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Abstract : A small polygon is a polygon of unit diameter. The maximal area of a small polygon
with n = 2m vertices is not known when m ≥ 7. In this paper, we construct, for each n = 2m and
m ≥ 3, a small n-gon whose area is the maximal value of a one-variable function. We show that, for
all even n ≥ 6, the area obtained improves by O(1/n5) that of the best prior small n-gon constructed
by Mossinghoff. In particular, for n = 6, the small 6-gon constructed has maximal area.

Keywords: Planar geometry, polygons, isodiametric problem, maximal area

Acknowledgements: The author thanks Charles Audet, Professor at Polytechnique Montreal, for
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1 Introduction

The diameter of a polygon is the largest Euclidean distance between pairs of its vertices. A polygon

is said to be small if its diameter equals one. For an integer n ≥ 3, the maximal area problem consists

in finding a small n-gon with the largest area. The problem was first investigated by Reinhardt [1] in

1922. He proved that

• for all n ≥ 3, the value n
2

(
sin π

n − tan π
2n

)
is an upper bound on the area of a small n-gon;

• when n is odd, the regular small n-gon is the unique optimal solution;

• when n = 4, there are infinitely many optimal solutions, including the small square;

• when n ≥ 6 is even, the regular small n-gon is not optimal.

When n ≥ 6 is even, the maximal area problem is solved for n ≤ 12. The case n = 6 was solved

by Bieri [2] in 1961 and Graham [3] in 1975, the case n = 8 by Audet, Hansen, Messine, and Xiong [4]

in 2002, and the cases n = 10 and n = 12 by Henrion and Messine [5] in 2013. Both optimal 6-gon

and 8-gon are represented in Figure 2c and Figure 3c, respectively. In 2017, Audet [6] showed that the

regular small polygon has the maximal area among all equilateral small polygons.

The diameter graph of a small polygon is the graph with the vertices of the polygon, and an edge

between two vertices exists only if the distance between these vertices equals one. Diameter graphs of

some small polygons are shown in Figure 1, Figure 2, and Figure 3. The solid lines illustrate pairs of

vertices which are unit distance apart. In 2007, Foster and Szabo [7] proved that, for even n ≥ 6, the

diameter graph of a small n-gon with maximal area has a cycle of length n−1 and one additional edge

from the remaining vertex. From this result, they provided a tighter upper bound on the maximal

area of a small n-gon when n ≥ 6 is even.

For even n ≥ 10, exact solutions in the maximal area problem appear to be presently out of

reach. However, tight lower bounds on the maximal area can be obtained analytically. For instance,

Mossinghoff [8] constructed a family of small n-gons, for even n ≥ 6, and proved that the areas obtained

cannot be improved for large n by more than c/n3, for a certain positive constant c. By contrast, the

areas of the regular small n-gons cannot be improved for large n by more than π3/(16n2) when n ≥ 6

is even. In this paper, we propose tighter lower bounds on the maximal area of small n-gons when

n ≥ 6 is even. Thus, the main result of this paper is the following:

Theorem 1. Suppose n = 2m with integer m ≥ 3. Let An := n
2 sin π

n −
n−1
2 tan π

2n−2 denote an

upper bound on the area A(Pn) of a small n-gon Pn [7]. Let Mn denote the small n-gon constructed by

Mossinghoff [8] for the maximal area problem. Then there exists a small n-gon Bn such that

An −A(Bn) =
(5303− 456

√
114)π3

5808n3
+O

(
1

n4

)
<

3π3

40n3
+O

(
1

n4

)
and

A(Bn)−A(Mn) =
3dπ3

n5
+O

(
1

n6

)
with

d =
25π2(1747646− 22523

√
114)

4691093528
+

32717202988− 3004706459
√

114

29464719680

+ (−1)
n
2

15π(10124777− 919131
√

114)

852926096

=

{
0.0836582354 . . . if n ≡ 2 mod 4,

0.1180393778 . . . if n ≡ 0 mod 4.

Moreover, B6 is the largest small 6-gon.

The remainder of this paper is organized as follows. Section 2 recalls principal results on the

maximal area problem. We prove Theorem 1 in Section 3. We conclude the paper in Section 4.
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(a) (R4, 0.5) (b) (R+3 , 0.5)

Figure 1: Two small 4-gons (P4, A(P4))

(a) (R6, 0.649519) (b) (R+5 , 0.672288) (c) (P∗6 , 0.674981)

Figure 2: Three small 6-gons (P6, A(P6))

(a) (R8, 0.707107) (b) (R+7 , 0.725320) (c) (P∗8 , 0.726868)

Figure 3: Three small 8-gons (P8, A(P8))
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2 Areas of small polygons

Let A(P) denote the area of a polygon P. Let Rn denote the regular small n-gon. We have

A(Rn) =

{
n
2

(
sin π

n − tan π
2n

)
if n is odd,

n
8 sin 2π

n if n is even.

For all even n ≥ 6, A(Rn) < A(Rn−1) [9]. This suggests that Rn does not have maximum area for any

even n ≥ 6. Indeed, when n is even, we can construct a small n-gon with a larger area than Rn by

adding a vertex at distance 1 along the mediatrix of an angle in Rn−1. We denote this n-gon by R+n−1
and we have

A(R+n−1) =
n− 1

2

(
sin

π

n− 1
− tan

π

2n− 2

)
+ sin

π

2n− 2
− 1

2
sin

π

n− 1
.

Theorem 2 (Reinhardt [1], Foster and Szabo [7]). For all n ≥ 3, let A∗n denote the maximal area among

all small n-gons.

• When n is odd, A∗n = n
2

(
sin π

n − tan π
2n

)
is only achieved by Rn.

• A∗4 = 1/2 is achieved by infinitely many 4-gons, including R4 and R+3 illustrated in Figure 1.

• When n ≥ 6 is even, the diameter graph of an optimal n-gon has a cycle of length n− 1 plus one

additional edge from the remaining vertex and A∗n < An := n
2 sin π

n −
n−1
2 tan π

2n−2 .

When n ≥ 6 is even, the maximal area A∗n is known for n ≤ 12. Bieri [2] and Graham [3] determined

analytically that A∗6 = 0.674981 . . . > A(R+5 ), and this value is only achieved by the small 6-gon shown

in Figure 2c. Audet, Hansen, Messine, and Xiong [4] proved that A∗8 = 0.726868 . . . > A(R+7 ), which

is only achieved by the small 8-gon represented in Figure 3c. Henrion and Messine [5] found that

A∗10 = 0.749137 . . . > A(R+9 ) and A∗12 = 0.760729 . . . > A(R+11).

Conjecture 1. For even n ≥ 6, an optimal n-gon has an axis of symmetry corresponding to the pendant

edge in its diameter graph.

From Theorem 2, we note that R+n−1 has the optimal diameter graph. Conjecture 1 is only proven

for n = 6 and this is due to Yuan [10]. However, the largest small polygons obtained by [4] and [5] are

a further evidence that the conjecture may be true.

For even n ≥ 6, R+n−1 does not provide the tightest lower bound for A∗n. Indeed, Mossinghoff [8]

constructed a family of small n-gons Mn, illustrated in Figure 4, such that

An −A(Mn) =
(5303− 456

√
114)π3

5808n3
+O

(
1

n4

)
<

3π3

40n3
+O

(
1

n4

)
for all even n ≥ 6. On the other hand,

An −A(Rn) =
π3

16n2
+O

(
1

n3

)
,

An −A(R+n−1) =
5π3

48n3
+O

(
1

n4

)
for all even n ≥ 6. In the next section, we propose a tighter lower bound for A∗n.

3 Proof of Theorem 1

For all n = 2m with integer m ≥ 3, consider a small n-gon Pn having the optimal diameter graph: an

(n − 1)-length cycle v0 − v1 − . . . − vk − . . . − vn
2−1 − vn

2
− . . . − vn−k−1 − . . . − vn−2 − v0 plus the
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(a) (M6, 0.673186) (b) (M8, 0.725976) (c) (M10, 0.749029)

Figure 4: Mossinghoff polygons (Mn, A(Mn))

v0(0, 0)

v5(x5, y5)

v3(x3, y3)

v1(x1, y1)

v7(x7, y7)

v6(x6, y6)

v4(x4, y4)

v2(x2, y2)

α0

α1

α2

α3

Figure 5: Definition of variables: Case of n = 8 vertices

pendant edge v0 − vn−1, as illustrated in Figure 5. We assume that Pn has the edge v0 − vn−1 as axis

of symmetry.

We use cartesian coordinates to describe the n-gon Pn, assuming that a vertex vk, k = 0, 1, . . . , n−1,

is positioned at abscissa xk and ordinate yk. Placing the vertex v0 at the origin, we set x0 = y0 = 0.

We also assume that Pn is in the half-plane y ≥ 0.

Let us place the vertex vn−1 at (0, 1) in the plane. Let α0 = ∠vn−1v0v1 and for all k =

1, 2, . . . , n/2− 1, αk = ∠vk−1vkvk+1. Since Pn is symmetric, we have

n/2−1∑
k=0

αk =
π

2
, (1)

and

xk =

k−1∑
i=0

(−1)i sin

 i∑
j=0

αj

 = −xn−k−1 ∀k = 1, 2, . . . ,
n

2
− 1, (2a)
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yk =

k−1∑
i=0

(−1)i cos

 i∑
j=0

αj

 = yn−k−1 ∀k = 1, 2, . . . ,
n

2
− 1. (2b)

Since the edge vn
2−1 − vn

2
is horizontal and ‖vn

2−1 − vn
2
‖ = 1, we also have

xn
2−1 = (−1)

n
2 /2 = −xn

2
. (3)

If A1 denote the area of the triangle v0v1vn−1 and Ak the area of the triangle v0vk+1vk−1 for all

k = 2, 3, . . . , n/2− 1, then the area of Pn is A =
∑n/2−1
k=1 2Ak. From (1) and (2), we have

2A1 = x1 = sinα0, (4a)

2Ak = xk+1yk−1 − yk+1xk−1

= sinαk + 2(−1)k

xk sin

k−1∑
j=0

αj +
αk
2

+ yk cos

k−1∑
j=0

αj +
αk
2

 sin
αk
2

(4b)

for all k = 2, 3, . . . , n/2−1. Then one can construct a large small n-gon by maximizing the area A over

n/2 variables α0, α1, . . . , αn
2−1 subject to (1) and (3). Instead, we are going to use the same approach

as Mossinghoff [8] to obtain a large small n-gon with fewer variables.

Now, suppose α0 = α, α1 = β + γ, α2 = β − γ, and αk = β for all k = 3, 4, . . . , n/2− 1. Then (1)

becomes

α+
(n

2
− 1
)
β =

π

2
. (5)

Coordinates (xk, yk) in (2) are given by

x1 = sinα, (6a)

y1 = cosα, (6b)

x2 = sinα− sin(α+ β + γ), (6c)

y2 = cosα− cos(α+ β + γ), (6d)

xk = x2 +

k∑
j=3

(−1)j−1 sin(α+ (j − 1)β)

= x2 +
sin
(
α+ 3β2

)
− (−1)k sin

(
α+ (2k − 1)β2

)
2 cos β2

∀k = 3, 4, . . . ,
n

2
− 1, (6e)

yk = y2 +

k∑
j=3

(−1)j−1 cos(α+ (j − 1)β)

= y2 +
cos
(
α+ 3β2

)
− (−1)k cos

(
α+ (2k − 1)β2

)
2 cos β2

∀k = 3, 4, . . . ,
n

2
− 1. (6f)

From (3), (6c), (6e), and (5), we deduce that

sin(α+ β + γ) = sinα+
sin
(
α+ 3β2

)
2 cos β2

. (7)
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The areas Ak in (4) determined by α, β, and γ are

2A1 = sinα,

2A2 = sin(2β)− sin(β + γ),

2Ak = sinβ + 2(−1)k
(
xk sin

(
α+ (2k − 1)

β

2

)
+ yk cos

(
α+ (2k − 1)

β

2

))
sin

β

2

= sinβ − tan
β

2
+ 2(−1)k−1

(
2 sin

β + γ

2
sin
(

(k − 1)β − γ

2

)
− cos((k − 2)β)

2 cos β2

)
sin

β

2

for all k = 3, 4, . . . , n/2− 1. Using (7), it follows that

n/2−1∑
k=3

2Ak =
(n

2
− 3
)(

sinβ − tan
β

2

)
+

(
cos(β − γ)− cos(2β)− 1

2

)
tan

β

2
.

Thus,
A = sinα+ sin(2β)− sin(β + γ)

+
(n

2
− 3
)(

sinβ − tan
β

2

)
+

(
cos(β − γ)− cos(2β)− 1

2

)
tan

β

2
.

(8)

Note that, for n = 6, we have A = sinα+ sin(2β)− sin(β + γ).

With (5) and (7), the area A in (8) can be considered as a one-variable function f(α). For instance,

for α = π
2n−2 , we have β = π

n−1 , γ = 0, and f
(

π
2n−2

)
= A(R+n−1). We may now search for a value of

α ∈
[

π
2n−2 ,

π
n

]
that maximizes this function. An asymptotic analysis produces that, for large n, f(α)

is maximized at α̂(n) satisfying

α̂(n) =
aπ

n
+
bπ

n2
− cπ

n3
+O

(
1

n4

)
,

where a = 2
√
114−7
22 = 0.652461 . . ., b = 84a2−272a+175

4(22a+7) = 3521
√
114−34010
9196 = 0.389733 . . ., and

c =
(7792a4 + 16096a3 + 2568a2 − 6248a+ 223)π2

768(22a+ 7)
− 226a2 + 84ab− 22b2 − 542a− 136b+ 303

2(22a+ 7)

=
17328(663157 + 3161π2)− (1088031703− 3918085π2)

√
114

507398496
= 1.631188 . . . .

Let Bn denote the n-gon obtained by setting α = α̂(n). We have

β = β̂(n) =
π

n
+

2(1− a)π

n2
+O

(
1

n3

)
,

γ = γ̂(n) =
(2a− 1)π

4n
+

(a+ b− 1)π

2n2
+O

(
1

n3

)
,

and the area of Bn is

A(Bn) =f(α̂(n))

=
π

4
− 5π3

48n2
− (5545− 456

√
114)π3

5808n3
−

(
7(13817− 1281

√
114)

10648
− π2

480

)
π3

n4

−

(
23π2(351468

√
114− 2868731)

618435840
+

4013754104− 375661161
√

114

53410368

)
π3

n5
+O

(
1

n6

)
,
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(a) (B6, 0.674981) (b) (B8, 0.726854) (c) (B10, 0.749119)

Figure 6: (Bn, A(Bn))

which implies

An −A(Bn) =
(5303− 456

√
114)π3

5808n3
+

(192107− 17934
√

114)π3

21296n4
+O

(
1

n5

)
.

By construction, Bn is small. We illustrate Bn for some n in Figure 6.

Mossinghoff’s small n-gons Mn, n = 2m and m ≥ 3, constructed in [8] for the maximal area problem

were obtained as follows. He first supposed that α0 = α, α1 = β + γ, α2 = β − γ, and αk = β for all

k = 3, 4, . . . , n/2− 3. Then he set α = aπ
n + tπ

n2 , β = π
n + 2(1−a)π

n2 , and γ = (2a−1)π
4n + (a+t−1)π

2n2 , with

t =
4(7a2 − 32a+ 25)

44a+ 27
+ (−1)

n
2

15π(8a3 + 12a2 − 2a− 3)

32(44a+ 27)

=
103104

√
114− 998743

200255
+ (−1)

n
2

15π(347
√

114− 714)

1762244

=

{
0.429901 . . . if n ≡ 2 mod 4,

0.589862 . . . if n ≡ 0 mod 4.

Note that we do not require αn
2−2 = αn

2−1 = β in Mn. The area of Mn is given by

A(Mn) =
π

4
− 5π3

48n2
− (5545− 456

√
114)π3

5808n3
−

(
7(13817− 1281

√
114)

10648
− π2

480

)
π3

n4

−

(
π2(28622156724

√
114− 177320884133)

2251724893440
+

182558364974− 17072673147
√

114

2326162080

+ (−1)
n
2

45π(1012477− 919131
√

114)

852926096

)
π3

n5
+O

(
1

n6

)
,

Therefore,

A(Bn)−A(Mn) =
3dπ3

n5
+O

(
1

n6

)
with

d =
25π2(1747646− 22523

√
114)

4691093528
+

32717202988− 3004706459
√

114

29464719680

+ (−1)
n
2

15π(10124777− 919131
√

114)

852926096

=

{
0.0836582354 . . . if n ≡ 2 mod 4,

0.1180393778 . . . if n ≡ 0 mod 4.
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We can also note that, for some parameter u,

A(Bn)− f
(aπ
n

+
uπ

n2

)
=

{
(u−b)2π3

√
114

8n5 +O
(

1
n6

)
if u 6= b,

c2π3
√
114

8n7 +O
(

1
n8

)
if u = b.

This completes the proof of Theorem 1.

Table 1 shows the areas of Bn, along with the optimal values α̂(n), the upper bounds An, the areas

of Rn, R+n−1, and Mn for n = 2m and 3 ≤ m ≤ 12. We also report the areas of the small n-gons M′n
obtained by setting α = aπ

n + tπ
n2 in (8), i.e., A(M′n) = f

(
aπ
n + tπ

n2

)
. Values in the table are rounded at

the last printed digit. As suggested by Theorem 1, when n is even, Bn provides a tighter lower bound

on the maximal area A∗n compared to the best prior small n-gon Mn. For instance, we can note that

A(B6) = A∗6. We also remark that A(Mn) < A(M′n) for all even n ≥ 8.

Table 1: Areas of Bn

n α̂(n) A(Rn) A(R+n−1) A(Mn) A(M′n) A(Bn) An

6 0.3509301889 0.6495190528 0.6722882584 0.6731855653 0.6731855653 0.6749814429 0.6877007594
8 0.2649613582 0.7071067812 0.7253199909 0.7259763468 0.7264449921 0.7268542719 0.7318815691

10 0.2119285702 0.7347315654 0.7482573378 0.7490291363 0.7490910913 0.7491189262 0.7516135587
12 0.1762667716 0.7500000000 0.7601970055 0.7606471438 0.7606885130 0.7607153082 0.7621336536
14 0.1507443724 0.7592965435 0.7671877750 0.7675035228 0.7675178190 0.7675203660 0.7684036467
16 0.1316139556 0.7653668647 0.7716285345 0.7718386481 0.7718489998 0.7718535572 0.7724408116
18 0.1167583322 0.7695453225 0.7746235089 0.7747776809 0.7747819422 0.7747824059 0.7751926059
20 0.1048968391 0.7725424859 0.7767382147 0.7768497848 0.7768531741 0.7768543958 0.7771522071
22 0.0952114547 0.7747645313 0.7782865351 0.7783722564 0.7783738385 0.7783739622 0.7785970008
24 0.0871560675 0.7764571353 0.7794540033 0.7795196190 0.7795209668 0.7795213955 0.7796927566

All polygons presented in this work and in [11, 12, 13, 14, 15] were implemented as a MATLAB

package: OPTIGON [16], which is freely available at https://github.com/cbingane/optigon. In

OPTIGON, we provide MATLAB functions that give the coordinates of their vertices. One can also

find an algorithm developed in [11] to find an estimate of the maximal area of a small n-gon when

n ≥ 6 is even.

4 Conclusion

Tighter lower bounds on the maximal area of small n-gons were provided when n is even. For each

n = 2m with integer m ≥ 3, we constructed a small n-gon Bn whose area is the maximum value of a

one-variable function. For all even n ≥ 6, the area of Bn is greater than that of the best prior small

n-gon constructed by Mossinghoff. Furthermore, for n = 6, B6 is the largest small 6-gon.
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