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Dépôt légal – Bibliothèque et Archives nationales du Québec, 2021
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c GERAD, Montréal (Qc), Canada

d Systems Optimization Lab, Department of Mechanical Engineer-
ing, McGill University, Montréal (Qc), Canada
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Abstract : The transmission of the contagious Coronavirus disease (COVID-19) is highly depen-
dent on individual viral dynamics. Reverse-transcription quantitative polymerase chain reaction (RT-
qPCR) tests used for diagnosing COVID-19 provide a semi-quantitative measurement of viral load
within the infected host in the form of a cycle threshold (Ct) value. We solicited Ct values sampled
from a cross-sectional patient cohort at Rafik Hariri University Hospital (RHUH) to now-cast COVID-
19 incidences in Lebanon. Our patient cohort of 9531 patients, retrieved from a single representative
cross-sectional virology test center in Lebanon, revealed that when the mean Ct value of a daily sample
of patients is low, an increase in positive COVID-19 case counts is observed in Lebanon. A subset
of the data was used to train several machine learning models and tune their hyperparameters with
respect to the validation error. Unseen data unused during model development is used to report the
models’ test error. Support vector machine regression performed well on the unseen data and was able
to provide predictions for the positive case counts in Lebanon over the span of 7 days. The models
are a first attempt at capturing the interaction between cross-sectional Ct values and the pandemic
trajectory including temporal effects that arise from population dynamics. The model has potential
applications for predicting COVID-19 incidences in other countries and in assessing post-vaccination
policies. Apart from emphasizing patient responsibility in adopting early testing practices, this study
proposed and validated viral load measurement as a relevant input that can enhance the predictive
accuracy of viral disease now-casting models.

Keywords: COVID-19, deep neural networks, viral load, Ct values, predictive modeling, machine
learning, now-casting, statistical analysis
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1 Introduction

Coronavirus disease (COVID-19) was declared a pandemic by the World Health Organization (WHO)

on March 2020 following the global spread of the underlying severe acute respiratory syndrome

coronavirus-2 (SARS-CoV-2) [3, 31]. SARS-CoV-2 can be transmitted via direct contact; within a

distance of one meter through coughing, talking, or sneezing; or indirectly via infectious secretions

from infected patients [42]. COVID-19 put a strain on the economy and caused the general well-being

of the population to diminish due to the public health and social measures (PHSMs) employed to

control it [26]. Now-casting models are used to infer the epidemic trajectory and make informed deci-

sions about its severity and necessary actions needed to bring the epidemic under control. Information

regarding the origin of the pathogen, serological assays, social behaviour among other aspects are used

to inform now-casting models and provide situational awareness to policy makers [56]. Several works

in the literature have used epidemiological size indicators such as the frequency of tests, fatalities and

new confirmed cases to infer the pandemic trajectory [11, 27]. In this paper, we focus on both the

epidemic size and serological assays from a cross-sectional sample of patients to develop a now-casting

framework. Predictive modeling and now-casting of epidemic trajectories can alarm policy makers

and health institutions towards an increase in incidence rates. This allows sufficient time to use other

detailed scenario models to test and deploy various PHSMs proactively [7, 28, 40, 45].

RT-qPCR is a serological test that remains the gold standard for COVID-19 diagnosis [39]. It

measures the first PCR cycle, denoted as the cycle threshold (Ct), at which a detectable signal of the

targeted DNA appears [8]. The Ct value is inversely proportional to the viral load; a 3-point increase

in Ct value equals a 10-fold decrease in the quantity of the virus’ genetic material [2]. Ct values

were proposed to have potential prognostic value in predicting severity, infectiousness, and mortality

among patients [43]. Ct values were also used to determine the duration an infected patient needs to

quarantine [37, 46]. A high Ct value (indicating a low viral load) is detected at early stages of the

infection before the person becomes contagious and at the late stages when the risk of transmission

is low [4]. The lowest possible Ct value is usually reported within three days of the onset of symp-

toms and coincides with peak detection of cultivable virus and infectivity that implies an increase in

transmissibility by up to 8-folds [48]. Individuals with high viral load and mild symptoms can be

identified as potential superspreaders using viral load measurements [14]. Thus, early testing is highly

recommended alongside isolation practices, to interrupt SARS-CoV-2 transmission [50].

We believe that the use of Ct for now-casting has its merits since it is a commonly available

parameter irrespective of demographics, and is highly correlated with transmissibility and incidence
rates [6, 53]. A popular approach for now-casting the pandemic trajectory is to use Bayesian inference

frameworks to inform the posterior distributions for susceptible-exposed-infectious-recovered (SEIR)

models and the corresponding time varying incidence rate [22, 27]. These approaches are limited by

the assumptions of the underlying SEIR models (homogeneous distribution of population traits and

contacts). On the other hand, machine learning approaches make little to no assumptions about the

underlying models describing the mechanics of transmission and can potentially generalize better when

viral transmission is not completely understood and sufficient data is available.

We demonstrate the merits of this approach using a novel robust framework that leverages observed

viral load measurements for time series now-casting of new COVID-19 cases for an upcoming 7-day

time frame. The models are developed using a large cohort from a single cross-sectional virologic test

center in Lebanon with a hold-out cohort for independent testing after the model is finalized. The

Lebanese patient cohort used in this study is the largest and most consistent one in terms of serological

assessment. This fact made the retrieved Ct values representative and reflective of the whole country.

Now-casting the pandemic trajectory can facilitate its containment and improves the preparedness

of healthcare providers against new SARS-CoV-2 variants and the surge in new cases caused by them.

Furthermore, now-casting the pandemic trajectory can support policy makers during the decline phase
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of the pandemic (e.g. when vaccination rates are high and herd immunity is beginning to take hold)

to suggest the best time frame for relaxing current PHSMs without the risk of the pandemic relapsing.

2 Materials and methods

2.1 Patient population

We retrospectively collected de-identified data for all COVID-19 patients diagnosed at Rafik Hariri

University Hospital (RHUH) in Lebanon between March 1, 2020, and March 31, 2021. Rafik Hariri

University Hospital (RHUH) is the country’s leading institution for COVID-19 testing and treatment,

and our cohort represents the nation’s COVID-19 trajectory well [30]. Ct values were retrieved from

the electronic medical database of the hospital, considering the date of the first positive RT-qPCR

test for each patient, while disregarding any subsequent positive tests that may have resulted during

follow-up visits. RNA extraction and RT-qPCR processing protocols were consistent over time and the

used PCR machines had similar calibration. The daily COVID-19 confirmed case counts in Lebanon

were obtained from the Lebanese Ministry of Public Health and worldmeters [5, 55]. This study was

approved by the Ethical Committee of RHUH. Written informed consent was waived since the study

is retrospective and the patients’ information was de-identified.

2.2 Study design

We created 3 cohorts (discovery, testing, and independent validation) using longitudinal split of the

data. The discovery group (Group 1) was used for training and cross-validation [12] to tune the

hyperparameters and calibrate the model weights. The testing group (Group 2) was reserved for

testing the models’ performance and calculating the test error. This approach complies with the

Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis

(TRIPOD) [38], which represents a classification criterion for predictive modeling. It has four types

of increasing reliability. Since we split the data randomly into discovery (Group 1) and test groups

(Group 2) at the beginning of the study, the model is a TRIPOD type 2b. We used a third portion

of the data (Group 3) for further independent validation of the models that were developed using the

discovery group (Group 1). This third group of data is called the ‘unseen data group’.

2.3 Predictive modeling

We first identify the relevant input features needed by the models to predict epidemic trajectories

in Lebanon using Spearman’s correlation test. We analyzed the association between the patients’ Ct

values (Figure 4) and age (Figure S.IIIa) with respect to the epidemic trajectory and only selected the

features with p < 0.05. Recent studies pointed out the case ascertainment rates may change over time

(due to changes in PHSMs) resulting in biased Ct values [51]. The daily number of confirmed positive

patients was plotted alongside the incidence rates in Lebanon to verify that this was not the case for

the cohort used in this paper (see Section S.I and Figure S.IIIb).

In addition to the previously mentioned features, the epidemic trajectory also depends on the past

number of COVID-19 confirmed cases and is therefore aggregated with the input features during now-

casting [11, 56]. The period of time over which the input features and confirmed cases counts are

aggregated is defined as the sliding window T1. The input to all of the models is therefore a sequence

of data over the past T1 days.

The epidemic trajectory is given by a sequence of predicted case counts in the upcoming T2 days and

is fixed to 7 days throughout the study in this paper. The window size of 7 days on the epidemiological

calendar was chosen due to its clinical relevance to health providers. Furthermore, other studies

based on virological cross-sectional data have used the 7-day window size for now-casting pandemic

trajectories [22]. We developed 6 different machine learning algorithms for now-casting the epidemic

trajectory which are described as follows.
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2.3.1 Recurrent neural network (RNN) models

The first two models are built around recurrent neural networks (RNNs) which accommodate time

series data that are often temporaly correlated (i.e. the independent and identically distributed (i.i.d)

assumption does not hold for time series data). This type of neural network is able to capture the

temporal relationship between a decrease in Ct value and a subsequent (possibly delayed) rise in the

number of cases. The RNN unit used in the models is the long short-term memory (LSTM) cell

which is able to capture long-term temporal effects and trends encoded by a long sequence of inputs

and avoid the problem of vanishing gradients during backpropagation [25]. The LSTM has a cell for

storing temporal data and gates to control data flow and capture long-term dependencies. Each gate

is composed of a multilayer perceptron with nhidden neurons [47]. We used stacked LSTM cells with

several layers (given by nlayers) in our RNN models to learn high-level feature representations (the

interaction of Ct values with the past number of cases) and used a dropout probability Pdropout on all

but the first layer to generalize better and avoid overfitting. Dropout arbitrarily excludes a number

of hidden neurons from weight and bias updates during backpropagation to improve generalization

performance [52]. Temporal information at time step ti of the n-th layer LSTM cell is represented by

its hidden hnti and cell states Cn
ti .

The first model is given by a sequence-to-sequence (S2S) model commonly used in natural language

processing (NLP) translation tasks. The model consists of an encoder RNN that accepts an input

sequence of features of length T1 and yields a context vector zn =
[
Cn

t−1 hnt−1

]T
, where t − 1 is the

final time step of the input series. The context vector is fed to a decoder that outputs a predicted

sequence of length T2 corresponding to the projected number of cases ncases. During training, the

decoder uses its own predictions n̂ticases at time step ti as an input for the next the time step ti+1.

To speed up training, teacher forcing can be used to provide the actual value nticases at time step ti+1

instead of the decoder’s prediction with a probability Pteacher [21]. The architecture of the S2S model

used in this paper is shown in Figure 1.

We also developed a second RNN model that is based on the stacked LSTM cells alone (i.e., the

size of the input sequence T1 must be equal to the size of the output sequence T2) (Figure S.IVa). This

model is called the stacked LSTM (SEQ) model.

2.3.2 Feedforward neural network (DNN) model

We then developed a third model based on deep learning using feedforward neural networks. The DNN

model has several hidden layers (nlayers) with several hidden neurons (nhidden) each. All layers had

a dropout probability Pdropout and a rectified linear unit (ReLU) activation function (Figure S.IVb).

All deep learning models were trained using the stochastic gradient descent algorithm ADAM with a

learning rate lrate and batch size bsize [32]. Early stopping was used on all deep learning models to

avoid overfitting if no improvement in the validation error occurred after a certain number of epochs

(given by the patience parameter npatience) [41].

2.3.3 Regression models

We developed three additional models that are not based on deep learning, namely a support vector

machine regression (SVR) model [17], a gradient boosting machine (GBM) regression model [19], and a

polynomial regression (OLS) model. Unlike deep learning models, these models do not yield a sequence

of predictions for the next T2 days. Instead, they compute a single value predicting the average number

of confirmed COVID-19 cases for the next T2 days. This is because such models are primarily used for

regression of univariate functions.
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Figure 1: Structure of the sequence-to-sequence (S2S) model used for now-casting the weekly number of cases. The left
side of the network is the encoder that uses past information on Ct and the number of cases to create context vectors used to
initialize the hidden and cell states of the decoder LSTM cells.

2.3.4 Hyperparameter tuning

The hyperparameters of each model (listed in and described in Table 2) were optimized using cross-

validation on the discovery group (Group 1) only. The cross-validation consists of outer and inner

loops (Figure 2).

The outer loop split (Group 1) into five groups and sent four of them into the inner loop for

training the models and subsequent hyperparameter optimization with respect to the average k-fold

cross-validation error [44]. The cross-validation error of each fold was calculated using the mean squared

error (MSE) criterion on the predicted and actual average number of cases for the following T2 days.

Several models used in this paper (S2S, SEQ, DNN, and GBM) involve random variables associated

with the training algorithm (backpropagation and gradient boosting) which are often ignored in the

literature of applied machine learning. Examples of these random variables include the initial value

of learnable parameters (weights, biases, and decision tree parameters), dropout, and gradient descent

step sizes. Fixing the random seed of these random variables could result in model bias.

We address this issue by randomly sampling different training runs during hyperparameter opti-

mization and optimizing the mean cross-validation errors of all the sampled runs. We apply this ap-

proach to a grid search on the hyperparameter space to discern the sensitivity of the cross-validation

error to the hyperparameters. We then use a stochastic derivative-free optimization (DFO) algorithm

(stochastic mesh adaptive direct search (StoMADS)) to fine-tune the hyperparameters [13]. StoMADS

is an extension of the mesh adaptive direct search (MADS) algorithm that automatically updates

its estimates of a stochastic objective function (in this paper, the objective function is given by the

cross-validation error) depending on the level of uncertainty in the current incumbent solution.

After obtaining the optimal model in the internal loop, we scored it using the outer loop data. We

then performed a random draw to obtain 30 models using the tuned hyperparameters. These models

were binned by training error and the top-performing model was stored and used to make predictions

for the test group (Group 2).
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(Group 1), the inner loop tuned the model’s hyperparameters by minimizing the average k-fold cross-validation error using a
stochastic direct search algorithm or a grid search. The second loop (following tuning) generates several models randomly and
bins them by training error. The best model with the lowest training error is tested on the test group to obtain the testing
error.

We note that binning and sampling of the cross-validation error is not necessary for the OLS and

SVR models since their training is deterministic and does not involve random variables.

3 Results

3.1 Patient population

The entire dataset included 23,185 patients with a median age of 37 years. We aggregated the indi-

viduals’ Ct into a sequence of daily mean Ct values. Group 1 contained 6296 patients admitted to

RHUH between March 2, 2020 and October 17, 2020, Group 2 contained 3228 patients from October

18, 2020 to November 30, 2020, and the unseen group contained 12097 patients from December 01,

2020 to March 16, 2021. All three groups have comparable median ages (34.0, 37.0, and 37.25 years,

respectively). Group 1 was further split into five groups during model development for cross-validation:

four training and one validation interchangeably.

Figure 3 shows the bi-weekly average Ct values observed and the corresponding number of cases

in Lebanon nationwide for the period of time spanning groups 1 and 2 used in the model development

phase. The entire dataset including group 3 is provided in the supplementary material, Figure S.I).
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Figure 3: (A) Bi-weekly mean Ct values of RHUH patients. The solid line represents the median bi-weekly Ct values,
and the gray shaded area represents the inter-quartile range (25-75 percentile) of the observed Ct values. (B) The grey
bars show the weekly running average of the number of cases observed nationwide in Lebanon between March 01, 2020,
and December 07, 2020 (the running average can be computed until November 23rd). The solid black line represents the
growth rate in the weekly number of cases.

3.2 Correlation between the national daily number of COVID-19 cases and
mean Ct

We observed a temporal delay between the incidence rate and the observed Ct values. For example,

the trough in mean Ct values on October 8, 2020 (Trough 3 in Figure 3A) was followed by an increase

in the number of cases, on October 29, 2020, with more than 1640 cases per day (Peak 3 in Figure 3B).

This delay could be due to the time needed for population dynamics of disease transmission to take

hold. Low Ct values indicate nascent infections circulating in the population that need time to reach

the rest of the population. This observation has been reported by Hay et al. using compartmental

SEIR models to show that cross-sectional Ct observations with a low median value signal the growth

phase of a pandemic (when case counts are still typically low). A similar trend was observed for case

count peaks 1 and 2, which were superseded by median Ct troughs 1 and 2, respectively. This visual

analysis of the data indicates that the median Ct value is temporally related to incidence.

We also also investigate the relationship between the median Ct value and case counts using a

correlation analysis. We observed a clear inverse correlation between mean Ct and number of cases

(p<0.001), quantified by the Spearman correlation test (Figure 4). This indicates that the mean

cross-sectional Ct value is an important feature for now-casting the pandemic trajectory.
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Figure 4: Scatter plot of biweekly mean Ct values and observed number of cases nationwide showing a clear negative
value that is significant as given by p-value < 0.05.

3.3 Now-casting the epidemic trajectories

We developed 6 types of predictive models for now-casting the COVID-19 epidemic trajectory in

Lebanon using the data in the discovery group (Group 1). The optimal hyperparameters for each

model are listed in Table 2. Early stopping terminated the backpropagation algorithm at 31, 1, and 4

epochs for the S2S, SEQ, and DNN models, respectively. All models except the GBM had an optimal

input window size T1 of 6 days. This implies that an aggregate measure of cross-sectional Ct values

and past incidence rates over the last 6 days could be used to now-cast the expected number of positive

COVID-19 cases over the following 7 days. The models developed using Group 1 were used to now-cast

the trajectory from October 18, 2020 to November 30, 2020 (Group 2) (Figure 5). The models were

then retrained on Groups 1 and 2 using the hyperparameters in Table 2 and used to now-cast the

epidemic trajectory after December 01, 2020 (Group 3). Table 1 lists the MSE error for the predicted

trajectories on Groups 2 and 3 (see Table 1 footnote).

The RNN models (S2S and SEQ) performed well on Group 2 (MSE of 0.025 and 0.027, respectively)

followed by the DNN model with an MSE that is two-folds larger (0.042). The OLS and SVR had an

MSE that is 4 folds larger than that of the RNN models (0.090 and 0.083, respectively). The GBM

was heavily biased and did not generalize well on Group 2 (MSE of 0.326). The training error for the

RNN models was higher than that of the parametric models (OLS and SVR) due to the regularization

performed by the early-stopping criterion to avoid overfitting. Movie S1 shows an example training

run of the S2S model with arbitrary hyperparameters, where early stopping helped avoid overfitting.

The MSE error of the SVR, OLS, and DNN models was comparable on the unseen data group (MSE

values of 0.168, and 0.160, and 0.255, respectively). The SEQ and S2S performed worse on the unseen

group implying that simpler models perform better on the unseen group due to the limited number

of datapoints available for training and hyperparameter tuning. Deep learning models generally excel

when a large dataset is available for model development and has been reported by several studies in

the literature [16, 18].

To verify this, the RNN models where re-developed using both Groups 1 and 2 for training, hyper-

parameter tuning and validation. The generalization performance improved significantly bringing the

MSE error down from 0.571 to 0.106 for the S2S model (Table S.I). This implies that the RNN models

generalize better when more training data is available (see supplementary material Section S.III). If

limited data is available (at the start of a pandemic), simpler models can provide better generalization

performance. We deployed the models developed on the combined dataset (Groups 1 and 2) as a web

application for the purpose of further prospective validation in the future [23].
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Figure 5: Predicted 7-day rolling average of daily number of cases on the unseen data set using (A) the sequence-to-
sequence (S2S) model, (B) the stacked LSTM (SEQ), (C) The feedforward neural network (DNN), (D) The support
vector machine regression (SVR) model, (E) The gradient boosting machine (GBM), and (F) the polynomial regression
(OLS) model. All models were tuned using the cross-validation error of the discovery set. The grey shaded region represents
the test data set (Group 2) used to test the models’ performance.

Table 1: Training and testing errors given by mean squared error (MSE) of different models constructed using different
feature sets.

Figure 5 Figure 6
Train error Test error Train error Unseen error

Model

Group 1 Group 2 Groups 1,2 Group 3

Sequence-to-sequence (S2S) 0.02462 0.02504 0.01309 0.57112
Stacked LSTM (SEQ) 0.38373 0.02724 0.78142 0.32584
Feedforward neural network (DNN) 0.02223 0.04179 0.00919 0.25547
Support vector machine regression
(SVR)

0.01362 0.08347 0.00518 0.16754

Gradient boosting machine (GBM) 2.316e-6 0.32589 2.316e-6 1.44463
Polynomial regression (OLS) 0.01335 0.08954 0.00459 0.15954

The MSE is computed using the standardized value of the predictions by normalizing them using the mean
and standard deviation of all the daily number of cases given by 463.8 and 597.0, respectively.



Les Cahiers du GERAD G–2021–48 – Revised 9

0

1000

2000

3000

4000

5000

n
u

m
b

er
of

ca
se

s
n

ca
se

s
A B

0

1000

2000

3000

4000

5000

n
u

m
b

er
of

ca
se

s
n

ca
se

s

C D

2020−05

2020−07

2020−09

2020−11

2021−01

2021−03

Dates

0

1000

2000

3000

4000

5000

n
u

m
b

er
of

ca
se

s
n

ca
se

s

E

2020−05

2020−07

2020−09

2020−11

2021−01

2021−03

Dates

F

Ground truth

Prediction

Train/validation group

Test group

Unseen group

Figure 6: Predicted 7-day rolling average of daily number of cases on the unseen data set using (A) the sequence-to-
sequence (S2S) model, (B) the stacked LSTM (SEQ), (C) The feedforward neural network (DNN), (D) The support
vector machine regression (SVR) model, (E) The gradient boosting machine (GBM), and (F) the polynomial regression
(OLS) model. All models were tuned using the validation error of the discovery set. The grey shaded region represents the test
data set (Group 2) used to test the models’ performance. The models were retrained using the both the discrovery and test
data sets and subsequently used to infer the number of cases in the unseen data set (the red shaded region).

4 Discussion

Host viral load and the resultant Ct values have been widely proposed to evaluate the progression

of SARS-CoV-2 infection and address patients’ contagiousness [1]. Mathematical modeling has been

widely used for predicting the course of COVID-19 pandemic. These predicting models were developed

based on the applied intervention measurements and the population behavioral fluctuations, including

social distancing and mask-wearing [15]. The COVID-19 reproduction number (R0), defined as the

average number of naive individuals a patient can infect, has a mean estimate of 3.28 and could range

from 1.4 to 6.49 [36]. Although R0 can widely vary by country, culture, and stage of the outbreak, it has

been used to justify the need for community mitigation strategies and political interventions [35]. So far,

only few advanced and more recent models have evaluated the disease spread based on viral kinetics and
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Table 2: Optimal hyperparameters of different models.

Hyperparameter Symbol Value Possible values

Sequence-to-sequence model (S2S)

Sliding window size T1 6 1-40
Number of hidden neurons nhidden 1500 1-2500
Probability of dropout Pdropout 0.8 0.0-0.9
Number of hidden layers nhidden 2 1-5
Teacher forcing probability Pteacher 0.3 0.0-0.9
Learning rate lrate 1 × 10−4 1 × 10−5-1 × 10−2

batch size bsize 32 4-128
best epoch nbest

epochs 31 1-nepochs

Sequence completion model (SEQ)

Number of hidden neurons nhidden 2500 1-2500
Probability of dropout Pdropout 0.8 0.0-0.9
Number of hidden layers nhidden 3 1-5
Learning rate lrate 1 × 10−4 1 × 10−5-1 × 10−2

batch size bsize 64 4-128
best epoch nbest

epochs 1 1-nepochs

Deep neural network (DNN)

Sliding window size T1 6 1-40
Number of hidden neurons nhidden 1000 1-2500
Probability of dropout Pdropout 0.9 0.0-0.9
Number of hidden layers nhidden 1 1-5
Learning rate lrate 1 × 10−3 1 × 10−5-1 × 10−2

batch size bsize 4 4-128
best epoch nbest

epochs 4 1-nepochs

Support vector machine regression (SVR)

Sliding window size T1 6 1-40
Ridge factor λ 1 × 10−4 1 × 10−3-1.0
Margin of tolerance ε 1 × 10−2 1 × 10−3-1.0
Stopping criteria tolerance εtol 0.1 1-5
Learning rate lrate 1 × 10−5 1 × 10−5-1 × 10−2

Gradient boosting machine (GBM)

Sliding window size T1 36 1-40
Subsample fraction fsample 0.8 0.1-1.0
Maximum portion of features ffeatures 0.1 0.1-1.0
Decision tree maximum depth D 7 1-5
Learning rate lrate 0.01 1 × 10−5-1 × 10−2

Maximum of number of boosting stages nstages 5000 50-5000

Polynomial regression (OLS)

Sliding window size T1 6 1-40
Ridge factor λ 1.0 1 × 10−3-1.0
Degree ndegree 1 1-5

Common fixed parameters

Output window size (all models) T2 7 1-40
Maximum number of epochs (all models) nepochs 5000
Kernel (SVR) linear
Early stopping patience (S2S,SEQ,DNN) npatience 200

Optimizer (S2S,SEQ,DNN) Adam

The tuned hyperparameters of each model are reported underneath it. The fixed hyperparameters are
reported at the bottom of the table.

serological assays (such as RT-qPCR tests) [22, 53]. Furthermore, these studies focused on serological

assays or pandemic size indicators (such as R0 and incidence rates) in isolation without combining the

two. This paper utilizes both past incidence rates and serological viral load measurements to now-cast

the pandemic trajectory.
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Hay et al. used Bayesian inference to predict the growth rate in the daily number of COVID-19

cases as a function of Ct values [22]. They showed that the population-level Ct distribution is strongly

correlated with growth rate estimates of new infections in Massachusetts, USA. They estimated R0

and growth rate by using observations of Ct values to inform priors on key viral kinetics parameters

(such as the viral load wane rate, and Ct at peak viral load and the pandemic trajectory (daily

probability of infection is used as a proxy for the trajectory). The prior on the pandemic trajectory

is assumed to come from a Gaussian process that makes no assumptions regarding evolution of the

trajectory as more Ct observations are made. We have used the Gaussian process regression model to

predict the pandemic trajectory using our cross-sectional patient cohort (see supplementary material

Section S.IV). The advantage of such models is that they are highly interpretable as they estimate

the viral kinetics model parameters that are most likely to give rise to the observed Ct values [20].

This provides useful information about the virulence and severity of the pathogen. However, such

models make assumptions about the likelihood used to update the priors. These assumptions limit

the predictive capability of the model if any of these assumptions (such as the viral kinetics models)

do not hold in reality potentially resulting in poor generalization performance. This is the case when

a different clade of virus takes hold. Another dataset from Bahrain demonstrated the effectiveness of

Ct in predicting the epidemiological dynamics of COVID-19 [6]. However, the study did not consider

the interaction between different features (i.e., number of positive cases and Ct), nor does it consider

temporal effects observed in epidemics.

In comparison, our data-driven approach of inferring the epidemic trajectory using past cases counts

and Ct observations using machine learning models makes very little assumptions about the pandemic

trajectory and viral kinetics models that gave rise to the observed Ct values. This has the benefit of

potentially generalizing to a wide range of scenarios. To prove this, we used all the models developed

in this paper using Group 1 (Figure 5) to infer the case counts in the state of Massachusetts using the

patient cohort of Brigham and Women’s Hospital (BWH) provided by Hay et al. (Figure S.IXA). Most

models captured the underlying trend with the exception of GBM and the stacked LSTM (SEQ) models

(Figure S.X). SVR performed the best on this dataset (Figure S.IXB). However, further prospective

validation is needed in the future to ensure that these models can generalize to different testing centers

and reject disturbances in Ct values due to sample collection and handling methods.

The inferred trajectories for the state of Massachusetts (April 15, 2020 - December 15, 2020) and

Lebanon (December 01, 2020 - March 31, 2021) show that simple machine learning models (such as

OLS and SVR) perform well with limited training data (when developing the models using data from

Group 1 only). Deep learning models begin to outperform such models when including more data in

the development set (Groups 1 and 2) to infer the trajectory in Lebanon (Figure S.V). Although the

outcomes of this study favored simpler regression models, their simplicity provides an advantage in

terms of interpretablity [20].

Our dataset contained fluctuations that allowed us to extract the Ct temporal effect on the trajec-

tory of the pandemic. Since the data came from a single institution, the fluctuations are likely to be

signals in the data rather than noise. The significant changes in the Ct values in our cohort mirrored

the well-recognized political, economic, and social turning points that happened in Lebanon during the

pandemic. These incidences impacted the population behaviour towards COVID-19 in a consistent and

well-defined manner, allowing us to track and correlate these changes with the variation in the mean Ct

values and subsequently the disease spread. The early reported high mean Ct values in our cohort and

the low number of COVID-19 cases in Lebanon between March 2020 and June 2020 co-occurred with

a strictly imposed lockdown and a harsh awareness campaign executed by local media platforms [30].

In comparison, the sharp rise in COVID-19 cases and the decrease in mean Ct values upon diagnosis

were detected after releasing the first national lockdown in July, which occurred with a significant

shifting of local media attention towards the economic crisis peaking in the country. Yet, the highest

jump in the number of national COVID-19 patients and the sharpest drop in Ct values were reported

after the explosion of Beirut’s port in August 2020, which was classified among the most significant

chemical explosions in history [9]. The devastating effects of the explosion amplified the country’s
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pre-existing social, economic, and health challenges, causing a significant increase in the COVID-19

positivity rate in September and November 2020, which had reached 13.9% [9, 33]. The consequences

of this explosion shifted the residents’ attention away from proper precautions. This was reflected by

the sharp decrease in the mean Ct values indicating a less responsible behavior and a delay in diagnosis

time among suspected patients which resulted in a subsequent increase in SAR-CoV-2 spread among

individuals. These events caused three significant peaks in the number of cases and three drops in

mean Ct. We trained the models on two of these peaks and tested its ability to detect the third peak

using the unseen data. Thus, our developed comprehensive training and validation errors reflect the

models’ robustness against unexpected events.

The detected inversely proportional relationship between Ct values and number of national COVID-

19 positive cases reflects population dynamics of transmission and demonstrates the temporal signifi-

cance of Ct values. Our results emphasized the importance of early testing when patient’s viral load

and infectivity is low to prompt isolation practises and thus, suppress national spread of the virus.

Our established models were able to predict the upcoming one-week expected number of national

COVID-19 cases based on a commonly available diagnostic measurement, the Ct value. This shows

that viral load measurements are a rigid input that can enhance the outcomes of disease forecasting

models. Interestingly, this model is still valuable among vaccinated patients as these patients were

shown to have a similar viral load pattern as unvaccinated patients and thus, can efficiently transmit

the disease in a the same manner upon infection [49]. Ultimately, our data promotes incorporating

Ct values with other epidemiological variables and patient demographics to predict new COVID-19

waves and to study epidemic behaviors. The models in this paper, could be extended to now-cast

other contagious viral diseases that are diagnosed by qPCR provided that sufficient training data is

available (at least one wave of the viral disease has been observed).

Our study is limited to a single-institution cohort. Although the cohort represents the national

number of cases, and the model’s variable (Ct) is country-independent, a prospective validation on

multi-institutional data is needed before translation. To facilitate this process, we have hosted the

models on a web interface to be used in future studies that compare the predicted and observed number

of cases [23]. Another limitation is the inability of the model to compare the effect of preventative

policies such as lock-downs and quarantining. The model does provide an alert when the number of

cases are about the rise significantly, allowing more informed triage decisions and better allocation of

medical resources during the pandemic. However, it does not provide guidance on what measures best

control an upcoming peak. Mechanistic models, on the other hand, such as individual-based models

(IBMs) can provide such insights but their application is limited to a much smaller population size

due to computational cost [10, 24, 29, 54]. A future study could focus on combining IBMs with viral

load models such as those developed by Hay et al. to estimate Ct values for a cross-section of the

population and use them to retrain the models developed in this paper to now-cast the trajectory

under different intervention policies [22].

5 Conclusions

Based on the premise that SARS-CoV-2 spread is highly dependent on the individual viral dynamics,

we developed models that predict the national COVID-19 incidence rate based on mean Ct values

retrieved from a single representative cross-sectional survey in Lebanon. The modeling framework

relied on multiple machine learning algorithms that make little assumptions about population and

transmission dynamics and is a first attempt at combining serological assays with epidemiological

indicators to now-cast the pandemic trajectory [56]. Our COVID-19 cohort revealed that the evolution

of the viral load mirrored the growth of positive national cases in the country. Low mean Ct values

were followed by a large number of national positive COVID-19 cases and vice versa in line with

similar observations in the literature [22, 53]. To account for the effect of social interactions that

could occur few days before and after testing, we used a sequence of daily mean Ct values across

multiple machine learning algorithms. We trained the models on a training dataset and independently
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validated them on unseen data forming TRIPOD type 2b models [38]. The training process utilized a

cross-validation approach combined with a state-of-the-art stochastic direct search for hyperparameter

tuning to prevent model over-fitting [34]. The sequence-to-sequence (S2S) model had the best accuracy

when a large amount of data was used for its development, while the support vector machine regression

(SVR) model provided better accuracy with limited development data. The models showed that past

Ct values obtained from a representative cross-sectional patient cohort could be used to now-cast the

number of nationwide positive COVID-19 cases in a specific region.
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Supplemental Material: Weekly forecasting of new COVID-19 cases
using past viral load measurements

S.I Other patient cohort data

In this section, we graphically depict the unseen data (Group 3) used for independent validation of

the models that were developed in Section 3.3. Figure S.I shows the unseen data from December

01, 2020 to March 16, 2021. The observation that low Ct values coincide with high case counts as

was observed in Section 3.2 still holds for Group 3. Other features such as mean patient age and

daily number of confirmed positive patients that were not used in model development are shown in

Figure S.II. Visual inspection of Figures S.IIA and C shows that there is no significant relationship

between the mean age of a cross-sectional patient cohort and the incidence rates. This is confirmed

by the correlation test done in Figure S.IIIa. On the other hand, visual inspection of Figures S.IIB

and C, shows a significant correlation between the daily number of confirmed positive patients and

the incidence rates. This is confirmed in Figure S.IIIb. This significant correlation indicates that the

patient cohort is indeed representative of the population from which it is derived and can be used to

derive valid epidemiological indicators for this study. This ascertains the fact that consistent testing

practices at RHUH were followed throughout the study period (March 01, 2020 through March 16,

2021).
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Figure S.I: (A) Bi-weekly mean Ct values of RHUH patients. The solid line represents the median bi-weekly Ct values,
and the gray shaded area represents the inter-quartile range (25-75 percentile) of the observed Ct values. (B) The grey
bars show the weekly running average of the number of cases observed nationwide in Lebanon between March 1, 2020,
and March 31, 2021 (the running average can be computed until March 16). The solid black line represents the growth
rate in the weekly number of cases.
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Figure S.II: (A) Bi-weekly mean age of RHUH patients. The solid line represents the median patient age, and the gray
shaded area represents the inter-quartile range (25-75 percentile) of the observed patient ages. (B) Bi-weekly mean
number of confirmed positive RHUH patients. (C) The grey bars show the weekly running average of the number of
cases observed nationwide in Lebanon between March 1st, 2020, and December 30, 2020 (the running average can be
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Figure S.III: (a) Scatter plot of biweekly mean patient age and observed number of cases nationwide showing no significant
relationship as given by p-value > 0.05 (b) Scatter plot of biweekly number of confirmed positive RHUH patients and
observed number of cases nationwide showing a clear positive value that is significant as given by p-value < 0.05.
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S.II Deep learning model architecture
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Figure S.IV: Model architecture of the (a) stacked LSTM (SEQ) and the (b) feedforward neural network (DNN) models.

S.III Effect of additional training data on model performance

The model development methodology in Section 3.3 was applied to the entire patient cohort of RHUH

(Figure 3A). Groups 1 and 2 were both used to train and cross validate each model and its performance

on Group 3 was tested using the MSE criterion. The predictions of these models on the unseen data

group (Group 3) are shown in Figure S.V, the train and test errors are listed in Table S.I showing that

the sequence-to-sequence (S2S) model outperforms all the other models as given by its low test error.

This implies that deep learning model architecture can learn additional model representations as more

training data becomes available. The distribution of the train and test errors is also shown by the box

plots in Figure S.VII. The optimal hyperparameters of each model are listed in Table S.II.

Table S.I: Training and testing errors given by mean squared error (MSE) of different models constructed using the
combined discovery and test sets (Groups 1 and 2).

Model Train error Test error

Groups 1/2 Group 3

Sequence-to-sequence (S2S) 0.01460916 0.10580273
Stacked LSTM (SEQ) 0.00898817 0.34242207
Feedforward neural network (DNN) 0.01399668 0.20013593
Support vector machine regression (SVR) 0.00454633 0.13963704
Gradient boosting machine (GBM) 0.00035697 1.46476531
Polynomial regression (OLS) 0.00461187 0.16241863

The MSE is computed using the standardized value of the predictions by normalizing
them using the mean and standard deviation of all the daily number of cases given by
1221.7 and 1341.2, respectively.
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Figure S.V: Predicted 7-day rolling average of daily number of cases on the unseen data group using (A) the sequence-
to-sequence (S2S) model, (B) the stacked LSTM (SEQ), (C) The feedforward neural network (DNN), (D) The support
vector machine regression (SVR) model, (E) The gradient boosting machine (GBM), and (F) the polynomial regression
(OLS) model. All models were tuned using the validation score of the combined discovery and test sets (Groups 1 and 2). The
grey shaded region represents the unseen data group used to test the models’ performance.
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Figure S.VI: Illustration of variance in (a) training errors on discovery group (Group 1) and (b) test errors on the test
group (Group 2) for different models. The errors were calculated using the MSE of the predicted and actual trajectories shown
in Figure 5. The green triangles represent the mean error of 30 independent training runs for each model type. The orange lines
represent the median error.
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Figure S.VII: Illustration of variance in (a) training errors on combined discovery and test groups (Groups 1 and 2) and
(b) the test errors on the unseen group (Group 3) for different models. The errors were calculated using the MSE of the
predicted and actual trajectories shown in Figure S.V. The green triangles represent the mean error of 30 independent training
runs for each model type. The orange lines represent the median error.
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Table S.II: Optimal hyperparameters of models developed using combined discovery and test groups (Groups 1 and 2).

Hyperparameter Symbol Value Possible values

Sequence-to-sequence model (S2S)

Sliding window size T1 6 1-40
Number of hidden neurons nhidden 1500 1-2500
Probability of dropout Pdropout 0.0 0.0-0.9
Number of hidden layers nhidden 2 1-5
Teacher forcing probability Pteacher 0.8 0.0-0.9
Learning rate lrate 1 × 10−4 1 × 10−5-1 × 10−2

batch size bsize 16 4-128
best epoch nbest

epochs 16 1-nepochs

Sequence completion model (SEQ)

Number of hidden neurons nhidden 2500 1-2500
Probability of dropout Pdropout 0.8 0.0-0.9
Number of hidden layers nhidden 2 1-5
Learning rate lrate 1 × 10−4 1 × 10−5-1 × 10−2

batch size bsize 32 4-128
best epoch nbest

epochs 15 1-nepochs

Deep neural network (DNN)

Sliding window size T1 6 1-40
Number of hidden neurons nhidden 1500 1-2500
Probability of dropout Pdropout 0.3 0.0-0.9
Number of hidden layers nhidden 1 1-5
Learning rate lrate 1 × 10−4 1 × 10−5-1 × 10−2

batch size bsize 4 4-128
best epoch nbest

epochs 9 1-nepochs

Support vector machine regression (SVR)

Sliding window size T1 11 1-40
Ridge factor λ 1 × 10−4 1 × 10−3-1.0
Margin of tolerance ε 0.01 1 × 10−3-1.0
Stopping criteria tolerance εtol 0.1 1-5
Learning rate lrate 1 × 10−5 1 × 10−5-1 × 10−2

Gradient boosting machine (GBM)

Sliding window size T1 36 1-40
Subsample fraction fsample 0.9 0.1-1.0
Maximum portion of features ffeatures 1.0 0.1-1.0
Decision tree maximum depth D 2 1-5
Learning rate lrate 0.01 1 × 10−5-1 × 10−2

Maximum number of boosting stages nstages 3000 50-5000

Polynomial regression (OLS)

Sliding window size T1 11 1-40
Ridge factor λ 1 × 10−4 1 × 10−3-1.0
Degree ndegree 1 1-5

Common fixed parameters

Output window size (all models) T2 7 1-40
Maximum number of epochs (all models) nepochs 5000
Kernel (SVR) linear
Early stopping patience (S2S,SEQ,DNN) npatience 200

Optimizer (S2S,SEQ,DNN) Adam

The tuned hyperparameters of each model are reported underneath it. The fixed hyperparameters are
reported at the bottom of the table.
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S.IV Gaussian process model for RHUH patient cohort

We used the Gaussian process regression framework developed by Hay et al. to reconstruct the pan-

demic trajectory in Lebanon. We used a grid search to tune the priors on all the viral kinetics model

parameters and Gaussian process parameters ν and ρ which control the bandwidth of the Gaussian

kernel function. We attempted to minimize the MSE of the median predicted trajectory relative to the

actual case counts and get a good estimate on the pandemic trajectory. We took the average of several

runs to account for the randomness of Markov chain Monte Carlo (MCMC) sampling. Figure S.VIIIB

shows the resulting predicted trajectory relative to the normalized case counts in Lebanon.
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Figure S.VIII: Incidence rate and pandemic trajectory predictions using the predictive framework developed by Hay et al. [1]
(A) shows the cross-sectional Ct samples (violin plots) and smoothed average (solid blue line) obtained from RHUH
throughout the pandemic in lebanon. (B) Posterior distribution of relative probability of infection by date from a Gaussian
process (GP) model fit to all observed Ct values (ribbons show 95% and 50% credible intervals, line shows posterior
median). The y-axis shows relative rather than absolute probability of infection, as the underlying incidence curve must sum
to one. The grey bars show the true case counts in Lebanon from the start of infection and have been normalized by the total
number of cases observed in Lebanon throughout the observation time period shown (March 01, 2020 through November 30,
2020).
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S.V Inferring the pandemic trajectory in Massachusetts using Brigham
and Women’s Hospital cross-sectional Ct data

Data collected from BWH by Hay et al. was used to test the performance of the models developed

in this paper. Figure S.X shows the predicted incidence rates based on the Ct values observed at

BWH (shown in Figure S.IXA). The deep learning models (Figures S.XA, B, and C) had less accuracy

than both SVR and OLS models (Figures S.XD and F). Slightly biasing the Ct values resulted in

better performance of all deep learning models (not shown in this paper) implying that they are very

sensitive to fluctuations in Ct, which could be due to slightly different PCR machine calibration and/or

specimen collection methods.

The SVR model shows very good performance on the BWH dataset but we advise caution when

using such predictive models without prior cross-validation as is being done in this section.
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Figure S.IX: Incidence rate and pandemic trajectory predictions using the support vector machine regression (SVR) model
(A) shows the cross-sectional Ct samples (violin plots) and smoothed average (solid blue line) obtained from Brigham and
Women’s Hospital (BWH) throughout the pandemic in Massachusetts. (B) Predicted pandemic trajectory of the SVR
model fit to all observed Ct values. The grey bars show the true case counts in Massachusetts from the start of infection.
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Figure S.X: Predicted 7-day rolling average of daily number of cases in Massachusetts predicted using (A) the sequence-
to-sequence (S2S) model, (B) the stacked LSTM (SEQ), (C) The feedforward neural network (DNN), (D) The support
vector machine regression (SVR) model, (E) The gradient boosting machine (GBM), and (F) the polynomial regression
(OLS) model. The Ct values used in inference were obtained from Brigham and Women’s Hospital (BWH) [1].
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S.VI Deployment of the predictive model

We deployed the S2S model developed using the entire dataset (see supplementary material

Section S.III) in a user-friendly interface and made it publicly available through https://covid-

forecaster-lebanon.herokuapp.com [2]. The user-interface allows the user to enter the number of

cases and Ct values observed for a certain number of days backward (which represents the optimal

sliding window obtained through hyperparameter tuning). The S2S model is used to infer the predicted

total number cases for the coming week (i.e., the average predicted case counts multiplied by 7). The

data can be entered manually or copied from a spreadsheet. Continuous updates and patches will be

applied to the dashboard to incorporate all the other models and provide additional visuals.
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