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Abstract : A small polygon is a polygon of unit diameter. The maximal perimeter of a convex
equilateral small polygon with n = 2s vertices is not known when s ≥ 4. In this paper, we construct
a family of convex equilateral small n-gons, n = 2s and s ≥ 4, and show that their perimeters are
within π4/n4 +O(1/n5) of the maximal perimeter and exceed the previously best known values from
the literature. For the specific cases where n = 32 and n = 64, we present solutions whose perimeters
are even larger, as they are within 1.1× 10−5 and 2.1× 10−6 of the optimal value, respectively.

Keywords: Planar geometry, equilateral polygons, isodiametric problem, maximal perimeter
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1 Introduction

The diameter of a polygon is the largest Euclidean distance between pairs of its vertices. A polygon

is said to be small if its diameter equals one. For an integer n ≥ 3, the maximal perimeter problem

consists in finding a convex small n-gon with the longest perimeter. The problem was first investigated

by Reinhardt [1] in 1922, and later by Datta [2] in 1997. They proved that for n ≥ 3

• the value 2n sin π
2n is an upper bound on the perimeter of any convex small n-gon;

• when n is odd, the regular small n-gon is an optimal solution, but it is unique only when n is

prime;

• when n is even, the regular small n-gon is not optimal;

• when n has an odd factor, there are finitely many optimal solutions [3, 4, 5] and there are all

equilateral.

When n is a power of 2, the maximal perimeter problem is solved for n ≤ 8. The case n = 4

was solved by Tamvakis [6] in 1987 and the case n = 8 by Audet, Hansen, and Messine [7] in 2007.

Both optimal 4-gon and 8-gon, shown respectively in Figure 1b and Figure 3d, are not equilateral. For

n = 2s with integer s ≥ 4, exact solutions in the maximal perimeter problem appear to be presently out

of reach. However, tight lower bounds can be obtained analytically. Recently, Bingane [8] constructed

a family of convex non-equilateral small n-gons, for n = 2s with s ≥ 2, and proved that the perimeters

obtained cannot be improved for large n by more than π7/(32n6).

The diameter graph of a small polygon is defined as the graph with the vertices of the polygon, and

an edge between two vertices exists only if the distance between these vertices equals one. Figure 1,

Figure 2, and Figure 3 show diameter graphs of some convex small polygons. The solid lines illustrate

pairs of vertices which are unit distance apart. In 1950, Vincze [9] studied the problem of finding

the minimal diameter of a convex polygon with unit-length sides. This problem is equivalent to the

equilateral case of the maximal perimeter problem. He showed that a necessary condition of a convex

equilateral small polygon to have maximal perimeter is that each vertex should have an opposite

vertex at a distance equal to the diameter. It is easy to see that for n = 4, the maximal perimeter

of a convex equilateral small 4-gon is only attained by the regular 4-gon. Vincze also described a

convex equilateral small 8-gon, shown in Figure 3b, with longer perimeter than the regular 8-gon.

In 2004, Audet, Hansen, Messine, and Perron [10] used both geometrical arguments and methods of

global optimization to determine the unique convex equilateral small 8-gon with the longest perimeter,

illustrated in Figure 3c.

For n = 2s with integer s ≥ 4, the equilateral case of the maximal perimeter problem remains

unsolved and, as in the general case, exact solutions appear to be presently out of reach. In 2008,

Mossinghoff [11] constructed a family of convex equilateral small n-gons, for n = 2s with s ≥ 4, and

proved that the perimeters obtained cannot be improved for large n by more than 3π4/n4. By contrast,

the perimeters of the regular n-gons cannot be improved for large n by more than π3/(8n2) when n is

even. In the present paper, we propose tighter lower bounds on the maximal perimeter of convex

equilateral small n-gons when n = 2s and integer s ≥ 4 by a constructive approach. Thus, our main

result is the following:

Theorem 1 Suppose n = 2s with integer s ≥ 4. Let Ln := 2n sin π
2n denote an upper bound on

the perimeter L(Pn) of a convex small n-gon Pn. Let Mn denote the convex equilateral small n-gon

constructed by Mossinghoff [11]. Then there exists a convex equilateral small n-gon Bn such that

Ln − L(Bn) =
π4

n4
+O

(
1

n5

)
and

L(Bn)− L(Mn) =
2π4

n4
+O

(
1

n5

)
.
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In addition, we show that the resulting polygons for n = 32 and n = 64 are not optimal by providing

two convex equilateral small polygons with longer perimeters.

The remainder of this paper is organized as follows. Section 2 recalls principal results on the

maximal perimeter of convex small polygons. Section 3 considers the polygons Bn and shows that they

satisfy Theorem 1. Section 4 shows that the polygons B32 and B64 are not optimal by constructing a

32-gon and a 64-gon with larger perimeters. Concluding remarks are presented in Section 5.

(a) (R4, 2.828427) (b) (R+3 , 3.035276)

Figure 1: Two convex small 4-gons (P4, L(P4)): (a) Regular 4-gon; (b) Optimal non-equilateral 4-gon [6]

(a) (R6, 3) (b) (R3,6, 3.105829)

Figure 2: Two convex equilateral small 6-gons (P6, L(P6)): (a) Regular 6-gon; (b) Reinhardt 6-gon [1]

(a) (R8, 3.061467) (b) (X8, 3.090369) (c) (H8, 3.095609) (d) (V8, 3.121147)

Figure 3: Four convex small 8-gons (P8, L(P8)): (a) Regular 8-gon; (b) Vincze 8-gon [9]; (c) Optimal equilateral 8-gon [10];
(d) Optimal non-equilateral 8-gon [7]

2 Perimeters of convex equilateral small polygons

Let L(P) denote the perimeter of a polygon P. For a given integer n ≥ 3, let Rn denote the regular

small n-gon. We have

L(Rn) =

{
2n sin π

2n if n is odd,

n sin π
n if n is even.
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When n has an odd factor m, consider the family of convex equilateral small n-gons constructed

as follows:

1. Transform the regular small m-gon Rm into a Reuleaux m-gon by replacing each edge by a circle’s

arc passing through its end vertices and centered at the opposite vertex;

2. Add at regular intervals n/m− 1 vertices within each arc;

3. Take the convex hull of all vertices.

These n-gons are denoted Rm,n and L(Rm,n) = 2n sin π
2n . The 6-gon R3,6 is illustrated in Figure 2b.

Theorem 2 (Reinhardt [1], Vincze [9], Datta [2]) For all n ≥ 3, let L∗
n denote the maximal perime-

ter among all convex small n-gons, `∗n the maximal perimeter among all equilateral ones, and Ln :=

2n sin π
2n .

• When n has an odd factor m, `∗n = L∗
n = Ln is achieved by finitely many equilateral n-gons [3,

4, 5], including Rm,n. The optimal n-gon Rm,n is unique if m is prime and n/m ≤ 2.

• When n = 2s with s ≥ 2, L(Rn) < L∗
n < Ln.

When n = 2s, both L∗
n and `∗n are only known for s ≤ 3. Tamvakis [6] found that L∗

4 = 2+
√

6−
√

2,

and this value is only achieved by R+3 , shown in Figure 1b. Audet, Hansen, and Messine [7] proved

that L∗
8 = 3.121147 . . . , and this value is only achieved by V8, shown in Figure 3d. For the equilateral

quadrilateral, it is easy to see that `∗4 = L(R4) = 2
√

2. Audet, Hansen, Messine and Perron [10] studied

the equilateral octagon and determined that `∗8 = 3.095609 . . . > L(R8) = 4
√

2−
√

2, and this value is

only achieved by H8, shown in Figure 3c. If u := `∗8
2/64 denote the square of the sides length of H8, we

can show that u is the unique root of the polynomial equation

2u6 − 18u5 + 57u4 − 78u3 + 46u2 − 12u+ 1 = 0

that belongs to (sin2(π/8), 4 sin2(π/16)). Note that the following inequalities are strict: `∗4 < L∗
4 and

`∗8 < L∗
8.

For n = 2s with s ≥ 4, exact solutions of the maximal perimeter problem appear to be presently

out of reach. However, tight lower bounds can be obtained analytically. Recently, Bingane [8] proved

that, for n = 2s with s ≥ 2,

L∗
n ≥ 2n sin

π

2n
cos

(
π

2n
− 1

2
arcsin

(
1

2
sin

2π

n

))
> L(Rn),

which implies

Ln − L∗
n ≤

π7

32n6
+O

(
1

n8

)
.

On the other hand, Mossinghoff [11] constructed a family of convex equilateral small n-gons Mn,

illustrated in Figure 4, such that

Ln − L(Mn) =
3π4

n4
+O

(
1

n5

)
and

L(Mn)− L(Rn) =
π3

8n2
+O

(
1

n4

)
for n = 2s with s ≥ 4. The next section proposes tighter lower bounds for `∗n.

3 Proof of Theorem 1

We use cartesian coordinates to describe an n-gon Pn, assuming that a vertex vi, i = 0, 1, . . . , n− 1, is

positioned at abscissa xi and ordinate yi. Sum or differences of the indices of the coordinates are taken
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(a) (M16, 3.134707) (b) (M32, 3.140134)

Figure 4: Mossinghoff polygons (Mn, L(Mn)): (a) Hexadecagon M16; (b) Triacontadigon M32

modulo n. Placing the vertex v0 at the origin, we set x0 = y0 = 0. We also assume that the n-gon Pn
is in the half-plane y ≥ 0 and the vertices vi, i = 1, 2, . . . , n − 1, are arranged in a counterclockwise

order as illustrated in Figure 5, i.e., xiyi+1 ≥ yixi+1 for all i = 1, 2, . . . , n− 2.

The n-gon Pn is small if maxi,j ‖vi−vj‖ = 1. It is equilateral if ‖vi−vi−1‖ = c for all i = 1, 2, . . . , n.

Imposing that the determinants of the 2× 2 matrices satisfy

σi :=

∣∣∣∣xi − xi−1 xi+1 − xi−1

yi − yi−1 yi+1 − yi−1

∣∣∣∣ ≥ 0

for all i = 1, 2, . . . , n− 1 ensures the convexity of the n-gon.

v0(0, 0)

v1(x1, y1)

v2(x2, y2)

v3(x3, y3)

v4(x4, y4)

v5(x5, y5)

v6(x6, y6)

v7(x7, y7)

x

y

Figure 5: Definition of variables: Case of n = 8 vertices

For any n = 2s where s ≥ 4 is an integer, we introduce a convex equilateral small n-gon called Bn
and constructed as follows. Its diameter graph has the edge v0 − vn

2
as axis of symmetry and can

be described by the 3n/8 − 1-length half-path v0 − vn
2 −1 − . . . − v 3n

4 +1 − vn
4

and the pendant edges

v0 − vn
2

, v4k−1 − v4k−1+n
2

, k = 1, . . . , n/8. The polygons B16 and B32 are shown in Figure 6. They are

symmetrical with respect to the vertical diameter.

Place the vertex vn
2

at (0, 1) in the plane. Let t ∈ (0, π/n) denote the angle formed at the vertex v0
by the edge v0 − vn

2 −1 and the edge v0 − vn
2

. This implies that the sides length of Bn is 2 sin(t/2).
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(a) (B16, 3.135288) (b) (B32, 3.140246)

Figure 6: Polygons (Bn, L(Bn)) defined in Theorem 1: (a) Hexadecagon B16; (b) Triacontadigon B32

Since Bn is equilateral and symmetric, we have from the half-path v0 − . . .− vn
4

,

x 3n
4 +1 = sin t−

n/8−1∑
k=1

(−1)k−1(sin(4k − 1)t− sin 4kt+ sin(4k + 1)t)

= sin t− (2 cos t− 1)(sin 2t+ sin(n/2− 2)t)

2 cos 2t
= −xn

4 −1,

xn
4

= x 3n
4 +1 + sin(n/2− 1)t = −x 3n

4
,

y 3n
4 +1 = cos t−

n/8−1∑
k=1

(−1)k−1(cos(4k − 1)t− cos 4kt+ cos(4k + 1)t)

= cos t− (2 cos t− 1)(cos 2t+ cos(n/2− 2)t)

2 cos 2t
= yn

4 −1,

yn
4

= y 3n
4 +1 + cos(n/2− 1)t = y 3n

4
.

Finally, the angle t is chosen so that ‖v 3n
4 +1 − v 3n

4
‖ = 2 sin(t/2), i.e.,

(2x 3n
4 +1 + sin(n/2− 1)t)2 + cos2(n/2− 1)t = 4 sin2(t/2).

An asymptotic analysis produces that, for large n, this equation has a solution t0(n) satisfying

t0(n) =
π

n
− π4

n5
+
π5

n6
− 11π6

6n7
+

35π7

12n8
+O

(
1

n9

)
.

By setting t = t0(n), the perimeter of Bn is

L(Bn) = 2n sin
t0(n)

2
= 2n sin

(
π

2n
− π4

2n5
+O

(
1

n6

))
= π − π3

24n2
+

(
π5

1920
− π4

)
1

n4
+
π5

n5
−
(

π7

322560
+

41π6

24

)
1

n6
+O

(
1

n7

)
and

Ln − L(Bn) =
π4

n4
− π5

n5
+O

(
1

n6

)
.

Since the polygon Mn proposed by Mossinghoff [11] satistifies

L(Mn) = π − π3

24n2
+

(
π5

1920
− 3π4

)
1

n4
+

9π5

n5
−
(

π7

322560
+

9π6

8

)
1

n6
+O

(
1

n7

)
,
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it follows that

L(Bn)− L(Mn) =
2π4

n4
− 8π5

n5
− 7π6

12n6
+O

(
1

n7

)
.

To verify that Bn is small, we calculate

‖vn
4
− v 3n

4
‖ = 2xn

4
= 1− π3

n3
− 7π5

4n5
+O

(
1

n7

)
< 1.

To test that Bn is convex, we compute

σn
4

=
2π3

n3
− π4

n4
+O

(
1

n5

)
> 0.

This completes the proof of Theorem 1.

All polygons presented in this work were implemented as a MATLAB package: OPTIGON [12],

which is freely available at https://github.com/cbingane/optigon. In OPTIGON, we provide

MATLAB functions that give the coordinates of the vertices. For example, the vertices coordinates

of a regular small n-gon are obtained by calling [x,y] = cstrt regular ngon(n). The command

calc perimeter ngon(x,y) computes the perimeter of a polygon given by its vertices coordinates

(x,y). One can also find an algorithm developed in [13] to find an estimate of the maximal area of a

small n-gon when n ≥ 6 is even.

Table 1 shows the perimeters of Bn, along with the upper bounds Ln, the perimeters of the regular

polygons Rn and Mossinghoff polygons Mn. When n = 2s and s ≥ 4, Bn provides a tighter lower

bound on the maximal perimeter `∗n compared to the best prior convex equilateral small n-gon Mn.

By analyzing the fraction L(Bn)−L(Mn)
Ln−L(Mn)

of the length of the interval [L(Mn), Ln] containing L(Bn), it is

not surprising that L(Bn) approaches 1
3L(Mn) + 2

3Ln as n increases since L(Bn)− L(Mn) ∼ 2π4/n4 for

large n.

Table 1: Perimeters of Bn

n L(Rn) L(Mn) L(Bn) Ln
L(Bn)−L(Mn)

Ln−L(Mn)

16 3.1214451523 3.1347065475 3.1352878881 3.1365484905 0.3156
32 3.1365484905 3.1401338091 3.1402460942 3.1403311570 0.5690
64 3.1403311570 3.1412623836 3.1412717079 3.1412772509 0.6272

128 3.1412772509 3.1415127924 3.1415134468 3.1415138011 0.6487
256 3.1415138011 3.1415728748 3.1415729180 3.1415729404 0.6589

4 Improved triacontadigon and hexacontatetragon

It is natural to ask if the polygon constructed Bn might be optimal for some n. Using constructive

arguments, Proposition 1 and Proposition 2 show that B32 and B64 are suboptimal.

Proposition 1 There exists a convex equilateral small 32-gon whose perimeter exceeds that of B32.

Proof. Consider the 32-gon Z32, illustrated in Figure 7a. Its diameter graph has the edge v0 − v16 as

axis of symmetry and can be described by the 4-length half-path v0 − v11 − v24 − v10 − v23 and the

pendant edges v0 − v15, . . . , v0 − v12, v11 − v31, . . . , v11 − v25.

Place the vertex v0 at (0, 0) in the plane, and the vertex v16 at (0, 1). Let t ∈ (0, π/32) denote the

angle formed at the vertex v0 by the edge v0− v15 and the edge v0− v16. We have, from the half-path

v0 − . . .− v23,

x10 = sin 5t− sin 13t+ sin 14t = −x22, y10 = cos 5t− cos 13t+ cos 14t = y11,

x23 = x10 − sin 15t = −x9, y23 = y10 − cos 15t = y9.

https://github.com/cbingane/optigon
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Finally, t is chosen so that ‖v10 − v9‖ = 2 sin(t/2), i.e.,

(2(sin 5t− sin 13t+ sin 14t)− sin 15t)2 + cos2 15t = 4 sin2(t/2).

We obtain t = 0.0981744286 . . . and L(Z32) = 64 sin(t/2) = 3.1403202339 . . . > L(B32). One can verify

that Z32 is small and convex.

Proposition 2 There exists a convex equilateral small 64-gon whose perimeter exceeds that of B64.

Proof. Consider the 64-gon Z64, illustrated in Figure 7b. Its diameter graph has the edge v0 − v32 as

axis of symmetry and can be described by the 23-length half-path v0 − v31 − v63 − v30 − v61 − v29 −
v60− v28− v58− v27− v57− v26− v56− v25− v55− v24− v54− v23− v53− v21− v52− v19− v51− v16,

the pendant edges v30− v62, v28− v59, v53− v22, v52− v20, v51− v18, v51− v17, and the 4-length path

v15 − v50 − v14 − v49.

Place the vertex v0 at (0, 0) in the plane, and the vertex v32 at (0, 1). Let t ∈ (0, π/64) denote the

angle formed at the vertex v0 by the edge v0− v31 and the edge v0− v32. We have, from the half-path

v0 − . . .− v31,

x51 = sin t− sin 2t+ sin 3t− sin 5t+ sin 6t− sin 7t+ sin 8t

−
20∑
k=10

(−1)k sin kt+ sin 22t− sin 23t+ sin 25t− sin 26t = −x13,

y51 = cos t− cos 2t+ cos 3t− cos 5t+ cos 6t− cos 7t+ cos 8t

−
20∑
k=10

(−1)k cos kt+ cos 22t− cos 23t+ cos 25t− cos 26t = y13,

x16 = x51 + sin 29t = −x48,
y16 = y51 + cos 29t = y48,

and, from the path v15 − . . .− v49,

x50 = −1/2 = −x14, y50 = y = y14,

x15 = x50 + cos t = −x49, y15 = y50 + sin t = y49.

Finally, t and y are chosen so that ‖v51 − v50‖ = ‖v16 − v15‖ = 2 sin(t/2). We obtain t =

0.0490873533 . . . and L(Z64) = 128 sin(t/2) = 3.1412752155 . . . > L(B64). One can verify that Z64 is

small and convex.

Polygons Z32 and Z64 offer a significant improvement to the lower bound of the optimal value. We

note that

`∗32 − L(Z32) < L32 − L(Z32) = 1.09 . . .× 10−5 < L32 − L(B32) = 8.50 . . .× 10−5,

`∗64 − L(Z64) < L64 − L(Z64) = 2.03 . . .× 10−6 < L64 − L(B64) = 5.54 . . .× 10−6.

Also, the fractions
L(Z32)− L(B32)

L32 − L(B32)
= 0.8715 . . . ,

L(Z64)− L(B64)

L64 − L(B64)
= 0.6327 . . .

indicate that the perimeters of the improved polygons are quite close to the maximal perimeter. This

suggests that it is possible that another family of convex equilateral small polygons might produce an

improvement to Theorem 1.
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(a) (Z32, 3.140320) (b) (Z64, 3.141275)

Figure 7: Improved convex equilateral small n-gons (Zn, L(Zn)): (a) Triacontadigon Z32 with larger perimeter than B32;
(b) Hexacontatetragon Z64 with larger perimeter than B64

5 Conclusion

Lower bounds on the maximal perimeter of convex equilateral small n-gons were provided when n is

a power of 2 and these bounds are tighter than the previous ones from the literature. For any n = 2s

with integer s ≥ 4, we constructed a convex equilateral small n-gon Bn whose perimeter is within

π4/n4 +O(1/n5) of the optimal value. For n = 32 and n = 64, we propose solutions with even larger

perimeters.
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