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– Bibliothèque et Archives Canada, 2021

The publication of these research reports is made possible thanks to the
support of HEC Montréal, Polytechnique Montréal, McGill University,
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Géza Joós d, c

a GERAD, Montréal (Québec) Canada, H3T 2A7
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Abstract : This paper develops a strategy, using concepts from Mean Field Games, to coordinate the
charging of a large population of battery electric vehicles (BEVs) in a parking lot powered by solar
energy and managed by an aggregator. The goal is to share the energy available so as to minimize the
standard deviation of the state of charge (SoC) of batteries at the end of the day. We consider both
cases of homogeneous and heterogeneous populations of BEVs with a stochastic dynamics of SoC. The
charging laws correspond to the Nash equilibrium induced by quadratic cost functions based on an
inverse Nash equilibrium concept and designed to help the batteries with the lowest initial SoCs. While
the charging laws are strictly decentralized, they guarantee that a weighted mean of instantaneous
charging powers to the vehicles follows a mean charging trajectory based on the solar energy forecast
for the day. That day ahead forecast is broadcasted to the vehicles which can then gauge the necessary
SoC upon leaving their home. We illustrate the advantages of our strategy in the two cases of a typical
sunny day and a typical cloudy day when compared to more straightforward strategies: first come first
full and equal sharing.

Keywords: Aggregator, battery electric vehicle, Mean Field Games, Nash equilibrium, parking lot,
solar energy
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1 Introduction

The massive introduction of BEVs in modern power systems is bound to have important impacts,

positive or negative, depending on the way this novel situation is managed [16]. There will be a great

pressure to introduce numerous charging stations where the need is anticipated, but if too many high

speed charging vehicles are connected at any one time (for example upon departure from work towards

residence place), that may create both local transformer and eventually system wide overloads [13]. On

the other hand, adequate management of the battery storage associated with an aggregate of BEVs

can turn such an aggregate into a virtual power plant. Thus, in a context of integration with clean

sources of energy, such as photovoltaics, car batteries could be storing the solar energy available during

the day when cars are parked [3, 5, 7]. As is well known in the photovoltaics rich state of California for

example, a so-called power demand duck curve [4] is observed: the peak demand occurs at the end of

the day, upon return of working people to their homes. At that point, available solar radiation has

all but disappeared and while solar energy may have been used by consumers during the day, there

is a need for a high electric power ramp at dusk followed by several hours of sustained high power

consumption. The latter power demand will be most likely met by fossil based energy sources, unless

some other mitigating actions are taken. In [6, 14], the authors show in their context, that if the electric

energy storage contained in a large number of BEVs is properly utilized, this could help significantly

reduce the power needed from fossil sources during the evening peak.

Our objective in this paper is to propose an algorithm with desirable properties, for sharing solar

photovoltaic (PV) power amongst BEVs parked in a parking lot, or a collection of federated parking

lots. The cars belong to commuters working in the neighborhoods of these parking lots and could

recharge at least partially depending on sunshine availability, their batteries at the parking lot charging

stations. One particular business model is that the parking lots aggregator would charge a yearly fee for

use of a parking space and the associated charging station. If then the car owners wish to recuperate

part of their parking costs or even make an extra amount of profit, they could choose to participate in

a financially compensated grid support operation coordinated by the aggregator.

In prior recent work, the authors in [10] proposed a linear programming (LP) strategy, in a solar

powered parking lot of a car-share service to fairly distribute the available solar energy amongst

heterogeneous BEVs by favoring those arriving with less charge. They studied the case where the supply

demand ratio (SDR) is strictly inferior to 1. They demonstrated, by charging a subset of BEVs during

each time slot, a reduction of 60% of yearly average standard deviation in the battery charge levels

at the end of recharging compared to the equal sharing (ES) approach. In [19], the authors studied

the case when it is not possible to charge all BEVs simultaneously at their homes. They developed

a centralized weighted fair queuing (WFQ) algorithm with a time slot control switch in each smart

charger to charge maximally all of the homogeneous BEVs, by favoring (i.e. charging more quickly)

those arriving with less charge. The strategy selected then a subset of BEVs to charge in each interval

during peak demand when there is not enough energy. They compared the results with a first come

first full (FCFF) algorithm. They showed that when the SDR is equal to 1, there is 5% of BEVs which
cannot leave their homes on time while it is 7% for FCFF.

In both works above which come close to what we are going to do, the authors failed to propose a

decentralized algorithm. A decentralized control scheme allows individual BEVs to determine their own

charging pattern. Their decisions could, for example, be made on the basis of time-of-day, electricity

price or battery state of health [12, 18]. We suggest relying on an adequately tailored variation of

a Mean Field Game-based control scheme [8, 9] which, while it fills all cars simultaneously, tends to

provide more instantaneous charging to the cars with the lowest current fill levels. The problem can

be formulated as large population game on a finite charging interval. In [12], the authors study the

existence, uniqueness and optimality of the Nash equilibrium of the charging problems to minimize

local electricity costs and to fully charge. In a decentralized computational mechanism, they show

in a deterministic case that the large population charging games will converge to a unique Nash

equilibrium which is either globally optimal for a homogeneous population or nearly globally optimal

for heterogeneous population.
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Most of the rest of literature [6, 12, 15, 17, 18] is directly based on economic incentives and thus

does not concern us in this paper. The authors address BEVs charging strategies where the charging is

scheduled according to the energy price and/or the distribution system losses to the grid.

The table below places our work in the BEVs charging optimization when the aggregators are

parking lot operators (PLOs) and distribution grid operators (DGOs).

Table 1: Classification of related work in the literature.

Potential goal
Aggregators user satisfaction monetary benefits grid impact

PLOs our work, [10] [6, 12] [15]
DGOs [19] [18] [17]

The charging control strategies tested in this paper will be compared with respect to the following

requirements:

• fairness: we wish that for each user, at the end of recharging in the parking lot, the SOC of its

BEV will end up close to the average of that of all other users, regardless of the BEV’s initial SOC.

Thus, we look for a charging scheme to favour the emptier SOCs when compared to the fuller

ones upon arrival in the parking lot. However, at no time, the SOCs which were initially lower

should be permitted to exceed the ones that were initially higher. Note that in Appendix C, we

define a fairness coefficient and use it to contrast the performance of various charging strategies.

• decentralization and non-invasiveness: from the point of view of the parking lot operator,

decentralized charging control laws are quite desirable because they minimize the need to

observe the state of charge of individual batteries, a process which is both complex and invasive.

Furthermore, a local control allows a user to interrupt the process at any time, particularly if the

parking operator has designed a charging scheme based on a poor model of the battery.

In what follows we shall present the Mean Field Game-based algorithm to calculate the proposed

operator dictated decentralized control laws according to the potential solar energy available. Subse-

quently, the performance of these laws will be compared to that of two common strategies used in the

literature. The first strategy (first come first full) [19] consists in maximally recharging the BEVs in

order of arrival at the parking lot. The second strategy (equal sharing) [10] consists in sharing equally at

all times the available solar power amongst battery vehicles still not fully charged. All strategies make

full use of the available daily energy. Also, for the purpose of meaningfully comparing the performance

of the different strategies in our case studies, we assume that the SDR is less than one.

Limitations of proposed control algorithm

In order to implement our charging strategy, we make the following assumptions:

• We assume an existence of an infrastructure to coordinate BEVs charging in the parking lot and

PV production with a SDR strictly inferior to 1.

• We assume a fixed number of BEVs which are charged in the parking lot simultaneously.

• The BEVs are charged according to a local state feedback law, determined by the parking lot

operator, with common structure for all BEVs within the same category. Thus, the charging rate

is controlled in the charger.

The rest of this paper is organized as follows. In Section 2, we present the theoretical underpinnings

and details of our proposed algorithm. In Section 3, we present the results in the homogeneous case. In

Section 4, we present the results in the heterogeneous case. Finally, in Section 5, we conclude and give

an outlook on future research.
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2 Mean Field Game-based control of a large population of homo-
geneous BEVs

2.1 Nomenclature

E mathematical expectation symbol
∇ vector differential operator
∂�/∂4 partial derivative of � with respect to 4
d4 differential of 4
t, T time and time at steady state (i.e. t→∞)
i a user of BEV
c homogeneous class of BEVs
4i,t,c any parameter 4 below applied in {i, t, c}
α charging efficiency of the battery
β capacity of the battery
b = α/β characteristic of the battery
J, J∗ cost to minimize and optimal cost
u, u∗ charging power and optimal charging power
uW daily solar power curve in the parking
W total daily solar energy in the parking
Wc class weighted daily solar energy in the parking
x state of charge (SoC) of BEV
xi,0|∞ initial/final SoC of BEV’s user i
x0|∞ average initial/final SoCs of BEVs
xt mathematical expectation of SoC of BEVs

xtargett target for mean SoC of BEVs
xtarget∞ target for steady-state mean SoC of BEVs
σxi,0|∞ standard deviation of initial/final SoCs
qyt pressure field trajectory for all BEVs
qy∞ steady state pressure field for all BEVs
qx0 comfort coefficient of all BEVs
r control coefficient of all BEVs
y collective direction of BEVs’ SoCs
δ discount factor for convergence of the cost J
ν, ω Brownian noise intensity and Brownian motion
π, s, γ coefficients of quadratic form of optimal cost J∗

2.2 Mathematical model

We consider a large population of N homogeneous BEVs in a parking lot. The assumption of a large

population is needed because later on in our analysis, we will assimilate the empirical mean of SoCs

(a random quantity for a small number of vehicles) with its mathematical expectation (a predictable

deterministic quantity) by virtue of the law of large numbers. Each BEV i, i = 1, ..., N , has an initial

SoC xi,0 which results of a daily traffic pattern from home to parking. We can then write the SoC

stochastic dynamics for BEV i as follows:

dxi,t = bui,tdt+ νdωi, t ≥ 0, (1)

where t ∈ [0, T ] is in h, xi,t is the SoC in pu, b = α
β , α ∈ (0, 1] is the charge efficiency of the battery

in pu/h, β is the battery capacity in kWh, ui,t ∈ R+ is the charging power in kW , ωi is a normalized

Brownian process, ν is the intensity of that Brownian noise and ωi is assumed independent of ωj for

i 6= j. The term νdωi defines the stochasticity of the SoC which can result physically from fluctuations

in the charging and losses of the battery.
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2.3 Considerations

We wish to address the decentralized control of battery recharging of a set of BEVs as part of a so-called

Mean Field Game (MFG). One can refer to Appendix A for a short description of the basic concepts in

MFG. The control will be of linear-quadratic (LQ) type [9]. The parking lot operator broadcasts an

average SoC target trajectory (xtargett ) based on the solar energy forecast for the current day. The goal

is that the BEVs store up as much of the solar energy available as possible and stabilize when sunshine

subsides at a precalculated steady-state average SoC (xtarget∞ ) based on the forecast. The proposed

algorithm requires that the parking lot operator know the average SoC of the BEVs upon arrival (x0).

This can be achieved by recording initial SoCs as BEVs enter the parking lot.

The focal point of the approach is the prescription of a daily quadratic cost Ji for each BEV i to

ensure that the BEVs that are initially fuller recharge less quickly than those that are less full, so

that final SoC standard deviation is reduced; while still maintaining the collective goal of bringing all

BEVs to a steady-state average target SoC. The cost functions are designed so that by optimizing

the individual BEV costs Ji, one achieves the aggregator’s goal. The latter is that the average SoC

trajectory (xt) exactly match the average SoC target trajectory (xtargett ) and computed based on the

sunshine forecast.

2.4 Establishment of individual battery cost function

The battery cost function on an infinite horizon is a mathematical expectation. It is designed by the

aggregator and defined for a BEV as follows:

Ji(xi,0, ui,t) =E
[ ∫ ∞

0

e−δt
[qyt

2
(xi,t − y)2 +

r

2
u2i,t

+
qx0

2
(xi,t − xi,0)2

]
dt | xi,0

]
,

(2)

where δ is a discount coefficient to ensure convergence of the cost (we could set δ to zero to work on

a finite horizon T ), y is the collective direction of the BEVs’ SoCs which is equal to 1 in our case (it
serves as a direction signal to all BEVs, such that all BEVs should move toward y but not beyond),

r is a coefficient which penalizes the level for charging rate, qx0 is a pressure coefficient aimed at

limiting the distance from the initial SoC (for the state of health of the user’s battery and fairness to

others) and qyt is the pressure field trajectory. The latter is common to all BEVs and is numerically
obtained as the solution of a system of differential equations. It is the key quantity which will drive

all SoCs towards a full state of charge while sharing instantaneously available solar energy in a way

that reduces the variance of SoCs. Its computation is more detailed below and it is at the heart of our

inverse Nash equilibrium procedure. The class of quadratic cost functions is well documented in the

literature [8, 9, 11].

The BEVs will collectively recharge their batteries with a time dependent coefficient (qyt ) penalizing

the gap between the current SoC (xi,t) and the ultimate destination direction of SoCs defined by the

value of y. Once the target (xtarget∞ ) is reached, qyt will settle to a constant value, allowing the reaching

of an SoC steady state that meets the constraints set by the parking lot operator.

2.5 Optimal control problem and solutions

We begin by making the following variable changes to simplify the expression of cost Ji in Equation (2):

Xi,t = (xi,t − y)e−δt/2, Ui,t = ui,te
−δt/2,

Vt = νe−δt/2 and Zi,t = (xi,t − xi,0)e−δt/2.
(3)
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Then

dXi,t = dxi,te
−δt/2 − δ

2
xi,te

−δt/2dt+
δ

2
ye−δt/2dt

= (bui,tdt+ νdωi)e
−δt/2 − δ

2
(xi,t − y)e−δt/2dt

= −δ
2
Xi,tdt+ bUi,tdt+ Vtdωi.

(4)

The principle of resolution is based on assuming a quadratic form of the optimal cost function (with

coefficients π, s and γ):

J∗i (Xi,t) =
1

2
πi,tX

2
i,t + si,tXi,te

−δt/2 + γi,t. (5)

We then write the Hamilton-Jacobi-Bellman equation corresponding to this assertion [1].

∂J∗i
∂t

+ min
U

{qyt
2
X2
i,t +

qx0

2
Z2
i,t +

r

2
U2
i,t +

∂J∗i
∂X

(
− δ

2
Xi,t + bUi,t

)
+
∂2J∗i
∂X2

V 2
t

2

}
= 0. (6)

Differentiating with respect to Ui,t yields

∇U
{qyt

2
X2
i,t +

qx0

2
Z2
i,t +

r

2
U2
i,t

}
+∇U

{∂J∗i
∂X

(
− δ

2
Xi,t + bUi,t

)
+
∂2J∗i
∂X2

V 2
t

2

}
= 0

−→ U∗i,t = − b
r

∂J∗i
∂X

.

(7)

The second derivative with respect to Ui,t is r > 0, so the value found will indeed correspond to a

minimum:

U∗i,t = − b
r

[
πi,tXi,t + si,te

−δt/2]. (8)

The optimal control therefore depends on the values πi,t and si,t. The expressions of πi,t and si,t
are then determined by identification:

1

2
X2
i,t

dπi,t
dt

+Xi,te
−δt/2(dsi,t

dt
− δ

2
si,t
)

+
dγi,t
dt

=− qyt
2
X2
i,t −

qx0

2
Z2
i,t +

b2

2r

(
π2
i,tX

2
i,t + 2Xi,tπi,tsi,te

−δt/2

+ s2i,te
−δt)+

δ

2
Xi,t

(
πi,tXi,t + si,te

−δt/2)− V 2
t

2
πi,t

=X2
i,t

( b2
2r
π2
i,t +

δ

2
πi,t −

qyt
2
− qx0

2

)
+Xi,te

−δt/2(b2
r
πi,tsi,t +

δ

2
si,t − yqx0 + xi,0qx0

)
+ . . . .

(9)

The resulting coupled differential equations are:

dπi,t
dt

=
b2

r
π2
i,t + δπi,t − qyt − qx0

,

dsi,t
dt

= (δ +
b2

r
πi,t)si,t + qx0(xi,0 − y).

(10)

This leads to the optimal control law:

u∗i,t = − b
r

[
πi,t(xi,t − y) + si,t

]
. (11)

The coefficient qyt appearing in the differential equation of π is unknown at this stage. Nonetheless,

it must respect the fact that when the BEVs use the optimal control u∗i,t, their empirical average
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trajectory (xt), assimilated thanks to the law of large numbers to the mathematical expectation of the

SoC of a generic BEV
(
E[xi,t]

)
, will correspond to the average target trajectory (xtargett ) imposed by

the parking lot operator. The control strategy that is developed, relies on knowing the anticipated

solar energy during the day. Based on the dynamics of the SoC xi,t in Equation (1), the average

target xtargett needed is determined by integrating the curve of anticipated total solar power (uWt)

over the time horizon T of interest and dividing, for a case of homogeneous battery capacities, by the

total number of BEVs present in the parking lot for recharging. The total daily solar energy available

(W =
∫ T
0
uWtdt) is assumed less than the total energy that all BEVs would need to fully recharge their

batteries.

2.6 Calculation of qyt by Nash equilibrium inversion

We calculate the pressure field qyt directly by numerical resolution of differential equations. This system

of differential equations to be solved is obtained by imposing that under the action of qyt , and the

associated optimal control law (Equation (11)), the average trajectory xt of the BEVs follow the average

target trajectory xtargett dictated by the parking lot operator. This restriction allows us to write the

Mean Field equations based on taking the mathematical expectation of the SoC of a generic battery in

the population subject to decentralized control law (Equation (11)).

dxtargett

dt
= bu∗t = −b

2

r
[πt(x

target
t − y) + st],

dπt
dt

=
b2

r
π2
t + δπt − qyt − qx0 ,

dst
dt

= (δ +
b2

r
πt)st + qx0

(x0 − y).

(12)

With this approach, the goal is to obtain a mathematical relationship between
dxtarget

t

dt and qyt . This

is the so-called inverse Nash algorithm, its first steps were developed in the control of electric space

heaters [11].

With the first Equation of (12), we can write the relation between πt and st:

πt = − st

xtargett − y
−

r
dxtarget

t

dt

b2(xtargett − y)
. (13)

The differential equation governing the dynamics of st is then written as follows

dst
dt

= −
s2t b

2 + rst
dxtarget

t

dt

r(xtargett − y)
+ (x0 − y)

[
qx0 +

dxtarget
t

dt

b2(xtargett − y)

]
. (14)

To solve this differential equation numerically, we need to specify an initial condition. Since this

equation is solved backwards in time, this is equivalent to determining st. By choosing a very large T

control period, it is reasonable to assume that we will be very close to the steady state. We will then

assimilate qyT , πt, st to their steady state values when T tends towards infinity, i.e. qy∞, π∞, s∞. This
approximation allows us to write

0 = −b
2

r
[π∞(xtarget∞ − y) + s∞],

0 =
b2

r
π2
∞ − qy∞ − qx0

,

0 =
b2

r
π∞s∞ + qx0

(x0 − y).

(15)
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This yields

qyT = qx0

(x0 − xtarget∞
xtarget∞ − y

)
,

πT =

√
r

b2
(qx0

+ qyT ),

sT = πT (y − xtarget∞ )
(

or sT =
rqx0

(y − x0)

πT b2

)
.

(16)

Thereafter, we solve numerically and backwards the differential equation of dst
dt , which gives us the

trajectory of st. The latter is re-injected into the equation of πt. Finally, we have all the necessary

ingredients to calculate qyt from

qyt =
b2

r
π2
t + δπt −

dπt
dt
− qx0

. (17)

3 Results in the homogeneous case

3.1 Data

• Homogeneous population of BEVs: we consider BEVs with α = 0.85 and β = 23 kWh. Note that

these are fictitious values corresponding to average values in the more realistically formulated

non homogeneous examples of the next section.

• Total daily solar energy in a parking lot: W = 7800 kWh for recharging N = 400 BEVs (x0 = 0.15

and σxi,0 = 0.04) in a typical sunny day, and W = 3819 kWh for recharging N = 400 BEVs

(x0 = 0.45 and σxi,0
= 0.1) in a typical cloudy day.

• Simulation parameters: T = 24 h, dt = 0.01 h, ν = 0.01, δ = 0.1, qx0
= 1000, r = 0.001(kW )−2,

y = 1 and a random distribution of xi,0.

3.2 Algorithm

Require: N, xi,0, x0, α, β, b, δ, ν, qx0 , r, y, dt, T and uW .
Ensure: Strategy u∗i,t for N BEVs in the parking lot,
i = 1, ..., N .

1 Solve
dx

target
t
dt

= 1
N
buWt and then determine xtarget∞ .

2 Calculate qyT = qx0

(
x0−xtarget

∞
x
target
∞ −y

)
, πT =

√
r
b2

(qx0 + qyT ) and sT = πT (y − xtarget∞ ).

3 Solve dst
dt

= − s
2
t b

2+rst
dx

target
t
dt

r(x
target
t −y)

+(x0 − y)
[
qx0 +

dx
target
t
dt

b2(x
target
t −y)

]
backwards.

4 Calculate πt = − st
x
target
t −y

− r
dx

target
t
dt

b2(x
target
t −y)

and determine dπt
dt

(mean value theorem), πi,t (interpolation).

5 Calculate qyt = b2

r
π2
t + δπt − dπt

dt
− qx0 .

6 Solve
dsi,t
dt

= (δ + b2

r
πi,t)si,t + qx0 (xi,0 − y)

backwards with si,T =
rqx0

(y−xi,0)
πi,T b

2 .

7 Calculate u∗i,t = − b
r

[
πi,t(xi,t − y) + si,t

]
with πi,t = πt.

knowing dxi,t = bui,tdt+ νdωi.

3.3 Obtaining the average target SoC by using daily solar energy in the parking
lot

Realistic generation curves based on historical meteorological data are used (Figure 1), assuming that

similar generation curves can be predicted using for example, a machine learning based model. The
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meteorological data is obtained from Photovoltaic Geographical Information System (PVGIS) made

available by the European Commission. A typical meteorological year in the city of Montreal (45.50

North, 73.58 West) is used with a data resolution of one hour. The very same data can also be found

in Canadian Weather Energy and Engineering Datasets (CWEEDS). The PV power output is then

modeled with the simulation software TRNSYS using type 103 appropriate for modeling the electrical

performance of mono and polycrystaline PV panels. In one isolated parking at an altitude of 64 m we

install 100 PV panels, each with a module area of 1.55 m2, a slope of surface of 45◦ and an azimuth

of 0◦. The modules are building-integrated.

Day of the year
1 32 60 91 121 152 182 213 244 274 305 335 365
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4

5
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8

Figure 1: Solar energy production of a 10 kW photovoltaic system with 100 panels in a parking lot in the city of Montreal
(Canada) in 2015.
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Figure 2: Daily solar power curve uW for charging 400 homogeneous BEVs and target SoC trajectory xtargett imposed by
the parking lot operator.

We determine two different real solar power curves for a full day (sunny day and cloudy day) in

order to compare the influence of the difference in generation on the behaviour of the BEVs charging.

Starting with a typical sunny day, and 400 homogeneous BEVs, we get an average target curve that

saturates at the end of the horizon (xtarget∞ = 0.87). Looking at a generation curve with a different

profile (a cloudy day) and as a result of that a lower energy output at the end of the day, charging the

same number of vehicles with the same average initial SoCs (x0 = 0.15) would result in an average

target that is too low to be acceptable (xtarget∞ = 0.50). The parking lot operator will then announce the

situation the day before, so that the BEVs arrive next day more full in the parking lot. The expected
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average initial SoCs is thus increased (x0 = 0.45). We get an average target curve that saturates at a

more acceptable level (xtarget∞ = 0.80). In a practical case, this latter requirement would likely result in

initial SoCs with higher dispersion (increase of standard deviation) as some of the BEVs could meet

unforeseen events.

3.4 Pressure field from inverse Nash, empirical per BEV average SoC and indi-
vidual SoCs of BEVs using MFG
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Figure 3: Pressure field qyt of 400 homogeneous BEVs.
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Figure 4: Empirical per BEV average SoC xt of 400
homogeneous BEVs.

Figure 5: Individual SoCs of 400 homogeneous BEVs in
a sunny day.

Figure 6: Individual SoCs of 400 homogeneous BEVs in
a cloudy day.

As expected, in steady state we have a constant pressure field (qy∞) for both days. We observe that

qyt is reduced in a typical cloudy day relative to a typical sunny day. This is because the charging rate

needed to achieve full solar utilization is lower on a cloudy day. The smart charger in the parking

lot needs 12 hours to fill a BEV (SoC from 0.148 to 0.870 on average) with a mean charging rate of
1.629 kW in a typical sunny day, while it needs 11 hours in a typical cloudy day (SoC from 0.456 to

0.806 on average) with a mean charging rate of 0.860 kW . We then show that the empirical per car

average SoC obtained and the target SoC imposed by the parking lot operator are quite the same,

thanks to the law of large numbers. The results of individual SoCs of BEVs in both typical days show

a strong reduction in standard deviation σxi,∞ . Also, all the curves’ behaviour in a typical cloudy day

well reflects the characteristic of solar fluctuations. Furthermore, we confirm the main features of our
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MFG control, that of filling more batteries that were emptier to start with while bringing all batteries

close to a predefined mean target.

3.5 Charging controls

In the following, we present the results for the three main controls:

1. First come firs full (FCFF), which fills all the BEVs in the order of arrivals in the parking lot
at maximum charging capacity. So xi,∞ = 1 if energy available.

2. Equal sharing (ES), which fills all the BEVs in the parking lot with the same quantity. The

parking lot operator calculates this quantity which depends on the quantities xtarget∞ and x0.

3. Mean Field Game (MFG), which fills all the BEVs by using the inverse Nash algorithm.
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Figure 7: 400 homogeneous BEVs charging controls in a sunny day.

BEVs
50 100 150 200 250 300 350 400

S
oC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MFG : mean = 0.806, STD = 0.037
FCFF : mean = 0.806, STD = 0.268
ES : mean = 0.808, STD = 0.099
Initial SoCs : mean = 0.456, STD = 0.103

143 BEVs NOT RECHARGED

Figure 8: 400 homogeneous BEVs charging controls in a cloudy day.

3.6 Comparison of charging controls

FCFF control

It is the easiest control to implement. The parking lot operator does not need to estimate an average

level at the end of recharging (xtarget∞ ) for all BEVs. A command is sent to fulfill maximally the BEVs
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in the parking lot regardless of their initial state xi,0 only depending on their arrival times. This

approach is not suitable at all for our problem. It does not meet any of the requirements. First, it is a

centralized control since the parking lot operator must not only note the order of arrivals of BEVs in

the parking lot, but also when they finish filling up. Secondly, at the end of the day, there will generally

be users who have not recharged their batteries at all (15% of BEVs for a sunny day and 36% of BEVs

for a cloudy day). So, at the end of daily recharging we will end up with very frustrated users. We

have the highest values of SoCs’ standard deviations: σxi,∞ = 0.306 (increase of 685%) as x∞ = 0.872

for a sunny day and σxi,∞ = 0.268 (increase of 160%) as x∞ = 0.806 for a cloudy day.

ES control

This is a straightforward charging scheme. Using the forecast solar power available throughout the day,

the parking lot operator estimates at all times an average level per car available for charging. As BEVs

get charged, the number of cars still in demand must be updated. Thus this scheme, although superior

to the previous one, is not decentralized. By giving the same amount to everyone, one does not reward

individuals who took the risk to arrive at the parking lot with a lower initial SoC, so as to potentially

sell more energy back to the grid during the evening peak. Lastly, the SOCs at the end of recharging

(xi,∞) remain dispersed. Indeed, the SoCs’ standard deviation remains close to what it was at the start

of the day, except for a slight possible reduction due to some BEVs completely filling up.

MFG control

This is the control we implemented in the article. The parking lot operator, after estimating xtarget∞ ,

prescribes a decentralized control via our inverse Nash algorithm in the smart charger in the parking

lot. Each user applies their optimal control locally so that, the average trajectory (xt) of all users

corresponds to the average target trajectory (xtargett ) imposed by the parking lot operator. This

approach meets all the requirements of our problem. The standard deviation at the end of recharging

(σxi,∞ = 0.006 as x∞ = 0.870 for a sunny day and σxi,∞ = 0.037 as x∞ = 0.806 for a cloudy day) has

been significantly reduced (a reduction of 85% for a sunny day and 64% for a cloudy day). Although its

implementation appears more complex when compared to the alternative approaches, it is a price which

might be worth paying to guarantee a robust charging/discharging modulation system for BEVs. In

turn, the latter would enhance the chances of the BEVs contributing to the expansion of the renewable

energy economy.

We conclude by computing the fairness coefficient (FC), as illustrated in Appendix C, in each

strategy.

Table 2: Fairness coefficient (FC) in each charging control for 400 homogeneous BEVs as we know minxi,0 =
0.05,maxxi,0 = 0.26 in a sunny day and minxi,0 = 0.21,maxxi,0 = 0.75 in a cloudy day.

Sunny day Cloudy day
minxi,∞ maxxi,∞ η FC minxi,∞ maxxi,∞ η FC

FCFF 0.06 1 0.12 −0.32 0.21 1 0.23 −0.27
ES 0.77 0.98 0 0 0.56 1 0 0
MFG 0.86 0.89 0 0.99 0.72 0.91 0 0.34

Considering the ES control as a base case for comparison purposes. In a typical sunny day the

MFG control is 99% times fairer while FCFF is 32% less fair, and in the typical cloudy day the MFG

control is 34% times fairer while FCFF is 27% less fair.
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4 Extension: Heterogeneous population of BEVs

4.1 Redefinition of the problem

We consider here the case of a large heterogeneous population of BEVs. We assume that it is possible
to group the BEVs into classes considered homogeneous. Thus, all the BEVs of a class c share the same

physical parameters, and have an average initial SoC x0,c.

Let N BEVs be distributed in C homogeneous classes Nc such that
∑C
c=1Nc = N .

Each class then possesses its own set of physical parameters {αc, βc, bc = αc

βc
}. The SoC stochastic

dynamics of BEV i of the c class is written as follows:

dxi,t,c = bcui,t,cdt+ νdωi, t ≥ 0. (18)

The distribution of daily solar energy in each class for recharging BEVs in the parking lot, Wc, is

calculated as follows:

W =

C∑
c=1

Wc, Wc =
∑
t

εc∑C
i=1 εc

uWt
, εc =

Ncβc
x0,cαc

. (19)

In order to better redistribute energy according to individual car needs, Wc is distributed by favoring

a class with more BEVs (Nc), a larger-size battery (βc), a lower charging efficiency (αc) and finally a

lower initial average (x0,c).

Based on this principle, the inverse Nash algorithm is used to solve the control problem separately
for each homogeneous class of BEVs assuming that:

• the parking lot operator knows the number of total BEVs (N), the number of BEVs in each

class (Nc) and the initial SoCs xi,0,c of the BEVs in each class.

• the parking lot operator knows the daily total solar energy (W ) and then obtains the average
target trajectories xtargett,c of BEVs in each class. This allows her to calculate the average target

trajectories xtarget∞,c at the end of recharging in each class according to the Equations (18) and (19).

• each BEV’s user knows the class she belongs to, therefore may calculate her pressure field qyt,c and

later on, her optimal control u∗i,t,c such that on average the class’s trajectory (xt,c) corresponds

to the average target trajectory of the class (xtargett,c ) imposed by the parking lot operator.

4.2 Data

We assume that our population consists of 4 types of BEVs.

1. Class 1: N1 BEVs with α = 0.8 and β = 16 kWh.

2. Class 2: N2 BEVs with α = 0.9 and β = 16 kWh.

3. Class 3: N3 BEVs with α = 0.8 and β = 30 kWh.

4. Class 4: N4 BEVs with α = 0.9 and β = 30 kWh.

For all other parameters, we use the same values as for the homogeneous case.

4.3 Algorithm

The algorithm is practically the same as in the homogeneous case except that here we separate the

heterogeneous BEVs into homogeneous classes to which we attribute a fraction of the total daily solar

energy available.
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4.4 Obtaining the average target SoC in each class by using daily solar energy in
the parking lot

We assume the same solar generation profiles, so the total daily solar energy W = 7800 kWh for a

typical sunny day and W = 3819 kWh for a typical cloudy day.

Depending on the average initial SoCs in each class (x0,c), our results will confirm that the daily

solar energy in each class Wc is well distributed by favoring the class with most BEVs and, BEVs with

large battery and low charging efficiency. When W is too low to satisfactorily refill all BEVs in each

class, we need again to increase x0,c.
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Figure 9: Daily solar power curve uW for charging 400 heterogeneous BEVs and target SoC trajectory xtargett,c imposed by
the parking lot operator in each class.

Table 3: Charging 400 heterogeneous BEVs in a typical sunny day.

Parameters Class 1 Class 2 Class 3 Class 4

Nc 98 102 101 99
x0,c 0.15 0.15 0.15 0.15
σxi,0,c 0.04 0.04 0.04 0.04
Wc 1408 kWh 1302 kWh 2720 kWh 2370 kWh
W distribution 18.0% 16.7% 34.9% 30.4%

xtarget∞,c 0.861 0.890 0.883 0.868

Table 4: Charging 400 heterogeneous BEVs (with different high values of x0,c) in a typical cloudy day.

Parameters Class 1 Class 2 Class 3 Class 4

Nc 98 102 101 99
x0,c 0.4 0.4 0.5 0.5
σxi,0,c 0.1 0.1 0.1 0.1
Wc 793 kWh 733 kWh 1225 kWh 1068 kWh
W distribution 20.7% 19.2% 32.1% 28.0%

xtarget∞,c 0.800 0.817 0.830 0.824

NOTE : Since we have less daily solar energy (W = 3819 kWh), we will require
users with a large battery to come a little fuller than others.
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4.5 Pressure field in each class from inverse Nash, empirical per BEV average
SoC in each class and individual SoCs of BEVs using MFG
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Figure 10: Pressure fields qyt,c of 400 heterogeneous
BEVs.
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Figure 11: Empirical per BEV average SoCs xt,c of 400
heterogeneous BEVs.

Figure 12: Individual SoCs of 400 heterogeneous BEVs
in a sunny day.

Figure 13: Individual SoCs of 400 heterogeneous BEVs
in a cloudy day.

As expected, in steady state we have constant pressure fields (qy∞,c) in each class for both days. The

pressure qy∞,c increases with the difference (xtarget∞,c − x0,c) for both days. The smart charger in the

parking lot needs 12 hours to fill a BEV (SoC from 0.147 to 0.875 on average) with a mean charging rate

of 1.642 kW on a typical sunny day, while it needs 11 hours on a typical cloudy day (SoC from 0.434

to 0.814 on average) with a mean charging rate of 0.935 kW . Then, we show that the empirical per car

average SoC obtained and the target SoC imposed by the parking lot operator are quite close, thanks

to the law of large numbers. The results of individual SoCs of BEVs in both days also demonstrate

a reduction in standard deviation but less than what we had in the homogeneous case. Finally, the

behaviour of all curves in a typical cloudy day closely reflects the characteristics of solar fluctuations.
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4.6 Charging controls

The charging controls, as defined previously, fill all the BEVs in regard to their class in the heteroge-

neous case.

Table 5: Charging controls in each class for 400 heterogeneous BEVs in a typical sunny day.

Class 1 Class 2 Class 3 Class 4
x∞,1 σxi,∞,1 x∞,2 σxi,∞,2 x∞,3 σxi,∞,3 x∞,4 σxi,∞,4

FCFF 0.867 0.315 0.893 0.282 0.883 0.293 0.869 0.312
ES 0.860 0.041 0.892 0.041 0.875 0.040 0.865 0.041
MFG 0.861 0.006 0.890 0.005 0.882 0.005 0.868 0.006

x0,c, σxi,0,c 0.149 0.041 0.152 0.041 0.142 0.040 0.147 0.041
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Figure 14: 400 heterogeneous BEVs charging controls in a sunny day.

Considering a typical sunny day, the MFG control is clearly the best between the three options insofar
as the resulting standard deviation for all classes at the end of recharging is concerned (σxi,∞ = 0.013,

reduction of 68% with x∞ = 0.875). With the FCFF control we still have frustrated users who have

not recharged their batteries at all (14% of BEVs) with the worst standard deviation at the end of

recharging (σxi,∞ = 0.299, increase of 629% with x∞ = 0.878). Finally, with the ES control, we have

a very small increase of 2% of the standard deviation at the end of recharging (σxi,∞ = 0.042 with

x∞ = 0.873) due to more dispersed initial SoCs xi,0,c, as it was not the case for the homogeneous

BEVs. The SoCs at the end of recharging are little more dispersed and that may compromise the

BEVs’ willingness to return energy in the evening peak to the grid.

Table 6: Charging controls in each class for 400 heterogeneous BEVs in a typical cloudy day.

Class 1 Class 2 Class 3 Class 4
x∞,1 σxi,∞,1 x∞,2 σxi,∞,2 x∞,3 σxi,∞,3 x∞,4 σxi,∞,4

FCFF 0.800 0.303 0.821 0.284 0.824 0.247 0.823 0.258
ES 0.782 0.105 0.812 0.097 0.811 0.102 0.816 0.090
MFG 0.794 0.035 0.816 0.031 0.824 0.034 0.821 0.032

x0,c, σxi,0,c 0.381 0.106 0.397 0.101 0.480 0.102 0.493 0.091
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Figure 15: 400 heterogeneous BEVs charging controls in a cloudy day.

Considering a typical cloudy day, the MFG control remains the best between the three options from

the point of view of resulting standard deviation for all classes at the end of recharging (σxi,∞ = 0.036,

reduction of 68% with x∞ = 0.814). With the FCFF control we have here a significant fraction of

frustrated users who have not recharged their batteries at all (32% of BEVs) with, once again, the worst

standard deviation at the end of recharging (σxi,∞ = 0.270, increase of 141% with x∞ = 0.819). Finally,

with the ES control, we have at the end of recharging a slightly reduced standard deviation (σxi,∞ = 0.102,

reduction of 9% with x∞ = 0.803) relative to that at the start of recharging (σxi,∞ = 0.112) as a few

BEVs exceed their maximum level.

We conclude by computing the fairness coefficient (FC), as illustrated in Appendix C, for each

strategy.

Table 7: Fairness coefficient (FC) in each charging control for 400 heterogeneous BEVs as we know minxi,0 =
0.01,maxxi,0 = 0.25 in a sunny day and minxi,0 = 0.06,maxxi,0 = 0.67 in a cloudy day.

Sunny day Cloudy day
minxi,∞ maxxi,∞ η FC minxi,∞ maxxi,∞ η FC

FCFF 0.01 1 0.12 −0.30 0.06 1 0.23 −0.21
ES 0.72 0.98 0 0 0.46 1 0 0
MFG 0.84 0.90 0 0.42 0.69 0.89 0 0.38

Considering the ES control as a base case for comparison purposes. In a typical sunny day the

MFG control is 42% times fairer while FCFF is 30% less fair, and in the typical cloudy day the MFG

control is 38% times fairer while FCFF is 21% less fair.

5 Conclusion and future research

We have considered the situation of a large daytime work parking lot exclusively for battery electric

vehicles (BEVs), with solar sources based electricity charging. We have used realistic data to implement

deterministic daily solar power curves with photovoltaic panels in a parking lot for a typical sunny

day and a typical cloudy day. A fair and decentralized MFG control for recharging BEVs has been

developed considering, first in the case of a large fixed homogeneous population, and subsequently that

of a heterogeneous population. The goal was to reduce significantly the SoCs’ standard deviation while

maintaining everyone at a high satisfactorily level regardless of their SoCs’ initial states. A comparison

was carried out with a first come first full control and an equal sharing control which we saw could
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result in some unsatisfied individual users with little SoCs at the end of recharging. Also, we did much

better than the literature [10, 19] as we illustrated in the summary Tables 8 and 9 when we compared

our results to the base case which is here the equal sharing control. The minimum standard deviation

is 60% while we have dealt with all possible cases.

Table 8: Standard deviation increase/reduction for homogeneous and heterogeneous BEVs in a large-size parking lot.

400 homogeneous BEVs in a 400 heterogeneous BEVs in a
sunny day cloudy day sunny day cloudy day

FCFF ↑ 685% ↑ 171% ↑ 612% ↑ 165%
MFG ↓ 85% ↓ 63% ↓ 69% ↓ 65%

σxi,0 0.04 0.1 0.04 0.1
x0 → x∞ 0.148→≈ 0.870 0.456→≈ 0.806 0.147→≈ 0.875 0.434→≈ 0.810

In appendix B, we show that our MFG control remains the best way to share daily solar energy

in a small-size parking lot with very few BEVs. Indeed, because of the linearity of SOC’s model, the

analysis is perfectly exact for arbitrarily small numbers of cars if the battery charging processes are

deterministic.

Table 9: Standard deviation increase/reduction for homogeneous BEVs in a small-size parking lot.

50 homogeneous BEVs in a sunny day 10 homogeneous BEVs in a cloudy day
σxi,0 = 0.1→ σxi,∞ x0 → x∞ σxi,0 = 0.2→ σxi,∞ x0 → x∞

FCFF ↑ 160% 0.154→ 0.938 ↑ 38% 0.467→ 0.799
MFG ↓ 89% 0.154→ 0.930 ↓ 60% 0.467→ 0.789

In future work, we wish to extend our work by considering a fluctuating population of BEVs and
all aggregate targets will be set by considering day ahead forecasts of traffic patterns (this will result

in an agent optimization problem following a machine learning process [17]), solar energy availability

and evening power system load updated with the latest information when useful. The very same Mean

Field Games analysis will then be carried in the grid for BEVs returning to their residences.
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Appendix

A Mean Field Game theory

Basic concepts – Game theory

Given a set of N agents in a classic game, each agent is looking to maximize its happiness. The latter is

assimilated to a cost function that the agent wants to minimize. This one depends on the strategy ui,t
of the agent i, of its state xi,t, but also of the strategies of all the others, noted u−i,t. Such a function

can be written as follows:

Ji(ui,t) =

N∑
j=1

L(xi,t, ui,t, xj,t). (20)

The solution concept for such a game consists in finding a Nash equilibrium, i.e. a set of strate-

gies (ui,t)
∗, such that any deviation of an agent i from its strategy (ui,t)

∗, knowing that the other

agents apply (u−i,t)
∗, is damaging to her (her cost is increasing). This involves calculating all the

interactions between each pairs of agents, which is extremely costly if the number of agents is large.

Principle of Mean Field Games

Mean Field Games (MFG) are a theoretical framework for dealing with problems of non-cooperative

games in which a large number of agents participate. However, an important specificity of these

games is that the impact of individual agents becomes asymptotically negligible as the numbers grow

without bound. Instead of the individual interactions between each agent, it is then the collective

dynamics of all the agents (as represented by the flow of their empirical state distribution) that is
considered in the calculation of the optimal strategy of the individuals [8]. This approximation greatly

simplifies the calculations and makes it possible to consider the modelling of a large number of agents

while maintaining a moderate calculation time. The shift from a pair-to-pair interaction computation

to a generic agent interaction with the distribution of the whole set of agents is the cornerstone of

the simplification brought about by MFG. MFG related ideas can already be found in the works of

Jovanovic and Rosenthal in the Economics community in 1988. But MFG actual formalization is due

to the pioneering work in 2006 of Lasry and Lions in the Mathematics community and, Huang, Caines

and Malhamé in the Engineering community [2, 8].

Mathematical Formulation of Mean Field Games

We consider a set of N agents whose actions take place over a finite time horizon T . Their state is noted
xi,t ∈ Rn, 1 ≤ i ≤ N . By noting ui,t ∈ Rm the strategy of the agent i, we can define the dynamics of

this agent as

dxi,t =
1

N

N∑
j=1

f(xi,t, ui,t, xj,t)dt+ νdωi, (21)

where ωi is a Brownian process, assuming independent processes between each agent, and ν the

Brownian noise. Note that other noise models are also possible.

For a finite horizon, the cost function is written as the mean of the integral of the pairwise interaction

costs with each of the other agents:

Ji(xi,0, ui,t) = E
[ ∫ T

0

1

N

N∑
j=1

L(xi,t, ui,t, xj,t)dt | xi,0
]
. (22)

It should be noted that the extension to an infinite horizon is possible by adding the exponential

e−δt to ensure convergence of the cost, where δ is a discount factor.
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Linear Quadratic Gaussian (LQG) Mean Field Games

We consider, for simplicity, the scalar case of homogeneous agents with linear dynamics

dxi,t = (axi,t + bui,t)dt+ νdωi, (23)

and the i cost function associated is

Ji(xi,0, ui,t) = E
[ ∫ ∞

0

e−δt
[
q(xi,t − Φ(x(N)))2 + ru2i,t

]
dt | xi,0

]
, (24)

with Φ(·) and q(·) could be arbitrary nonlinear functions. Note that this cost function was initially

inspired by cellular telephone power control applications [8].

Here, the x(N) := 1
N

∑N
j=1 xj is the mean field influence term as the number of agents N goes to

infinity. Asymptotically, it becomes the deterministic (yet so far unknown) mean state trajectory of
the agents denoted x(t). At that stage, the agent knows that because its influence on the mean field

vanishes, it can consider the x̄(t) as a decoupled frozen trajectory. Thus, interestingly, as N → ∞,

a generic agent needs only to solve a standard discounted optimal linear quadratic tracking problem

instead of a full fledged infinite population game, with possible push-back from other agents.

Solving this game requires formulating and solving a backwards Hamilton-Jacobi-Bellman equation

according to the principle of dynamic programming [1]. This resolution comes down to that of a set of

Riccati equations [8, 9] thus providing the optimal strategy for the agent i. This solution is re-injected

into dxi,t to give the optimal evolution of the agent.

B Mean Field Game-based control of sharing daily solar energy
between BEVs in a small-size parking lot

We will illustrate that even with very few BEVs in a small-size parking lot, our MFG control will

remain the best way to share daily solar energy due to the linearity of the BEV’s SoC model. We only

study here the case of homogeneous BEVs (battery parameters α = 0.8 and β = 16 kWh).

First, we consider a parking lot with 10 PV panels (total daily solar energy W = 780 kWh) that

can accommodate up to 50 BEVs in a typical sunny day. Then, we consider a parking lot with 2 PV

panels (total daily solar energy W = 66 kWh) that can accommodate up to 10 BEVs in a typical

cloudy day. These are the results:

Figure 16: Daily solar power curve uW for charging homogeneous BEVs and target SoC trajectory xtargett imposed by the
parking lot operator.
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Figure 17: qyt resulting from inverse Nash calculation.

Figure 18: Individual SoCs of 50 homogeneous BEVs in
a sunny day.
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Figure 19: Individual SoCs of 10 homogeneous BEVs in
a cloudy day.

Table 10: Fairness coefficient (FC) in each charging control for homogeneous BEVs as we know minxi,0 = 0,maxxi,0 = 0.37
in a sunny day and minxi,0 = 0.12,maxxi,0 = 0.73 in a cloudy day.

Sunny day (50 BEVs) Cloudy day (10 BEVs)
minxi,∞ maxxi,∞ η FC minxi,∞ maxxi,∞ η FC

FCFF 0.16 1 0.10 −0.14 0.15 1 0.31 −0.12
ES 0.78 1 0 0 0.45 1 0 0
MFG 0.92 0.95 0 3 0.65 0.90 0 0.55
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MFG : mean = 0.930, STD = 0.009
FCFF : mean = 0.938, STD = 0.213
ES : mean = 0.916, STD = 0.082
Initial SoCs : mean = 0.154, STD = 0.107

4 BEVs NOT RECHARGED

Figure 20: 50 homogeneous BEVs charging controls in
a sunny day.
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MFG : mean = 0.789, STD = 0.087
FCFF : mean = 0.799, STD = 0.293
ES : mean = 0.793, STD = 0.212
Initial SoCs : mean = 0.467, STD = 0.220
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Figure 21: 10 homogeneous BEVs charging controls in
a cloudy day.

C Fairness coefficient

We evaluate the quality of a charging control according to a fairness coefficient (FC) which should be :

• proportional to a weight η which depends on the number NO of occurrences when we have an
emptier BEV at the beginning exceeds a fuller one at the end of recharging in the population of

N BEVs.

• proportional to the difference between the initial and final standard deviations of SoCs.

• inversely proportional to the difference between the maximum and the minimum final SoCs.

We come up with this formula:

FC =
σxi,0 − σxi,∞

maxxi,∞ −minxi,∞
e−η × sgn(σxi,0

−σxi,∞ ), (25)

where

η =
NO(
N
2

) =
2 NO (N − 2)!

N !
. (26)

• The control is FC% times fairer if FC > 0.

• The control is neutral if FC = 0.

• The control is FC% times less fair if FC < 0.
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