Tight bounds on the maximal perimeter of convex equilateral small polygons

ISSN: 0711-2440

C. Bingane and C. Audet

G-2021-31

May 2021

La collection *Les Cahiers du GERAD* est constituée des travaux de recherche menés par nos membres. La plupart de ces documents de travail a été soumis à des revues avec comité de révision. Lorsqu'un document est accepté et publié, le pdf original est retiré si c'est nécessaire et un lien vers l'article publié est ajouté.

Citation suggérée : C. Bingane and C. Audet (Mai 2021). Tight bounds on the maximal perimeter of convex equilateral small polygons, Rapport technique, Les Cahiers du GERAD G-2021-31, GERAD, HEC Montréal, Canada.

Avant de citer ce rapport technique, veuillez visiter notre site Web (https://www.gerad.ca/fr/papers/G-2021-31) afin de mettre à jour vos données de référence, s'il a été publié dans une revue scientifique.

The series Les Cahiers du GERAD consists of working papers carried out by our members. Most of these pre-prints have been submitted to peer-reviewed journals. When accepted and published, if necessary, the original pdf is removed and a link to the published article is added.

Suggested citation: C. Bingane and C. Audet (May 2021). Tight bounds on the maximal perimeter of convex equilateral small polygons, Technical report, Les Cahiers du GERAD G–2021–31, GERAD, HEC Montréal, Canada.

Before citing this technical report, please visit our website (https://www.gerad.ca/en/papers/G-2021-31) to update your reference data, if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grâce au soutien de HEC Montréal, Polytechnique Montréal, Université McGill, Université du Québec à Montréal, ainsi que du Fonds de recherche du Québec – Nature et technologies.

Dépôt légal – Bibliothèque et Archives nationales du Québec, 2021 – Bibliothèque et Archives Canada, 2021 The publication of these research reports is made possible thanks to the support of HEC Montréal, Polytechnique Montréal, McGill University, Université du Québec à Montréal, as well as the Fonds de recherche du Québec – Nature et technologies.

Legal deposit – Bibliothèque et Archives nationales du Québec, 2021 – Library and Archives Canada, 2021

GERAD HEC Montréal 3000, chemin de la Côte-Sainte-Catherine Montréal (Québec) Canada H3T 2A7 **Tél.:** 514 340-6053 Téléc.: 514 340-5665 info@gerad.ca www.gerad.ca

Tight bounds on the maximal perimeter of convex equilateral small polygons

Christian Bingane Charles Audet

GERAD & Département de Mathématiques et de Génie Industriel, Polytechnique Montréal, Montréal (Québec), Canada H3C 3A7

christian.bingane@polymtl.ca
charles.audet@polymtl.ca

May 2021 Les Cahiers du GERAD G-2021-31

Copyright © 2021 GERAD, Bingane and Audet

Les textes publiés dans la série des rapports de recherche *Les Cahiers du GERAD* n'engagent que la responsabilité de leurs auteurs. Les auteurs conservent leur droit d'auteur et leurs droits moraux sur leurs publications et les utilisateurs s'engagent à reconnaître et respecter les exigences légales associées à ces droits. Ainsi, les utilisateurs:

- Peuvent télécharger et imprimer une copie de toute publication du portail public aux fins d'étude ou de recherche privée;
- Ne peuvent pas distribuer le matériel ou l'utiliser pour une activité à but lucratif ou pour un gain commercial;
- Peuvent distribuer gratuitement l'URL identifiant la publication.

Si vous pensez que ce document enfreint le droit d'auteur, contacteznous en fournissant des détails. Nous supprimerons immédiatement l'accès au travail et enquêterons sur votre demande. The authors are exclusively responsible for the content of their research papers published in the series *Les Cahiers du GERAD*. Copyright and moral rights for the publications are retained by the authors and the users must commit themselves to recognize and abide the legal requirements associated with these rights. Thus, users:

- May download and print one copy of any publication from the public portal for the purpose of private study or research;
- May not further distribute the material or use it for any profitmaking activity or commercial gain;
- May freely distribute the URL identifying the publication.

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Abstract: A small polygon is a polygon of unit diameter. The maximal perimeter of a convex equilateral small polygon with $n=2^s$ vertices is not known when $s\geq 4$. In this paper, we construct a family of convex equilateral small n-gons, $n=2^s$ and $s\geq 4$, and show that their perimeters are within $\pi^4/n^4+O(1/n^5)$ of the maximal perimeter and exceed the previously best known values from the literature. For the specific cases where n=32 and n=64, we present solutions whose perimeters are even larger, as they are within 1.1×10^{-5} and 2.1×10^{-6} of the optimal value, respectively.

Keywords: Planar geometry, equilateral polygons, isodiametric problem, maximal perimeter

1 Introduction

The diameter of a polygon is the largest Euclidean distance between pairs of its vertices. A polygon is said to be *small* if its diameter equals one. For an integer $n \geq 3$, the maximal perimeter problem consists in finding a convex small n-gon with the longest perimeter. The problem was first investigated by Reinhardt [1] in 1922, and later by Datta [2] in 1997. They proved that for $n \geq 3$

- the value $2n\sin\frac{\pi}{2n}$ is an upper bound on the perimeter of any convex small n-gon;
- when n is odd, the regular small n-gon is an optimal solution, but it is unique only when n is prime;
- when n is even, the regular small n-gon is not optimal;
- when n has an odd factor, there are finitely many optimal solutions [3, 4, 5] and there are all equilateral.

When n is a power of 2, the maximal perimeter problem is solved for $n \leq 8$. The case n=4 was solved by Tamvakis [6] in 1987 and the case n=8 by Audet, Hansen, and Messine [7] in 2007. Both optimal 4-gon and 8-gon, shown respectively in Figure 1b and Figure 3d, are not equilateral. For $n=2^s$ with integer $s\geq 4$, exact solutions in the maximal perimeter problem appear to be presently out of reach. However, tight lower bounds can be obtained analytically. Recently, Bingane [8] constructed a family of convex non-equilateral small n-gons, for $n=2^s$ with $s\geq 2$, and proved that the perimeters obtained cannot be improved for large n by more than $\pi^7/(32n^6)$.

The diameter graph of a small polygon is defined as the graph with the vertices of the polygon, and an edge between two vertices exists only if the distance between these vertices equals one. Figure 1, Figure 2, and Figure 3 show diameter graphs of some convex small polygons. The solid lines illustrate pairs of vertices which are unit distance apart. In 1950, Vincze [9] studied the problem of finding the minimal diameter of a convex polygon with unit-length sides. This problem is equivalent to the equilateral case of the maximal perimeter problem. He showed that a necessary condition of a convex equilateral small polygon to have maximal perimeter is that each vertex should have an opposite vertex at a distance equal to the diameter. It is easy to see that for n=4, the maximal perimeter of a convex equilateral small 4-gon is only attained by the regular 4-gon. Vincze also described a convex equilateral small 8-gon, shown in Figure 3b, with longer perimeter than the regular 8-gon. In 2004, Audet, Hansen, Messine, and Perron [10] used both geometrical arguments and methods of global optimization to determine the unique convex equilateral small 8-gon with the longest perimeter, illustrated in Figure 3c.

For $n=2^s$ with integer $s\geq 4$, the equilateral case of the maximal perimeter problem remains unsolved and, as in the general case, exact solutions appear to be presently out of reach. In 2008, Mossinghoff [11] constructed a family of convex equilateral small n-gons, for $n=2^s$ with $s\geq 4$, and proved that the perimeters obtained cannot be improved for large n by more than $3\pi^4/n^4$. By contrast, the perimeters of the regular n-gons cannot be improved for large n by more than $\pi^3/(8n^2)$ when n is even. In the present paper, we propose tighter lower bounds on the maximal perimeter of convex equilateral small n-gons when $n=2^s$ and integer $s\geq 4$ by a constructive approach. Thus, our main result is the following:

Theorem 1 Suppose $n=2^s$ with integer $s\geq 4$. Let $\overline{L}_n:=2n\sin\frac{\pi}{2n}$ denote an upper bound on the perimeter $L(P_n)$ of a convex small n-gon P_n . Let M_n denote the convex equilateral small n-gon constructed by Mossinghoff [11]. Then there exists a convex equilateral small n-gon B_n such that

$$\overline{L}_n - L(\mathbf{B}_n) = \frac{\pi^4}{n^4} + O\left(\frac{1}{n^5}\right)$$

and

$$L(\mathbf{B}_n) - L(\mathbf{M}_n) = \frac{2\pi^4}{n^4} + O\left(\frac{1}{n^5}\right).$$

In addition, we show that the resulting polygons for n = 32 and n = 64 are not optimal by providing two convex equilateral small polygons with longer perimeters.

The remainder of this paper is organized as follows. Section 2 recalls principal results on the maximal perimeter of convex small polygons. Section 3 considers the polygons B_n and shows that they satisfy Theorem 1. Section 4 shows that the polygons B_{32} and B_{64} are not optimal by constructing a 32-gon and a 64-gon with larger perimeters. Concluding remarks are presented in Section 5.

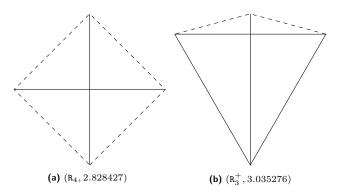


Figure 1: Two convex small 4-gons (P4, L(P4)): (a) Regular 4-gon; (b) Optimal non-equilateral 4-gon [6]

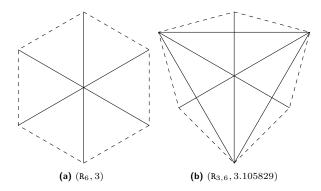


Figure 2: Two convex equilateral small 6-gons $(P_6, L(P_6))$: (a) Regular 6-gon; (b) Reinhardt 6-gon [1]

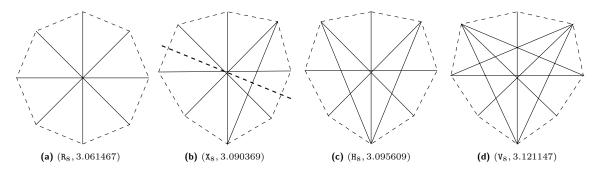


Figure 3: Four convex small 8-gons $(P_8, L(P_8))$: (a) Regular 8-gon; (b) Vincze 8-gon [9]; (c) Optimal equilateral 8-gon [10]; (d) Optimal non-equilateral 8-gon [7]

2 Perimeters of convex equilateral small polygons

Let L(P) denote the perimeter of a polygon P. For a given integer $n \geq 3$, let R_n denote the regular small n-gon. We have

$$L(\mathbf{R}_n) = \begin{cases} 2n \sin \frac{\pi}{2n} & \text{if } n \text{ is odd,} \\ n \sin \frac{\pi}{n} & \text{if } n \text{ is even.} \end{cases}$$

When n has an odd factor m, consider the family of convex equilateral small n-gons constructed as follows:

- 1. Transform the regular small m-gon R_m into a Reuleaux m-gon by replacing each edge by a circle's arc passing through its end vertices and centered at the opposite vertex;
- 2. Add at regular intervals n/m-1 vertices within each arc;
- 3. Take the convex hull of all vertices.

These n-gons are denoted $R_{m,n}$ and $L(R_{m,n}) = 2n \sin \frac{\pi}{2n}$. The 6-gon $R_{3,6}$ is illustrated in Figure 2b.

Theorem 2 (Reinhardt [1], Vincze [9], Datta [2]) For all $n \ge 3$, let L_n^* denote the maximal perimeter among all convex small n-gons, ℓ_n^* the maximal perimeter among all equilateral ones, and $\overline{L}_n := 2n\sin\frac{\pi}{2n}$.

- When n has an odd factor m, $\ell_n^* = L_n^* = \overline{L}_n$ is achieved by finitely many equilateral n-gons [3, 4, 5], including $R_{m,n}$. The optimal n-gon $R_{m,n}$ is unique if m is prime and $n/m \leq 2$.
- When $n = 2^s$ with $s \ge 2$, $L(\mathbb{R}_n) < L_n^* < \overline{L}_n$.

When $n=2^s$, both L_n^* and ℓ_n^* are only known for $s \leq 3$. Tamvakis [6] found that $L_4^* = 2 + \sqrt{6} - \sqrt{2}$, and this value is only achieved by \mathbb{R}_3^+ , shown in Figure 1b. Audet, Hansen, and Messine [7] proved that $L_8^* = 3.121147...$, and this value is only achieved by \mathbb{V}_8 , shown in Figure 3d. For the equilateral quadrilateral, it is easy to see that $\ell_4^* = L(\mathbb{R}_4) = 2\sqrt{2}$. Audet, Hansen, Messine and Perron [10] studied the equilateral octagon and determined that $\ell_8^* = 3.095609... > L(\mathbb{R}_8) = 4\sqrt{2} - \sqrt{2}$, and this value is only achieved by \mathbb{H}_8 , shown in Figure 3c. If $u := \ell_8^{*2}/64$ denote the square of the sides length of \mathbb{H}_8 , we can show that u is the unique root of the polynomial equation

$$2u^6 - 18u^5 + 57u^4 - 78u^3 + 46u^2 - 12u + 1 = 0$$

that belongs to $(\sin^2(\pi/8), 4\sin^2(\pi/16))$. Note that the following inequalities are strict: $\ell_4^* < L_4^*$ and $\ell_8^* < L_8^*$.

For $n = 2^s$ with $s \ge 4$, exact solutions of the maximal perimeter problem appear to be presently out of reach. However, tight lower bounds can be obtained analytically. Recently, Bingane [8] proved that, for $n = 2^s$ with $s \ge 2$,

$$L_n^* \geq 2n \sin \frac{\pi}{2n} \cos \left(\frac{\pi}{2n} - \frac{1}{2} \arcsin \left(\frac{1}{2} \sin \frac{2\pi}{n} \right) \right) > L(\mathbf{R}_n),$$

which implies

$$\overline{L}_n - L_n^* \le \frac{\pi^7}{32n^6} + O\left(\frac{1}{n^8}\right).$$

On the other hand, Mossinghoff [11] constructed a family of convex equilateral small n-gons M_n , illustrated in Figure 4, such that

$$\overline{L}_n - L(\mathbf{M}_n) = \frac{3\pi^4}{n^4} + O\left(\frac{1}{n^5}\right)$$

and

$$L(\mathbf{M}_n) - L(\mathbf{R}_n) = \frac{\pi^3}{8n^2} + O\left(\frac{1}{n^4}\right)$$

for $n=2^s$ with $s\geq 4$. The next section proposes tighter lower bounds for ℓ_n^* .

3 Proof of Theorem 1

We use cartesian coordinates to describe an n-gon P_n , assuming that a vertex v_i , $i = 0, 1, \ldots, n-1$, is positioned at abscissa x_i and ordinate y_i . Sum or differences of the indices of the coordinates are taken

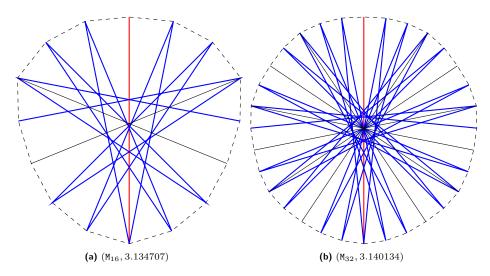


Figure 4: Mossinghoff polygons $(M_n, L(M_n))$: (a) Hexadecagon M_{16} ; (b) Triacontadigon M_{32}

modulo n. Placing the vertex v_0 at the origin, we set $x_0 = y_0 = 0$. We also assume that the n-gon P_n is in the half-plane $y \ge 0$ and the vertices v_i , i = 1, 2, ..., n - 1, are arranged in a counterclockwise order as illustrated in Figure 5, i.e., $x_i y_{i+1} \ge y_i x_{i+1}$ for all i = 1, 2, ..., n - 2.

The *n*-gon P_n is small if $\max_{i,j} \|\mathbf{v}_i - \mathbf{v}_j\| = 1$. It is equilateral if $\|\mathbf{v}_i - \mathbf{v}_{i-1}\| = c$ for all $i = 1, 2, \dots, n$. Imposing that the determinants of the 2×2 matrices satisfy

$$\sigma_i := \begin{vmatrix} x_i - x_{i-1} & x_{i+1} - x_{i-1} \\ y_i - y_{i-1} & y_{i+1} - y_{i-1} \end{vmatrix} \ge 0$$

for all i = 1, 2, ..., n - 1 ensures the convexity of the n-gon.

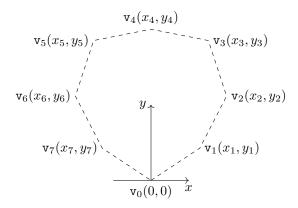


Figure 5: Definition of variables: Case of n=8 vertices

For any $n=2^s$ where $s\geq 4$ is an integer, we introduce a convex equilateral small n-gon called B_n and constructed as follows. Its diameter graph has the edge $v_0-v_{\frac{n}{2}}$ as axis of symmetry and can be described by the 3n/8-1-length half-path $v_0-v_{\frac{n}{2}-1}-\ldots-v_{\frac{3n}{4}+1}-v_{\frac{n}{4}}$ and the pendant edges $v_0-v_{\frac{n}{2}}, v_{4k-1}-v_{4k-1+\frac{n}{2}}, k=1,\ldots,n/8$. The polygons B_{16} and B_{32} are shown in Figure 6. They are symmetrical with respect to the vertical diameter.

Place the vertex $\mathbf{v}_{\frac{n}{2}}$ at (0,1) in the plane. Let $t \in (0,\pi/n)$ denote the angle formed at the vertex \mathbf{v}_0 by the edge $\mathbf{v}_0 - \mathbf{v}_{\frac{n}{2}-1}$ and the edge $\mathbf{v}_0 - \mathbf{v}_{\frac{n}{2}}$. This implies that the sides length of \mathbf{B}_n is $2\sin(t/2)$.

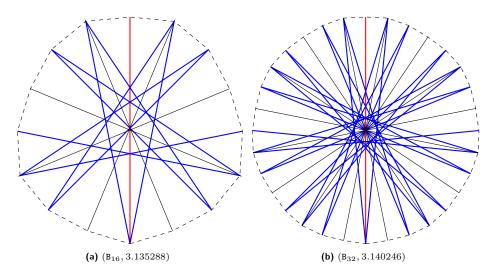


Figure 6: Polygons $(B_n, L(B_n))$ defined in Theorem 1: (a) Hexadecagon B_{16} ; (b) Triacontadigon B_{32}

Since B_n is equilateral and symmetric, we have from the half-path $v_0 - \ldots - v_{\frac{n}{4}}$,

$$x_{\frac{3n}{4}+1} = \sin t - \sum_{k=1}^{n/8-1} (-1)^{k-1} (\sin(4k-1)t - \sin 4kt + \sin(4k+1)t)$$

$$= \sin t - \frac{(2\cos t - 1)(\sin 2t + \sin(n/2 - 2)t)}{2\cos 2t} = -x_{\frac{n}{4}-1}$$

$$x_{\frac{n}{4}} = x_{\frac{3n}{4}+1} + \sin(n/2 - 1)t = -x_{\frac{3n}{4}},$$

$$y_{\frac{3n}{4}+1} = \cos t - \sum_{k=1}^{n/8-1} (-1)^{k-1} (\cos(4k-1)t - \cos 4kt + \cos(4k+1)t)$$

$$= \cos t - \frac{(2\cos t - 1)(\cos 2t + \cos(n/2 - 2)t)}{2\cos 2t} = y_{\frac{n}{4}-1},$$

$$y_{\frac{n}{4}} = y_{\frac{3n}{4}+1} + \cos(n/2 - 1)t = y_{\frac{3n}{4}}.$$

Finally, the angle t is chosen so that $\|\mathbf{v}_{\frac{3n}{4}+1}-\mathbf{v}_{\frac{3n}{4}}\|=2\sin(t/2)$, i.e.,

$$(2x_{\frac{3n}{4}+1} + \sin(n/2 - 1)t)^2 + \cos^2(n/2 - 1)t = 4\sin^2(t/2).$$

An asymptotic analysis produces that, for large n, this equation has a solution $t_0(n)$ satisfying

$$t_0(n) = \frac{\pi}{n} - \frac{\pi^4}{n^5} + \frac{\pi^5}{n^6} - \frac{11\pi^6}{6n^7} + \frac{35\pi^7}{12n^8} + O\left(\frac{1}{n^9}\right).$$

By setting $t = t_0(n)$, the perimeter of B_n is

$$L(\mathbf{B}_n) = 2n\sin\frac{t_0(n)}{2} = 2n\sin\left(\frac{\pi}{2n} - \frac{\pi^4}{2n^5} + O\left(\frac{1}{n^6}\right)\right)$$
$$= \pi - \frac{\pi^3}{24n^2} + \left(\frac{\pi^5}{1920} - \pi^4\right)\frac{1}{n^4} + \frac{\pi^5}{n^5} - \left(\frac{\pi^7}{322560} + \frac{41\pi^6}{24}\right)\frac{1}{n^6} + O\left(\frac{1}{n^7}\right)$$

and

$$\overline{L}_n - L(\mathbf{B}_n) = \frac{\pi^4}{n^4} - \frac{\pi^5}{n^5} + O\left(\frac{1}{n^6}\right).$$

Since the polygon M_n proposed by Mossinghoff [11] satisfies

$$L(\mathbf{M}_n) = \pi - \frac{\pi^3}{24n^2} + \left(\frac{\pi^5}{1920} - 3\pi^4\right)\frac{1}{n^4} + \frac{9\pi^5}{n^5} - \left(\frac{\pi^7}{322560} + \frac{9\pi^6}{8}\right)\frac{1}{n^6} + O\left(\frac{1}{n^7}\right),$$

it follows that

$$L(\mathbf{B}_n) - L(\mathbf{M}_n) = \frac{2\pi^4}{n^4} - \frac{8\pi^5}{n^5} - \frac{7\pi^6}{12n^6} + O\left(\frac{1}{n^7}\right).$$

To verify that B_n is small, we calculate

$$\|\mathbf{v}_{\frac{n}{4}} - \mathbf{v}_{\frac{3n}{4}}\| = 2x_{\frac{n}{4}} = 1 - \frac{\pi^3}{n^3} - \frac{7\pi^5}{4n^5} + O\left(\frac{1}{n^7}\right) < 1.$$

To test that B_n is convex, we compute

$$\sigma_{\frac{n}{4}} = \frac{2\pi^3}{n^3} - \frac{\pi^4}{n^4} + O\left(\frac{1}{n^5}\right) > 0.$$

This completes the proof of Theorem 1.

All polygons presented in this work were implemented as a MATLAB package: OPTIGON [12], which is freely available at https://github.com/cbingane/optigon. In OPTIGON, we provide MATLAB functions that give the coordinates of the vertices. For example, the vertices coordinates of a regular small n-gon are obtained by calling $[x,y] = cstrt_regular_ngon(n)$. The command calc_perimeter_ngon(x,y) computes the perimeter of a polygon given by its vertices coordinates (x,y). One can also find an algorithm developed in [13] to find an estimate of the maximal area of a small n-gon when $n \geq 6$ is even.

Table 1 shows the perimeters of B_n , along with the upper bounds \overline{L}_n , the perimeters of the regular polygons R_n and Mossinghoff polygons M_n . When $n=2^s$ and $s\geq 4$, B_n provides a tighter lower bound on the maximal perimeter ℓ_n^* compared to the best prior convex equilateral small n-gon M_n . By analyzing the fraction $\frac{L(B_n)-L(M_n)}{\overline{L}_n-L(M_n)}$ of the length of the interval $[L(M_n),\overline{L}_n]$ containing $L(B_n)$, it is not surprising that $L(B_n)$ approaches $\frac{1}{3}L(M_n)+\frac{2}{3}\overline{L}_n$ as n increases since $L(B_n)-L(M_n)\sim 2\pi^4/n^4$ for large n.

Table 1: Perimeters of B_n

n	$L(\mathbf{R}_n)$	$L(\mathbf{M}_n)$	$L(\mathbf{B}_n)$	\overline{L}_n	$\frac{L(\mathbf{B}_n)\!-\!L(\mathbf{M}_n)}{\overline{L}_n\!-\!L(\mathbf{M}_n)}$
16	3.1214451523	3.1347065475	3.1352878881	3.1365484905	0.3156
32	3.1365484905	3.1401338091	3.1402460942	3.1403311570	0.5690
64	3.1403311570	3.1412623836	3.1412717079	3.1412772509	0.6272
128	3.1412772509	3.1415127924	3.1415134468	3.1415138011	0.6487
256	3.1415138011	3.1415728748	3.1415729180	3.1415729404	0.6589

4 Improved triacontadigon and hexacontatetragon

It is natural to ask if the polygon constructed B_n might be optimal for some n. Using constructive arguments, Proposition 1 and Proposition 2 show that B_{32} and B_{64} are suboptimal.

Proposition 1 There exists a convex equilateral small 32-gon whose perimeter exceeds that of B₃₂.

Proof. Consider the 32-gon Z_{32} , illustrated in Figure 7a. Its diameter graph has the edge $v_0 - v_{16}$ as axis of symmetry and can be described by the 4-length half-path $v_0 - v_{11} - v_{24} - v_{10} - v_{23}$ and the pendant edges $v_0 - v_{15}, \ldots, v_0 - v_{12}, v_{11} - v_{31}, \ldots, v_{11} - v_{25}$.

Place the vertex v_0 at (0,0) in the plane, and the vertex v_{16} at (0,1). Let $t \in (0,\pi/32)$ denote the angle formed at the vertex v_0 by the edge $v_0 - v_{15}$ and the edge $v_0 - v_{16}$. We have, from the half-path $v_0 - \ldots - v_{23}$,

$$x_{10} = \sin 5t - \sin 13t + \sin 14t = -x_{22}, \quad y_{10} = \cos 5t - \cos 13t + \cos 14t = y_{11},$$

 $x_{23} = x_{10} - \sin 15t = -x_{9}, \quad y_{23} = y_{10} - \cos 15t = y_{9}.$

Finally, t is chosen so that $\|\mathbf{v}_{10} - \mathbf{v}_9\| = 2\sin(t/2)$, i.e.,

$$(2(\sin 5t - \sin 13t + \sin 14t) - \sin 15t)^2 + \cos^2 15t = 4\sin^2(t/2).$$

We obtain t = 0.0981744286... and $L(Z_{32}) = 64\sin(t/2) = 3.1403202339... > L(B_{32})$. One can verify that Z_{32} is small and convex.

Proposition 2 There exists a convex equilateral small 64-gon whose perimeter exceeds that of B₆₄.

Proof. Consider the 64-gon Z_{64} , illustrated in Figure 7b. Its diameter graph has the edge $v_0 - v_{32}$ as axis of symmetry and can be described by the 23-length half-path $v_0 - v_{31} - v_{63} - v_{30} - v_{61} - v_{29} - v_{60} - v_{28} - v_{58} - v_{27} - v_{57} - v_{26} - v_{56} - v_{25} - v_{55} - v_{24} - v_{54} - v_{23} - v_{53} - v_{21} - v_{52} - v_{19} - v_{51} - v_{16}$, the pendant edges $v_{30} - v_{62}$, $v_{28} - v_{59}$, $v_{53} - v_{22}$, $v_{52} - v_{20}$, $v_{51} - v_{18}$, $v_{51} - v_{17}$, and the 4-length path $v_{15} - v_{50} - v_{14} - v_{49}$.

Place the vertex \mathbf{v}_0 at (0,0) in the plane, and the vertex \mathbf{v}_{32} at (0,1). Let $t \in (0,\pi/64)$ denote the angle formed at the vertex \mathbf{v}_0 by the edge $\mathbf{v}_0 - \mathbf{v}_{31}$ and the edge $\mathbf{v}_0 - \mathbf{v}_{32}$. We have, from the half-path $\mathbf{v}_0 - \ldots - \mathbf{v}_{31}$,

$$x_{51} = \sin t - \sin 2t + \sin 3t - \sin 5t + \sin 6t - \sin 7t + \sin 8t$$

$$- \sum_{k=10}^{20} (-1)^k \sin kt + \sin 22t - \sin 23t + \sin 25t - \sin 26t = -x_{13},$$

$$y_{51} = \cos t - \cos 2t + \cos 3t - \cos 5t + \cos 6t - \cos 7t + \cos 8t$$

$$- \sum_{k=10}^{20} (-1)^k \cos kt + \cos 22t - \cos 23t + \cos 25t - \cos 26t = y_{13},$$

$$x_{16} = x_{51} + \sin 29t = -x_{48},$$

$$y_{16} = y_{51} + \cos 29t = y_{48},$$

and, from the path $v_{15} - \ldots - v_{49}$,

$$x_{50} = -1/2$$
 $= -x_{14}, y_{50} = y$ $= y_{14},$
 $x_{15} = x_{50} + \cos t$ $= -x_{49}, y_{15} = y_{50} + \sin t$ $= y_{49}.$

Finally, t and y are chosen so that $\|\mathbf{v}_{51} - \mathbf{v}_{50}\| = \|\mathbf{v}_{16} - \mathbf{v}_{15}\| = 2\sin(t/2)$. We obtain t = 0.0490873533... and $L(\mathbf{Z}_{64}) = 128\sin(t/2) = 3.1412752155... > L(\mathbf{B}_{64})$. One can verify that \mathbf{Z}_{64} is small and convex.

Polygons Z_{32} and Z_{64} offer a significant improvement to the lower bound of the optimal value. We note that

$$\ell_{32}^* - L(\mathsf{Z}_{32}) < \overline{L}_{32} - L(\mathsf{Z}_{32}) = 1.09 \ldots \times 10^{-5} < \overline{L}_{32} - L(\mathsf{B}_{32}) = 8.50 \ldots \times 10^{-5},$$

$$\ell_{64}^* - L(\mathsf{Z}_{64}) < \overline{L}_{64} - L(\mathsf{Z}_{64}) = 2.03 \ldots \times 10^{-6} < \overline{L}_{64} - L(\mathsf{B}_{64}) = 5.54 \ldots \times 10^{-6}.$$

Also, the fractions

$$\frac{L(\mathbf{Z}_{32}) - L(\mathbf{B}_{32})}{\overline{L}_{32} - L(\mathbf{B}_{32})} = 0.8715...,$$

$$\frac{L(\mathbf{Z}_{64}) - L(\mathbf{B}_{64})}{\overline{L}_{64} - L(\mathbf{B}_{64})} = 0.6327...$$

indicate that the perimeters of the improved polygons are quite close to the maximal perimeter. This suggests that it is possible that another family of convex equilateral small polygons might produce an improvement to Theorem 1.

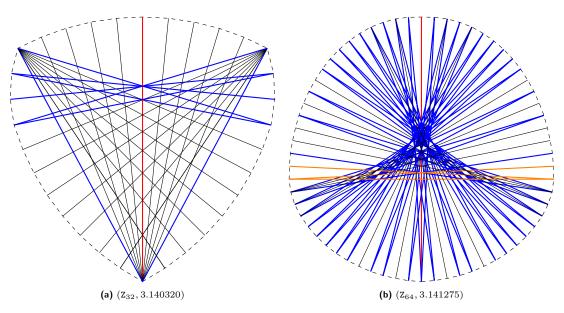


Figure 7: Improved convex equilateral small n-gons $(Z_n, L(Z_n))$: (a) Triacontadigon Z_{32} with larger perimeter than B_{32} ; (b) Hexacontatetragon Z_{64} with larger perimeter than B_{64}

5 Conclusion

Lower bounds on the maximal perimeter of convex equilateral small n-gons were provided when n is a power of 2 and these bounds are tighter than the previous ones from the literature. For any $n = 2^s$ with integer $s \ge 4$, we constructed a convex equilateral small n-gon B_n whose perimeter is within $\pi^4/n^4 + O(1/n^5)$ of the optimal value. For n = 32 and n = 64, we propose solutions with even larger perimeters.

References

- [1] K. Reinhardt, Extremale polygone gegebenen durchmessers, Jahresbericht der Deutschen Mathematiker-Vereinigung, 31:251–270, 1922.
- [2] B. Datta, A discrete isoperimetric problem, Geometriae Dedicata, 64(1):55–68, 1997.
- [3] M. J. Mossinghoff, Enumerating isodiametric and isoperimetric polygons, Journal of Combinatorial Theory, Series A, 118(6):1801–1815, 2011.
- [4] K. G. Hare and M. J. Mossinghoff, Sporadic Reinhardt polygons, Discrete & Computational Geometry, 49(3):540–557, 2013.
- [5] K. G. Hare and M. J. Mossinghoff, Most Reinhardt polygons are sporadic, Geometriae Dedicata, 198(1):1– 18, 2019.
- [6] N. K. Tamvakis, On the perimeter and the area of the convex polygon of a given diameter, Bull. Greek Math. Soc, 28:115–132, 1987.
- [7] C. Audet, P. Hansen, and F. Messine, The small octagon with longest perimeter, Journal of Combinatorial Theory, Series A, 114(1):135–150, 2007.
- [8] C. Bingane, Tight bounds on the maximal perimeter and the maximal width of convex small polygons, Tech. Rep. G-2020-53, Les cahiers du GERAD, 2020.
- [9] S. Vincze, On a geometrical extremum problem, Acta Sci. Math. Szeged, 12:136–142, 1950.
- [10] C. Audet, P. Hansen, F. Messine, and S. Perron, The minimum diameter octagon with unit-length sides: Vincze's wife's octagon is suboptimal, Journal of Combinatorial Theory, Series A, 108(1):63–75, 2004.
- [11] M. J. Mossinghoff, An isodiametric problem for equilateral polygons, Contemporary Mathematics, 457:237–252, 2008.
- [12] C. Bingane, OPTIGON: Extremal small polygons. https://github.com/cbingane/optigon, September 2020.

[13] C. Bingane, Largest small polygons: A sequential convex optimization approach, Tech. Rep. G–2020–50, Les cahiers du GERAD, 2020.