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Les textes publiés dans la série des rapports de recherche Les Cahiers
du GERAD n’engagent que la responsabilité de leurs auteurs. Les
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Abstract : We consider the problem of scheduling maintenance for a collection of machines under
partial observations when the state of each machine deteriorates stochastically in a Markovian manner.
We consider two observational models: first, the state of each machine is not observable at all, and
second, the state of each machine is observable only if a service-person visits them. The agent takes a
maintenance action, e.g., machine replacement, if he is chosen for the task. We model both problems
as restless multi-armed bandit problem and propose the Whittle index policy for scheduling the visits.
We show that both models are indexable. For the first model, we derive a closed-form expression for
the Whittle index. For the second model, we propose an efficient algorithm to compute the Whittle
index by exploiting the qualitative properties of the optimal policy. We present detailed numerical
experiments which show that for multiple instances of the model, the Whittle index policy outperforms
myopic policy and can be close-to-optimal in different setups.

Keywords: Machine maintenance, partially observable system, scheduling, restless bandits, Whittle
index
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1 Introduction

Machines are subject to degradation. Malfunctioning of machines is a major cause of reduction of

production capacity, deterioration of quality of service, and increase in downtime, monetary cost and

lost work [8, 25]. In critical environments such as computer servers, aircrafts, power generators, medical

devices, infrastructure tools, etc., malfunctioning of machines can cause catastrophic failures. In such

environments, maintenance plays an essential role to ensure system availability [9]. For these reasons,

scheduling of machine maintenance has been a problem of interest for several decades [14, 34, 39, 50].

Broadly speaking, the literature on scheduling of machine maintenance may be classified in two

categories: fully-observable and partially-observable models. Each category can be further separated

in two subcategories: maintenance of a single machine or a collection of machines.

The first category considers a class of problems where the condition of the machine is accessible or

can be directly monitored at all times. In such models, the decision-maker is responsible to maintain

a machine or a collection of machines by regular or opportunistic inspections and taking an approriate

maintenance action (repair, replacement, no actions etc.). Maintenance of a single machine with a

single or multiple components is considered in [10, 23, 29, 32, 46, 47, 55, 56, 57]. Maintenance of a

collection of machines is considered in [16, 21, 31, 42, 51].

The second category arises in applications where the condition of the machine cannot be directly

observed or is observed via noisy sensors. Examples include semiconductor manufacturing [12], main-

tenance of wind turbines [11] or automated demand response devices [2]. Maintenance of a single

machine with a single or multiple components is considered in [6, 11, 12, 15, 24, 53]. Maintenance

of a collection of machines is considered in [2]. [12] provides a brief literature overview of the recent

development in this category.

We are interested in maintenance of a collection of machines under partial observations. Specifically,

we consider a maintenance company monitoring n machines which are deteriorating independently over

time. Each machine has multiple deterioration states sorted from pristine to ruined levels. Due to

manufacturing mistakes, all the machines may not be in pristine state when installed. If a machine is

left un-monitored, then the state of the machine deteriorates and after a while, it ruins. Furthermore,

we assume the company cannot observe the state of the machines unless it sends a service-person to

visit the machine. We assume that replacing the machine is relatively inexpensive, and when a service-

person visits a machine, he simply replaces it with a new one. The company has m < n service-persons.

Therefore, the company has to schedule when a service-person should visit each machine to minimize
the cumulative long-term cost.

The problem of identifying the optimal scheduling policies suffers from curse of dimensionality [38].

For example, if a single server-person is responsible to maintain 100 machines and each machine has

three states. Then the total number of states is 3100 which is astronomically large. As a result,

obtaining the optimal scheduling policy for such problems is, in general, intractable. When the state

of the machines are not observed, the problem becomes even harder.

We model this setup as a restless multi-armed bandit (RMAB) and show that a heuristic policy,

known as Whittle index [54], is applicable in this model. RMAB is a class of sequential decision making

problem where a decision maker confronts n arms and can pick m arms (m < n) at each time. Each

arm is modeled as a Markov chain and its dynamics differs when the arm is active (i.e., the arm is

chosen) or passive (i.e., the arm is not chosen). There is a per-step cost associated with each arm

which depends on state of the arms and the action. The decision maker’s goal is to minimize the

expected discounted cost of all arms accumulated over an infinite time horizon. The Whittle index

exists if the RMAB problem satisfies a technical condition known as indexability. When the condition

is satisfied, we can decompose the n-dimensional problem into n 1-dimensional problem and solve each

problem separately. This substantially reduces the computational complexity. For instance, in the

example mentioned earlier, the optimization problem with 3100 states reduces to 100 sub-problems

with 3 states.
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The restless bandit framework is widely used in scheduling problems arising in various applications

including telecommunication networks [1, 4, 22, 26, 27, 30, 35], patient prioritization [49], machine

maintenance [2, 21], sensor management [48] and game theory [41].

RMAB models have been considered for both fully-observable [5, 19, 20, 21, 43, 52, 54] and partially-

observable [1, 2, 22, 26, 27, 30, 35, 41, 48] setups. The partially observable models are conceptually

and computationally more challenging and most of the literature restricts attention to models where

each alternative has two states [1, 2, 22, 26, 27, 35, 48]. Such models are usually investigated under

an additional technical assumption that the states are positively correlated [1, 26, 27]. However, there

are only a few papers which consider a general state space under partial observations [4, 13, 30, 41]

and these often resort to numerical methods to verify indexability.

The main contributions of our paper are as follows:

• We model the machine maintenance problem with partial observation as a RMAB. For two

different observation models, we show that the RMAB is indexable. Unlike much of the prior

work on RMAB under partial observations, we do not restrict attention to binary states [1, 2,

22, 26, 27, 35, 48].

• We provide a closed-form expression to compute Whittle index for the first observation model

and present an improved version of the adpative greedy algorithm to compute Whittle index

presented in [5] for the second observation model.

• We present a detailed numerical study which illustrates that the Whittle index policy performs

close to optimal for small scale systems and outperforms a commonly used heuristic (the myopic

policy) for large-scale systems.

The oragnization of the paper is as follows. In Section 2, we formulate the machine maintenance

problem for two different observation models. In Section 3, we present various simplifications of the

model. In Section 4, we present a short overview of restless bandits. In Section 5, we show the

restless bandit problem is indexable for both models. In Section 6, we present algorithms to compute

Whittle index. In Section 7, we present a detailed numerical study which compares the performance

of Whittle index policy with the optimal and myopic policies. In Section 8, we present the conclusions

and discussions.

1.1 Notations and definitions

We use I as the indicator function, E as the expectation operator, P as the probability function, R as

the set of real numbers, Z as the set of integers and Z≥0 as the set of positive integers. Calligraphic

alphabets are used to denote sets, bold variables are used for the vector of variables. Superscript i is

used for machine index and subscript t is used for time t and subscript 0:t shows the history of the

variable from time 0 up to time t.

Given ordered sets X and Y, a function f : X × Y → R is called submodular if for any x1, x2 ∈ X
and y1, y2 ∈ Y such that x2 ≥ x1 and y2 ≥ y1, we have f(x1, y2) − f(x1, y1) ≥ f(x2, y2) − f(x2, y1).

Given an ordered set X , the transition probability matrix P is stochastic monotone if for any x, y ∈ X
such that x < y, we have

∑
w∈X≥z

Pxw ≤
∑
w∈X≥z

Pyw for any z ∈ X .

2 Model and problem formulation

2.1 System model

Consider a system operator who has to maintain a collection of n machines, which we index by the set

N := {1, . . . , n}. Machine i ∈ N has an operating state which belongs to the set X i = {1, 2, . . . , |X i|}.
State 1 denotes the pristine state and a higher value indicate a more degraded state. There is a

state-dependent cost associated with running the machine, which is captured by the cost function

φi : X i → [0,∞). The function φi is an increasing function with φi(1) = 0. The state of each
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machine deteriorates with time in a Markovian manner. We model this by assuming that the transition

probability matrix P i is upper triangular and stochastic monotone. Upper triangularity implies that

the state of the machine deteriorates over time. Stochastic monotonicity implies that a machine in a

bad state deteriorates faster than a machine in a good state.

There are m < n service-persons and the operator may send a service-person to service machine i ∈
N at cost ρi. At each time, a service-person can be sent to only one machine and a machine can be

serviced by only one service-person. Note that the operator may decide not to send a service-person

to service any machine and this decision does not incur any cost. We assume the machines are cheap

to manufacture, so when a service-person services a machine, he simply replaces the machine by a new

one. However, the new machine does not necessarily start in a pristine state. Either due to quality

management during manufacturing or storage, the state of a new machine of type i ∈ N is distributed

according to the probability mass function Qi. Note that when a service-person visits a machine, the

system does not incur a running cost. The act of sending a service-person to machine i is denoted by

action 1, and not sending a service-person is denoted by action 0 otherwise. Thus, the per-step cost

incurred when the machine is in state x ∈ X i and action a ∈ {0, 1} is applied is given by

ci(x, a) = (1− a)φi(x) + aρi.

We assume the operator cannot observe the state of the machines and consider two observation

models for the service-person.

Model A: When deploying a new machine, the service-person does not observe the state of the

machine being deployed.

Model B: When deploying a new machine, the service-person observes the state of the machine being

deployed.

In each of these cases, we are interested in choosing a decision strategy for the operator to minimize

the expected discounted cost of running the system for an infinite time horizon. We formally state the

problem in the next section.

2.2 Problem formulation

Let X :=
∏
i∈N X i denote the state space of all machines. We use Xt = (X1

t , . . . X
n
t ) ∈ X to denote

the state of all machines at time t and At = (A1
t , . . . , A

n
t ) ∈ A(m) denote the action taken by the

operator at time t, where

A(m) :=

{
(a1, . . . , an) ∈ {0, 1}n :

∑
i∈N

ai ≤ m
}

(1)

denotes the set of all feasible actions. If component Ait of At is 1, it means that the operator sends

a service-person to machine i; if Ait = 0 it means that the operator does not send a service-person to

machine i.

Let Y t = (Y 1
t , . . . , Y

n
t ) ∈

∏
i∈N Yi denote the observation of the service-person at time t. For

model A, Yi = {E} and Y it = E which indicates that the operator never gets any observation about

the state of the machine. For model B, Yi = X i ∪ E, where

Y it+1 =

{
E if Ait = 0

Xi
t+1 if Ait = 1

, i ∈ N , (2)

which indicates that when a machine is replaced, the service-person observes the state of the new

machine.

The state of each machine evolves independently in a controlled Markov manner, i.e.,

P(Xt+1 = xt+1|X0:t = x0:t,A0:t = a0:t) =
∏
i∈N

P(Xi
t+1 = xit+1|Xi

t = xit, A
i
t = ait)



Les Cahiers du GERAD G–2021–26 4

where

P(Xi
t+1 = xit+1|Xi

t = xit, A
i
t = ait) =

P
i
xi
tx

i
t+1

if ait = 0

Qi
xi
t+1

if ait = 1.

The decision at time t is chosen according to

At = gt(Y 0:t−1A0:t−1), (3)

where gt is the (history dependent) policy at time t. Let g = (g1, g2, . . .) denote the policy for infinite

time horizon and let G denote the family of all such policies.

We assume initial state of machine i is random and distributed according to pmf πi0. Let π0 =⊗
i∈N π

i
0 denote the initial state distribution of all machines. The performance of policy g is given by

J (g)(π0) := (1− β)E
[ ∞∑
t=0

βt
∑
i∈N

ci(Xi
t , A

i
t)

∣∣∣∣Xi
0 ∼ πi0,∀i ∈ N

]
, (4)

where β ∈ (0, 1) denotes the discount factor.

Let (X i, {0, 1}, P i, Qi, ci, πi0) denote all the model parameters for machine i. Formally, the opti-

mization problem of interest is as follows:

Problem 1 Given a discount factor β ∈ (0, 1), the total number n of machines and m of service-

persons, and the system model {(X i, {0, 1}, P i, Qi, ci, πi0)}i∈N , choose a policy g ∈ G that minimizes

J (g)(π0) given by (4).

2.3 Roadmap of the results

Problem 1 is a partially observable Markov decision process (POMDP). One conceptual challange in

POMDPs is that the actions have to be chosen as a function of the entire history of observations at the

decision maker. Such history dependent policies are difficult to search and implement. The standard

approach used in the literature to handle this conceptual difficulty is to transform the partially observed

MDP into a fully observed MDP by using the decision maker’s posterior belief on the unobserved state

of the system given the history of observations as the information state of the system. We present this

transformation in Section 3.1.

However, such a transformation suffers from the curse of dimensionality. The belief state space

takes values in the simplex ∆(X ) which is double exponential in n. In Section 3.1 we exploit the
structure of the model to present a simpler belief which has a dimension that is exponential in n. Even

this simpler belief is continuous valued which makes the resulting dynamic programming is difficult to

solve.

In Section 3.2, we exploit the structure of the reachable set of the simpler belief to propose an

alternative information state which is countable. A countable information sate is advantageous because

it can be approximated by a finite information state via truncation. Although the resulting finite state

dynamic programs is significantly simpler than the naive beleif state based MDPs, it still suffers from

curse of dimensionality and can be only solved for small values of n.

To circumvent the curse of dimensionality, we model the countable state MDP as a restless multi-

armed bandit (RMAB) in Section 4. In Section 5, we show that both models are indexable and in

Section 6, we present efficient algorithms to compute Whittle index.

3 Preliminary results: POMDP characterization and identification
of a simpler information state

Problem 1 is a POMDP and the standard methodology to solve POMDPs is to convert them to a fully

observable Markov decision process (MDP) by viewing the “belief state” as the information state of
the system [7]. We will discuss the details below.
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3.1 Belief state formulation for Problem 1

Define the belief state Θt ∈ ∆(X ) of the system as follows: for any x ∈ X ,

Θt(x) = P(Xt = x |Y 0:t−1,A0:t−1).

Note that Θt is a random variable that takes values in ∆(X ). Using standard results in POMDPs [7],

we have the following.

Proposition 1 In Problem 1, Θt is a sufficient statistic for (Y 0:t−1,A0:t−1). Therefore, there is no loss

of optimality in restricting attention to decision policies of the form At = gbelief
t (Θt). Furthermore, an

optimal policy with this structure can be identified by solving an appropriate dynamic program.

Note that we do not give the details of the dynamic program based on the belief state, Θt because we

pursue a different solution approach.

For the model under consideration, it is possible to simplify the belief state. For that matter, we

define the decision maker’s belief Πi
t ∈ ∆(X i) on the state of machine i at time t as follows: for any,

xit ∈ X i, let

Πi
t(x

i
t) := P(Xi

t = xit |Y i0:t−1, A
i
0:t−1).

Similar to Θt, Πi
t is also a distribution-valued random variable. Let Πt := (Π1

t , . . . ,Π
n
t ).

The belief state of machine i evolves according to a controlled Markov process. In particular, for

model A, the belief update rule is

Πi
t+1 =

{
Πi
tP

i, if Ait = 0,

Qi, if Ait = 1,
(5)

and for model B, the belief update rule is

Πi
t+1 =

{
Πi
tP

i, if Ait = 0,

δXi
t+1

where Xi
t+1 ∼ Qi, if Ait = 1.

(6)

Furthermore, from the definition of the belief state we get that

E[cit(X
i
t , A

i
t)|Y i0:t−1, A

i
0:t−1] =

∑
x∈X i

Πi
t(x)ci(x,Ait) := c̄i(Πi

t, A
i
t).

Moreover, since the machines are independent, we have

E[ct(Xt,At)|Y 0:t−1,A0:t−1] =

n∑
i=1

c̄i(Πi
t, A

i
t) := c̄(Πt,At). (7)

Next, we present our first simplification for the structure of optimal decision policy as follows.

Proposition 2 For any x ∈ X , we have

Θt(x) =
∏
i∈XN

Πi
t(x

i), a.s.. (8)

Therefore, there is no loss of optimality in restricting attention to decision policies of the form At =

gsimple
t (Πt). Furthermore, an optimal policy with this structure can be identified by solving an appro-

priate dynamic program.

Note that as before, we do not present the details of the dynamic program because we pursue a different

solution approach.

Proof. Equation (8) follows from the conditional independence of the machines, and the nature of the

observation function. The structure of the optimal policies then follow immediately from Proposition 1.
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3.2 Information state for Problem 1

Although the transformation presented in Section 3.1 simplifies the problem by allowing the use of

Markov decision theory and dynamic programming to solve the problem, the resulting fully observable

system is computationally intractable in general [38]. Inspired by the approach taken in [45], we

introduce a new information state which is countable and, at the same time, is equivalent to the belief

state.

For model A, define

RiA =
{
Qi(P i)k : k ∈ Z≥0

}
,

and for model B define

RiB =
{
δs(P

i)k : s ∈ X i, k ∈ Z≥0

}
.

Assumption 1 For model A, πi0 ∈ RiA and for model B, πi0 ∈ RiB.

For model A, define a process {Ki
t}t≥0 as follows. The initial state ki0 is such that πi0 = Qi(P i)k

i
0

and for t > 0, Ki
t is given by

Ki
t =

{
0, if Ait−1 = 1

Ki
t−1 + 1, if Ait−1 = 0.

(9)

Similarly, for model B, define a process {Sit ,Ki
t}t≥0 as follows. The initial state (si0, k

i
0) is such

that πi0 = δsi0(P i)k
i
0 and for t > 0, Ki

t evolves according to (9) and Sit evolves according to

Sit =

{
Xi
t−1 where Xi

t−1 ∼ Qi, if Ait−1 = 1

Sit−1, if Ait−1 = 0.
(10)

Figure 1 depicts how Sit jumps to one of the ”corner” points of the simplex upon active action.

Note that once the first observation has been taken in both models, Ki
t denotes the time elapsed

since the last observation of machine i and, in addition in model B, Sit denotes the last observed states

of machine i. Let St := (S1
t , . . . S

n
t ) and Kt := (K1

t , . . .K
n
t ). The relation between the belief state Πi

t

and variables Sit and Ki
t is characterized in the following lemma.

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

Figure 1: Belief state dynamics for a 3-state machine i in the simplex ∆({1, 2, 3}). Dashed arrows show a sample realizations

of the belief state evolution under Ai
t = 0 for three time steps and the solid arrow shows a sample realization of the belief state

evolution under Ai
t = 1

Lemma 1 The following statements hold under Assumption 1:

(i) For model A, for any i ∈ N and any t, Πi
t ∈ RiA. In particular, Πi

t = Qi(P i)K
i
t .

(ii) For model B, for any i ∈ N and any t, Πi
t ∈ RiB. In particular, Πi

t = δSi
t
(P i)K

i
t .

Proof. The results immediately follow from (5)–(6) and (9)–(10).
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For model A, the expected per-step cost at time t may be written as

c̄i(Ki
t , A

i
t) := c̄i((QiP i)K

i
t , Ait) =

∑
x∈X i

[(QiP i)K
i
t ]xc

i(x,Ait). (11)

and the total expected per-step cost incurred at time t may be written as

c̄(Kt,At) :=

n∑
i=1

c̄i(Ki
t , A

i
t).

Similarly, for model B, the expected per-step cost at time t may be written as

c̄i(Sit ,K
i
t , A

i
t) := c̄i(δSi

t
(P i)K

i
t , Ait) =

∑
x∈X i

[δSi
t
(P i)K

i
t ]xc

i(x,Ait). (12)

and the total expected per-step cost incurred at time t may be written as

c̄(St,Kt,At) :=

n∑
i=1

c̄i(Sit ,K
i
t , A

i
t).

Proposition 3 In Problem 1, there is no loss of optimality in restricting attention to decision policies

of the form At = ginfo
t (Kt) for model A and of the form At = ginfo

t (St,Kt) for model B.

Proof. This result immediately follows from Lemma 1, (11) and (12).

In the next section, we review the basic concepts of restless multi-armed bandits problem (RMAB)

and later, we show how Problem 1 can be modeled as a RMAB.

4 Overview of restless multi-armed bandits

4.1 Restless bandit process

A restless bandit process (RB) is a controlled Markov process (X̃ , {0, 1}, {P̃ , Q̃}, c̃, π0) where X̃ denotes

the state space, {0, 1} denotes the action space, P̃ and Q̃ denote the transition probability matrices

under actions 0 and 1 respectively, c̃ : X̃ × {0, 1} → R denotes the per-step cost function, and π0 is

the initial state distribution. Conventionally, the action 0 is called the passive action and the action 1

is called the active action. Let {X̃t}t≥0 and {Ãt}t≥0 denote the sequence of observed states and the

chosen actions. Then, for any x′, x ∈ X̃ and a ∈ {0, 1}, we have

P(X̃t+1 = x|X̃t = x′, Ãt = a) =

{
P̃xx′ if a = 0

Q̃xx′ if a = 1.

4.2 Restless multi-armed bandit problem

A group of n independent RBs (X̃ i, {0, 1}, {P̃ i, Q̃i}, c̃i, π̃i0), i ∈ N is called a restless multi-armed

bandit (RMAB) problem. Each process is also called as an arm in the literature [17]. A decision-

maker selects m arms (m < n) at each time instance. Let X̃i
t and Ãit denote the state of arm i and the

action chosen for arm i at time t. Let {X̃t}t≥0 and {Ãt}t≥0 denote the sequence of observed states

and the chosen actions for all arms. Additionally, let X̃ =
∏n
i=1 X̃ i and let A(m) be the same as the

one defined in (1). Then, for any x,x′ ∈ X̃ ,a ∈ A(m) where x = (x1, . . . , xn) and similar for x′,a,

we have

P(X̃t+1 = x|X̃t = x′, Ãt = a) =
∏
i∈N

P(X̃i
t+1 = xi|X̃i

t = x′
i
, ai).
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The instantaneous cost of the system is the sum of costs incurred by each RB. The decision at time t

is chosen according to a time homogeneous Markov policy g̃ : X̃ → A(m). Let π̃i0 denote the initial

state distribution of arm i and π̃0 =
∏
i∈N π̃

i
0. Then, the performance of policy g̃ is measured by

J̃ (g̃)(π̃0) := (1− β)E
[ ∞∑
t=0

βt
∑
i∈N

c̃i(X̃i
t , Ã

i
t)

∣∣∣∣X̃1
0 ∼ π̃1

0 , ·, X̃n
0 ∼ π̃n0

]
, (13)

where β ∈ (0, 1) denotes the discount factor. Finally, the restless bandit optimization problem is as

follows.

Problem 2 Given a discount factor β ∈ (0, 1), the models {(X̃ i, {0, 1}, {P̃ i, Q̃i}, c̃i, π̃i0)}i∈N of n arms

and the number m of arms to be chosen at each time, choose a policy g̃ : X̃ → A(m) that minimizes

J̃ (g̃)(π̃0) given by (13).

Problem 2 is an MDP which can, in principle, be solved using dynamic programming. However, such

a solution suffers from the curse of dimensionality because the state space of the dynamic program is

exponential in the number of arms.

The RMAB problem simplifies significantly when arms remain frozen under passive action (i.e.,

Q̃i = I). Under this assumption, [18] showed that the optimal solution is of the index type, i.e.,

we compute an index function νi : X̃ i → R for each arm and at each time, play the arm which

is in the state with highest index. Inspired by this result, [54] argued that a similar index policy

should perform well for general RMAB provided a technical condition known as Whittle indexability is

satisfied. Subsequently, [52] and [33] have identified different sufficient conditions under which Whittle

index policy is optimal. There is a strong empirical evidence to suggest that in many applications, the

Whittle index heuristic performs close-to-optimal in practice [19, 21]. Furthermore, [36] introduces

PCL-indexability concept and shows that PCLs can act as sufficient conditions for indexability of

restless bandit problems, and shows that an adaptive greedy algorithm can be used to compute the

indices. This idea is further developed in [37].

4.3 Indexability and the Whittle index

Consider a RB (X̃ , {0, 1}, {P̃ , Q̃}, c̃λ, π̃0) with a modified per-step cost function

c̃λ(x, a) := c(x, a) + λa, ∀x ∈ X̃ ,∀a ∈ {0, 1}, λ ∈ R. (14)

The modified cost function implies that there is a penalty of λ for taking the active action. Given any

time-homogeneous policy g̃ : X̃ → {0, 1}, the modified performance of the policy is

J
(g̃)
λ (π̃0) := (1− β)E

[ ∞∑
t=0

βtcλ(Xt, g̃(Xt))

∣∣∣∣X0 ∼ π̃0

]
. (15)

Subsequently, consider the following optimization problem.

Problem 3 Given an arm (X̃ , {0, 1}, {P̃ , Q̃}a∈{0,1}, c̃, π̃0), the discount factor β ∈ (0, 1) and the penalty

λ ∈ R, choose a Markov policy g̃ : X̃ → {0, 1} to minimize J
(g̃)
λ (π̃0) given by (15).

Problem 3 is a Markov decision process where one may use dynamic program to obtain the optimal

solution as follows.

Proposition 4 Let Ṽλ : X̃ → R be the unique fixed point of equation

Ṽλ(x) = min
a∈{0,1}

H̃λ(x, a) (16)

where

H̃λ(x, 0) = (1− β)c̄(x, 0) + β
∑
x′∈X̃

P̃xx′ Ṽλ(x′)
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H̃λ(x, 1) = (1− β)c̄(x, 1) + (1− β)λ+ β
∑
x′∈X̃

Q̃xx′ Ṽλ(x′).

Let g̃λ(x) denote the arg min of the right hand side of (16) where we set g̃λ(x) = 1 if the two argument

inside min{·, ·} are equal. Then, the time-homogeneous policy g̃λ is optimal for Problem 3.

Proof. The result follows immediately from Markov decision theory [40].

Finally, given penalty λ, define the passive set Wλ as the set of states where passive action is

optimal for the modified RB, i.e.,

Wλ := {x ∈ X : g̃λ(x) = 0} .

Definition 1 (Indexability) A RB is indexable if Wλ is weakly increasing in λ, i.e., for any λ1, λ2 ∈ R,

λ1 ≤ λ2 =⇒ Wλ1
⊆ Wλ2

.

A RMAB problem is indexable if all n RBs are indexable.

Definition 2 (Whittle index) The Whittle index of the state x of an arm is the smallest value of λ for

which state x is part of the passive set Wλ, i.e.,

w(x) = inf {λ ∈ R : x ∈ Wλ} .

Equivalently, the Whittle index w(x) is the smallest value of λ for which the optimal policy is indifferent

between the active action and passive action when the information state of the machine is k.

4.4 Whittle index policy

The Whittle index policy is as follows: At each time step, select m arms which are in states with the

highest indices. The Whittle index policy is easy to implement and efficient to compute but it may

not be optimal. As mentioned earlier, Whittle index is optimal in certain cases [33, 52] and performs

close-to-optimal for many other cases [19, 21].

4.5 Sufficient condition for indexability

To verify indexability of our model, we use a recently proposed sufficient condition for indexability [5]

which we sumerize below. A RMAB is said to have the restart property if each arm satisfies the

following condition:

(R) The transition probability matrix under active action does not depend on the current state, i.e.,

Q̃xy = Q̃x′y for any x, x′, y ∈ X̃ .

Proposition 5 ([5]) If a RB satisfies Condition (R), then it is indexable.

We use Proposition 5 to prove indexability for both of the models.

5 Indexability of models A and B

In this section, we show that both models A and B are indexable. For ease of notation, we will drop

the superscript i from all relative variables for the rest of this and the next sections.
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5.1 Indexability of model A

Model A with the information state representation given in Section 3.2 may be viewed as a RB

with state space Z≥0, the action space {0, 1}, the cost function c̄ defined in (11), the initial state

distribution πA0 (x) = I{y=0} and the transition probability matrices {PA, QA} where PAxy = I{y=x+1}
and QAxy = I{y=0}. Thus, model A may be represented as RB (Z≥0, {0, 1}, {PA, QA}, c̄, πA0 ).

Note that for this model, the modified per-step cost is

c̄λ(k, a) = c̄(k, a) + λa, k ∈ Z≥0, ∀a ∈ A. (17)

where c̄(k, a) =
∑
x∈X [QP k]xc(x, a). The performance of any time-homogeneous decision policy gA :

Z≥0 → {0, 1} given the initial information state k is defined by

J
(gA)
λ (k) := (1− β)E

[ ∞∑
t=0

βtc̄λ(Kt, g
A(Kt))

∣∣∣∣K0 = k

]
. (18)

Let gAλ be the optimal policy for a RB under model A obtained by dynamic program given in

Proposition 4 with penalty λ. By definition, the passive set for model A is

WA
λ =

{
k ∈ Z≥0 : gAλ (k) = 0

}
.

For state k ∈ Z≥0, let wA(k) denote the Whittle index of this model.

Proposition 6 Problem 3 for model A is indexable for any arm i ∈ N .

Proof. Model A is a RMAB which satisfies the restart property (R). Hence, the problem is indexable

by Proposition 5.

5.2 Indexability of model B

Similar to model A, we view model B with the information state representation given in Section 3.2

as a RB with the state space X ×Z≥0, the action space {0, 1}, the cost function c̄ defined in (12), the

initial state distribution

[πB0 ](s,k) =

{
0, if k 6= 0

[π0]s, if k = 0

and the transition probability matrices {PB , QB} where the transition probability from information

state (s, k) to (r, l) are given by

PB(s,k)(r,l) =

{
0, if r 6= s

[δsP
k]l, if r = s

for passive action and

QB(s,k)(r,l) =

{
0, if l 6= 0

Qr, if l = 0
.

for active action.

Therefore, model B is a RB given by (X × Z≥0, {0, 1}, {PB , QB}, c̄, πB0 ).

Note that for this model, the modified per-step cost is

c̄λ(s, k, a) = c̄(s, k, a) + λa, s ∈ X , k ∈ Z≥0, ∀a ∈ A. (19)
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where c̄(s, k, a) =
∑
x∈X [δsP

k]xc(x, a), defined in (12). The performance of any time-homogeneous

decision policy gB : Z≥0 → {0, 1} given the initial information state (s, k) is defined by

J
(gB)
λ (s, k) := (1− β)E

[ ∞∑
t=0

βtc̄λ(St,Kt, g
B(St,Kt))

∣∣∣∣S0 = s,K0 = k

]
. (20)

Let gBλ be the optimal policy for a RB under model B obtained by dynamic program given in

Proposition 4 with penalty λ. By definition, the passive set for model B is

WB
λ =

{
(s, k) ∈ X × Z≥0 : gBλ (s, k) = 0

}
For information state (s, k) ∈ X × Z≥0, let wB(s, k) denote the Whittle index of this model.

Proposition 7 Problem 3 for model B is indexable for any arm i ∈ N .

Proof. Similar to model A, model B is also a RMAB which satisfies the restart property (R). Hence,

the problem is indexable by Proposition 5.

6 Computation of Whittle index

In the previous section, we showed that both models are indexable. In this section, we derive formulas

and algorithms to compute the Whittle index.

For a Whittle indexable restless bandit problem, two approaches have been followed in the literature.

For some specific models, it is possible to derive a closed-form expression for the Whittle index [1, 3,

5, 19, 20, 21, 26, 27, 30]. However, in general, no such closed-form expression exists and the index

needs to be computed numerically. For a subclass of RMABs which satisfy an additional technical

condition known as PCL (partial conservation law), the Whittle index can be computed using an

algorithm called the adaptive greedy algorithm [36, 37]. Recently, [5] presented a generalization of

adaptive greedy algorithm which is applicable to all indexable RMABs.

For model A, we derive a closed-form expression for the Whittle index. For model B, we analyze

the structure of the optimal policy and propose a refinement of the modified adaptive greedy algorithm

of [5].

The roadmap to this section is as follows. As the first step, we derive structural properties of the

optimal policies for models A and B. Then, we show how the performance measure can be decomposed

and computed. Next, we apply a finite state approximation to restrict the set of possible information

states and make the computations feasible, and ultimately, we provide the Whittle index formula for

model A and present an adaptive greedy algorithm to compute the Whittle indices for model B.

6.1 Structural properties of the optimal policy

In the following theorem we show that the optimal policy for model A has a threshold structure and

for model B, has a threshold structure with respect to the second dimension of the information state.

Theorem 1 The following statements hold:

(i) In model A, for any λ ∈ R, the optimal policy gAλ (k) is a threshold policy, i.e., there exists a

threshold θAλ ∈ Z ≥ −1 such that

gAλ (k) =

{
0, k < θAλ
1, otherwise.



Les Cahiers du GERAD G–2021–26 12

(ii) In model B, for any λ ∈ R, the optimal policy gBλ (s, k) is a threshold policy with respect to k for

every s ∈ X , i.e., there exists a threshold θBs,λ ∈ Z ≥ −1 for each s ∈ X such that

gBλ (s, k) =

{
0, k < θBs,λ
1, otherwise.

The proof is given in Appendix A1.

We use θB to denote the vector (θBs )s∈X .

6.2 Performance of threshold based policies

We simplify the notation and denote the policy corresponding to thresholds θA and θB instead of g(θA)

and g(θB).

6.2.1 Model A

Let J
(θA)
λ (k) be the total discounted cost incurred under policy g(θA) with penalty λ when the initial

state is k, i.e.,

J
(θA)
λ (k) := (1− β)E

[ ∞∑
t=0

βtc̄λ(Kt, g
(θA)(Kt))

∣∣∣ K0 = k

]

= (1− β)E
[ ∞∑
t=0

βt
(
c̄(Kt, g

(θA)(Kt)) + λg(θA)(Kt)
) ∣∣∣ K0 = k

]
:= D(θA)(k) + λN (θA)(k), (21)

where

D(θA)(k) := (1− β)E
[ ∞∑
t=0

βtc(Kt, g
(θA)(Kt))

∣∣∣ K0 = k

]
,

N (θA)(k) := (1− β)E
[ ∞∑
t=0

βtg(θA)(Kt)
∣∣∣ K0 = k

]
.

D(θA)(k) represents the expected total discounted cost while N (θA)(k) represents the expected number

of times active action is selected under policy g(θA) starting from the initial information state k.

We will show (see Theorem 6) that the Whittle index can be computed as a function of D(θA)(k)

and N (θA)(k). First, we present a method to compute these two variables. Let

L(θA)(k) := (1− β)

θA−1∑
t=k

βt−k c̄(t, 0) + (1− β)βθ
A−k c̄(θA, 1)

M (θA)(k) := (1− β)βθ
A−k

where L(θA)(k) and M (θA)(k) denote the expected discounted cost and time starting from information

state k until reaching threshold θA, respectively.

Theorem 2 For any k ∈ Z≥0, we have

D(θA)(k) = L(θA)(k) + βθ
A−k+1 L(θA)(0)

1− βθA+1
,

N (θA)(k) = M (θA)(k) + βθ
A−k+1 M

(θA)(0)

1− βθA+1
.

The proof is given in Appendix A2.
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6.2.2 Model B

Let J
(θB)
λ (s, k) be the total discounted cost incurred under policy g(θB) with penalty λ when the initial

information state is (s, k), i.e.,

J
(θB)
λ (s, k) = (1− β)E

[ ∞∑
t=0

βtc̄λ(St,Kt, g
(θB)(St,Kt))

∣∣∣ (S0,K0) = (s, k)

]

= (1− β)E
[ ∞∑
t=0

βtc̄(St,Kt, g
(θB)(St,Kt)) + βtλg(θB)(St,Kt)

∣∣∣ (S0,K0) = (s, k)

]
:= D(θB)(s, k) + λN (θB)(s, k), (22)

where

D(θB)(s, k) := (1− β)E
[ ∞∑
t=0

βtc̄(St,Kt, g
(θB)(St,Kt))

∣∣∣ (S0,K0) = (s, k)

]
,

N (θB)(s, k) := (1− β)E
[ ∞∑
t=0

βtg(θB)(St,Kt)
∣∣∣ (S0,K0) = (s, k)

]
.

D(θB)(s, k) and N (θB)(s, k) have the same interpretations as the ones for model A. We will show (see

Theorem 7) that Whittle index can be computed as a function of D(θB)(s, k) and N (θB)(s, k). But

first let’s define vector J
(θB)
λ (0) = (J

(θB)
λ (1, 0), . . . , J

(θB)
λ (|X |, 0)) and vectors D(θB)(0) and N (θB)(0)

in a similar manner. Then, from (21), J
(θB)
λ (0) = D(θB)(0) + λN (θB)(0). Let’s also define

L(θB)(s, k) := (1− β)

θBs −1∑
t=k

βt−k c̄(s, t, 0) + (1− β)βθ
B
s −k c̄(s, θBs , 1),

M (θB)(s, k) := (1− β)βθ
B
s −k.

Let L(θB)(0) = (L(θB)(1, 0), . . . , L(θB)(|X |, 0)) and M (θB)(0) = (M (θB)(1, 0), . . . ,M (θB)(|X |, 0)).

Theorem 3 For any (s, k) ∈ X × Z≥0, we have

D(θB)(s, k) = L(θB)(s, k) + βθ
B
s −k+1

∑
r∈X

QrD
(θB)(r, 0),

N (θB)(s, k) = M (θB)(s, k) + βθ
B
s −k+1

∑
r∈X

QrN
(θB)(r, 0).

Let Z(θB) be a |X | × |X | matrix where Z
(θB)
sr = βθ

B
s +1Qr, for any s, r ∈ X . Then,

D(θB)(0) = (I − Z(θB))−1L(θB)(0),

N (θB)(0) = (I − Z(θB))−1M (θB)(0).

The proof is given in Apendix A3.

6.3 Finite state approximation

For computing Whittle index, we provide a finite state approximation of Proposition 4 for models A

and B. Essentially, we truncate the countable set of possible information state Kt to a finite set and

provide the approximation bound on the optimal value function for each of the models.
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Theorem 4 (Model A) Given ` ∈ N, let N` := {0, . . . , `} and V`,λ : X × N` → R be the unique fixed

point of equation

V`,λ(k) = min
a∈{0,1}

Hλ(k, a), ĝ`,λ(k) = arg min
a∈{0,1}

H`,λ(k, a) (23)

where

H`,λ(k, 0) = (1− β)c̄(k, 0) + βVλ(max{k + 1, `}),
H`,λ(k, 1) = (1− β)c̄(k, 1) + (1− β)λ+ βV`,λ(0).

We set ĝ`,λ(k) = 1 if H`,λ(k, 0) = H`,λ(k, 1). Then, we have the following:

(i) Let cmax
diff,λ = max{maxx φ(x), ρ+ λ} −min{minx φ(x), ρ+ λ}, then for k ∈ Z≥0 such that k ≤ `,

we have

|Vλ(k)− V`,λ(k)| ≤
β`−k+1cmax

diff,λ

1− β
.

(ii) For all k ∈ Z≥0, lim`→∞ V`,λ(k) = Vλ(k). Moreover, let ĝ∗λ(·) be any limit point of {ĝ`,λ(·)}`≥1.

Then, the policy ĝ∗λ(·) is optimal for Problem 3.

Proof.

(i) Starting from information state k ∈ {0, . . . , ` − 1}, the cost incurred by ĝ`,λ(·) is the same as

gAλ (·) for information states {k, . . . , `}. The per-step cost incurred by ĝ`,λ(·) differs from gAλ (·)
for information states {`+ 1, . . .} by at most cmax

diff,λ.

(ii) The sequence of finite-state models described above is an augmentation type approximation se-

quence (see [44, Definition 2.5.3]). As a result, a limit point of ĝ∗λ exists and the final result holds

by [44, Proposition B.5, Theorem 4.6.3].

Theorem 5 (Model B) Given ` ∈ N, let N` := {0, . . . , `} and V`,λ : X × N` → R be the unique fixed

point of equation

V`,λ(s, k) = min
a∈{0,1}

Hλ(s, k, a), ĝ`,λ(s, k) = arg min
a∈{0,1}

H`,λ(s, k, a) (24)

where

H`,λ(s, k, 0) = (1− β)c̄(s, k, 0) + β
∑
x′∈X̃

Pxx′Vλ(s,max{k + 1, `}),

H`,λ(s, k, 1) = (1− β)c̄(s, k, 1) + (1− β)λ+ β
∑
x′∈X̃

Qxx′V`,λ(x′, 0).

We set ĝ`,λ(s, k) = 1 if H`,λ(s, k, 0) = H`,λ(s, k, 1). Then, we have the following:

(i) Let cmax
diff,λ = max{maxx φ(x), ρ+ λ} −min{minx φ(x), ρ+ λ}, then

|Vλ(s, k)− V`,λ(s, k)| ≤
β`−k+1cmax

diff,λ

1− β
,∀s ∈ X .

(ii) For all (s, k) ∈ X × Z≥0, lim`→∞ V`,λ(s, k) = Vλ(s, k). Let ĝ∗λ(·, ·) be any limit point of

{ĝ`,λ(·, ·)}`≥1. Then, the policy ĝ∗λ(·, ·) is optimal for Problem 3.
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Proof.

(i) Starting from information state (s, k), given any s ∈ X and k ∈ {0, . . . , `− 1}, the cost incurred

by ĝ`,λ(·, ·) is the same as gBλ (·, ·) for information states {(s, l)}`l=k. The per-step cost incurred

by ĝ`,λ(·, ·) differs from gBλ (·, ·) for later realized information states by at most cmax
diff,λ. Thus, the

bound would hold.

(ii) The sequence of finite-state models described above is an augmentation type approximation se-

quence (see [44, Definition 2.5.3]). As a result, a limit point of ĝ∗λ exists and the final result holds

[44, Proposition B.5, Theorem 4.6.3].

Due to Theorems 4 and 5, we can restrict the countable part of the information state to a finite

set, which we denote by K. Note that K = N`.

6.4 Whittle index

Next, we derive a closed form expression to compute the Whittle index for model A and provide an

efficient algorithm to compute the Whittle index for model B.

6.4.1 Whittle index formula for model A

For model A, we obtain the Whittle index formula based on the two variables D(θA)(·) and N (θA)(·)
as follows.

Theorem 6 Let ΛAk = {k0 ∈ {0, 1, . . . , |K| − 1} : N (k)(k0) 6= N (k+1)(k0)}. Then, ΛAk 6= ∅ and for any

k0 ∈ ΛAk , the Whittle index of model A at information state k ∈ K is

wA(k) = min
k0∈ΛA

k

D(k+1)(k0)−D(k)(k0)

N (k)(k0)−N (k+1)(k0)
. (25)

Proof. The proof results from [5, Lemma 4].

Theorem 6 gives us a closed-form expression to compute the Whittle index for model A.

6.4.2 Modified adaptive greedy algorithm for model B

LetB = |X ||K| andBD(≤ B) denote the number of distinct Whittle indices. Let Λ∗ = {λ0, λ1, . . . , λBD
}

where λ1 < λ2 < . . . < λBD
denote the sorted distinct Whittle indices with λ0 = −∞. Let

Wb := {(s, k) ∈ X×K : w(s, k) ≤ λb}. For any subset S ⊆ X×K, define the policy ḡ(S) : X×K → {0, 1}
as

ḡ(X )(s, k) =

{
0, if (s, k) ∈ S
1, if (s, k) ∈ (X ×K)\S.

Given Wb, define Γb = {(s, k) ∈ (X × K) \ Wb : (s,max{0, k − 1}) ∈ Wb}. Additionally, for any

b ∈ {0, . . . , BD − 1}, and all states y ∈ Γb, define hb = ḡ(Wb), hb,y = ḡ(Wb∪{y}) and Λb,y = {(x, k) ∈
(X ×K) : N (hb)(x, k) 6= N (hb,y)(x, k)}. Then, for all (x, k) ∈ Λb,y, define

µb,y(x, k) =
D(hb,y)(x, k)−D(hb)(x, k)

N (hb)(x, k)−N (hb,y)(x, k)
. (26)

Lemma 2 For d ∈ {0, . . . , BD − 1}, we have the following:

(i) For all y ∈ Wb+1\Wb, we have w(y) = λb+1.
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(ii) For all y ∈ Γb and λ ∈ (λb, λb+1], we have J
(hb,y)
λ (x) ≥ J

(hb)
λ (x) for all x ∈ X with equality if

and only if y ∈ Wb+1\Wb and λ = λb+1.

Proof. See [5, Lemma 3]. The only difference is that [5] consider y ∈ (X × K)\Wb. However, since

we know from Theorem 1 that the optimal policy is a threshold poliy with respect to the second

dimension, we restrict y to belong to the set Γb.

Theorem 7 The following properties hold:

(i) For any y ∈ Wb+1\Wb, the set Λb,y is non-empty.

(ii) For any x ∈ Λb,y, µb,y(x) ≥ λb+1 with equality if and only if y ∈ Wb+1\Wb.

Proof. See [5, Theorem 2] for the proof steps. Similar to Lemma 2, (X×K)\Wb is replaced with Γb.

By Theorem 7, we can find the Whittle indices iteratively. By definition, W0 = ∅ and λ0 = −∞.

Now suppose W0 ⊂ W1 ⊂ . . . ⊂ Wb and λ0 < λ1 < . . . < λb have been identified. Then, we can obtain

Wb+1 and λb+1 as follows.

1. For hb = ḡ(Wb), compute N (hb) by using Theorem 3.

2. For all y ∈ Γb, compute N (h̄b,y) where h̄b,y = g(W∪{y}) by using Theorem 3 and compute Λb,y. Let

µ∗b,y = min(s,k)∈Λb,y
µb,y(s, k). Then, λb+1 = miny∈Γb

µ∗b,y and Wb+1 =Wb ∪
(

arg miny∈Γb
µ∗b,y

)
.

Then, for all x ∈ arg miny∈Γb
µ∗b,y, w(x) = λb+1.

The Whittle index of all information states can be obtained By following the same procedure. This

approach is summarized in Algorithm 1.

Algorithm 1 Computing Whittle index of all information states of model B
1: Input: Machine (X , {0, 1}, P,Q, c, ρ), discount factor β.
2: Initialize b = 0, Wb = ∅.
3: while Wb 6= X ×K do
4: Compute Λb,y and µ∗b,y , ∀y ∈ Γb.

5: Let λb+1 = miny∈Γb
µ∗b,y and Wb+1 =Wb ∪ arg miny∈Γb

µ∗b,y .

6: w(z) = λb+1, ∀z ∈ arg miny∈Γb
µ∗b,y .

7: b = b+ 1.
8: end while

7 Numerical analysis

In this section, we compare the performance of Whittle index policy with the optimal policy and a

baseline policy called the myopic policy for various setups. As discussed earlier, the dynamic program-

ming computation to obtain the optimal policy suffers from the curse of dimensionality. Therefore, the

optimal policy can be computed only for small-scale models. For medium and large-scale models, we

only compare with the myopic policy. For the sake of computations, we apply the finite state approx-

imation of information state Kt in both of the models. Next, we briefly describe all of the mentioned

algorithms.

7.1 Policies compared

7.1.1 Optimal policy (opt)

To compute the optimal policy, we run the standard value iteration method for Problem 1 with respect

to the truncated information states corresponding for each model.
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7.1.2 Whittle index (wip)

The Whittle index policy is as follows: at each time, obtain the Whittle index corresponding to current

information state of all machines and service m of them which have the highest Whittle indices. The

algorithms for models A and B are shown in Algorithms 2 and 3, respectively.

Algorithm 2 Whittle index heuristic (Model A)

1: Compute wi(k), for all k ∈ K, and for all i ∈ N according to Theorem. 6.
2: t = 0.
3: while t ≥ 0 do
4: Service the machines with the m largest wi(Ki

t).
5: Update Ki

t according to (9) for all i ∈ N .
6: t = t+ 1.
7: end while

Algorithm 3 Whittle index heuristic (Model B)

1: Compute wi(s, k), ∀k ∈ K, ∀s ∈ X , and ∀i ∈ N according to Alg. 1.
2: t = 0.
3: while t ≥ 0 do
4: Service the machines with the m largest wi(Si

t ,K
i
t).

5: Update Ki
t according to (9) and Si

t according to (10) for all i ∈ N .
6: t = t+ 1.
7: end while

7.1.3 Myopic policy (myp)

The myopic heuristic that we consider in this section is as follows. At each time step, we sequentially

selects m machines. First, we assume one machine has to be selected and we pick the machine which

results in lowest per-step cost. Then, we set the machine aside and pick another machine which

minimizes the per-step cost among the new collection of machines. This procedure continues until m

machines are selected. Then, the selected machines are serviced. The algorithms for models A and B

are shown in Algorithm 4 and Algorithm 5, respectively.

Algorithm 4 Myopic heuristic (Model A)

1: t = 0.
2: while t ≥ 0 do
3: ` = 0.
4: while ` ≤ m do
5: i∗` ∈ arg mini∈Z

∑
j∈Z\{i} c̄

j(Kj
t , 0) + c̄i(Ki

t , 1).

6: let M =M∪ {i∗`}, Z = Z \ {i∗`}.
7: ` = `+ 1.
8: end while
9: Service the machines with indices collected in M.

10: Update Ki
t according to (9) for all i ∈ N .

11: t = t+ 1.
12: end while

7.2 Experiments and results

We conduct numerical experiments for both models A and B, and vary the number n of machines,

the number m of service-persons and the parameters associated with each machine. There are three

parameters associated with each machine: the deterioration probability matrix P i, the reset pmf Qi

and the per-step cost ci(x, a). We assume the matrix P i is chosen from a family of four types of

structured transition matrices P`(p), ` ∈ {1, 2, 3, 4} where p is a parameter of the model. The details

of all these models are presented in Appendix A4. We assume each element of Qi is sampled from

Exp(1), i.e., exponential distribution with the rate parameter of 1, and then normalized such that sum
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Algorithm 5 Myopic heuristic (Model B)

1: t = 0.
2: while t ≥ 0 do
3: ` = 0.
4: while ` ≤ m do
5: i∗` ∈ arg mini∈Z

∑
j∈Z\{i} c̄

j(Sj
t ,K

j
t , 0) + c̄i(Si

t ,K
i
t , 1).

6: let M =M∪ {i∗`}, Z = Z \ {i∗`}.
7: ` = `+ 1.
8: end while
9: Service the machines with indices collected in M.

10: Update Ki
t according to (9) and Si

t according to (10) for all i ∈ N .
11: t = t+ 1.
12: end while

of all elements becomes 1. Finally, we assume that the per-step cost is given by ci(x, 0) = (x− 1)2 and

ci(x, 1) = 0.5|X i|2.

In all experiments, the discount factor is β = 0.99. The performance of every policy is evaluated

using Monte-Carlo simulation of length T = 1000 averaged over S = 5000 sample paths.

In Experiment 1, we consider a small scale problem where we can compute opt and we compare

the performance of wip with it. However, in Experiment 2, we consider a large scale problem where we

compare the performance of wip with myp as computing the optimal policy is highly time-consuming.

Experiment 1) Comparison of Whittle index with the optimal policy.

In this experiment, we compare the performance of wip with opt. We assume |X | = 4, |K| = 4 and

n = 3, m = 1 for both models A and B. In order to model heterogeneous machines, we consider the

following. Let (p1, . . . , pn) denote n equispaced points in the interval [0.05, 0.95]. Then we choose

P`(pi) as the transition matrix of machine i. We denote the accumulated discounted cost of wip and

opt by J(wip) and J(opt), respectively. In order to have a better prospective of the performances,

we compute the relative performance of wip with respect to opt by computing

αopt = 100× J(opt)

J(wip)
. (27)

The closer α is to 100, the closer wip is to opt. The results of αopt for different choice of the parameters

are shown in Table 1.

Table 1: αopt for different choice of parameters in Experiment 1

(a) Model A

` 1 2 3 4

αopt 100 100 100 100

(b) Model A

` 1 2 3 4

αopt 100 99.72 99.81 99.57

Experiment 2) Comparison of Whittle index with the myopic policy for structured models.

In this experiment, we increase the state space size to |X | = 20 and we set |K| = 40, we select n

from the set {20, 40, 60} and m from the set {1, 5}. We denote the accumulated discounted cost of

myp by J(myp). In order to have a better prospective of the performances, we compute the relative

improvement of wip with respect to myp by computing

εmyp = 100× J(myp)− J(wip)

J(myp)
. (28)

Note that εmyp > 0 means that wip performs better than myp. We generate structured transition

matrices, similar to Experiment 1, and apply the same procedure to build heterogeneous machines.

The results of εmyp for different choice of the parameters for models A and B are shown in Tables 2

and 3, respectively.
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Table 2: εmyp for different choice of parameters of Model A in Experiment 2

(a) Model A, m = 1

εmyp
`

1 2 3 4

n
20 1.42 3.20 2.04 6.47
40 2.45 5.62 4.82 7.09
60 2.68 4.40 4.33 5.30

(b) Model A, m = 5

εmyp
`

1 2 3 4

n
20 0.15 0.27 0.22 1.59
40 1.09 1.28 1.13 3.79
60 1.38 2.17 2.14 7.27

Table 3: εmyp for different choice of parameters of Model B in Experiment 2

(a) Model B, m = 1

εmyp
`

1 2 3 4

n
20 7.88 11.4 9.66 10.2
40 12.1 14.6 13.4 7.19
60 14.5 12.9 11.8 6.06

(b) Model B, m = 5

εmyp
`

1 2 3 4

n
20 0.77 1.43 0.88 3.72
40 1.49 3.96 3.76 8.59
60 4.13 5.45 4.92 8.37

7.3 Discussion

In Experimens 1 where wip is compared with opt, we observe αopt is very close to 100 for almost all

experiments, implying that wip performs as well as opt for these experiments. αopt in model B is less

than model A as model B is more complex than model A for a given set of parameters and hence, the

difference between the performance of the two polices is more than model A.

In Experiment 2 where wip is compared with myp, we observe εmyp ranges from 0.15 to 14.5. In a

similar interpretation as Experiment 1, as model B is more complex than model A, εmyp for model B

is higher than the ones model A given the same set of parameters. Furthermore, we observe that as

n increases, εmyp also increases overally. Also, as m increases, εmyp decreases in general. This means

that as m increases, there is an overlap between the set of machines chosen according to wip and myp,

and hence, the performance of wip and myp become close to each other.

8 Conclusion

We considered the problem of scheduling the maintenance of a collection of machines under partial-
observations using restless multi-armed bandit problem. We assume each machine has several states,

the states of all machines are deteriorating over time and the state dynamics are Markovian. Obtaining

the optimal scheduling policy in such a setup is NP-hard. We proposed to model the problem as a

RMAB and use the Whittle index policy as a heuristic. This policy is applicable if a technical condition

called as indexability is satisfied. We showed that under the assumptions made in Section 2, both

models are indexable. The Whittle index approach decomposes the problem into a sub-problem for

each machine.

Instead of using the belief state formulation which is continuous, we identify a simpler countable

information state. Using this information state allowed us to prove some structural results on the

problem. We proved that for a single arm problem, the optimal policy is a threshold policy for the

first model and a threshold policy with respect to a dimension in the second model. Using these a

structural results, we provided a closed-form expression for the Whittle index of the first model and

an improved version of adaptive greedy algorithm to compute the Whittle index for the second model.

Finally, we demonstrated that for small-scale models, the Whittle index policy is close-to-optimal

and for large-scale models, the Whittle index policy outperforms the myopic policy baseline.
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Appendix

A1 Proof of Theorem 1

Let a and b be two probability mass functions on totally ordered set X̃ . Then we say a stochastically

dominates b if for all x ∈ X̃ ,
∑
z∈X̃≥x

az ≥
∑
z∈X̃≥x

bz. Given two |X̃ | × |X̃ | transition matrices M

and N , we say M stochastically dominates N if each row of M stochastically dominates the corre-

sponding N . A basic property of stochastic dominance is the following.

Lemma A1 If M1 stochastically dominates M2 and c is an increasing funtion defined on X̃ , then for

all x ∈ X̃ ,
∑
y∈X̃ M

1
xyc(y) ≥

∑
y∈X̃ M

2
xyc(y).

Proof. This is a straightforward induction from [40, Lemma 4.7.2].

Consider a RB {(X̃ , {0, 1}, {P̃ , Q̃}, c̃, π̃0)}. According to [5], we say a RB is stochastic monotone if

it satisfies the following conditions.

(D1) P̃ and Q̃ are stochastic monotone transition matrices.

(D2) For any z ∈ X̃ ,
∑
w∈X̃≥z

[P̃ − Q̃]xw is non-decreasing in x ∈ X̃ .

(D3) For any a ∈ {0, 1}, c̃(x, a) is non-decreasing in x.

(D4) c̃(x, a) is submodular in (x, a).

The following is established in [5, Lemma 5].

Proposition 8 The optimal policy of a stochastic monotone RB is a threshold policy denoted by g̃,

which is a policy which takes passive action for states below a threshold denoted by θ̃ and active action

for the rest of the states, i.e.,

g̃ =

{
0, x < θ̃

1, otherwise
.

A1.1 Proof of Theorem 1, Part (i)

We show that each machine in model A is a stochastic monotone RB. Each condition of stochastic

monotone RB is presented and proven for model A below.

(D1-A) Recall that PAxy = I{y=x+1} and QAxy = I{y=0}. Thus, PA and QA are stochastic monotone

matrices.

(D2-A) Since PA is a stochastic monotone matrix and QA has constant rows,
∑
r≥z[P

A − QA]sr is

non-decreasing in s for any z ∈ K.

(D3-A) As P stochastically dominates the identity matrix, we infer from [28, Theorem 1.1-b and

Theorem 1.2-c], that QP ` stochastically dominates QP k for any ` > k ≥ 0. Additionally,

cλ(x, a) is increasing in x for any a ∈ {0, 1}. By (11) we have c̄λ(k, a) =
∑
x∈X [(QP )k]xcλ(x, a).

Therefore, by Lemma A1, c̄λ(k, a) is non-decreasing in k.

(D4-A) As c(x, 0) = φ(x) which is increasing in x and c(x, 1) = ρ which is a constant, cλ(x, 0)−cλ(x, 1)

is non-decreasing in x. As shown in (D3-A), QP ` stochastically dominates QP k for any ` > k ≥
0. Therefore, by Lemma A1, c̄λ(k, 0) − c̄λ(k, 1) =

∑
x∈X [(QP )k]x(cλ(x, 0) − cλ(x, 1)) is non-

decreasing in k.

Therefore, according to Proposition 8, the optimal policy of an RB under model A is a threshold based

policy.
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A1.2 Proof of Theorem 1, Part (ii)

We first characterize the behavior of value function and state-action value function for Model B.

Lemma A2 We have

(i) c̄λ(s, k, a) is increasing in k for any s ∈ X and a ∈ {0, 1}.
(ii) Given a fixed λ, Vλ(s, k) is increasing in k for any s ∈ X .

(iii) c̄λ(s, k, a) is submodular in (k, a), for any s ∈ X .

(iv) Hλ(s, k, a) is submodular in (k, a), for any s ∈ X .

Proof. The proof of each part is as follows.

(i) By definition, we have

c̄λ(s, k, a) =
∑
x∈X

[δsP
k](x)c(x, a) + λa.

Similar to the proof of (D3-A) in Proposition 8, for a given s ∈ X and a ∈ {0, 1}, [δsP
k](x) is

increasing in k and x and as c(x, a) is increasing in x, c̄(s, k, a) is increasing in k.

(ii) Let

Hj
λ(s, k, 0) := (1− β)c̄(s, k, 0) + βV jλ (s, k + 1),

Hj
λ(s, k, 1) := (1− β)c̄(s, k, 1) + (1− β)λ+ β

∑
r

QrV
j
λ (r, 0),

V j+1
λ (s, k) := min

a∈{0,1}
{Hj

λ(s, k, a)},

where V 0
λ (·, ·) = 0 for all (s, k) ∈ X × Z≥0.

Claim 1 V jλ (s, k) is non-decreasing in k for any s ∈ X and j ≥ 0.

We prove the claim by induction. By construction, V 0
λ (s, k) is non-decreasing in k for any s ∈ X .

This forms the basis of induction. Now assume that V jλ (s, k) is non-decreasing in k is for any

s ∈ X and some j ≥ 0. Consider ` > k ≥ 0. Then, by induction hypothesis we have

Hj
λ(s, `, 0) = (1− β)c̄(s, `, 0) + βV jλ (s, `+ 1)

≥ (1− β)c̄(s, k, 0) + βV jλ (s, k + 1) = Hj
λ(s, k, 0),

Hj
λ(s, `, 1) = (1− β)c̄(s, `, 1) + (1− β)λ+ β

∑
r

QrV
j
λ (r, 0)

≥ (1− β)c̄(s, k, 1) + (1− β)λ+ β
∑
r

QrV
j
λ (r, 0) = Hj

λ(s, k, 1).

Therefore,

V j+1
λ (s, `) = min

a
{Hj

λ(s, `, a)} ≥ min
a
{Hj

λ(s, k, a)} = V j+1
λ (s, k).

Thus, V j+1
λ (s, k) is non-decreasing in k for any s ∈ X . This completes the induction step.

Vλ(s, k) = lim
j→∞

V jλ (s, k)

and monotonicity is preserved under limits, the induction proof is complete.

(iii) As c(x, 0) = φ(x) which is increasing in x and c(x, 1) = ρ, we infer c(x, 0)− c(x, 1) is increasing

in x. Also, note that δsP
k is the sth row of P k. Thus, δsP

k+1 stochastically dominates δsP
k

and by Lemma A1 we have∑
x∈X

[δs(P
k+1 − P k)]x(c(x, 0)− c(x, 1)) ≥ 0.
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Therefore, ∑
x∈X

[δs(P
k − P k+1)]xc(x, 1) ≥

∑
x∈X

[δs(P
k − P k+1)]xc(x, 0)

⇒
∑
x∈X

[δsP
k]xc(x, 1)−

∑
x∈X

[δsP
k]xc(x, 0)

≥
∑
x∈X

[δsP
k+1]xc(x, 1)−

∑
x∈X

[δsP
k+1]xc(x, 0)

⇒ c̄(s, k, 1)− c̄(s, k, 0) ≥ c̄(s, k + 1, 1)− c̄(s, k + 1, 0).

(iv) As for any s ∈ X , Vλ(s, k) is increasing in k, and c̄λ(s, k, a) is submodular in (k, a), for any k ∈ K
and a ∈ {0, 1}, we have

Hλ(s, k, 1)−Hλ(s, k, 0)

= (1− β)c̄(s, k, 1) + (1− β)λ+ β
∑
r

QrVλ(r, 0)

− (1− β)c̄(s, k, 0)− βVλ(s, k + 1)

≥ (1− β)c̄(s, k + 1, 1) + (1− β)λ+ β
∑
r

QrVλ(r, 0)

− (1− β)c̄(s, k + 1, 0)− βVλ(s, k + 2)

= Hλ(s, k + 1, 1)−Hλ(s, k + 1, 0).

Lemma A3 Suppose f : X × Y → R is a submodular function and for each x ∈ X , miny∈Yf(x, y)

exists. Then, max{arg miny∈Y f(x, y)} is monotone non-decreasing in x.

Proof. This is a straightforward induction from [40, Lemma 4.7.1].

Finally, we conclude that as Hλ(s, k, a) is submodular in (k, a) for any s ∈ X , then, based on

Lemma A3 and as only two actions is available, the optimal policy is a threshold policy specified in

the theorem statement.

A2 Proof of Theorem 2

By the strong Markov property, we have

D(θA)(k) = (1− β)

θA∑
j=k

βtc̄(t, g(t)) + βθ
A−k+1D(θA)(0)

= L(θA)(k) + βθ
A−k+1D(θA)(0)

and

N (θA)(k) = (1− β)βθ
A−k + βθ

A−k+1N (θA)(0)

= M (θA)(k) + βθ
A−k+1N (θA)(0).

If we set k = 0 in the above,

D(θA)(0) =
L(θA)(0)

1− βθA+1
and N (θA)(0) =

M (θA)(0)

1− βθA+1
.
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A3 Proof of Theorem 3

By the strong Markov property, we have

D(θB)(s, k) = (1− β)

θBs∑
j=k

βtc̄(s, t, g(s, t)) + βθ
B
s −k+1

∑
r∈X

QrD
(θB)(r, 0)

= L(θB)(s, k) + βθ
B
s −k+1

∑
r∈X

QrD
(θB)(r, 0)

and

N (θB)(s, 0) = (1− β)βθ
B
s −k + βθ

B
s −k+1

∑
r∈X

QrN
(θB)(r, 0)

= M (θB)(s, k) + βθ
B
s −k+1

∑
r∈X

QrN
(θB)(r, 0).

If we set k = 0 in the above,

D(θB)(s, 0) = L(θB)(s, 0) + βθ
B
s +1

∑
r∈X

QrD
(θB)(r, 0)

and

N (θB)(s, 0) = M (θB)(s, 0) + βθ
B
s +1

∑
r∈X

QrN
(θB)(r, 0).

which results in

D(θB)(0) = L(θB)(0) + Z(θB)D(θB)(0),

N (θB)(0) = M (θB)(0) + Z(θB)N (θB)(0)

and hence, the statement is obtained by reformation of the terms inside the equations.

A4 Structured Markov chains

Consider a Markov chain with |X | states. Then a family of structured stochastic monotone matrices

which dominates the identity matrix is illustrated below.

Matrix P1(p): Let q1 = 1− p and q2 = 0. Then,

P1(p) =



p q1 q2 0 0 0 0 . . . 0
0 p q1 q2 0 0 0 . . . 0
0 0 p q1 q2 0 0 . . . 0
0 0 0 p q1 q2 0 . . . 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 p q1 q2

0 0 0 0 0 0 0 p q1 + q2

0 0 0 0 0 0 0 . . . 1


.

Matrix P2(p): Similar to P1(p) with q1 = (1− p)/2 and q2 = (1− p)/2.

Matrix P3(p): Similar to P1(p) with q1 = 2(1− p)/3 and q2 = (1− p)/3.

Matrix P4(p): Let qi = (1− p)/(X − i). Then,

P4(p) =


p q1 q1 . . . q1 q1

0 p q2 . . . q2 q2

...
...

...
...

...
...

0 0 0 . . . p qn−1

0 0 0 . . . 0 1

 .
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