources equitably among beneficiaries to reduce the impact of shortages?

Equity is an essential requirement in humanitarian operations and has received widespread at-
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tention. Starr and Van Wassenhove, writing in the Special Issue for the Board of the POMS

College on Humanitarian Operations and Crisis Management (Starr and Van Wassenhove, 2014),

state “Humanitarians need to bring relief items to all beneficiaries in an equitable fashion, even

if this is far from being efficient”. They continue “There is an obvious need to consider equity in

addition to classical efficiency or cost minimization objectives.” Therefore, HOs need to give a

more formal treatment of equity in predisaster deployment and humanitarian response (Besiou

and Van Wassenhove, 2020).

How to address the inherent difficulty of quantifying postdisaster demand to improve on predisaster

deployment decisions and postdisaster response decisions? The initial prepositioning deployment

decisions are difficult to make in the presence of demand uncertainty. For the HOs to deploy

high inventory levels in each possible disaster area will be too costly for their limited budgets and

donations, especially if postdisaster demands are relatively small (Stauffer and Kumar, 2021). If

prepositioning of emergency supplies is not enough, then during a major disaster, many areas

may suffer from shortages and even secondary casualties. Thus, HOs want to find a trade-off

between small initial deployment levels that are within budget/donation constraints and large

initial deployment levels that avoid serious shortages. Furthermore, a reasonable description of

uncertain relief demands is a key issue for helping HOs find such a balance (Uichanco, 2021).

1.2 Our contributions

1. Model : Our model considers three important practical aspects of humanitarian operations (i.e.,

shortages, equity, and uncertainty). First, to the best of our understanding, this is the first paper

to use the Shortage Severity Measure (SSM) to control the uncertain relief shortages. Specifi-

cally, as an example of satisficing measure (Brown and Sim, 2009), the SSM is an axiomatically

motivated way of measuring the severity of random shortages when compared to targeted maxi-

mum shortage thresholds. Second, we propose a model that ensures that the allocations of the

limited resources are equitably distributed among disaster-prone regions. This is done by formu-

lating a mixed-integer lexicographic optimization problem with non-convex objectives. Third, to

account for the inherent difficulty of quantifying postdisaster demand distributions, we employ a

two-stage robust stochastic optimization model that relies on scenario-wise moment information.

Overall, we consider our model to take a important step toward bridging the gap between theory

and practice in humanitarian operations.

2. Solution approach: First, we discuss two approaches for identifying optimal adaptable resource

reallocation: an exact approach and a conservative approximation that is based on affine deci-

sion rules and allows us to solve instances of realistic size. Empirically, the latter also appears

surprisingly accurate with a maximum measured optimality gap of 8%. Second, we handle the

lexicographic minimization aspect of the model using a new branch-and-bound algorithm. This

algorithm corrects for a deficiency found in the procedure proposed by Qi (2017). In fact, our

algorithm appears to be the first iterative scheme with the guarantee of finding exact solutions

to non-convex, mixed-integer, lexicographic optimization problems.

3. Managerial insights: Our case study involving a real earthquake case, provide three interesting

insights. First, there is no conflict between ensuring that all beneficiaries have equitable access to

relief resources and reducing the total shortage. Second, if equity is ignored, the shortages experi-

enced by some beneficiaries may not be alleviated with an increase in donations. Third, disaster

scenario-wise information, if properly segmented, can alleviate inequities caused by uncertain

relief demands.

The remainder of the paper is organized as follows. In Section 2, we provide a brief literature review

related to our research. In Section 3, we discuss three important practical aspects of humanitarian

operations (i.e., shortages, equity, and uncertainty) and present the model. In Section 4, we describe

the solution procedure for the proposed model. In Section 5, we perform several numerical studies.
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In Section 6, we present some valuable managerial insights and conclude the study. All proofs can be

found in the appendix.

Notations We use boldfaced characters to represent vectors (e.g., x ∈ Rn). We use |L| to denote

the cardinality of a set L and (x)+ to denote max(x, 0). We use P0(Rn) to represent the set of all

probability distributions on Rn. A random variable, d̃, is denoted with a tilde sign, and we use d̃ ∼ P,

P ∈P0(Rn) to define d̃ as a n-dimensional random variable with distribution P. We assume that P lies

in a distributional ambiguity set F ⊂P0(Rn) and denote EP[·] as the expectation over the probability

distribution P.

2 Literature review

In this section, we present a review of the related literature. Specifically, we focus on the following

streams of literature that are related to our study: (i) PRNDP under uncertainty; (ii) supply shortages

in humanitarian operations; and (iii) equity considerations. After that, we discuss the distinction

between our paper and the existing literature.

2.1 Predisaster relief network design

Predisaster relief network design involves decisions regarding facility locations, inventory prepositioning

and resource reallocation under uncertainty. Every part of a decision can be viewed as an optimization

problem that has gained considerable attention in the operations research and management science

(OR/MS) communities. The PRNDP as a whole was first studied by Balcik and Beamon (2008),

where the authors propose a scenario-based model to maximize the benefits provided to affected peo-

ple. Rawls and Turnquist (2010) formally introduce the PRNDP that simultaneously determines

the decisions of facility location, inventory prepositioning and resource distribution under demand

uncertainty. They formulate a risk-neutral two-stage stochastic programming model and propose a

Lagrangian L-shaped method. Following their path, stochastic programming is widely used to address

uncertainty in PRNDP. In addition, some literature begins to focus on the measurement of risk by

applying concepts such as the conditional value-at-risk (CVaR) (Noyan, 2012) and probabilistic con-

straints (Rawls and Turnquist, 2011; Hong et al., 2015). Elçi and Noyan (2018) further develop a

chance-constrained two-stage stochastic programming model that combines quantitative risk (CVaR)

and qualitative risk (probabilistic constraints).

All of the above literature is scenario-based stochastic programming, which has to deal with diffi-

culties in selecting scenarios, especially in disaster management. This challenge motivates research on

the robust optimization method as an alternative. Building on the pioneering work by Bertsimas and

Sim (2004) on robust optimization, Ni et al. (2018) propose a min-max robust model that integrates

the three-part decision making of predisaster relief network design. To address uncertainties in supply,

demand and road link capacity, they construct budgeted uncertainty sets and develop computationally

tractable reformulations based on the budgeted uncertainty sets. Similarly, Velasquez et al. (2019)

apply the budgeted uncertainty set to model demand uncertainty and propose a robust model for

prepositioning relief items. Paul and Wang (2019) further develop a two-stage robust optimization

model and consider two types of robustness, one of which is the budgeted uncertainty set.

To hedge uncertainty in humanitarian operations, stochastic relief network design often assume

uncertainty parameters following fully known distributions and use a finite number of scenarios to

model uncertainties. This mainly faces two challenges in practical implementation: (i) computational

difficulties for instances with abundant scenarios; (ii) sampling difficulties for uncertainty parameters

of high dimensionality. On the other hand, although robust optimization with budgeted uncertainty

sets does not require any knowledge of distributions except for their support, it tends to produce overly

conservative solutions due to hedging against the rare worst case.
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2.2 Shortage

To reduce shortages in disaster areas, the existing optimization models are mainly described from two

perspectives: the objective function and the conditions on the constraints. As for the former, shortage

is added to the objective function as a penalty cost. Most optimization models for predisaster relief

network design use cost minimization as their objective to reduce shortages. Specifically, in the widely

used two-stage stochastic and/or robust programming models, shortage cost is usually considered

in the second stage, whereas facility cost and ordering cost are incurred in the first stage. From

the perspective of constraint conditions, in order to control shortages, Rawls and Turnquist (2011)

introduce service quality constraints that ensure that the probability of meeting all demand is not

lower than a given target level. Salas et al. (2012) add a penalty cost when the shortage exceeds a

threshold for two days in a row. Hong et al. (2015) apply probabilistic constraints to ensure that the

demand in each region is satisfied.

Because the penalty cost of shortage is difficult to determine in practice, some HOs will not use

cost to guide their decision. Gralla et al. (2014) study five attributes (e.g., quantity, type, location,

speed, and cost) based on the preferences of experts toward humanitarian logistics, and the results

show that quantity delivered is the most valued objective while cost is the least important. In addition,

although we can ensure that the satisfaction of demands is maintained at a certain level by probabilistic

constraints, we may ignore the unmet demands and the seriousness of their impact.

2.3 Equity

To address equity considerations in humanitarian operations, it is necessary to clarify the exact meaning

of equity. A number of researchers have analyzed the concept of equity in detail, see Savas (1978) and

Fishburn and Straffin (1989). Although equity is a very important consideration in the literature,

there is no definite consensus on its definition. In the fields of OR/MS, there are many different ways

of incorporating equitability in the decision making process. For a comprehensive overview of equity

in OR/MS problems, we refer readers to the recent reviews provided by Karsu and Morton (2015).

One of the most common ways of modeling equity is the lexicographic optimization approach, which is

applied in many fields, such as resource allocation (Luss, 1999), network flows (Nace and Orlin, 2007)

and appointment scheduling (Qi, 2017). According to Karsu and Morton (2015), the solution derived

by the lexicographic approach is sometimes considered to be the most equitable solution.

In humanitarian operations, equity concerns play a role in the disaster response phase in the

reallocation of relief items to beneficiaries. To provide relief resources to demand locations in a fair

manner, the existing literature mainly studies equity from the perspectives of response time and supply

quantity. Holgúın-Veras et al. (2013) introduce a new concept called deprivation cost, which depends

on the deprivation time. They quantify equity concerns for postdisaster humanitarian logistics by

using social costs, which is the sum of logistic and deprivation costs. Following their direction, Ni

et al. (2018) measure the shortage cost associated with unsatisfied demand through the deprivation

cost to ensure the equitable relief delivery operations in some sense. Gutjahr and Fischer (2018) show

that minimizing the total deprivation cost given a budget may yield inequitable solutions and they

propose to extend the deprivation cost objective with the Gini inequity index. In terms of equitable

allocation quantities, Noyan et al. (2016) compute the maximum proportion of unsatisfied demand

among demand locations and apply a proportional allocation policy to ensure equitable allocation of

resources in the last mile. Velasquez et al. (2019) introduce equity constraints to ensure that relief

items are distributed proportionately to the demand. Arnette and Zobel (2019) apply a measure of

relative risk and develop a risk-based objective function to ensure equitable allocations of assets in

advance of a natural disaster. Recently, Uichanco (2021) propose a stochastic programming model for

typhoon preparedness with two objectives, one of which is a fair strategy by minimizing the expected

largest proportion of unmet demand.
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2.4 Distinction of our work from past literature

Motivated by special features that HOs face in practice, our paper considers three important aspects

of humanitarian operations: shortages, equity, and uncertainty. Previous studies on predisaster relief

network design mainly use a cost criteria (e.g., setup cost, purchase cost, transportation cost, shortage

cost, etc.), while some HOs will not use cost to guide their decision (Uichanco, 2021). Besiou and

Van Wassenhove (2020) also argue that it is not easy to evaluate the performance of humanitarian

operations through cost. Furthermore, as we mentioned before, HOs usually put the cost in the

least important position and the amount of supply delivered in the first place (Gralla et al., 2014).

Therefore, we use the amount of supply shortage to measure the severity of the shortage and formulate

a mixed-integer lexicographic optimization problem with non-convex objectives.

Although there has been significant progress in addressing lexicographic optimization models (see,

for instance, Marchi and Oviedo, 1992; Nace and Orlin, 2007), these approaches cannot be applied

to non-convex models with discrete and continuous decisions, which have received less attention in

the literature. Nace and Orlin (2007) provide a polynomial approach for linear lexicographic opti-

mization problems and prove its optimality. Ogryczak et al. (2005) propose a reformulation based

on conditional means for lexicographic optimization problems with non-convex feasible sets. Since

our model has a non-convex objective function, this method will lead to a mixed-integer non-convex

programming reformulation, which we expect to quickly become intractable for large-scale problems.

Recently, Letsios et al. (2021) propose a branch-and-bound algorithm for a scheduling problem to

obtain exact lexicographic scheduling. Because the scheduling problem belongs to a typical combina-

torial optimization problem, they enumerate all possible job-to-machine assignment, which cannot be

applied to problems that include both discrete and continuous decisions. In this stream of literature,

the most relevant work to ours is Qi (2017), who propose a lexicographic minimization procedure for

mixed-integer lexicographic optimization model with non-convex objectives. However, we find that

such a procedure cannot guarantee optimality for our problems. Therefore, our paper corrects for a

deficiency found in Qi (2017). Specifically, we propose a new branch-and-bound algorithm for solving

non-convex, mixed-integer, lexicographic optimization problems and prove its optimality.

3 Problem formulation

In this section, we first present a multi-objective two-stage stochastic optimization model for the

PRNDP. We then introduce a measure to evaluate shortages in the presence of demand uncertainty.

Finally, we formulate a lexicographic minimization problem to address equity concerns.

3.1 A two-stage model

Given a set of potential demand locations L, we assume that a facility can be opened at any such

demand locations. Each location i ∈ L represents a geographical area (e.g., state, county, district,

etc.) with a random relief demand d̃i : Ω → R+ on a probability space (Ω,Σ, P̄). Let K denote the

set of possible facility sizes (i.e., capacity limits), indexed by κ, and let Mκ > 0 denote the maximum

capacity of facilty of category κ. Associated with each candidate location i and each size category κ

is a fixed location cost ciκ > 0. We consider a single type of inventory unit that consists of a bundle

of critical relief supplies, including prepackaged food, medical kits, blankets, and water. The total

amount of these emergency supplies, denoted by R > 0, is determined by the donations received. Let

B > 0 denote the total budget for the predisaster deployment. In the predisaster operations, HOs need

to decide where to set up the facilities for prepositioning emergency supplies and how much inventory

to preposition in each facility that has been opened. After a disaster, the reallocation operation of

emergency supplies should be able to adjust adaptively. To formulate the model, let xiκ ∈ {0, 1}
denote whether or not a facility of size category κ ∈ K is opened at location i ∈ L and let ri ≥ 0

denote the number of supplies prepositioned at location i ∈ L. In addition, let ỹij : Ω → R+ be an
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adaptive strategy indicating the amount of supplies reallocated to location j ∈ L from location i ∈ L
under each possible outcome ω ∈ Ω and similarly ũi : Ω → R+ be a random variable denoting the

planned amount of unsatisfied demand at location i ∈ L. The parameters and decision variables for

the model are summarized in Table 1.

Table 1: Model parameters and decision variables

Sets
L Set of demand locations
K Set of facility size categories

Parameters
ciκ Fixed cost of opening a facility of size category κ at location i
Mκ Capacity limit of a facility of size category κ
R A total amount of emergency supplies
B Budget limit for prepositioning supplies
τi The tolerance threshold of supply shortage for demand location i

d̃i Random relief demand at location i

Decision variables
xiκ 1, if a facility of size category κ is opened at location i; 0 otherwise
ri The amount of supplies prepositioned at facility location i
ỹij The amount of supplies allocated to location j from location i
ũi The amount of unmet demand (supply shortage) at location i

To determine predisaster deployment decisions, we formulate the following constraints:∑
κ∈K

xiκ ≤ 1, i ∈ L, (1a)

ri ≤
∑
κ∈K

Mκxiκ, i ∈ L, (1b)∑
i∈L

ri ≤ R, (1c)∑
i∈L

∑
κ∈K

ciκxiκ ≤ B. (1d)

According to constraint (1a), not more than one facility can be opened at any demand location.

Constraint (1b) states that the quantity of prepositioned relief items cannot exceed facility capacity.

Constraint (1c) specifies that the total amount of the emergency supplies is R. Constraint (1d) ensures
that the construction of response facilities are within the given budget. Note that one also can decide

whether to consider other costs in the budget constraint according for different settings. Furthermore,

the shortage can be represented by a convex piecewise linear function as defined next.

Definition 1. (Supply Shortage) For any fixed decision (x, r,y) and realization d, the relief supply

shortage for location i ∈ L is defined by the function

f(x, r,y,d) :=

di +
∑
j∈L\i

yij − (ri +
∑
j∈L\i

yji)

+

.

This gives rise to the following multiobjective optimization problem under uncertainty:

(PMOU) minimize
x,r,ỹ,ũ

{ũi}i∈L (2a)

s.t. ũi =

d̃i +
∑
j∈L\i

ỹij − (ri +
∑
j∈L\i

ỹji)

+

, a.s., i ∈ L, (2b)

∑
j∈L\i

ỹij ≤ ri, a.s., i ∈ L, (2c)
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ỹij ≥ 0, a.s., i, j ∈ L, (2d)

(1a)− (1d),

where “a.s.” stands for almost surely. Constraint (2b) ensures the exact calculation of the relief supply

shortages. Constraint (2c) restricts that the amount of supply delivered from each facility does not

exceed the level of prepositioned supplies. Note that the objective of problem PMOU is both multiple,

as it attempts to minimize the shortage at each location i ∈ L, and uncertain, as the shortages depend

on random demand. Hence, in the next two sections, we will discuss how we propose to control the

risk of excessive shortage and trading off between the different locations in an equitable way. In doing

so, it will be useful to summarize problem PMOU using:

minimize
ũ∈U

ũ ,

where U represents the set of random shortage vectors that can be produced in problem PMOU, i.e.

U := {ũ | ∃x, r, ỹ, (1a)− (1d), (2b)− (2d)}.

3.2 Shortage severity measure

For any feasible decisions (x, r), we can first consider in isolation how to treat the uncertainty about

supply shortages ũi at each location i. This will be done by assuming throughout this section that

L = 1, so that u will be referred as the random shortage ũ. The classical stochastic relief network

design approaches assume a known probability setting and employ a risk measure such as the expected

supply shortage (see, for instance, Rawls and Turnquist, 2010). One the other hand, classical robust

optimization tends to produce overly conservative solutions because of ignoring any knowledge regard-

ing the distribution except for its support. Therefore, we apply an alternative modeling paradigm

known as distributionally robust optimization (DRO) and assume that P is only known to belong to a

convex ambiguity set F that is characterized by partial distribution information estimated from histor-

ical data. As a result, we can seek the worst-case distribution to protect the risk measure by hedging

against all probability distributions in F . In our model, we will consider a generic risk constraint in

the form

sup
P∈F

ρ (ũ) ≤ τ,

where ρ(ũ) denotes a risk measure of supply shortages, τ represents a bounding threshold for the risk

of supply shortages.

Next, we discuss the specific form of risk measure. When the coherent risk measure CVaR is spec-

ified as the risk measure, we can set ρ (ũ) := CVaR1−α (ũ). We refer interested readers to Rockafellar

et al. (2000a) and references therein for more details and examples of modeling and optimization prob-

lems using CVaR. In this setting, the CVaR is the expected shortage given that it falls beyond its

1−α quantile. Hence, intuitively, this setting ensures that the CVaR of the supply shortage with 1−α
confidence remains under τ for all distributions in the set F . In addition, CVaR has been adopted as

a preferred measure in disaster management. For example, Elçi and Noyan (2018) suggest that CVaR

is a reliable measure for the supply shortages. Alem et al. (2016) compare different risk measures,

showing that the CVaR concept leads to higher demand satisfaction.

With the worst-case CVaR as a risk measure, one can impose

sup
P∈F

CVaR1−α (ũ) ≤ τ (3)

to keep the worst-case CVaR of the supply shortages below a threshold τ . Note that the worst-case

CVaR is still a coherent risk measure and exhibits some valuable properties (Zhu and Fukushima,

2009). We propose an equivalent representation of the worst-case CVaR of shortages in Lemma 1.

Lemma 1. The bounded worst-case CVaR constraint (3) is equivalent to:

inf
η≥0

(
η +

1

α
sup
P∈F

EP

[
(ũ− η)

+
])
≤ τ. (4)
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Proof. Please see Appendix B.

With the worst-case CVaR of shortages in hand, we next introduce a measure to evaluate the

uncertain relief supply shortage in Definition 2.

Definition 2. (Shortage Severity Measure) Assume an uncertain supply shortage denoted by the

random variable ũ ∈ U and a tolerance threshold τ ≥ 0. If we only know that the true distribution P
lies in a distributional ambiguity set F , we define the SSM ρτ : U → [0, 1] as follows:

ρτ (ũ) :=

 inf
α∈(0,1]:V1−α(ũ)≤τ

α if V0(ũ) ≤ τ ,

1 if V0(ũ) > τ,

where V1−α(ũ) is the worst-case CVaR1−α of the ũ defined as

V1−α(ũ) := inf
η≥0

{
η +

1

α
sup
P∈F

EP
[
(ũ− η)+

]}
, α ∈ (0, 1],

so that V0(ũ) := supP∈F EP[ũ].

Intuitively, for any given random shortage, SSM quantifies the risk of excessive shortage using a

number between 0 and 1. If there is no possibility of shortage beyond τ , then the value of the SSM

is 0. When the supply shortage is on average close or beyond τ , the SSM value will be close to 1.

Moreover, the SSM can be regarded as the smallest upper 100α percentile, such that the worst-case

CVaR1−α of the supply shortage will not exceed the tolerable threshold τ . It is desirable to have an

uncertain supply shortage with the smallest SSM value, because it implies that even for those unlikely

massive demands, their worst-case CVaR can still be no more than the tolerance threshold. To the

best of our knowledge, this is the first time that a measure that can account for the uncertain relief

shortages in a mathematically precise way has been used in disaster management.

We note that the SSM falls within the framework of satisficing measures proposed by Brown and

Sim (2009) and is analogous to the Delay Unpleasantness Measure in Qi (2017) and the buffered

probability of exceedance in Mafusalov and Uryasev (2018). Specifically, SSM can be regarded as

ρτ (ũ) := 1−S(τ−ũ), where S is a satisficing measure. We further present several important properties

in Proposition 1.

Proposition 1. Given ũ, ũ1, ũ2 ∈ U , the SSM satisfies the following properties:

1. Monotonicity: if P(ũ1 ≤ ũ2) = 1 for all P ∈ F , then ρτ (ũ1) ≤ ρτ (ũ2).

2. Satisfaction: ρτ (ũ) = 0 if and only if P(ũ ≤ τ) = 1 for all P ∈ F .

3. Dissatisfaction: if sup
P∈F

EP[ũ] > τ , then ρτ (ũ) = 1.

4. Quasi-convexity: for any α̂ ∈ (0, 1], the set U (α̂) := {ũ|ρτ (ũ) ≤ α̂} is closed and convex.

Proof. Please see Appendix B.2.

The monotonicity property implies that the smaller the shortage, the lower the risk. This is

consistent with disaster management practices because the decision maker prefers smaller shortages.

The satisfaction property ensures that, if an uncertain shortage is fully tolerable in the affected area,

then the value of the measure is zero. This property also indicates that shortages below the tolerable

threshold are the most preferred. The dissatisfaction property shows that, if an uncertain shortage

exceeds the tolerable threshold of the affected area in worst-case expectation, then the severity of the

shortage reaches the limit, which should be avoided in disaster management. Intuitively, when the

uncertain shortage ũ is closer to the threshold τ , the SSM value is closer to one. The quasi-convexity

is an attractive property for optimization, which under the right conditions, which can include that U
be convex, enables us to efficiently obtain a global SSM minimizer.
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3.3 Equity modeling

Equity is an essential issue in humanitarian operations and providing relief supplies to every affected

individual in an equitable manner has become a social consensus. While there are many concepts

with regard to equity, typically they can be divided into horizontal equity and vertical equity (see,

for instance, Karsu and Morton, 2015). In the context of disaster management, horizontal equity

refers to every individual or group being given the exact same resources to meet their needs, while

vertical equity allocates the resources based on the different needs of the recipients. In Figure 1(a),

for example, two identical medical kits are given to three people of different heights—it’s an equal

allocation of resources (horizontal equity), but it fails to consider that the tallest person does not

need a kit to overcome the deprivations caused by a disaster, while the shortest person could clearly

use an extra one. When the kits are redistributed equitably, according to vertical equity, as seen in

Figure 1(b), all three individuals can survive the disaster.

Figure 1: Horizontal equity and vertical equity. (Source: this figure was adapted from a figure ©2014, Saskatoon Health
Region.)

In humanitarian operations, since HOs need to consider relief demands of all victims from a global

perspective and provide treatment accordingly, we mainly focus on vertical equity. Moreover, supply

shortages often raise concerns about equity, so we characterize the concepts of an equitable solution

(see, for instance, Luss, 1999) based on vertical equity from the perspective of shortages.

Definition 3. (Equitable Solution) A solution is called equitable if no affected area can reduce its

SSM value without raising an already equal or higher SSM measure of another affected area.

To obtain such an equitable solution, we can formulate a lexicographic minimization problem

according to the Rawlsian principle of justice (Rawls, 1971), as follows:

(PLM) ũ∗ ∈ arg leximin
ũ∈U

ρτ (ũ), (5)

where ρτ (ũ) :=
[
ρτ1(ũ1), ρτ2(ũ2), ..., ρτ|L|(ũ|L|)

]>
. Let ũ∗ denote the optimal lexicographic solution

that provides the lexicographically minimal vector α∗ := ρτ (ũ∗). To keep this paper self-contained,

we briefly provide the definition of lexicographic order in Definition 4.

Definition 4. (Lexicographic Order) Given δ ∈ R|L|, let ~δ ∈ R|L| denote the vector δ with its indices

reordered so that the components are in nonincreasing order. The vector δ ∈ ∆ is lexicographically

less than δ′ ∈ ∆, denoted by δ � δ′ if either ~δ = ~δ′ or there exists a k ∈ {1, . . . , |L|}, such that ~δi = ~δ′i
for all i < k and ~δk < ~δ′k. Furthermore, a vector δ ∈ ∆ is said to be lexicographically minimal in some

∆ ⊆ R|L| if for every vector δ′ ∈ ∆, δ � δ′.
Remark 1. In problem PLM, we note that our definition of lexicographic ordering does not impose an

a-priori ordering on which elements of ρτ (ũ) should be minimized first. It rather should be understood

as minimizing in order from 1 to |L| the terms of the sorted (in decreasing order) ~ρτ (ũ).
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With this objective in hand, we can present our proposed predisaster relief network design problem

with equity (PRNDP-E):

(PRNDP-E) leximinimize
x,r,ỹ,ũ

ρτ (ũ) (6a)

s.t. (1a)− (1d), (2b)− (2d). (6b)

where “leximinimize” refers to our search for the minimal feasible solution in terms of lexicographic

ordering. Mathematically, x is discrete while r is continuous, both ỹ and ũ are adaptable, and

each ρτ (·) is quasi-convex, we say that our problem belongs to the class of distributionally robust

mixed-integer non-convex two-stage lexicographic optimization problems. Furthermore, as we show

in Section 2.4 and Appendix A, we find that the lexicographic minimization procedure proposed by

Qi (2017) for such problems cannot guarantee optimality. This motivates us to develop an efficient

computational method with the guarantee of finding exact solutions to non-convex, mixed-integer,

lexicographic optimization problems.

4 Solution approach

In this section, we first propose a new branch-and-bound algorithm to address the lexicographic min-

imization aspect of the model PRNDP-E. We then handle demand–distribution ambiguity by the

robust stochastic optimization approach. Finally, we discuss two approaches for identifying optimal

adaptable resource reallocation.

4.1 The branch-and-bound algorithm

We first focus on proposing a branch-and-bound algorithm (see Algorithm 1) for solving non-convex

mixed-integer lexicographic optimization models of the form presented in problem PLM. For conve-

nience, we refer to the lexicographic minimal vector as α∗ := ρτ (ũ∗) ∈ R|L|, to the lexicographic order

as �, and to ᾱ and α as respective upper and lower bounds for α∗ if α � α∗ � ᾱ. The algorithm

starts by minimizing a worst-case SSM over all locations i ∈ L. Then the procedure branches ac-

cording to locations imposing that the SSM for this location does not exceed the minimax value that

was identified at its parent node. Hence, each node n in the enumeration tree N corresponds to a

minimax problem (7) in which the SSM for some locations in L̄n cannot exceed αni , while the worst

SSM is minimized for the other locations (i.e., i ∈ L/L̄n). A lower bound αn for the children of each
node is also maintained and compared to the best solution found ᾱ so far in order to trim the node if

no improvement can be achieved.

Remark 2. In the step of branching (i.e., Step (16)), one can alternatively obtain a lower bound using

for all i ∈ L/L̄n′ by

αn
′

i := min
ũ∈U

ρτi(ũi)

s.t. ρτj (ũj) ≤ αnj , j ∈ L̄n,
ρτj (ũj) ≤ v∗n, j ∈ L/L̄n.

Remark 3. In practice, different strategies can be used to select the node n in Step (6). In our

implementation, we select the node with lowest lower bound first.

We also prove the optimality of the output vector α∗ in Theorem 1.

Theorem 1. The vector α∗ returned by Algorithm 1 is lexicographically minimal, i.e. α∗ � ρτ (ũ) for

all ũ ∈ U .

Proof. Please see Appendix B.3.
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Algorithm 1 Branch-and-bound algorithm for lexicographic optimization problem PLM

1: Input: A set U and vectored risk measure ρ : U → R|L|
2: Output: The lexicographic minimal vector α∗ and a lexicographic minimal solution u∗.
3: Set ᾱi :=∞ for all i, and some arbitrary ū ∈ U .
4: Initialize enumeration tree N := {n0} with L̄n0 := L, αn0

i := −∞ for all i.
5: while N 6= ∅ do
6: Select a node n in the enumeration tree N and remove n from N (Node selection)
7: if αn ≺ ᾱ then (Node expansion)
8: Solve the following minimax problem associated with node n,

min
ũ∈U

max
i∈L/L̄n

ρτi (ũi) (7a)

s.t. ρτi (ũi) ≤ α
n
i , i ∈ L̄

n, (7b)

9: Let v∗n and ũ∗n be optimal value and minimizer of problem (7)
10: Construct ᾱn as follows:

ᾱni :=

{
αni if i ∈ L̄n
v∗n otherwise

11: if ᾱn � ᾱ then (Update best solution)
12: Let ᾱ := ᾱn and ū := ũ∗n.
13: end if
14: if |L/L̄n| > 1 then (Branching)
15: for j ∈ L/L̄n do

16: Create new node n′ with L̄n′ := L̄n ∪ j and

αn
′
i :=

 αni if i ∈ L̄n
v∗n if i = j
−∞ otherwise

17: Append the new node n′ to N .
18: end for
19: end if
20: end if
21: end while
22: return α∗ := ᾱ and u∗ := ū.

Since we need to solve a series of similar minimax problems (7) repeatedly, we then mainly focus

on solving these problems. By Definitions 1 and 2, we can reorganize problem (7) as the following

distributionally robust optimization (DRO) problem:

(PDRO)v∗n := inf
x,r,η,α,ỹ,ũ

α (8a)

s.t. ηi +
1

α
sup
P∈F

EP

[
(ũi − ηi)+

]
≤ τi, i ∈ L \ L̄n, (8b)

ηi +
1

αni
sup
P∈F

EP

[
(ũi − ηi)+

]
≤ τi, i ∈ L̄n, (8c)

ũi =

di+ ∑
j∈L\i

ỹij − (ri+
∑
j∈L\i

ỹji)

+

, a.s. under all P ∈ F , i ∈ L, (8d)

∑
j∈L\i

ỹij ≤ ri, a.s. under all P ∈ F , i ∈ L, (8e)

ỹij ≥ 0, a.s. under all P ∈ F , i, j ∈ L, (8f)

(1a)− (1d), α ∈ (0, 1],η ≥ 0. (8g)

We note that ηi +
1

α
sup
P∈F

EP[ũi − ηi]+ is non-increasing in α which implies that the set of feasible

α’s has the form [α∗, 1]. Hence, one can solve problem PDRO by performing a bisection search for α∗,

which at each step tests for the feasibility PDRO when α is fixed to some value. The latter reduces to

verifying the feasibility of a convex optimization problem. However, we still face two challenges: (i)
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how to construct an ambiguity set F ; and (ii) how to develop a tractable formulation so that a feasible

solution can be quickly found. Hence, in the subsections below, we describe the solution procedure for

the problem PDRO.

4.2 The robust stochastic optimization approach

To handle problem PDRO, we deploy the framework of robust stochastic optimization (RSO) (Chen

et al., 2020), where the uncertainty associated with problems is described by a scenario-wise ambigu-

ity set.

4.2.1 Scenario-wise ambiguity set

The uncertain demands are strongly correlated with covariates (e.g., the Seismic magnitude scales, the

Saffir-Simpson Hurricane Wind Scale), so we can raise the level of forecasting for uncertain demands

by using such data. It follows that we need to consider uncertain covariates and uncertain demands

to construct a scenario-wise ambiguity set. For example, when an earthquake reaches magnitude VII,

it will cause more damage than an earthquake of magnitude V and the demand for relief supplies will

also be higher, so earthquake magnitude can be used as a covariate. For simplicity, we further divide

the space of covariates into |S| non-overlapping regions to form |S| scenarios. This gives rise to the

outcome space Ω := {(d̃, s̃) ∈ R|L| × |S|}. Let s represent a scenario taking values in S and ps denote

the probability of scenario s happening. Furthermore, we have P(s̃ = s) = ps and
∑
s∈S ps = 1, where

s̃ represents a set of random scenarios whose realization probabilities may be uncertain. The joint

distribution of (d̃, s̃) is denoted by P ∈ F . Now, we specify the scenario-wise ambiguity set F as

F :=

P ∈P0(R|L| × |S|) :

(d̃, s̃) ∼ P
P(d̃ ∈ Ds|s̃ = s) = 1, s ∈ S
EP[d̃|s̃ = s] = µs, s ∈ S
EP[|d̃− µs|

∣∣s̃ = s] ≤ νs, s ∈ S
P(s̃ = s) = ps, s ∈ S

 ,

where Ds is the support set defined as

Ds :=
{
d̃ ∈ R|L| : ds ≤ d̃ ≤ d

s
}
.

In F , it is natural to incorporate the mean, the mean absolute deviation and the support set of

the random variable d̃. Specifically, for different scenarios, the bounded support set defined in the

first set of equality constraints may differ. Conditioning on the scenario realization, the mean of d̃ is

specified in the second set of equality constraints, while the third set of inequality constraints provides

upper bounds on the mean absolute deviation of d̃. The last set of equality constraints specifies the

probability of each scenario. The scenario-wise ambiguity set requires simple descriptive statistics from

data and allows us to model a rich variety of structural information about the uncertain demand for

relief supplies.

4.2.2 Model reformulation

Note that the scenario-wise ambiguity set F involves nonlinear moment constraints due to EP[|d̃ −
µs|
∣∣s̃ = s] ≤ νs. Following standard techniques in robust optimization (see, for instance, Wiesemann

et al., 2014), we introduce an auxiliary probability space Ω′ := {(d̃, z̃, s̃) ∈ R|L| × R|L| × |S|} to

reformulate the ambiguity set F as the projection of a lifted ambiguity set G:

G :=

Q ∈P0(R|L| × R|L| × |S|) :

(d̃, z̃, s̃) ∼ Q
Q((d̃, z̃) ∈ D̄s|s̃ = s) = 1, s ∈ S
EQ[d̃|s̃ = s] = µs, s ∈ S
EQ[z̃|s̃ = s] ≤ νs, s ∈ S
Q(s̃ = s) = ps, s ∈ S

 ,
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where D̄s is the lifted support set defined as

D̄s :=

{
(d̃, z̃) ∈ (R|L| × R|L|) :

ds ≤ d̃ ≤ d
s

|d̃− µs| ≤ z̃

}
.

Compared with the original ambiguity set F , the lifted ambiguity set G is a set of distributions

of random triplet (d̃,z̃, s̃). Furthermore, following some recent results in DRO (see, for instance,

Bertsimas et al., 2019), we can define the ambiguity set F as the set of marginal distributions over

(d̃, s̃) for all Q ∈ G. That is, F =
∏

d̃,s̃ G. With the lifted ambiguity set G in hand, we transform

problem PDRO in Lemma 2.

Lemma 2. The distributionally robust optimization problem PDRO with F , i.e., F =
∏

d̃,s̃ G, is equiv-

alent to the following adjustable robust optimization (ARO) problem:

(PARO) v∗n :=

inf
x,r,η,α,{ys(·)}s∈S

π1,π2,π3≥0

α (9a)

s.t. ηi +
1

α

∑
s∈S

(π1
si +

(
π2
si)
′µs + (π3

si)
′νs
)
≤ τi, i ∈ L \ L̄n, (9b)

ηi +
1

αni

∑
s∈S

(
π1
si + (π2

si)
′µs + (π3

si)
′νs
)
≤ τi, i ∈ L̄n, (9c)

π1
si + (π2

si)
′d + (π3

si)
′z ≥ 0, (d, z) ∈ D̄s, s ∈ S, i ∈ L, (9d)

π1
si + (π2

si)
′d + (π3

si)
′z ≥ −psηi, (d, z) ∈ D̄s, s ∈ S, i ∈ L, (9e)

π1
si + (π2

si)
′d + (π3

si)
′z ≥ ps(di +

∑
j∈L\i

ysij(d, z)

− (ri +
∑
j∈L\i

ysji(d, z))− ηi), (d, z) ∈ D̄s, s ∈ S, i ∈ L, (9f)

∑
j∈L\i

ysij(d, z) ≤ ri, (d, z) ∈ D̄s, s ∈ S, i ∈ L, (9g)

ysij(d, z) ≥ 0, (d, z) ∈ D̄s, s ∈ S, i, j ∈ L (9h)

(1a)− (1d), α ∈ (0, 1],η ≥ 0. (9i)

where each ysij : R|L| × R|L| → R, and where π1
si, π

2
si and π3

si are the dual variables associated with

first, second, and third constraints that define G.

Proof. Please see Appendix B.4.

Note that problem PARO is a semi-infinite programming problem with an infinite number of con-

straints and adaptive decision variables. Specifically, the adaptive decisions ysij can be seen as general

functions of random vectors (d̃, z̃). Therefore, problem PARO is not yet directly solvable.

4.3 Identifying optimal adaptable resource reallocation

4.3.1 Exact solution

Based on a vertex enumeration (VE) method, we first present an exact linear programming reformu-

lation for problem PARO in Proposition 2.
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Proposition 2. The adjustable robust optimization problem PARO is equivalent to the following mixed-

integer linear program:

(PVE) v∗n :=

inf
x,r,η,α,{ys(·)}s∈S

π1,π2,π3≥0

α (10a)

s.t. ηi +
1

α

∑
s∈S

(
π1
si + (π2

si)
′µs + (π3

si)
′νs
)
≤ τi, i ∈ L \ L̄n, (10b)

ηi +
1

αni

∑
s∈S

(
π1
si + (π2

si)
′µs + (π3

si)
′νs
)
≤ τi, i ∈ L̄n, (10c)

π1
si + (π2

si)
′d(ω) + (π3

si)
′z(ω) ≥ 0, ω ∈ Ωs, s ∈ S, i ∈ L, (10d)

π1
si + (π2

si)
′d(ω) + (π3

si)
′z(ω) ≥ −psηi, ω ∈ Ωs, s ∈ S, i ∈ L, (10e)

π1
si + (π2

si)
′d(ω) + (π3

si)
′z(ω) ≥ ps(di(ω) +

∑
j∈L\i

ysij(ω)

− (ri +
∑
j∈L\i

ysji(ω))− ηi), ω ∈ Ωs, s ∈ S, i ∈ L, (10f)

∑
j∈L\i

ysij(ω) ≤ ri, ω ∈ Ωs, s ∈ S, i ∈ L, (10g)

ysij(ω) ≥ 0, ω ∈ Ωs, s ∈ S, i, j ∈ L,(10h)

(1a)− (1d), α ∈ (0, 1],η ≥ 0. (10i)

where each ysij : Ωs → R, and where, for all s ∈ S, the set {d(ω)}}ω∈Ωs contains all vertices of the

bounded polyhedron D̄sb defined as:

D̄sb :=
{

(d̃, z̃) ∈ R|L| × R|L| : ds ≤ d̃ ≤ d
s
, |d̃i − µsi | ≤ z̃i ≤ max{dsi − µsi , µsi − d

s
i} ∀i ∈ L

}
.

Proof. Please see Appendix B.5.

Note that the number of vertices indexed by Ωs for all s ∈ S grows exponentially with the number

of locations. In practice, we can employ a column-and-constraint generation (C&CG) method (see,

for instance, Zeng and Zhao, 2013) to speed up the resolution of problem PVE. We however consider

further investigation of acceleration schemes to fall beyond the scope of this paper, and instead derive

in the next subsection a conservative approximation that takes the form of a more reasonably sized

mixed-integer linear programs (MILP).

4.3.2 Affinely adjustable robust counterpart

As an alternative, we apply the idea of an affine decision rule to address the adaptive decision and

solve an approximate problem of PARO. More specifically, for each scenario s ∈ S, we approximate

the adaptive decision by an affine function ys(·) ∈ A , where

A :=

{
y : R|L| × R|L| → R|L|×|L| :

∃y0,y1
l ,y

2
l ∈ R|L|×|L|,∀l ∈ L

y(d, z) = y0 +
∑
l∈L

y1
l dl +

∑
l∈L

y2
l zl

}
.

Based on the affine decision rule, we have the following affinely adjustable robust counterpart

(AARC) of problem PARO:
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(PAARC) vAARC
n :=

inf
x,r,η,α,{ys(·)}s∈S

π1,π2,π3≥0

α (11a)

s.t. ηi +
1

α

∑
s∈S

(
π1
si + (π2

si)
′µs + (π3

si)
′νs
)
≤ τi, i ∈ L \ L̄n, (11b)

ηi +
1

αni

∑
s∈S

(
π1
si + (π2

si)
′µs + (π3

si)
′νs
)
≤ τi, i ∈ L̄n, (11c)

π1
si + (π2

si)
′d + (π3

si)
′z ≥ 0, (d, z) ∈ D̄s, s ∈ S, i ∈ L, (11d)

π1
si + (π2

si)
′d + (π3

si)
′z ≥ −psηi, (d, z) ∈ D̄s, s ∈ S, i ∈ L, (11e)

π1
si + (π2

si)
′d + (π3

si)
′z ≥ ps

(
di +

∑
j∈L\i

ysij(d, z)

− (ri +
∑
j∈L\i

ysji(d, z))− ηi
)
, (d, z) ∈ D̄s, s ∈ S, i ∈ L, (11f)

∑
j∈L\i

ysij(d, z) ≤ ri, (d, z) ∈ D̄s, s ∈ S, i ∈ L, (11g)

ysij(d, z) ≥ 0, (d, z) ∈ D̄s, s ∈ S, i, j ∈ L,
(11h)

ys(·) ∈ A , s ∈ S (11i)

(1a)− (1d), α ∈ (0, 1],η ≥ 0. (11j)

Since problem PAARC has an infinite number of constraints, it cannot be solved directly. One can

alternatively view some constraints in problem PAARC as robust counterparts of the linear optimization

problem under the lifted support set D̄s for all s ∈ S. Hence, we can transform it into a linear

optimization problem via standard techniques from the robust literature. For presentation brevity, the

derivation of the resulting MILP is relegated to Appendix B.6.

Moreover, AARC can also lead to improvements in computational performance. Empirically,

AARC appears surprisingly accurate with a maximum measured optimality gap of 8% (shown in

Appendix D.3), while significantly reducing the computation time compared to problem PVE and the

sample average approximation (SAA) model.Therefore, AARC is able to improve both the quality and

the speed of the solution relative to SAA and PVE respectively.

5 Computational results

In this section, we first compare the PRNDP-E with other models in terms of equity and shortage.

Next, we analyze the impact of donations. Finally, we illustrate the benefits of utilizing the scenario-

wise ambiguity set. We conduct a series of numerical studies based on a real earthquake case that

occurred in Yushu County, Qinghai Province, China in 2010. The deterministic parameters (e.g., cost,

capacity, donations, etc.) and demand-related parameters are from Ni et al. (2018), as well as HOs

websites. For presentation brevity, most details of the numerical studies are pushed to Appendix D.1.

All experiments are carried out on a PC with a 3.6-GHz processor and 16 GB RAM. The models are

coded in JAVA and solved using IBM ILOG CPLEX Optimization Studio 12.7.1.

5.1 Impact of equity

We denote the model that considers equity in both predisaster deployment and postdisaster reallocation

by PRNDP-E and use PRNDP-NE to refer to the benchmark model without equity in both stages. The

detailed formulation of the PRNDP-NE is shown in Appendix C, which minimizes the total shortage.

We also investigate the setting where the decision maker considers equity only when reallocating
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supplies after the disaster (with predisaster deployment fixed to solutoin of PRNDP-NE), denoted by

PRNDP-NE-E. For fixed budgets and donations (we vary the fixed budgets and donations to illustrate

their impact in Section 5.3), we test three models—PRNDP-E, PRNDP-NE-E, and PRNDP-NE—and

compare their out-of-sample performances under the five commonly used equity indices. Specifically, we

first solve all the above models to optimality and obtain the optimal predisaster deployment decisions

(x∗, r∗). After that, given each of the solutions (x∗, r∗) and an observed sample (s,d) pair, for PRNDP-

E and PRNDP-NE-E we solve a deterministic lexicographic optimization problem to minimize the

shortage of each location, while for PRNDP-NE we minimize the total shortage. We then examine (i)

the Maximum Shortage Gap (MSG); (ii) the Relative Mean Deviation (RMD); (iii) the Variance (VAR);

(iv) the Sum of Pairwise Absolute Differences (SPAD); and (v) the Gini coefficient (Gini) of 1,000 test

(out-of-sample) samples. Note that these five indices are described in Karsu and Morton (2015) and

in a discussion regarding equity in OR/MS areas; their definitions can be found in Appendix D.2.

Figure 2 presents the distributions of MSG, RMD, VAR and SPAD values for 1,000 test samples

under the PRNDP-E, the PRNDP-EE, and the PRNDP-NE solutions. First, note that, for all tested

equity indices, the PRNDP-E and the PRNDP-NE-E perform better than the PRNDP-NE because

a smaller index value is more desirable. It indicates the importance of incorporating equity in the

allocation of relief resources. Second, we can observe that the performance of PRNDP-E is better

than PRNDP-NE-E. The result shows that compared with considering equity in reallocation after a

disaster, incorporating equity already in the stage of predisaster deployment can further improve the

equity of resource allocation. This confirms that HOs can draw real value from jointly considering de-

ployment and reallocation strategies when searching for the most equitable allocation of relief supplies.

More precisely, when it comes to the mean, the 95%VaR, the 99%VaR, and the standard deviations

(STD), the PRNDP-E approach also outperformed the other two other approaches (see Table 2 for

detailed statistics).

We further conduct experiments on the Gini coefficient. Since the Gini coefficient is often repre-

sented graphically through the Lorenz curve, Figure 3 shows the Lorenz curve of shortage distributions

by plotting the location percentile by shortages on the x-axis and cumulative shortages on the y-axis.

We can observe that the curve of PRNDP-E is closer to the line of perfect equality with a Gini

coefficient equal to 0.08, which is smaller than the results of the other two approaches.

Table 2: Out-of-sample statistics of equity index under PRNDP-E, PRNDP-NE-E and PRNDP-NE

PRNDP-E PRNDP-NE-E PRNDP-NE

delta Statistic MSG RMD VAR SPAD MSG RMD VAR SPAD MSG RMD VAR SPAD

-0.10 Mean 0.44 1.42 0.44 18.51 2.64 6.23 5.22 96.74 3.57 7.97 6.98 107.58
Var@95% 3.02 9.15 1.15 118.92 18.04 49.43 43.44 633.80 25.26 54.24 49.04 740.64
Var@99% 10.66 36.08 14.79 469.03 28.74 53.43 107.43 1,034.60 37.69 63.08 118.37 1,251.48
STD 1.80 6.18 32.81 80.38 6.50 18.85 280.38 178.14 8.76 19.96 306.21 271.43

-0.05 Mean 1.69 4.89 2.73 63.71 4.84 19.07 19.16 250.35 8.50 23.22 35.43 322.19
Var@95% 11.99 36.85 16.37 479.00 28.61 121.38 133.17 1,596.64 49.46 137.75 208.64 1,941.40
Var@99% 19.56 73.78 53.46 959.19 41.29 181.62 277.25 2,371.20 74.52 214.92 537.53 3,042.16
STD 4.49 14.48 144.08 188.36 10.05 41.90 727.23 551.33 17.83 50.66 1,261.12 709.21

0.00 Mean 3.23 8.53 6.51 111.60 7.25 25.94 31.01 341.42 17.59 51.02 130.17 727.48
Var@95% 20.00 58.38 39.26 758.99 37.05 138.79 196.94 1,804.22 90.37 277.77 732.13 3,976.16
Var@99% 28.03 94.89 102.31 1,233.51 47.49 207.78 359.79 2,701.20 142.62 339.63 1,508.01 5,086.36
STD 7.17 21.09 270.41 276.09 13.13 50.49 1,049.24 667.98 33.93 97.39 3,992.42 1,400.84

0.05 Mean 4.45 11.27 11.02 148.03 9.44 31.59 43.20 415.80 25.64 76.53 267.16 1,104.63
Var@95% 28.61 75.43 76.52 985.44 45.27 154.51 266.72 2,047.20 136.54 392.51 1,607.64 5,718.00
Var@99% 36.73 115.09 151.12 1,500.59 58.47 231.00 534.87 3,090.96 163.06 468.51 2,148.72 6,811.64
STD 9.71 26.51 419.41 347.61 15.94 55.96 1,338.42 737.92 46.92 141.67 7,390.43 2,058.87

0.10 Mean 5.70 14.14 15.50 185.58 11.57 35.18 50.97 464.15 33.54 104.70 446.90 1,526.94
Var@95% 34.65 79.45 98.29 1,081.31 49.02 157.20 268.66 2,055.68 163.81 520.96 2,616.08 7,610.88
Var@99% 43.10 135.41 206.89 1,760.28 62.97 213.50 517.99 2,799.72 182.17 587.16 3,096.05 8,519.88
STD 11.65 30.45 575.97 399.74 18.13 56.36 1,443.08 743.67 58.29 187.71 11,796.93 2,761.86
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(a) MSG (b) RMD

(c) VAR (d) SPAD

Figure 2: Frequency distribution of equity indices of out-of-sample data

Figure 3: Gini coefficient of out-of-sample data under PRNDP-E, PRNDP-NE-E, and PRNDP-NE

To capture more of the impact of equity, we conduct more numerical experiments. Specifically, we

first add a perturbation ∆ to the mean of the demand of out-of-sample data, that is µsout := (1+∆)µs

for all s ∈ S. Then we generate 1,000 test samples from the out-of-sample distribution according to the

value of ∆ (see Appendix D.1 for details). In Table 2, we summarize the out-of-sample performance of

equity indices under the PRNDP-E, the PRNDP-NE-E, and the PRNDP-NE. We observe that on the

average and in the extremes (VaR@95% and VaR@99%) the PRNDP-E continues to outperform the
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other two approaches with regard to all equity indices. This observation suggests that the PRNDP-E

approach does help address equity concerns in humanitarian operations.

5.2 Impact of shortages

To evaluate the impact of shortages under the PRNDP-E, the PRNDP-NE-E, and the PRNDP-NE, we

compare in Figure 4 the shortage performance for out-of-sample data. Specifically, Figure 4(a) shows

the shortage performance of the participants with the worst experience. We find that the PRNDP-E

approach is superior to the other two approaches. This observation suggests that we can use the

PRNDP-E approach to support the most vulnerable groups regardless of where they are. For total

shortage performance, Figure 4(b) shows the frequency distribution of the total shortage for out-of-

sample data. We observe that the total shortage derived from the PRNDP-E approach is very close to

the PRNDP-NE which minimizes the total shortage. On the other hand, although the PRNDP-NE-E

can reduce the shortage experienced by the worst participants, the performance of the total shortage

caused by it is much worse than that of the PRNDP-E. Our results show that (i) incorporating equity

in both predisaster deployment and postdisaster reallocation can help alleviate shortages among the

most vulnerable groups without worsening the overall shortage performance; (ii) incorporating equity

only in the postdisaster response can indeed reduce the shortage of the worst participants, but comes

at the cost of significantly increasing the total shortage.

(a) Worst (b) Sum

Figure 4: Distribution of shortage performance of out-of-sample data. (a) presents the distribution of worst shortage
among all locations, while (b) presents the distribution of the sum of shortages

Similarly, we evaluate more instances with different ∆. Table 3 provides a summary of shortage

performance for out-of-sample data. We note that compared with the PRNDP-NE, the PRNDP-E can

significantly reduce the shortage of the worst participants and only slightly increase the total shortage

(because the PRNDP-NE minimizes the total shortage), while the PRNDP-NE-E will make the total

shortage performance very poor. Our experiments suggest that HOs can use the PRNDP-E to support

the most vulnerable groups while maintaining a low total shortage.

5.3 Impact of donations and budget constraints

Donations and budgets are major concerns of the HOs in predisaster deployment; they also directly

affect the shortage situation after the disaster occurs. If the HOs do not receive adequate donations

and funds for the prepositioning of emergency supplies, the vulnerable population will inevitably face

a relief shortage if a disaster occurs. Since donations and budgets have similar effects, we focus on the

impact of different donation levels on shortages. Specifically, we set the total amount of supplies to

R = {1700, 1750, 1800, 1850, 1900} and evaluate the impact of different donations.
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Table 3: Out-of-sample statistics of shortage under PRNDP-E, PRNDP-NE-E, and PRNDP-NE

PRNDP-E PRNDP-NE-E PRNDP-NE

Delta Statistic Worst Sum Worst Sum Worst Sum

-0.1 Mean 0.46 5.20 2.64 27.10 3.57 4.70
Var@95% 3.41 38.06 18.04 190.60 25.26 31.25
Var@99% 10.66 117.26 28.74 290.07 37.69 57.12
STD 1.81 20.00 6.50 65.88 8.76 12.00

-0.05 Mean 1.84 21.03 4.85 50.97 8.50 14.94
Var@95% 12.36 143.24 28.61 296.95 49.46 92.25
Var@99% 19.56 221.19 41.29 421.58 74.52 148.82
STD 4.58 51.60 10.04 104.30 17.83 33.55

0 Mean 3.68 42.83 7.31 78.78 17.59 35.03
Var@95% 20.04 234.48 37.05 392.10 90.37 192.89
Var@99% 28.03 311.33 47.49 500.50 142.62 238.45
STD 7.45 85.74 13.14 140.31 33.93 68.08

0.05 Mean 5.28 62.17 9.50 104.03 25.64 53.89
Var@95% 28.65 327.09 45.27 493.90 136.54 279.80
Var@99% 36.73 411.40 58.47 604.14 163.06 327.09
STD 10.29 120.37 15.95 174.63 46.92 101.43

0.1 Mean 7.22 85.67 11.64 129.96 33.54 76.03
Var@95% 35.26 426.86 49.02 549.36 163.81 385.02
Var@99% 43.10 487.46 62.97 697.44 182.17 438.39
STD 12.95 153.73 18.15 204.44 58.29 139.53

Figure 5 reports the out-of-sample expected shortage at each location under different donation

levels. First, in Figure 5(a), the expected shortage at each location shows a decreasing trend as

donations increase, which seems to be in line with HOs’ expectations. However, if equity is not fully

considered, then we find that increasing donation does not necessarily reduce shortages and even

increase shortages in some locations. For example, as shown in Figure 5(c), when the total amount of

supplies increase from 1,750 to 1,800, the shortage of location 11 increase instead. It indicates that

HOs cannot simply increase the amounts of supplies to reduce the shortages at each location, but can

do so through equitable and reasonable resource allocation. As stated by Besiou and Van Wassenhove

(2020):“Reduced funding calls for careful prioritization and cost-effectiveness, but it should be noted

that this may conflict with equity and other ethical considerations.” Our work can give an equitable

solution when the budget is reduced. Second, we can find that the expected shortage reduction

is not symmetric across all locations and not necessarily proportional to the percentage increase in

donations, which is consistent with Observation 6 in Stauffer and Kumar (2021) for the predisaster

deployments. Third, the shortage gaps between demand locations under PRNDP-E is smaller than

under PRNDP-NE-E and PRNDP-NE, which demonstrates the equity efficiency of PRNDP-E from

another perspective.

5.4 Impact of information

The RSO framework unifies both scenario-tree-based stochastic optimization (SAA) and distribution-

ally robust optimization (DRO). To further illustrate the performance of RSO model, we compare

the out-of-sample performance of the three models in dealing with equity concerns. Specifically, in

Figure 6, we report the Maximum Shortage Gap (MSG) measured on the out-of-sample data. Fig-

ure 6(a) presents the average of out-of-sample MSG under the RSO, DRO and SAA models for 1,000

test samples. We observe that the RSO model delivers a significantly better performance than the

DRO and SAA models. In particular, when the out-of-sample demands are higher (i.e., ∆ increases

from -0.1 to 0.1), the gap between the RSO and the other two models becomes greater. This confirms

that the scenario-wise ambiguity set helps to more clearly describe the uncertainty of relief demand

and alleviate the inequities caused by uncertain shortages.
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(a) PRNDP-E (b) PRNDP-NE-E

(c) PRNDP-NE

Figure 5: Expected shortage at each location under different donation levels of out-of-sample data

(a) (b)

Figure 6: Out-of-sample performance of RSO, DRO, and SAA models in earthquake case

Moreover, to compare the stability of the models for out-of-sample data, we report the box plot of

out-of-sample MSG under RSO, DRO and SAA models in Figure 6(b). We find that the values under

the RSO model have the smallest variation between both (25% − 50%) and (5% − 95%), while DRO

and SAA incur a relatively large variation. Furthermore, we notice that even for outliers exceeding

95%, the performance of RSO is better than that of DRO and SAA. In general, the out-of-sample data

adaptability of the RSO model is higher than that of the DRO and SAA models. This is because the
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RSO model incorporates empirical scenario information to make the ambiguity set better capture the

statistics of the realization, which is useful for improving the efficiency of disaster management.

6 Managerial insights and conclusions

Our work considers three important practical aspects of humanitarian operations: shortages, equity,

and uncertainty. Mathematically, we propose a new branch-and-bound algorithm for the mixed-integer

lexicographic optimization problem with non-convex objectives and prove its optimality. To identify

optimal adaptable resource reallocation, we propose two approaches: an exact approach and a conser-

vative approximation that allows us to solve instances of realistic size.

Our research also proposes several managerial recommendations for the HOs:

• There is no conflict between ensuring that participants or individuals have equitable access to

relief resources and reducing the total shortage. The goal of HOs is usually to minimize the total

shortage while ignoring the plight of individual beneficiaries. However, if one of the participants

faces a serious shortage, the media will focus on it and criticize HOs for the inequity in their

allocation of resources. Numerical experiments show that HOs can respond to the needs of

the world’s most vulnerable people by incorporating equity into the predisaster deployment and

postdisaster reallocation. Specifically, the results in Sections 5.1 and 5.2 have demonstrated the

capability of our approach in improving the performances of the equity indices and reducing

shortage.

• While donation and budget constraints limit the amount of relief resources available to each

beneficiary, the individual shortage may not be alleviated with increased budgets and donations

if equity is not fully incorporated. To respond to the needs of the most vulnerable people, HOs

often request increased relief assistance. This does help reduce the total shortage, but that is

not necessarily the case for individuals. Specifically, the results in Section 5.3 show that the

shortages experienced by some participants do not decrease proportionally or even increase with

an increase in donations. By incorporating equity into both the predisaster deployment and

postdisaster reallocation, the shortages of all beneficiaries show a downward trend as donations

increase, which meets the expectations of HOs.

• Disaster scenario-wise information, if properly segmented, can help alleviate inequities caused by

uncertain relief demands. While disasters are extremely unpredictable and relief demands are

difficult to accurately estimate, the use of historical data and/or prior knowledge can improve

decision-making effects. Our numerical studies in Section 5.4 demonstrate that the scenario-wise

ambiguity sets outperform the classical moment ambiguity sets and sample average approxima-

tion in alleviating inequities. HO practitioners can construct scenario-wise ambiguity sets based

on historical data, which may be regarded as a useful exploration of data-driven methods in

disaster relief management.

This research focuses on single-period resource reallocation in postdisaster response. One possible

future research direction is to consider the multi-period resource reallocation problem, which may

go beyond the research scope of predisaster network design and belongs to the postdisaster response

stage. In addition, this research focuses on the uncertainties in relief demands. Thus, a potential

future research direction is to incorporate the uncertainties in supplies and in road capacities.



Les Cahiers du GERAD G–2022–01 22

Appendix

The appendix is organized as follows. Appendix A shows the motivation to develop a new branch-

and-bound algorithm. Appendix B provides the proofs for all results in the paper. Appendix C shows

the formulation of PRNDP-NE. Appendix D presents all data and setup for numerical studies.

A Motivation for designing the branch-and-bound algorithm

We show the motivation to develop the branch-and-bound algorithm. Since problem PLM can be

regarded as a lexicographic minimization problem, a natural idea is whether the state-of-the-art algo-

rithm proposed by Qi (2017) can be directly applied to problem PLM. For convenience, we refer to the

algorithm proposed by Qi (2017) as LMP (Lexicographic Minimization Procedure). In the following,

we give two examples to illustrate that although the LMP can perform well on linear programming

problems, it cannot guarantee optimality for mixed-integer programming problems and non-convex

problems.

Example 1. Consider the following feasibility problem :

2x ≤ α1,

2− x ≤ α2,

x ∈ {0, 1},

where α = [α1, α2] is a vector. In this example, we want to find a vector α that is lexicographically

minimal. By the LMP, one can get α = [2, 1] with x = 1. However, we may have α′ = [0, 2] with

x = 0. Obviously, α′ is lexicographically less than α. Based on the analysis of these two solutions, we

observe that, there are two sets of possible binding constraints that correspond to different solutions

for the minimum scalar value α∗ = 2. Yet, the LMP is unable to decide which binding constraint to

fix and instead could arbitrarily fix the first one detected. It follows that the LMP sometimes fails to

find the lexicographically minimum vector.

Example 2. Consider an example of problem PLM with |L| = 5 and |K| = 1. Specifically, we will

let the parameters M = 200, R = 300, B = 400, c = {200, 200, 150, 150, 300}, τ = {3, 33, 25, 34, 21}.
Furthermore, as shown in Table 4, we assume that there are |Ω| = 5 possible outcomes of random

demands with the same probability.

Table 4: Random demand for each location in Example 2

Location

Outcome Prob.(%) 1 2 3 4 5

ω = 1 20 40 45 42 48 32
ω = 2 20 9 14 45 28 47
ω = 3 20 45 30 36 92 97
ω = 4 20 85 70 53 13 84
ω = 5 20 54 69 12 74 11

In this example, based on the LMP, one can identify that an optimal solution takes the configuration

presented in Table 5. On the other hand, we also show the details of an optimal solution obtained by

our branch-and-bound (B&B) procedure in Table 5. Note that the SSM vector derived by the B&B

procedure is lexicographically less than that derived by the LMP. The possible reason is that there

may be multiple optimal solutions u∗h at iteration h such that max
j∈Lh

ρτj (u
∗
hj) = α∗h where α∗h is the

minimum scalar value, and LMP randomly chooses one of the optimal solutions to detect an index j

such that ρτj (u
∗
hj) = α∗h. Different optimal solutions may correspond to different indexes, and different

optimization sequences may produce different vectors. Therefore, the LMP sometimes fails to find the

lexicographically minimum vector, which motivated us to develop a new algorithm. For the B&B

procedure, we refer the reader to Appendix B.3 for the proof of its optimality.
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Table 5: Detailed optimal solution under the LMP and the B&B

LMP B&B

Location x∗ r∗ ρ(u∗) x∗ r∗ ρ(u∗)

1 1 150 0.00 0 0 0.00
2 1 50 0.28 0 0 0.28
3 0 0 0.00 1 150 0.00
4 0 0 0.28 1 50 0.28
5 0 0 0.28 0 0 0.00

B Proofs

B.1 Proof of Lemma 1

We can first show that for any P ∈ F :

inf
η

(
η +

1

α
EP

[
(ũ− η)

+
])
≤ τ ⇔ inf

0≤η≤τ

(
η +

1

α
EP

[
(ũ− η)

+
])
≤ τ .

This follows from the fact that any η > τ necessarily leads to η+ (1/α)EP

[
(ũ− η)

+
]
≥ η > τ . On the

other hand, for any η < 0, we can confirm that η̄ := 0 is such that:
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+
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]
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where we used in order the fact that ũ ≥ 0, that (α− 1)/α is negative and η̄ > η, and again ũ ≥ 0.

We can then exploit the representation of CVaR (Rockafellar et al., 2000a) and follow the steps:

(3)⇔ ∀P ∈ F , CVaRP
1−α(ũ) ≤ τ ⇔ ∀P ∈ F , inf

η

(
η +

1

α
EP

[
(ũ− η)

+
])
≤ τ

⇔ sup
P∈F

inf
0≤η≤τ

(
η +

1

α
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[
(ũ− η)

+
])
≤ τ ⇔ inf

0≤η≤τ
sup
P∈F

(
η +

1

α
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[
(ũ− η)

+
])
≤ τ ⇔ (4),

where the fourth⇔ follows from applying Sion’s minimax theorem (Sion, 1958) given that η is contained

in a compact set, F is convex and η + (1/α)EP

[
(ũ− η)

+
]

is convex in η and affine in P (Rockafellar

et al., 2000b). Finally, the last ⇔ follows again from the fact that any η > τ necessarily makes

η + (1/α)EP

[
(ũ− η)

+
]
> τ for any P ∈ F . �

B.2 Proof of Proposition 1

The proofs of Monotonicity, Satisfaction, and Dissatisfaction are similar to that of Proposition 1 in

Qi (2017). For the proof of Quasi-convexity, we refer readers to Proposition 3.4 in Mafusalov and

Uryasev (2018). �

B.3 Proof of Theorem 1

We first introduce the notation n := (i1, i2, . . . , ik), with each ij ∈ L for some k ∈ {1, . . . , |L|}
to describe the sequence of branching that was traversed to generate node n, which implies that

L̄n := {i1, . . . , ik} and that the descendants of n = (i1, i2, . . . , ik) are the nodes n′ := (i1, i2, . . . , ik, j)

with j ∈ L/{i1, . . . , ik}. Moreover, we will exploit the fact that problem (7) is equivalent to

min
β∈B

max
i∈L/L̄n

βi

s.t. βi ≤ αni , i ∈ L̄n,

where B :=
{
β ∈ R|L| : ∃u ∈ U ,β = ρ(u)

}
.
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Lemma 3. Given any node n = (i1, i2, . . . , ik) expanded during the resolution of Algorithm 1, we have

that ~αnj = αnij for all j = 1, . . . , k and ~αnj = −∞ for j > k.

Note that Lemma 3 and the design of Algorithm 1 allows us to use ~αnj = αnij = ~̄αnj = ᾱnij inter-

changeably when n = (i1, i2, . . . , ik) is expanded and j ≤ k.

Proof. This follows from the fact that for j = 1, . . . , k − 1, the optimal value v∗n′ of problem (7)

associated to n′ = (i1, . . . , ij−1) is necessarily greater or equal to the optimal value v∗n′′ associated to

its child node n′′ = (i1, . . . , ij):

αnij = min
β∈B

max
i∈L/{i1,...,ij−1}

βi = min
β∈B

max
i∈L/{i1,...,ij−1}

βi

s.t. βi ≤ αni , i ∈ {i1, . . . , ij−1} s.t. βi ≤ αni , i ∈ {i1, . . . , ij}
≥ min
β∈B

max
i∈L/{i1,...,ij}

βi = αnij+1

s.t. βi ≤ αni , i ∈ {i1, . . . , ij}

where the second equality follows from the fact that we added the constraint βij ≤ αnij which is a

relaxation of maxi∈L/{i1,...,ij−1} βi ≤ αnij , namely that the objective value is smaller or equal to its

optimal value. On the other hand, by construction we have that αni = −∞ for all i 6∈ {i1, . . . , ik}.

We now prove Theorem 1 by contradiction. Suppose that there exists a vector β̄ ∈ B such that

β̄ ≺ α∗; that is, we have β̄ � α∗ but α∗ 6� β̄. Without loss of generality, we can assume that ~̄β = β̄,

thus β̄ ≺ α∗ implies that there exists a k ∈ [1, |L|] such that β̄i = ~α∗i for all i < k and β̄k < ~α∗k.

If k = 1, then β̄1 < ~α∗1 should be true. By Algorithm 1, we have that α∗ � ᾱn0 , so that

~α∗1 ≤ maxi ᾱ
n0
i = minβ∈B maxi βi ≤ maxi β̄i = β̄1. This is a contradiction.

If k > 1, then β̄i = ~α∗i for all i < k and β̄k < ~α∗k should hold. To discuss this case, we will need to

make use of the following lemmas.

Lemma 4. Given any node n expanded by Algorithm 1, it must be that α∗ � ᾱn.

Proof. This conclusion can be drawn directly from the definition of Algorithm 1. Specifically, through-

out the procedure the vector ᾱ can only decrease according to the lexicographic ordering. Furthermore,

when a node n is expanded, either ᾱn � ᾱ or the latter is replaced with ᾱn.

Lemma 5. If it is expanded, the node n∗ = (1, . . . , k − 1) is such that ᾱn
∗

i = β̄i for all i ≤ k.

Proof. We show that ᾱn
∗

i = β̄i for all i ≤ k by recursion using k′ ∈ {0, . . . , k}. Starting with k′ = 0,

we have that ᾱn
∗

1 = v∗n0
= minβ∈B maxi βi = β̄1, where the first two equalities follows by construction,

while the last one follows from minβ∈B maxi βi ≤ β̄1 since β̄ ∈ B, and β̄1 ≤ minβ∈B maxi βi since

otherwise there exists a β̄′ ≺ β̄.

We then need to show that if the lemma is true for some k′ < k, then it is also true for k′ + 1. In

particular, letting n = (1, . . . , k′) and n′ = (1, . . . , k′+1), we have by construction that ᾱn
′

i = αn
′

i = ᾱni
for all i ≤ k′+ 1 since L̄n′ = {1, . . . , k′+ 1}. Yet, we have that ᾱni = β̄i for all i ≤ k′. We are left with

demonstrating that ᾱnk′+1 = β̄k′+1, which follows from:

ᾱnk′+1 = min
β∈B

max
i∈L/{1,...,k′}

βi = min
β∈B

max
i∈L/{1,...,k′}

βi = β̄k′+1

s.t. βi ≤ αni , i ∈ {1, . . . , k′} s.t. βi ≤ β̄i, i ∈ {1, . . . , k′}

where we exploited the fact that αni = ᾱni = β̄i for i ≤ k′, and where the last equality follows from the

fact that β̄ is lexicographic minimal in B.
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Now in the case that node n∗ = (1, . . . , k) is expanded by Algorithm 1, it is clear by Lemma 4

that α∗ � ᾱn∗ , which either implies, according to Lemma 5, that ~α∗i = ᾱn
∗

i = β̄i for all i ≤ k or that

there exists a k′ ≤ k such that ~α∗i = ᾱn
∗

i = β̄i for all i < k′ while ~α∗k′ < ᾱn
∗

k′ = β̄k′ . Both situations

either lead to a contradiction with respect to the fact that β̄k < ~α∗k or the fact that ~α∗i = β̄i for i < k,

respectively.

We are finally left with the possibility that n∗ was not expanded by Algorithm 1. This can only

occur if there is a node n̄ = (1, . . . , k̄) for some k̄ ≤ k, i.e. among the ancestors, that was not expanded

at Step (7). Hence, αn̄ � α∗ and since n̄ is an ancestor of n∗, we also have that ᾱn
∗ � αn̄. Thus

α∗ � ᾱn∗ , which once again leads to a contradiction. �

B.4 Proof of Lemma 2

By Definition 1, we first rewrite problem PDRO using the defined outcome space (d̃, s̃) in the scenario-

wise ambiguity set F :

inf
x,r,η,α,{ys(·)}s∈S

α

s.t. ηi +
1

α
sup
P∈F

EP

[
f(x, r,ys̃(d̃), d̃)− ηi

]+
≤ τi, i ∈ L \ L̄n,

ηi +
1

αni
sup
P∈F

EP

[
f(x, r,ys̃(d̃), d̃)− ηi

]+
≤ τi, i ∈ L̄n,∑

j∈L\i

ysij(d) ≤ ri, d ∈ Ds, s ∈ S, i ∈ L,

ysij(d) ≥ 0, d ∈ Ds, s ∈ S, i, j ∈ L,
(1a)− (1d), α ∈ (0, 1],η ≥ 0,

where ysij : R|L| → R+ and ỹij := ys̃ij(d̃). When replacing F =
∏

d̃,s̃ G, we then obtain:

inf
x,r,η,α,{ys(·)}s∈S

α (12a)

s.t. ηi +
1

α
sup
Q∈G

EQ

[
f(x, r,ys̃(d̃), d̃)− ηi

]+
≤ τi, i ∈ L \ L̄n, (12b)

ηi +
1

αni
sup
Q∈G

EQ

[
f(x, r,ys̃(d̃), d̃)− ηi

]+
≤ τi, i ∈ L̄n, (12c)∑

j∈L\i

ysij(d) ≤ ri, (d, z) ∈ D̄s, s ∈ S, i ∈ L, (12d)

ysij(d) ≥ 0, (d, z) ∈ D̄s, s ∈ S, i, j ∈ L, (12e)

(1a)− (1d), α ∈ (0, 1],η ≥ 0. (12f)

Next, we can show that given any fixed (x, r,η, α), there exists a feasible solution for ysij(d) in prob-

lem (12) if and only if there is also a feasible mapping of the form ȳsij(d, z). The “if” direction is

straighforward given that one can simply define ȳsij(d, z) := ysij(d). Regarding the “only if” part, one

can use the feasible ȳsij(·) to define ysij(d) := ȳsij(d, |d−µs|) and show that this is a feasible assignment

in problem (12) based on:

ηi +
1

α
sup
Q∈G

EQ

[
f(x, r,ys̃(d̃), d̃)− ηi

]+
= ηi +

1

α
sup
Q∈G

EQ

[
f(x, r, ȳs̃(d̃, |d̃− µs|), d̃)− ηi

]+
,

≤ ηi +
1

α
sup
Q∈G

EQ

[
f(x, r, ȳs̃(d̃, z̃), d̃)− ηi

]+
≤ τi,

sup
(d,z)∈D̄s

∑
j∈L\i

ysij(d) = sup
(d,z)∈D̄s

∑
j∈L\i

ȳsij(d, |d− µs|) ≤ sup
(d,z)∈D̄s

∑
j∈L\i

ȳsij(d, z) ≤ ri

inf
(d,z)∈D̄s

ysij(d) = inf
(d,z)∈D̄s

ȳsij(d, |d− µs|) ≥ inf
(d,z)∈D̄s

ȳsij(d, z) ≥ 0 .
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We are left with employing classical moment problems duality techniques to reformulate

sup
Q∈G

EQ

[(
f(x, r,ys̃(d̃), d̃)− ηi

)+
]

as an infimum. Namely, one starts with the equivalent semi-infinite

linear optimization problem:

max
∑
s∈S

ps

∫
(d,z)∈D̄s

max

0,−ηi, di +
∑
j∈L\i

ysij(d, z)− (ri +
∑
j∈L\i

ysji(d, z))− ηi


 dQs(d, z)

s.t.

∫
(d,z)∈D̄s

dQs(d, z) = 1, s ∈ S, (dual multiplier π1
si ∈ R)∫

(d,z)∈D̄s
ddQs(d, z) = µs, s ∈ S, (dual multiplier π2

si ∈ R|L|)∫
(d,z)∈D̄s

udQs(d, z) ≤ νs, s ∈ S. (dual multiplier π3
si ∈ R|L|+ ),

where Qs denote the conditional probability distribution of (d, z) given that s̃ = s.

Letting π1
si ∈ R, π2

si ∈ R|L|, and π3
si ∈ R|L| be dual variables associated with constraints of the

above problem, we obtain the dual formulation as

min
π1
si,π

2
si,π

3
si≥0

∑
s∈S

(
π1
si + (π2

si)
′µs + (π3

si)
′νs
)

s.t. π1
si + (π2

si)
′d + (π3

si)
′z ≥ 0, (d, z) ∈ D̄s, s ∈ S,

π1
si + (π2

si)
′d + (π3

si)
′z ≥ −psηi, (d, z) ∈ D̄s, s ∈ S,

π1
si + (π2

si)
′d + (π3

si)
′z ≥ ps

(
di +

∑
j∈L\i

ysij(d, z)

− (ri +
∑
j∈L\i

ysji(d, z))− ηi
)
, (d, z) ∈ D̄s, s ∈ S.

We thus obtain the formulation in the Lemma 2. �

B.5 Proof of Proposition 2

By replacing D̄s with the bounded set D̄sb in problem PARO, we obtain the following model:

vbn :=

inf
x,r,η,α,{ys(·)}s∈S

π1,π2,π3≥0

α (13a)

s.t. ηi +
1

α

∑
s∈S

(
π1
si + (π2

si)
′µs + (π3

si)
′νs
)
≤ τi, i ∈ L \ L̄n, (13b)

ηi +
1

αni

∑
s∈S

(
π1
si + (π2

si)
′µs + (π3

si)
′νs
)
≤ τi, i ∈ L̄n, (13c)

π1
si + (π2

si)
′d + (π3

si)
′z ≥ 0, (d, z) ∈ D̄sb , s ∈ S, i ∈ L, (13d)

π1
si + (π2

si)
′d + (π3

si)
′z ≥ −psηi, (d, z) ∈ D̄sb , s ∈ S, i ∈ L, (13e)

π1
si + (π2

si)
′d + (π3

si)
′z ≥ ps

(
di +

∑
j∈L\i

ysij(d, z)

− (ri +
∑
j∈L\i

ysji(d, z))− ηi
)

(d, z) ∈ D̄sb , s ∈ S, i ∈ L, (13f)

∑
j∈L\i

ysij(d, z) ≤ ri, (d, z) ∈ D̄sb , s ∈ S, i ∈ L, (13g)
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ysij(d, z) ≥ 0, (d, z) ∈ D̄sb , s ∈ S, i, j ∈ L. (13h)

(1a)− (1d), α ∈ (0, 1],η ≥ 0. (13i)

The next lemma confirms that replacing D̄s with D̄sb does not affect the optimal solution of problem

PARO.

Lemma 6. Problem PARO is equivalent to problem (13), i.e., v∗n = vbn and the set of optimal solutions

for x and r remains unchanged.

Proof. First we note that vbn ≤ v∗n because problem PARO has the same objective function but more

constraints than problem (13).

Second, we prove vbn ≥ v∗n. Let x̂, r̂, η̂, α̂, π̂1, π̂2, π̂3, and ŷs(d, z), for all s ∈ S, be a feasible

solution to problem (13). It follows that the for all s ∈ S, i ∈ L, (d, z) ∈ D̄sb , we have

π̂1
si + (π̂2

si)
′d + (π̂3

si)
′z ≥ max

0,−psη̂i, ps

di +
∑
j∈L\i

ŷsij(d, z)−

r̂i +
∑
j∈L\i

ŷsji(d, z)

− η̂i
 .

To simplify the notation, we rewrite the above formula as fsi(π̂,d, z) ≥ gsi(r̂, η̂, ŷ,d, z). Next, we can

construct a feasible solution to problem PARO by letting x̌ := x̂, ř := r̂, η̌ := η̂, α̌ := α̂, π̌1 := π̂1,

π̌2 := π̂2, π̌3 := π̂3 and for all s ∈ S,

y̌s(d, z) :=

{
ŷs(d, z) if (d, z) ∈ D̄sb ,
ŷs(d,min{z, z̄s}) if (d, z) /∈ D̄sb ,

where z̄si := max{dsi − µsi , µ
s
i − dsi} for all i ∈ L, and where min{z, z̄} is applied termwise. We

can verify that the constructed solution (x̌, ř, η̌, π̌, y̌) is feasible for problem PARO by first easily

confirming that it is feasible with respect to all constraints besides (9d)–(9f). Regarding, (9d)–(9f),

i.e. fsi(π̌,d, z) ≥ gsi(ř, η̌, y̌,d, z) for all i, s and (d, z) ∈ D̄s, we discussing the following two cases:

1) If (d, z) ∈ D̄sb , then fsi(π̌,d, z) = fsi(π̂,d, z) ≥ gsi(r̂, η̂, ŷ,d, z) = gsi(ř, η̌, y̌,d, z), which follows

from the definition of the constructed solution.

2) If (d, z) /∈ D̄sb , then we have that f(π̌,d, z) = f(π̂,d, z) ≥ f(π̂,d,min{z, z̄}) ≥
g(r̂, η̂, ŷ,d,min{z, z̄}) = g(ř, η̌, y̌,d, z), where we used in order that π̌ = π̂, then that π̂3 ≥ 0,

the fact that (π̂, r̂, η̂, ŷ) is feasible in (13) and that (d,min{z, z̄}) ∈ D̄sb .

Because problem PARO and problem (13) have the same objective function, we conclude that

vbn ≥ v∗n. Together with vbn ≤ v∗n, the proof is complete.

In our proof of Proposition 2, for all s ∈ S, we also exploit some convexity property of the following

operator:

Gs(r, α,η,π,d, z) :=

{
0 if Ys(α,η,π,d, z) 6= ∅
∞ otherwise

,

where set Ys(r, α,η,π,d, z) is defined as:

Ys(r, α,η,π,d, z) :=


y ∈ R|L|×|L| :

(13b)− (13c)
π1
si + (π2

si)
′d + (π3

si)
′z ≥ 0, i ∈ L,

π1
si + (π2

si)
′d + (π3

si)
′z ≥ −psηi, i ∈ L,

π1
si + (π2

si)
′d + (π3

si)
′z ≥

ps(di +
∑

j∈L\i
yij − (ri +

∑
j∈L\i

yji)− ηi) i ∈ L,∑
j∈L\i

yij ≤ ri, i ∈ L,

yij ≥ 0, i, j ∈ L,


,

and which is considered empty if any constraint in Ys(r, α,η,π,d, z) is violated.
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Then, we can reorganize the constraints in problem (13) and equivalently rewrite it in the following

general form:

inf

{
α ∈ (0, 1]

∣∣∣∣∣ ∃x, r, (1a)− (1d)
inf
η≥0,π

max
s

sup
(d,z)∈D̄sb

Gs(r, α,η,π,d, z) ≤ 0

}
(14)

Lemma 7. Gs(r, α,η,π,d, z) is convex jointly in d, z.

Proof. Let (d1, z1) and (d2, z2) be arbitrary elements in R|L| × R|L|. For some fixed r, α, η, π and

any λ ∈ (0, 1), we analyze the following two cases to evaluate Gs(r, α,η,π,dλ, zλ), where (dλ, zλ) =

λ(d1, z1) + (1− λ)(d2, z2).

First, when Gs(r, α,η,π,d1, z1) = ∞ and/or Gs(r, α,η,π,d2, z2) = ∞, we have

λGs(r, α,η,π,d1, z1) + (1 − λ)Gs(r, α,η,π,d2, z2) ≥ ∞ ≥ Gs(r, α,η,π,dλ, zλ), since the value of

Gs(r, α,η,π,dλ, zλ) is either 0 or infinity.

Second, when Gs(r, α,η,π,d1, z1) = 0 and Gs(r, α,η,π,d2, z2) = 0, there exist y1 and y2 that

satisfy all constraints defined in Ys(r, α,η,π,d1, z2) and Ys(r, α,η,π,d2, z2) respectively. Next,

we can construct yλ for Gs(r, α,η,π,dλ, zλ) by yλ = λy1 + (1 − λ)y2. We can easily verify that

yλ satisfies constraints in Ys(r, α,η,π,d, z). Thus, we have yλ ∈ Ys(r, α,η,π,dλ, zλ) such that

Gs(r, α,η,π,dλ, zλ) = 0, which implies that

λGs(r, α,η,d1, z1) + (1− λ)Gs(r, α,η,d2, z2) = 0 ≥ 0 = Gs(r, α,η,dλ, zλ).

Therefore, Gs(r, α,η,d, z) is convex jointly in d and z.

We proceed with the proof of Proposition 2.

Recall that D̄sb is a convex hull of {d(ω)}ω∈Ωs . By Lemma 7, we know that Gs(r, α,η,d, z) is a

jointly convex function in d and z. Hence, according to the theory of concave minimization (see, for

instance, Benson, 1995), problem (14) can be replaced with

inf

{
α ∈ (0, 1]

∣∣∣∣∣ ∃x, r, (1a)− (1d)
inf
η≥0,π

max
s

max
ω∈Ωs

Gs(r, α,η,π,d(ω), z(ω)) ≤ 0

}
(15)

As a result, given a sample ω, the adaptive variables y(d, z) reduce to y(ω). This naturally gives rise

to PVE as an equivalent problem to PARO . �

B.6 MILP reformulation of problem PAARC

We present the reformulation of problem PAARC by the following proposition.

Proposition 3. Problem PAARC can be solved by the following mixed-integer linear program:

(PMILP) vAARC
n :=

inf
x,r,η,α

π1,π2,π3≥0,y0,y1,y2

(w1,w2,w3,w4,w5)≥0

α

s.t. ηi +
1

α

∑
s∈S

(
π1
si + (π2

si)
′µs + (π3

si)
′νs
)
≤ τi, i ∈ L \ L̄n,

ηi +
1

αni

∑
s∈S

(
π1
si + (π2

si)
′µs + (π3

si)
′νs
)
≤ τi, i ∈ L̄n,

π1
si + (w11

si )′ds − (w12
si )′d

s − (w13
si −w14

si )′µs ≥ 0, s ∈ S, i ∈ L,

π1
si + (w21

si )′ds − (w22
si )′d

s − (w23
si −w24

si )′µs ≥ −psηi, s ∈ S, i ∈ L,
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π1
si + (w31

si )′ds − (w32
si )′d

s − (w33
si −w34

si )′µs ≥ ps(
∑
j∈L\i

y0s
ij

− (ri +
∑
j∈L\i

y0s
ji )− ηi) s ∈ S, i ∈ L,

∑
j∈L\i

y0s
ij −

(
(w41

si )′ds − (w42
si )′d

s − (w43
si −w44

si )′µs
)
≤ ri, s ∈ S, i ∈ L,

y0s
ij + (w51

sij)
′ds − (w52

sij)
′d
s − (w53

sij −w54
sij)
′µs ≥ 0, s ∈ S, i, j ∈ L,

w11
si −w12

si − (w13
si −w14

si ) ≤ π2
si, s ∈ S, i ∈ L,

w21
si −w22

si − (w23
si −w24

si ) ≤ π2
si, s ∈ S, i ∈ L,

w31
sil − w32

sil − (w33
sil − w34

sil) ≤ v2
sil −

∑
j∈L\i

ps(y
1s
ijl − y1s

jil), s ∈ S, l, i ∈ L, l 6= i,

w31
sil − w32

sil − (w33
sil − w34

sil) ≤ v2
sil −

∑
j∈L\i

ps(y
1s
ijl − y1s

jil)− ps, s ∈ S, l, i ∈ L, l = i,

w41
si −w42

si − (w43
si −w44

si ) ≤ −
∑
j∈L\i

y1s
ij , s ∈ S, i ∈ L,

w51
sij −w52

sij − (w53
sij −w54

sij) ≤ y1s
ij , s ∈ S, i, j ∈ L,

w13
si +w14

si ≤ π3
si, s ∈ S, i ∈ L,

w23
si +w24

si ≤ π3
si, s ∈ S, i ∈ L,

w33
si +w34

si ≤ π3
si −

∑
j∈L\i

ps(y
2s
ij − y2s

ji ), s ∈ S, i ∈ L,

w43
si +w44

si ≤ −
∑
j∈L\i

y2s
ij , s ∈ S, i ∈ L,

w53
sij +w54

sij ≤ y2s
ij , s ∈ S, i, j ∈ L,

(1a)− (1d), α ∈ (0, 1],η ≥ 0.

Proof. For all s ∈ S, we represent the adaptive decisions by an affine functions ys(·) ∈ A . For

example, we can rewrite constraint (11f) as

π1
si + (π2

si)
′d + (π3

si)
′z ≥

ps

di +
∑
j∈L\i

(
y0s
ij + (y1s

ij )′d + (y2s
ij )′z

)
−

ri +
∑
j∈L\i

(
y0s
ji + (y1s

ji )′d + (y2s
ji )′z

)− ηi
 ,

(d, z) ∈ D̄s, s ∈ S, i ∈ L.

We reorganize the terms in the above constraint:

π1
si + min

(d,z)∈D̄s


π2

si −
∑
j∈L\i

ps(y
1s
ij − y1s

ji )

′ d +

π3
si −

∑
j∈L\i

ps(y
2s
ij − y2s

ji )

′ z− psdi
 ≥

ps

 ∑
j∈L\i

y0s
ij − (ri +

∑
j∈L\i

y0s
ji )− ηi

 , s ∈ S, i ∈ L.

We now focus on the above minimization subproblem. For all s ∈ S, i ∈ L, the subproblem can be

rewritten as follows:



Les Cahiers du GERAD G–2022–01 30

min
d,z

π2
si −

∑
j∈L\i

ps(y
1s
ij − y1s

ji )

′ d +

π3
si −

∑
j∈L\i

ps(y
2s
ij − y2s

ji )

′ z− psdi
s.t. ds ≤ d ≤ d

s
, (dual multipliers w31

si ,w
32
si ∈ R|L|+ )

− z ≤ d− µs ≤ z, (dual multipliers w33
si ,w

34
si ∈ R|L|+ )

By the strong duality, we present the dual formulation of the above subproblem as:

max
(w31

si ,w
32
si ,w

33
si ,w

34
si )≥0

(w31
si )′ds − (w32

si )′d
s −

(
w33
si −w34

si

)′
µs

s.t. w31
sil − w32

sil − (w34
sil − w33

sil) ≤ v2
sil −

∑
j∈L\i

ps(y
1s
ijl − y1s

jil), l ∈ L/i,

w31
sii − w32

sii − (w34
sii − w33

sii) ≤ v2
sii −

∑
j∈L\i

ps(y
1s
iji − y1s

jii)− ps,

w33
si +w34

si ≤ π3
si −

∑
j∈L\i

ps(y
2s
ij − y2s

ji ).

For other constraint sets in problem PAARC, we can perform the similar conversion. Therefore, com-

bining all parts together, we can obtain the MILP reformulation.

C PRNDP-NE formulation

According to previous studies (see, for instance, Rawls and Turnquist, 2010), we formulate the predis-

aster relief network design problem without equity (PRNDP-NE) as follows:

(PRNDP-NE) min
x,r,ũ,ỹ

sup
P∈F

EP

[∑
i∈L

ũi

]
(16)

s.t. (1a)− (1d), (2b)− (2d).

Similar to Lemma 2, the PRNDP-NE with F , i.e., F =
∏

d̃,s̃ G, is equivalent to the following

optimization problem:

min
x,r,{ys(·)}s∈S
π1,π2,π3≥0

∑
s∈S

(
v1
s + (π2

s)′µs + (π3
s)′νs

)
(17a)

s.t. π1
s + (π2

s)′d + (π3
s)′z ≥ ps

∑
i∈L

f(x, r,ys(d, z),d) (d, z) ∈ D̄s, s ∈ S, (17b)∑
j∈L\i

ysij(d, z) ≤ ri, (d, z) ∈ D̄s, s ∈ S, i ∈ L, (17c)

ysij(d, z) ≥ 0, (d, z) ∈ D̄s, s ∈ S, i, j ∈ L, (17d)

(1a)− (1d),

where each ysij : R|L|×R|L| → R, and where π1
s , π2

s and π3
s are the dual variables associated with first,

second, and third constraints that define G.

Since constraint (17b) is a sum of max function, by Definition 1, it can be written as

π1
s+(π2

s)′d+(π3
s)′z ≥ ps

∑
i∈A

di +
∑
j∈L\i

ysij(d, z)− (ri +
∑
j∈L\i

ysji(d, z))

 , A ∈ P (L), (d, z) ∈ D̄s, s ∈ S,

where P (L) is the power set of L. Note that we can apply the affine decision rule and obtain an affinely

adjustable robust counterpart of problem (17). Finally, problem (17) can also be transformed into a

MILP via standard techniques in robust optimization.
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D Data, concepts and results of the numerical study

D.1 Input parameters for the numerical study

We conduct a case study using the earthquake that happened at Yushu County in Qinghai Province, PR

China in 2010. This case represents an affected area by a network consisting of 13 locations and 15 links.

For deterministic parameters (e.g., cost, capacity, donations, etc.), we refer to Ni et al. (2018) and show

them in Table 6. As stated by Kanamori (1978): “Since the physical process underlying an earthquake

is very complex, we cannot express every detail of an earthquake by a single parameter. However,

it would be convenient if we could find a single number that represents the overall physical size of

an earthquake.” Thus, we construct the scenario-wise ambiguity set based on the Richter scale (ML)

that is a commonly used measure of the strength of earthquakes (Richter, 1935). Specifically, the

Richter scale is divided into nine scales: felt slightly by some people less than ML2.5, often felt by

people above ML2.5, can cause damage if above ML5.0. Therefore, we generate 5 scenarios with equal

probabilities (i.e., S = {1, 2, 3, 4, 5}), in which each scenario corresponds to a scale above ML5.0.

Intuitively, the greater the scale of the earthquake, the more demand for relief supplies there will

be, and more areas will be affected, so we take this into account when generating demands-related

parameters. Specifically, the underlying model is a joint distribution over (s̃, d̃) with s̃ ∼ {1, . . . , 5}
uniformly, and each d̃i ∼ N(µ̄s̃i , σ̄

s̃
i , 0,+∞) for all i ∈ L, where N is a truncated normal distribution,

and where µ̄si = 25 + 25s and σ̄si = 0.1µ̄si , We also let τi = 0.02×
∑
s∈S µ̄

s
i for all i ∈ L.

Similar to Ni et al. (2018), we first generate 50 samples from the joint distribution. We then let

p̂s, µ̂
s, ν̂s, σ̂s d̂

s

, d̂
s

be, for each s, the empirical frequency of the scenario in the observed samples,

the empirical conditional mean, conditional mean absolute deviation, conditional standard deviation,

conditional minimum, and conditional maximum in the 50 observations. We also let µ̂, ν̂, d̂, d̂ be

the empirical (unconditional) mean, mean absolute deviation, minimum, and maximum in the 50

observations. With these statistics in hand, we can construct the RSO model, the DRO model, and

the SAA model as follows.

• For the RSO model, the ambiguity set F is defined using (µ̂s, ν̂s, d̂
s

, d̂
s
).

• For the DRO model, the ambiguity set F can be regarded as a special case containing only one

scenario, which is defined using (µ̂, ν̂, d̂, d̂).

• For the SAA model, we consider 100 samples drawn from s̃ ∼ Mutlinoulli(p̂1, . . . , p̂5) and each

di ∼ N(µ̂s̃i , σ̂
s̃
i , 0,+∞) for all i ∈ L, where Mutlinoulli is a multinoulli distribution.

After solving all the above models, we can obtain predisaster deployment decisions (x∗, r∗) for

each of these models. To evaluate the performance of such solutions, we generate 1,000 out-of-sample

demands drawn from s̃ ∼ Mutlinoulli(1, . . . , 5) and each di ∼ N(µ̄s̃i , σ̄
s̃
i , 0,+∞) for all i ∈ L. Moreover,

to capture the possibility that the out-of-sample distribution may deviate from the underlying distri-

bution, for each s ∈ S, we add a perturbation ∆ to the mean of the demand, i.e., µ̄sout = (1 + ∆)µ̄s

and δ̄sout = 0.1µ̄sout, where ∆ is enumerated from -0.1 to 0.1 with a step size of 0.05. To evaluate the

impact of different donation levels, we consider R could be any value in the set {1,700, 1,750, . . . ,

1,900}.

Table 6: Input parameters

Number of locations |L| = 13
Location index i 1 2 3 4 5 6 7 8 9 10 11 12 13
Fixed cost ci 203 193 130 117 292 174 130 157 134 161 234 220 170
Facility capacity M = 800
Total supplies R = 1, 800
Total Budget B = 1, 000
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D.2 Concepts of equity indices

Here we list the definitions and computational methods of MSG, RMD, VAR, SPAD and Gini in detail,

as follows:

• Maximum Shortage Gap(MSG): This is the difference between the most and least deprived parties

in terms of shortage (maxi∈L ui −mini∈L ui), which focuses on two extreme cases.

• Relative Mean Deviation(RMD): This is the absolute deviation from the average shortage

(
∑
i∈L |ui − ū|, where ū =

∑
i∈L ui
|L| ). Compared with MSG which only considers two extremes,

RMD considers other levels of shortages as well.

• Variance(VAR): This is the average squared deviation from the average shortage (
∑
i∈L(ui−ū)2

|L| ).

• Sum of Pairwise Absolute Differences(SPAD): This is the sum of absolute differences between

the shortages of all pairs of demand locations (
∑
i,j∈L |ui − uj |).

• Gini coefficient(Gini): This index measures the inequity among values of a frequency distribution

(
∑
i,j∈L|ui−uj |

2|L|
∑
i∈L ui

). The coefficient ranges from 0 to 1, with 0 representing perfect equity and 1

representing perfect inequity.

D.3 Performance of AARC

We demonstrate the performance of AARC on small instances of the Earthquake case study. For

simplicity, we only consider one scenario in the scenario-wise ambiguity set. To generate parameters

related to demand, we randomly sample according to the sampling range in Table 7. For other

parameters, we consider the same setup as the Earthquake case study.

Table 7: Parameter setup related to demand at each location i ∈ L

Parameter Sampling range

Lower bound of demand di (0,50)

Upper bound of demand di di+(0,100)

Mean of demand µi (di,di)
Mean absolute deviation of demand νi (0,µi)
Threshold on demand τi 0.1× µi

Table 8 reports statistics on the suboptimality gaps observed in 100 random instances with sizes

|L| = {5, 6, 7}. One remarks that the suboptimality gaps are quite small, namely with a 95%-VaR of

less than 1% and a maximum gap of 8%. Furthermore, suboptimality gap does not seem to increase

with the size of the instance.

Table 8: Statistics of AARC suboptimality

|L| Minimum Median VaR@95% VaR@99% Maximum

5 0.00% 0.00% 0.88% 4.14% 6.34%
6 0.00% 0.00% 0.51% 2.78% 7.98%
7 0.00% 0.00% 0.64% 3.75% 7.25%

In addition, we also compare in Table 9 the solution time of AARC, VE, and SAA (with 1,000

samples). We choose the termination criteria to be whether the optimality gap is less than 0.01%, or

the CPU time exceeds 7,200 seconds. Obviously, the performance of the AARC is significantly faster

to solve than VE and SAA. In particular, VE starts taking more than 2 hours to solve for |L| ≥ 9,

while AARC still returns a solution within 5 seconds. One also notices that the solution time of SAA

increases more rapidly than AARC when the number of locations increases.



Les Cahiers du GERAD G–2022–01 33

Table 9: Average CPU time (in sec)

|L| AARC VE SAA

5 1.01 8.52 92.19
6 1.40 47.32 184.06
7 1.57 519.38 299.37
8 1.95 5,359.57 501.43
9 2.71 > 7, 200 635.81
10 2.66 > 7, 200 807.51
11 2.89 > 7, 200 1,005.20
12 3.66 > 7, 200 1,808.13
13 4.39 > 7, 200 3,165.41
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