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– Library and Archives Canada, 2021

GERAD HEC Montréal
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auteurs conservent leur droit d’auteur et leurs droits moraux sur leurs
publications et les utilisateurs s’engagent à reconnâıtre et respecter
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Abstract : We formulate a batch reinforcement learning-based demand response approach to prevent
distribution network constraint violations in unknown grids. We use the fitted Q-iteration to compute
a network-safe policy from historical measurements for thermostatically controlled load aggregations
providing frequency regulation. We test our approach in a numerical case study based on real load
profiles from Austin, TX. We compare our approach’s performance to a greedy, grid-aware approach
and a standard, grid-agnostic approach. The average tracking root mean square error is 0.0932 for our
approach, and 0.0600 and 0.0614 for, respectively, the grid-aware and grid-agnostic implementations.
Our numerical case study shows that our approach leads to a 95% reduction, on average, in the total
number of rounds with at least a constraint violation when compared to the grid-agnostic approach.
Working under limited information, our approach thus offers lower but acceptable setpoint tracking
performance while ensuring safer distribution network operations.

Keywords: Batch reinforcement learning, demand response, frequency regulation, network-safe, ther-
mostatically controlled loads
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1 Introduction

Demand response [16, 23, 24] is an effective way of increasing the flexibility of electric power systems.

The flexibility can be used, for example, to increase the grid efficiency, e.g., peak-shaving via load-

shifting [5], or to mitigate the intermittency of renewable generators, e.g., by providing frequency

regulation services [4,28]. The growing presence of renewable generation in power systems means that

the latter application will become prevalent in modern grids as to ensure its stability. Combined with

the fact that demand response requires limited infrastructure investment [28], the need for an increased

grid flexibility motivates the development of large-scale demand response programs.

The increasing demand response capacity means that significant amounts of power adjustment can

be made throughout distribution networks. This creates risks of distribution network constraint viola-

tions due to, e.g., a large number of air conditioner units being turned on simultaneously [20]. Network

constraint violations represent, e.g., a voltage magnitude above (below) the maximum (minimum) op-

erational limits at the different buses or line current values above its ampacity [21]. Ensuring grid

constraint satisfaction is essential to guaranteeing the reliable and safe operation of distribution grids.

Consequently, in our work, we prioritize grid safety at the expense of the demand response program

performance.

Related work. We now review the relevant literature on network-safe demand response. Reference [18]

studies the effect of demand response of TCL aggregations on distribution network constraints using

numerical simulations. The authors of [20], building on their previous work [17,18], propose a network-

aware frequency regulation framework in which an aggregator first dispatches TCLs and then the

system operator modifies the aggregator’s controls to prevent network constraint violations. The

operator uses either a blocking or a mode-count control method. In this setting, the aggregator does

not require knowledge of the network, e.g., its parameters or topology. Such knowledge is, however,

needed by the operator which intervenes in the demand response process and is in charge of meeting its

network’s constraints. In [2,22,30], demand response controls are computed via an optimal power flow

formulation to model network constraints. Reference [10] and prior work [6] model TCL aggregations as

an aggregated Markov process where each state corresponds to a power consumption level. The authors

of [10] then use this model in a chance-constrained, relaxed power flow problem to optimize both

the distribution network’s and the aggregation’s objectives while accounting for network constraints.

In [3, 7], online primal-dual algorithms are proposed to control power injections of distributed energy

resources, including TCLs, for setpoint tracking at a point of connection under linearized network

constraints. In [3], aggregations are also considered. The online process of [3, 7] allows the decision

algorithm to use measurements to rapidly correct controls that lead to constraint violations. In [15],

a method based on convex relaxations of the optimal power flow is proposed to certify that a set

of power injections at different nodes, e.g., changes in power consumption of flexible loads, will not

lead to any network constraint violations. In [19], the authors establish sufficient conditions on the

maximum change in power consumption to be computed by the operator of a network such that voltage

constraints of the network are satisfied at all times. These conditions are then used to constrain the

aggregator’s controls. Reference [1] uses an actor-critic-based deep reinforcement learning approach for

load-shifting. The approach ensures that power flow constraints are satisfied throughout the network

by projecting the control onto a feasible convex set.

In this work, we consider network-safe demand response of thermostatically controlled load (TCL)

aggregations in unknown networks [20]. We formulate a demand response approach for frequency

regulation that accounts for distribution network constraints when the network’s electrical parameters

and/or its topology are unknown to the aggregator. We further assume that the aggregator acts

independently of the system operator, i.e., no information exchange is possible between the two entities.

The problem we considered is of particular importance as (i) private aggregators may not have access

to the network information because of privacy reasons [20] and (ii) system operators may wish to

fully outsource demand response. Because we do not assume knowledge of the network, its electrical
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variables, e.g., the voltage magnitudes at the different nodes, the power flowing in or out of the

network, and the aggregations’ power adjustment, cannot be computed. We base our approach on

batch reinforcement learning [8] to circumvent this problem. This allows us to learn the network and

aggregation models instead of requiring detailed modelling and characterization before implementation.

In reinforcement learning [11, 26], a decision maker must choose, based on previous decision infor-

mation, the best control to implement given the current state of a system. The state then changes

and a reward is granted accordingly. The system is modelled as a Markov decision process where the

dynamics are unknown. Batch reinforcement learning differs from traditional, online reinforcement

learning because the control policy is computed from information taking the form of batch data avail-

able prior to implementation rather than being collected sequentially. The data represents a collection

of historical transitions, i.e., initial state, control, reward and final state tuples. Online reinforcement

learning requires the exploration of numerous state-control pairs. This conflicts with our objective

of ensuring network-safe demand response because exploration will lead to several constraints viola-

tions because the unsafe state and control pairs to be identified. For this reason, we opt for batch

reinforcement learning.

We train our algorithm with historical measurements of the power flow at the point of connection

with the grid and of the voltage magnitudes at the buses of interest. We use the fitted Q-iteration

(FQI) [8] to compute a network-safe control policy for several TCL aggregations located in a distribution

grid. We model the aggregations as a stochastic battery using [9]’s model. Our approach provides

power setpoint tracking at the point of connection with the grid while ensuring that the voltage

magnitude is within the prescribed limits at all nodes equipped with metering infrastructure. In this

work, we focus on voltage magnitude constraints but our setting can be extended to other types of

network constraints, e.g., line ampacity.

To the authors’ best knowledge, our work is the first to consider network-safe demand response when

the network’s topology and/or electric parameters are unknown to the aggregator and no interventions

from the system operator is possible. Our main contribution is to formulate data-driven approach for

network-safe demand response in unknown environment. We then numerically evaluate its performance

using real data.

2 Fitted Q-iteration

We now introduce the fitted Q-iteration (FQI) algorithm. Consider the Markov decision process defined

by the state space X ⊆ Rn1 , n1 ∈ N, the control space U ⊆ Rn2 , n2 ∈ N, the stochastic system’s

dynamics f : X × U × W 7→ X where W ∈ Rn3 , n3 ∈ N, is the set of random disturbances, and a

reward function r : X × U × X ×W 7→ R. The disturbance set W models the environment/system’s

uncertainty, e.g., due measurement errors, erratic human behaviour, sudden weather changes, random

failures in communication or TCLs, etc. The objective is to determine a policy π : X 7→ U to maximize

the total expected reward given by:

E

[
+∞∑
t=1

βtr(xt, π(xt), f(xt, π(xt),wt),wt)

]
, (1)

where β ∈ [0, 1) is the discount factor. The expectation in (1) is computed with respect to the joint

conditional probability of wt ∈ W given the state xt and the control ut for all t. In a reinforcement

learning problem, the system’s model, f , is unknown.

In batch reinforcement learning, the decision maker has access to batch data prior to implemen-

tation. In this work, we use FQI to derive an approximate optimal policy for (1) based on the

batch data. This process avoids the exploration process of typical reinforcement learning methods

which can lead to unsafe distribution network operations. Let D denote the batch data defined as:

D =
{(

xlt,u
l,xlt+1, r

l
)
∈ X × U × X × R

∣∣xlt+1 = f(xlt,u
l,w),w ∈ W, l = 1, 2, . . . , L

}
, where L ∈ N is
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the number of data points in the dataset. FQI is a dynamic programming-based batch reinforcement

learning approach which iteratively computes an approximate Q-function that satisfies Bellman’s equa-

tion [8]. FQI is presented in Algorithm 1. We provide next a summary of the algorithm’s derivation.

Interested readers are referred to [8] for a detailed coverage of FQI.

Let Q : X × U 7→ R be the Q-function or state-control value function. Let Q0(x,u) = 0 for all

(x,u) ∈ X × U . For N ≥ 0, let QN -function be defined recursively as:

QN+1(x,u) = E
[
r(x,u,w) + βmax

u′∈U
QN (f(x,u,w),u′)

]
,

where w ∈ W. The above expectation is again taken with respect to the joint probability of w given

the state xt and the control ut. Then, by the contraction mapping theorem, QN → Q where Q satisfies

the Bellman equation:

Q(x,u) = E
[
r(x,u,w) + βmax

u′∈U
Q(f(x,u,w),u′)

]
. (2)

FQI aims to approximate the Q-function that meets (2) by sequentially building an approximation of

the QN -function. This is done by first assuming Q̂0(x,u) = 0 for all x and u. Then, at iteration N ,

(il, ol)-pairs are computed using the previous approximation, Q̂N−1, as follows:

il =
(
xlt,u

l
)

ol = rl + βmax
u′∈U

Q̂N−1(xlt+1,u
′),

for l = 1, 2, . . . , L. The Q̂N -function is finally obtained by fitting a function using a regression tree

method over the pairs
{

(il, ol), l = 1, 2, . . . , L
}

. A regression tree method is used to approximate the

information gathered in the batch data to other state-control pairs and the conditional expectation of

the Bellman equation [8]. The latter comes from the fact that the regression tree averages the output

ol of all state-control pairs contained in a leaf node. This process is repeated until the maximum

difference between consecutive Q̂N is below a set tolerance ε. The convergence of the sequence Q̂N is

guaranteed as shown by [8] when specific regression tree methods are used, e.g., KD-Tree or Totally

Randomized Trees.

Finally, the Q̂N -functions are used to determine the policy. The greedy policy π : X 7→ U for FQI

is defined as: π(x) ∈ arg maxu∈U Q̂N (x,u) for all x ∈ X .

Algorithm 1: Fitted Q Iteration (FQI)

Parameters: L, D, β ∈ [0, 1), ε > 0

Initialization: N = 0, Q̂0(x,u) = 0 for all x,u.

1: while
∥∥∥Q̂N (x,u)− Q̂N−1 (x,u)

∥∥∥
∞
≥ ε do

2: N = N + 1
3: for l = 1, 2, . . . , L do
4: Compute the pairs:

il =
(
xl
t,u

l
)

ol = rl + β max
u′∈U

Q̂j
N−1

(
xl
t+1,u

′
)
.

5: end for
6: Compute Q̂-function for iteration N :

Q̂N (x,u) =RegressionTree

({{
(il, ol)

}L

l=1

}
; (x,u)

)
7: end while
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3 Safe demand response in unknown networks

In this section, we use FQI for network-safe demand response of TCL aggregations under limited

information. We consider a network consisting of multiple loads and TCL aggregations. We do not

assume knowledge of the network’s parameters nor of its topology. Moreover, we do not assume any

collaboration between the system operator and the aggregator, i.e., the system operator does not

intervene in the demand response process to block or limit the aggregator [19, 20]. We consider a

demand response setting where the power consumption of TCL aggregations is modified such that the

total power demand for the network at the point of connection tracks a setpoint, e.g., a frequency

regulation signal [5].

We discretize the time horizon T into m-minute rounds. We denote the time indices by t ∈
{1, 2, . . . , T}. We consider a distribution network connected to the grid at node 0. Let N be the set

of nodes of the network. Let L ⊆ N be the set of loads and K ⊆ N be the set of TCL aggregations in

the network. We denote by p0,t ∈ R the power flow in or out of the network at the point of connection

and at time t. We let di,t ∈ R be the power consumption of load i ∈ L. Our objective is to track the

power setpoint st by adjusting the network demand p0,t. This is done in turn by controlling the power

consumption of TCL aggregations. Let ut ∈ U be the control signal sent the aggregations at time t.

We now introduce the aggregation model and then state our FQI-based approach.

3.1 TCL aggregation model

We consider multiple aggregations each consisting of K TCLs. We model the aggregations as a

stochastic battery [9]. Let xTCL(t) be the state of charge of the battery which models the TCL

aggregation at time t and µ(t) be the power coming in or out the battery, i.e., the change in power

consumption of the aggregation from its nominal level. From [9], we have for aggregation j, for all

t ≥ 0:

ẋTCL
j (t) = −αixTCL

j (t)− µj(t) (3)

−n−j (t) ≤ µj(t) ≤ n+
j (t), (4)

with the boundary conditions: xTCL
j (0) = 0 and

∣∣xTCL
j (t)

∣∣ ≤ Cj for all t. The variables n−j (t) and n+
j (t)

model the maximum charging and discharging rate of the equivalent battery, Cj its energy capacity,

and αj its dissipation rate. The authors of [9] define necessary and sufficient conditions for the battery

model (Cj , n
−
j , n+

j , αj from (3)−(4)) to represent the flexibility of a TCL aggregation while ensuring
that the temperature constraints of each TCL are met. The reader is referred to [9, Section IV] for

the detailed derivation of these conditions. We use the sufficient battery model which maximizes its

energy capacity [9]. Our approach does not assume knowledge of the equivalent battery model for

the aggregations. For completeness, we now introduce the TCL thermal model. We then define the

battery equivalent parameters for the TCL aggregations. Both will be used in Section 4 to simulate

the aggregations’ thermal and power variables.

Let cj,k, rj,k be, respectively, the thermal capacitance and the thermal resistance of TCL k ∈
{1, 2, . . . ,K} from aggregation j ∈ K. Let P j,kr and ηj,k be the rated electrical power and the coefficient

of performance of TCL k’s cooling unit, respectively. Let θj,kd be the desired temperature of TCL k and

∆j,k be its temperature deadband. Considering a continuous thermal model [9] for the temperature

dynamic of TCLs, we let P j,k0,t be the nominal power consumption of TCL k needed to keep it at its

desired temperature: P j,k0,t =
θambient
t −θj,kd

ηj,krj,k
. Any deviation of load k from P j,k0,t at time t then represents

its consumption flexibility. The flexibility of each load is bounded by the maximum power consumption

of the unit and zero, and must not push the TCL’s temperature out of its deadband. We remark that

even if the model uses a continuous model, the controls sent to TCLs are all binary [9]. Finally. at
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time t, the battery model parameters of aggregation j are:

Cj =

K∑
k=1

f j,k αj =
1

K

K∑
k=1

1

vj,k

n−j,t =

(
K∑

k∈=1

f j,k

)
min

k∈{1,2,...,K}

P j,k0,t

f j,k

n+
j,t =

(
K∑

k∈=1

f j,k

)
min

k∈{1,2,...,K}

P j,kr − P j,k0,t

f j,k
,

where vj,k = rj,kcj,k and f j,k = ∆j,kcj,k

ηj,k(1+|αivj,k−1|) . An aggregation dispatches on and off signals

to their individual TCLs to track the power adjustment aj,t ∈ R [9]. Let qj,kt = 1 if the cooling

unit of aggregation j’s TCL k at time t is on or 0 otherwise. Let P agg
j,t =

∑K
k=1 q

j,k
t P j,kr,t be the

power consumption of the aggregation at time t. Let P baseline
j,t =

∑K
k=1 P

j,k
0,t be the baseline power

consumption at time t. At each time step, the aggregation either turns on or off TCLs such that the

power deviation δj,t = P agg
j,t −P baseline

j,t matches the adjustment aj,t. If aj,t < δi,t, then the aggregation

is interpreted as a battery discharging and injecting power to the grid. This corresponds to turning

off cooling units that were on at t− 1, thus reducing the power consumption of the aggregation with

respect to its baseline. Conversely, if aj,t > δj,t, the aggregation is perceived as a battery being charged

by the grid and TCLs are turned on. Lastly, for δj,t = 0, the battery is idle and the aggregation must

keep its power consumption constant. The cooling units to be turned on or off are determined using

the priority-stacks described in [9, Section V]. The power adjustment aj,t is set for all aggregations

by the control uj,t which is in turn computed by the network-safe demand response model presented

next.

3.2 FQI-based safe demand response

At time step t, the control uj,t ∈ U is sent to the TCL aggregation j. The aggregation then converts

the control to a power adjustment aj,t depending on their maximum charging and discharging rate

at t, n+
j,t and n−j,t, respectively. Finally, the power adjustment is used locally at the aggregation to

turn on and off TCLs so that the network demand p0,t matches the power setpoint st. To ensure

safe distribution grid operations, the control dispatched by the decision-maker must not lead to any

network constraint violations.

We define our loss function `t : X × U ×W 7→ R as the sum between the square setpoint tracking

error and the penalty function ρ(|vi,t|) = [|vi,t| − v]
+

+[v − |vi,t|]+ where |vi,t| is the voltage magnitude

at node i and v and v are, respectively, the upper and lower voltage magnitude limits. We use

the [·]+ = max {0, ·}-operator as the penalty because it does not impact the loss function if the

voltage constraints are met but highly increases its value otherwise. The loss function at time t is:

`t (xt,ut,wt) = (st − p0,t)
2

+ λ
∑
i∈Nm ρ(|vi,t|), where λ controls the magnitude of the constraint

violation penalty and the set Nm ⊆ N represents the nodes equipped with voltage metering capacity.

The variables xt,ut and wt implicitly define p0,t and |vi,t| as it will be presented shortly.

Let fnetwork
i : U×X ×W 7→ R be a function that maps the state of the network, the controls sent to

the TCL aggregations and some disturbances to the voltage magnitude at a node i ∈ N . Similarly, let

gnetwork : U ×X ×W 7→ R be a function that returns the power injection at the point of connection of

the network with the grid given the state of the network, the aggregation controls, and a disturbance

vector. These mappings represent solving the power flow equations for the network at a given state

to determine the voltage magnitude at node i and the power injection at the point of connection. Let

b : U × X × W 7→ RcardK be a function that returns the TCL aggregation power consumptions as

modeled by the battery equivalent representation where bj refers to the aggregation j ∈ K. Lastly, we

let h : U × X ×W 7→ X be the system dynamics or transition function of the problem. For all states
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except for the aggregation’s state of charge, the transition function is exogenous to the problem, e.g.,

ambient temperature evolves independently of the system. For the state of charge xTCL
j,t , h is implicitly

a function of bj .

Because we do not assume any prior knowledge of the network parameters nor about its topology,

all these mappings are unknown. We assume that the infrastructure present in the network allows for

voltage magnitude metering, |vi,t|, at nodes i ∈ Nm, and for power readings at the point of connection,

p0,t. Using these measurements and the corresponding controls ut, the loss function ` (xt,ut,wt) can

be evaluated.

In our implementation, the state variable xt ∈ X , i.e., the information available when the controls

uj,t, j ∈ K, are computed, are: (i) the ambient temperature θambient
t ∈ R, (ii), the setpoint st ∈ R, (iii)

the total power demand of the network
∑
i∈L di,t, and (iv) the state of charge of each TCL aggregation

xTCL
j,t , j ∈ K. Other states could be considered to improve performance, e.g., the time or the calendar

day. Finally, the disturbance wt represents the uncertainty due to, e.g., measurement errors, erratic

human behavior, sudden weather changes, random failures in communication or TCLs, etc [27].

Finally, we formulate the network-safe demand response problem as:

min
{ut}+∞

t=1

E

[
+∞∑
t=1

βt

(
(st − p0,t)

2
+ λ

∑
i∈Nm

ρ(|vi,t|)
)]

subject to uj,t ∈ U , for all j ∈ K
ut = (u1,t, u2,t, . . . , ucardK,t)

xt+1 = h (xt,ut,wt)

xt ≤ xt ≤ xt

pi,t = di,t for all i ∈ L \ K
pj,t = dj,t + bj(uj,t,xt,wt) for all j ∈ K
|vi,t| = fnetwork

i (ut,xt,wt) for all i ∈ Nm

p0,t = gnetwork (ut,xt,wt) ,

where xt and xt are constraints on the state variables, e.g., maximum and minimum state of charge

of the battery equivalent model, n+
j,t and n−j,t for all j. We use FQI to compute an approximation of

the optimal control at each round.

We use historical voltage magnitude measurements at nodes i ∈ Nm and power readings p0,t to

compute the loss function for different states and controls. The loss function value at a given time t

is then collected with its associated states xt, control ut and resulting state xt+1 to form the batch

data set. The data can be gathered, for example, from the normal operation of the TCL aggregations

or during their participation to a grid-agnostic demand response program. Given a large enough data

set, the risk of network constraint violation is unavoidably non-zero as stated in the introduction.

4 Case study

In this section, we present a numerical case study in which two aggregations are controlled to provide

safe demand response in a distribution network.

4.1 Setup

We consider the 18-node distribution network presented in Figure 1. The network is based on the

residential part of the Cigré LV benchmark network given in [12, 25]. The distribution network is

connected at node 0 to the rest of the grid. It includes 6 loads and 2 TCL aggregations. The loads are

located at nodes 1, 11, 15, 16, 17, and 18. The aggregations are located at nodes 5 and 12. We set the
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voltage magnitude limits to v = 0.95 and v = 1.05 per unit. We assume that all nodes can measure

the voltage magnitude, i.e., Nm = N .

0 1 2

3

4 5

6

7 8

9 10

11

12 13 14 15

16 17 18

Figure 1: 18-node distribution network (white: load nodes, red: aggregation nodes, black: regular nodes)

We use the demand profiles for six residential loads located in Austin, TX, and provided by Pecan

Street, Inc. We scale up the load consumption by a factor of eight to emphasize the need for safe

demand response. The power flow computations use the full load profile whereas FQI only uses the

total power consumption to reduce to the state space size. We further reduce its size and consider 60

discrete total consumption states. Historical ambient temperatures for Austin, TX which correspond

to the same period as the demand profiles are used. The temperature data is also provided by Pecan

Street, Inc. The temperature is discretized into 25 states. The demand regulation setpoints are

randomly sampled according to: st = 2Uniform(−D,D) +
∑
i∈N di,t, for t = 1, 2, . . . , T , and where D

is the average total demand for the considered period. The signal is similarly discretized in 60 values.

We use pandapower [29] to generate the power component of the data set given the control ut, i.e., to

compute the power flow at the point of connection and the voltage magnitudes at each node given the

state of the network. For deployment, the batch data would strictly be from network measurements.

We set K = 50 TCLs per aggregation and sample their thermal parameters similarly to [9]. A

TCL’s cooling unit is initially on with a probability of a half. The aggregation’s state of charge is

computed with respect to 25 discrete states. The initial state of charge of aggregation j ∈ K is set to

0 kWh for each day. Once the control is received, the aggregation determines locally which TCL to

turn on or off according to the process described in Section 3.1.

The performance of FQI is compared to two approaches: (i) a greedy, grid-agnostic (GGA) and

(ii) a greedy, full information (GFI), i.e., grid-aware, approach. The former corresponds to a standard

online setpoint tracking algorithm where the power consumption of flexible loads is adjusted to match

the setpoint without incorporating network aspects like line losses or voltage constraints, e.g., [13,14].

This approach uses controls defined as:

uGGA
t ∈ arg min

ut∈U
ut=(u1,t,u2,t,
...,ucardK,t)

st −∑
j∈K

bj(uj,t,xt,wt)−
∑
i∈N

di,t

2

.

The GFI approach solves the tracking problem given the aforementioned fnetwork
i , gnetwork and bi

functions, and the disturbance wt. Specifically, the GFI’s control is:

uGFI
t ∈ arg min

ut∈U
(st − p0,t)

2

subject to ut = (u1,t, u2,t, . . . , ucardK,t)

xt ≤ xt ≤ xt

pi,t = di,t ∀ i ∈ L \ K
pj,t = dj,t + bj(uj,t,xt,wt) ∀ j ∈ K
|vi,t| = fnetwork

i (ut,xt,wt) ∀ i ∈ Nm

p0,t = gnetwork (ut,xt,wt)

v ≤ |vi,t| ≤ v ∀ i ∈ Nm.
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The GFI approach does not necessarily provide the best control at time t. While GFI has access to full

information, it is greedy, e.g., it does not consider the state of charge of the aggregation throughout

time. Finally, as no prior work can be implemented under our assumptions, we limit our comparison

to GGA and GFI only.

We consider batch data representing 108 days from 11 am to 9 pm with m = 1 minute-rounds

(L = 64,800) spanning from June 1st, 2018 to September 16th, 2018. For each data point, a random

control is sampled and the loss `t is computed accordingly by solving the power flow [29] to replicate

grid measurements. We use U = {−1, 0, 1}2 and let the power adjustment of aggregation j be defined

as:

aj,t =


min

{
50, n+

j,t

}
, if uj,t = 1

max
{
−50,−n−j,t

}
, if uj,t = −1

0, otherwise.

For the algorithm, we set ε = 0.5 and β = 0.1. The penalty scaling factor is set to λ = 3.5 × 106.

We use Totally Randomized Trees with 10 trees in the ensembles and a minimum of 10 data points

in a leaf node. The regression tree kernels are computed at the first iteration and kept constant to

guarantee the FQI’s convergence [8]. We evaluate our approach performance over a three day-period

between 11 am to 9 pm each day.

4.2 Results

We use our approach on 20 different batch datasets and run the simulation with new setpoints each

time. The average setpoint tracking loss improvement relative to the benchmark case where no DR

approaches are used and the tracking root mean square error (RMSE) are compared, respectively,

in the first and second column of Table 1 for FQI, GFI and GGA. Given the network information,

GFI necessarily meets the constraints at all time. Consequently, its setpoint tracking performance is

slightly lower than GGA which ignores the network. Because FQI must learn the network constraint

thresholds based on the available measurements and then satisfy them during the simulations, its

tracking performance is reduced in comparison to both GFI and GGA.

Table 1: Performance comparison (averaged over 20 simulations)

Approach Setpoint tracking [%] RMSE [kW] Nb. of rounds

Nominal — 0.1290 0.00
FQI −47.55 0.0932 2.75
GFI −77.29 0.0614 0.00
GGA −78.10 0.0600 60.10

The average number of rounds with a least a constraint violation is presented in Table 1, third

column, for the three approaches and the benchmark case. For FQI, the average number of rounds with

a constraint violation is low at 2.75 in comparison to 60.1 rounds when the network is not accounted for

by GGA. We observe that although the difference in setpoint tracking performance between FQI and

GGA represents about a third of the latter’s, on average, FQI leads to a 95% decrease in the number

of rounds with at least a constraint violation. This is achieved without requiring the grid parameters,

topology nor coordination with the system operator, and is in line with the priority we give to safe

distribution grid operations.

We conclude by presenting setpoint tracking curves for a specific data set simulation. Throughout

the selected 30-hour simulation, FQI caused only a single constraint violation whereas 74 rounds with

a least a constraint violation were registered when GGA was used. The minimum voltage magnitude

in the distribution feeder when FQI, GFI and GGA are implemented is shown in Figure 3. Figures 2a

and 3a shows that when the voltage magnitude is safely within the limit, FQI’s tracking is similar to

GGA and GGI. The main difference in tracking occurs when the risks of constraint violation increases.
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Figure 3b shows that between 12 pm and 1 pm, multiple violations occurs when GGA is implemented.

All these violations are avoided using FQI which operates under similar assumptions. However, FQI

tends to be conservative when setpoints are large. For example, this is observed on Figure 2b: (i)

between rounds 450 and 453 where violations are avoided as shown by the overlap between FQI and GFI,

(ii) and between rounds 458 and 460 where the power adjustment is decreased unnecessarily resulting

in poor tracking as shown by the mismatch between FQI and GFI. We note that increasing the batch

data size and number of bins should improve the FQI ability to identify violation-prone settings.Finally,

the computation burden of the approach is manageable when the number of aggregation is limited like

in the current case. For problems with a larger number of aggregations where the risk for network

constraint violations is even higher, a scalable multi-agent version of FQI would be required. This is a

topic for future work.
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Figure 2: Setpoint tracking for September 19th, 2018 data (top: setpoint tracking performance, bottom: dispatched
controls u1,t and u2,t)
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Figure 3: Minimum voltage magnitude across the feeder for September 19th, 2018 data

5 Conclusion

In this work, we design an approach for network-safe demand response in unknown environments.

We do not assume knowledge of the network parameters nor of its topology. We further suppose

no communication nor coordination between the aggregator and the system operator. We use FQI

to control TCL aggregations with unknown dynamics and track a regulation signal at the point of

connection with the grid. Our batch reinforcement learning approach leverages historical network
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measurements to minimize the number of voltage magnitude constraint violations while tracking the

power setpoint. Finally, we present a case study based on real data for a 18-node distribution network

with two 50-TCL aggregations located in Austin, Texas, USA. The number of rounds where at least

a constraint violation occurred drops to 2.75, on average, with our approach instead of 60.10 when a

grid-agnostic approach is implemented, corresponding to a 95% reduction. The FQI-based approach

leads to an RMSE of 0.0932 kW whereas a greedy, grid-agnostic, approach has an RMSE of 0.0600

kW. Working under limited information, the numerical simulations show that our approach avoids

most under-voltage incidents while providing acceptable setpoint tracking. In future work, we will

investigate multi-agent reinforcement learning to scale the approach to a large number of aggregations

in the distribution network and ensure the its safe operation.
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