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Université du Québec à Montréal, as well as the Fonds de recherche
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Montréal (Québec), Canada H3C 3A7

b Canada Excellence Research Chair (CERC), Poly-
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Abstract : The primal simplex algorithm is still one of the most used algorithms by the operations
research community. It moves from basis to adjacent one until optimality. The number of bases can bef
very huge, even exponential, due to degeneracy or when we have to go through all of the extreme points
very close to each other. The improved primal simplex algorithm (IPS) is efficient against degeneracy
but when there is no degeneracy, it behaves exactly as a primal simplex and consequently, it may suffer
from the same limitations.

We present a new formulation of the complementary problem, i.e., the auxiliary subproblem used
by the improved primal simplex to find descent directions, that guarantees a significant improvement of
the objective value at each iteration until we reach an ε−approximation of the optimal value. We prove
that the number of needed directions is polynomial.

Keywords: Linear programming, simplex, degeneracy, decomposition, primal algorithms
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1 Introduction

Consider the linear program
min
x∈Rn

cTx

(LP) : Ax = b
x ≥ 0

where A is an m× n matrix, c an arbitrary cost vector of dimension n and b a vector of dimension m.

We suppose that (LP) is feasible and A is of full rank. If the program is not or slightly degenerate, it

can be easily solved by any standard linear programming solver using the primal simplex algorithm,

which is still one of the most used algorithms in Operations Research even if the dual simplex and

the interior point methods are faster in some cases. The primal simplex algorithm is well suited for

re-optimization, especially when new columns are iteratively added in the column generation context.

Actually, many problems in the transportation industry are for instance solved that way to profit from

the problem’s specific structure. In this case, the number of variables can be huge but only a limited

number of promising variables are generated at each iteration. We discuss below two difficulties of the

primal simplex algorithm and how to deal with them.

1.1 Primal degeneracy: a first difficulty

A first difficulty for the primal simplex is degeneracy. When there are many bases for the same extreme

point, the primal simplex algorithm can do many pivots without improving the objective value. In

past years, several techniques have been developed to deal with degeneracy. Large group of these

methods focuses on the selection of the variable entering the basis. In one hand, Greenberg (1978)
introduced a method that computes a vector such that each of its positive entries corresponds to a

nonbasic variable that will necessarily lead to a degenerate pivot if it is chosen to enter the basis. On

the other hand, Bénichou et al. (1977) uses another idea based on perturbation. Indeed, they apply a

random modification of either the values of the degenerate variables or their bounds to put an end to

a sequence of nonimproving pivots. The random modification avoids performing iterations without

improvement, but it usually replaces them with small steps. For further information, an excellent study

of degeneracy emphasizing its computational aspects is given by Maros (2012).

Another approach aims to take advantage of degeneracy rather than just to minimize its negative

effects. Geometrically, a degenerate vertex of the n-dimensional polyhedron described by the LP’s

constraints is the crossing point of more than n − 1 facets of the polyhedron. Degeneracy thus
corresponds to a local excess of information, which suggests that a smaller problem may be considered

locally to make a progress from a degenerate solution. In Perold (1980), they introduce a particular

degeneracy structure in the LU decomposition of the basis, which involves fewer calculations when

performing degenerate pivots. The paper Pan (2008) generalizes the definition of basis to include
deficient bases containing p independent columns, with p is lower than the number of rows. When

degeneracy occurs, a deficient basis, smaller than the usual square basis matrix, may be used to perform

the pivot calculations.

The Improved Primal Simplex algorithm IPS (Elhallaoui et al., 2011) was introduced recently to

deal with degeneracy in linear programming. The IPS algorithm permits to move from an extreme

point to a strictly better adjacent extreme point. This algorithm identifies the compatible variables, i.e.,

those in the span of non-degenerate variables, to enter into the basis to obtain non-degenerate pivots.

When no compatible variables with negative reduced costs exist these algorithms use a complementary

problem to find an improving direction moving to a strictly better adjacent extreme point. The

complementary problem, which is not dual degenerate, can be solved easily with the dual simplex. The

process continues decreasing the objective value at each iteration until an optimal solution is reached.

IPS is a generalization of previous works on dynamic constraint aggregation showing clear success for

solving set partitioning problems (see Elhallaoui et al. (2008), Saddoune et al. (2011)). It has been

already shown in Metrane et al. (2010) that IPS is a Dantzig-Wolf decomposition. The IPS algorithm

reduces the computation time by a factor of more than 4 on driver and bus scheduling problems of
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2000 constraints and 6000− 10000 variables with in the order of 50% of degenerated constraints. It

reduces the computation time by factors of 10 to 30 on real life fleet assignment and aircraft routing

problems of 5000 constraints and 17000− 25000 variables with 65%− 70% of degenerated constraints

(Metrane et al., 2010).

1.2 Small improvement: a second difficulty

A second difficulty for the primal simplex is the small improvement at some pivots with pricing criteria

based on reduced cost. The steep size and the improvement can be small. Using steepest edge as

pricing criterion selects the best improvement but it is time consuming. At some extreme points, the

best improvement can be small when all neighbors in the polyhedron are very close. For example, when

a very degenerate problem is perturbed to escape degeneracy, the huge number of bases at an extreme

point is transformed into a huge number of very close extreme points. In the worst case, the primal

simplex algorithm could need an exponential number of pivots to solve the problem (Smale, 1998).

Finding a polynomial adaptation of the primal simplex is classified as an important problem for the

21st century (Smale, 1998).

1.3 Contribution and organization of the paper

IPS is good for degeneracy but does not ensure a significant decrease at each iteration and when there

is no degeneracy, IPS behaves exactly as the standard primal simplex algorithm. The contribution of

this paper is to introduce a new variant of the complementary problem of IPS that ensures a significant

decrease at each iteration even if the problem is degenerate or all neighbors are not significantly better.

In the latter case, the resulting Improved Primal Simplex can jump to a non-neighbor extreme point

which is significantly better. Thus, we reach an ε−optimal solution in visiting only a polynomial number

of extreme points.

The paper is organized as follows. In Section 2 we give the standard formulation of the Improved

Primal Simplex, while the Section 3 introduces a general parametric formulation of the new comple-

mentary problem and in the same Section we give the choice of the parameters that ensure the desired

results. The Section 4 provides the results of the paper and their proofs. A numerical example is

studied in the Section 6 to illustrate the benefit of the new formulation introduced in the Section 3 on
the standard formulation of IPS.

2 Improved Primal Simplex generic framework

For I ⊂ {1, . . . ,m} and J ⊂ {1, . . . , n}, the submatrix of A with rows indexed by I and columns

indexed by J is denoted AI,J . Similarly, for any vector v ∈ Rn, vJ is the subvector of all vj , j ∈ J .

For the remainder of the paper, x ∈ Rn is a feasible basic solution of (LP) where B and N are the

index sets of basic and non-basic variables, respectively.

The main idea of the Improved Primal Simplex is to divide the set B into two subsets P and

Z and hence decompose the problem into two subproblems: the reduced problem containing the

compatible variables with P and a complementary problem containing the rest of variables. The

decomposition can be explained as follows. We start by defining P := {j ∈ B, xj > 0} as the index

set of positive variables. The index set of compatible variables with P is defined as the following:

set C :=
{
j ∈ N , Aj ∈ Span (Al)l∈P

}
. Finally, by defining L = N\C, we can formulate the two

subproblems RLP and CLPB formulated in the next two subsections.
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2.1 Reduced problem

The reduced problem can be simply seen as a restriction of the original problem to compatible variables

as defined above.

(RLP) :

ρ := min
xC∈RC

cTC xC[
[AB]

−1
A
]
P,C

xC =
[
[AB]

−1
b
]
P

xC ≥ 0

As we can observe, the rank of the constraint matrix is |P|. Where there is degeneracy, |P| < m.

Consequently, there are m− |P| redundant constraints that can be removed from the reduced problem.

Obviously, the higher is degeneracy, the smaller is the reduced problem (so easier to solve). In Elhallaoui

et al. (2011), we have shown that any pivot on a compatible variable having a negative reduced cost is

non-degenerate. That means pivots in the reduced problem are fast and efficient. The reduced problem

can be solved very easily by a standard primal simplex.

2.2 Complementary problem

The complementary problem seeks to combine incompatible variables to form a compatible combination
having the least reduced cost according to the same definition of compatibility. The formulation is as

follows:

(CLPB) :

ζ := min
u∈RP
v∈RL

−cTPu+ cTLv

−APu+ALv = 0
1T v = 1
v ≥ 0

Without the normalization constraint 1T v = 1, the complementary problem is an unbounded cone

(of directions); This constraint is used to bound it. We observed that the complementary problem is not

dual degenerate. So, it is easily solvable by the dual simplex algorithm. Also, pivoting in the original
problem on positive variables yields an improved basic solution. Remark here that columns of AP are

linearly independent. So, the variables u can be substituted by variables v, reducing thus the dimension

of the complementary problem (and reducing the number of constraints too by an equivalent number).

In summary, the IPS algorithm solves successively the reduced problem RLP (to optimality) then the

complementary problem CLP and reiterate until optimality is reached. In Elhallaoui et al. (2011), it

has been proven that from iteration to iteration IPS goes from an extreme point to an adjacent extreme

point and if ζ ≥ 0 then the solution is optimal.

3 New formulation for the complementary problem

If the pivot selection criterion in the standard primal simplex selects a large valued exiting variable,

the step size would be large enough to produce a significant improvement if the reduced cost of the

entering variable is also large enough. If the exiting variables are not large enough, their reduced cost

should compensate this. In the same way, when we move along a descent direction produced by the

complementary problem in IPS, if the exiting variables have large values, the improvement will be

significant (or at least the best we can do) because their reduced costs are minimum by construction.

So, instead of considering the index set of positive valued variables P as one set, we partitioned it into

two subsets S and R where S is the set of large valued variables. The objective of the paper is to

provide a formal criterion to construct the set S and to select a good improving direction permitting to

obtain a significant improvement of the objective value by playing with the normalization constraint.

We redefine the set of compatible variables as

C :=
{
j ∈ N , Aj ∈ Span (Al)l∈S

}
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(compatible with S instead of P) and L := N\C. Let λ ∈ RL>0 and γ ∈ RR>0 be two vectors of weights we

introduce in the normalization constraint of the complementary problem to obtain a descent direction

with significant improvement. These weight vectors are computed using S and the data of the problem.

The formal definitions of S, λ and γ will be given later in the proof of the Proposition 3. We formulate

the parametric complementary problem as follows.

(NCLP) :

z := min
u∈RS v∈RL
w∈RR

−cTSu− cTRw + cTLv

−ASu−ARw +ALv = 0
λT v + γTw ≤ 1

v ≥ 0
w ≥ 0

By duality, the dual problem of (CLP) is:

(DCLP) :

z = max
y∈R, π∈Rm

−y

cj − πTAj = 0 j ∈ S
cj − πTAj ≥ −λjy j ∈ L
cj − πTAj ≤ γjy j ∈ R

y ≥ 0

As will be shown in the next section, this new complementary problem ensures that basic variables

indexed by S can decrease significantly the objective value when they exit from the basis. In the same

time, the normalization constraint will prevent the variables indexed by R from getting out from the

basis unless their reduced cost is important enough.

4 Theoretical results

In this section, we begin by formulating the main results of the paper and at the end, we propose a

choice of S, R, λ and γ that ensures the desired behavior. We start by proving the following lemma.

Lemma 1 Let (y, π) ∈ R× Rm a feasible solution of (DCLP) then

cTC − πTAC ≥ 0

Proof. The proof is straightforward as

cTC − πTAC = cTC − πTAB [AB]
−1
AC

= cTC − πTAS
{

[AB]
−1
A
}
S,C

= cTC − cTS
{

[AB]
−1
A
}
S,C

+
(
cTS − πTAS

){
[AB]

−1
A
}
S,C

= cTC − cTS
{

[AB]
−1
A
}
S,C

≥ 0.

We then prove the following proposition that gives a bound on how far is the current basic solution

from the optimal solution. Assume without loss of generality that the set of feasible solutions of the

linear problem is bounded. We define ∆ as the upper bound on components of feasible solutions:

∆ = max
i=1,...,n

max
Ax=b, x≥0

xi
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Proposition 1 Considering the (DCLP), x the current basic solution and x∗ the optimal solution of

(LP) then,

cT (x− x∗) ≤
[
m∆ ‖λ‖∞ + γTxR

]
|z|

Proof. Let (y, π) ∈ R× Rm a feasible solution of (DCLP),

cTx∗ = cTC x
∗
C + cTLx

∗
L

≥ cTC x∗C +
(
−yλT + πTAL

)
x∗L

= −y
[
λTx∗L

]
+ cTC x

∗
C + πTALx

∗
L

= −y
[
λTx∗L

]
+ cTC x

∗
C + πT (b−ACx∗C)

= −y
[
λTx∗L

]
+ πT b+

(
cTC − πTAC

)
x∗C

= −y
[
λTx∗L

]
+ πT (ACxC +ALxL) +

(
cTC − πTAC

)
x∗C

= −y
[
λTx∗L

]
+ πTASxS + πTARxR +

(
cTC − πTAC

)
x∗C

= −y
[
λTx∗L

]
+ cTSxS + cTRxR −

(
cTR − πTAR

)
xR +

(
cTC − πTAC

)
x∗C

= −y
[
λTx∗L

]
+ cTx−

(
cTR − πTAR

)
xR +

(
cTC − πTAC

)
x∗C

By using the results of the Lemma 1 and the fact that cTR − πTAR ≤ yγT , we have

cT (x− x∗) ≤ y
[
λTx∗L + γTxR

]
Since

∣∣λTx∗L∣∣ ≤ ‖λ‖∞∑
j∈L

x∗j ≤ m ‖λ‖∞∆ we have

cT (x− x∗) ≤ y
(
m∆ ‖λ‖∞ + γTxR

)
.

Now, we state a proposition quantifying the improvement obtained from the new formulation after

one iteration. To ease notations, we define

βj := min

 λl[
[AB]

−1
A
]
j,l

: l ∈ L;
[
[AB]

−1
A
]
j,l
> 0

 .

Proposition 2 Consider the (NCLP). If z < 0, then the improvement of the current iteration is equal
to z × α where

α ≥ min

{
min

[
βj

[
[AB]

−1
b
]
j

: j ∈ S
]
, min

[
γj

[
[AB]

−1
b
]
j

: j ∈ R
]}

Proof. Let (u,w, v) ∈ RS ×RR ×RL be the optimal solution of the complementary problem (NCLP).

The (maximum) step through this direction is:

α = max
{
t > 0 : xS − tu ≥ 0, xR − t (w − vR) ≥ 0

}
So,

α = max

{
t > 0 : t ≤ xj

uj
; j ∈ S, uj > 0, t ≤ xj

wj − vj
; j ∈ R, wj − vj > 0

}

On one hand, we have γTw ≤ 1 then for j ∈ R, γj (wj − vj) ≤ γjwj ≤ 1. If in addition wj − vj > 0

then γjxj ≤ xj

wj−vj . On other hand, since −ASu−ARw +ALv = 0, by multiplying by [AB]
−1

,
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u =
[
[AB]

−1
]
S,.
ALv =

[
[AB]

−1
A
]
S,L

v

Furthermore, for j ∈ P,

uj ≤
∑

l∈L; [[AB]−1A]
j,l
>0

[
[AB]

−1
A
]
j,l
vl

=
∑

l∈L; [[AB]−1A]
j,l
>0

λ−1
l

[
[AB]

−1
A
]
j,l
λlvl

≤ β−1
j

∑
l∈LB

λlvl

≤ β−1
j

If in addition uj > 0 then βjxj ≤ xj

uj
. Using the fact that x = [AB]

−1
b, we have directly the

result.

Henceforth, we assume that c ≥ 0. This assumption is in fact a weak assumption since cj < 0

becomes cj > 0 by using yj = ∆− xj instead of xj . In the following proposition, we prove that there is
a choice of all previous parameters such that either the solution is a good approximation of the optimal

solution or the improvement after one iteration is significant. Let x+ be the feasible solution obtained

by moving from the current basic solution x along the optimal direction returned by the (NCLP).

Proposition 3 Let ε ∈
]
0, 1

m

[
, x the current basic solution and x∗ the optimal solution. There is a

choice of S, R, λ ∈ RL>0 and γ ∈ RR>0 such that either cTx ≤ 1
1−εc

Tx∗ or cTx+ ≤ cTx
(
1− ε2

)
.

Proof. Let a :=
(∥∥∥[AB]

−1
Aj

∥∥∥
∞

)
j∈N

, µ :=
m∆‖a‖∞ε

(1−mε) , η := ε(1−mε)
m∆‖a‖∞

, S := {j ∈ P : xj > µ}, R :=

{j ∈ P : xj ≤ µ}, λ := (aj)j∈L and γ =

(
µ

[[AB]−1b]
j

)
j∈R

. We start by proving that βj ≥ 1, ∀j ∈ S.

Indeed,

βj := min

 λl[
[AB]

−1
A
]
j,l

: l ∈ L;
[
[AB]

−1
A
]
j,l
> 0


and for l ∈ L, if

[
[AB]

−1
A
]
j,l
> 0 then

λl[
[AB]

−1
A
]
j,l

=

∥∥∥[AB]
−1
Al

∥∥∥
∞[

[AB]
−1
A
]
j,l

≥ 1.

Since xj ≥ µ for j ∈ S, we have βjxj ≥ µ. On the other hand, for j ∈ R,
[
[AB]

−1
b
]
j

= xj , then

γjxj = µ. By using the result of Propostion 2, we can prove that the step α is at least equal to µ. Let

z be the optimal value of (NCLP). If z ≥ −ηcTx, by using the result from the Proposition 1 we have,

cTx− cTx∗ ≤
[
m∆ ‖λ‖∞ + γTxR

]
|z|

≤ [m∆ ‖a‖∞ + |R|µ] ηcTx

≤ m
(

∆ ‖a‖∞ +
m∆ ‖a‖∞ ε

(1−mε)

)
ε(1−mε)
m∆ ‖a‖∞

cTx

≤ εcTx.
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This implies that cTx∗ ≥ (1− ε)cTx. On the other hand, if z ≤ −ηcTx, using the Proposition 2,

one can prove that the improvement cTx+ − cTx = αz ≤ −µ× ηcTx = −ε2cTx. Which implies that

cTx+ ≤
(
1− ε2

)
cTx.

Since the construction of our formulation is based on the fact that x is a basic solution, it would be

great if x+ is a basic solution as well. Unfortunately, this is not the case in general (see the example

introduced in Section 6). However, from x+, we can easily construct a better cost basic solution with a

procedure of low polynomial complexity. We then can restart our algorithm. Before introducing how

to get a basic solution from x+, let us prove the following lemma that gives an upper bound on the

number of positive variables in x+.

Lemma 2 We have: ∣∣{j ∈ N : x+
j > 0

}∣∣ ≤ m+ |R| ≤ 2m.

Proof. The last inequality is direct from the fact that |R| ≤ m.

Proposition 4 If y ∈ Rn is a non basic feasible solution of (LP). We can construct, in polynomial

time, a feasible solution y+ of (LP) such that cT y+ ≤ cT y and∣∣{j ∈ N : y+
j > 0

}∣∣ < |{j ∈ N : yj > 0}| .

Proof. The idea of the construction is simple. First, we start by finding a non-increasing feasible

direction. Then we apply a simplex-pivot-like method to take out a variable from the set of positive

variables.

Formally, let P := |{j ∈ N : yj > 0}|. The (Aj)j∈P is a set of linearly dependent vectors. There

is l ∈ P and (δj)j∈P\{l} ∈ RP\{l} such that Al =
∑
j∈P\{l} δjAj . Consider the vector d ∈ Rn such

that dl = −1, dj = δj for j ∈ P\{l} and dj = 0 otherwise. It is obvious that Ad = 0. We can assume

that cT d ≤ 0, by replacing d by −d, if it was not the case. For t > 0, let yt = y + td. Using the fact

that Ad = 0 and cT d ≤ 0, one can easily prove that Ayt = Ay = b, cT yt = cT y + tcT d ≤ cT y and{
j ∈ N : ytj > 0

}
⊂ {j ∈ N : yj > 0}. If {j ∈ N : dj < 0} is empty then the sequence (yt)t will be

an unbounded sequence of feasible solutions of (LP). Since the set of feasible solutions of (LP) is

bounded then {j ∈ N : dj < 0} is nonempty. Let s = max
{
t : ytj ≥ 0, ∀j ∈ N

}
, then there is l′ ∈ P

such that ysl′ = 0 and hence
∣∣{j ∈ N : ysj > 0

}∣∣ < |{j ∈ N : yj > 0}|.

Proposition 5 If y ∈ Rn is a non basic feasible solution of (LP). We can construct, in polynomial

time, a feasible basic solution of (LP) y? such that cT y? ≤ cT y.

Proof. We repeat the idea proved in the Proposition 4 until obtaining a basic solution. Since every

step of the procedure is a polynomial time and since the number of positive variables is at most 2m,

then the procedure will take a polynomial time as well.

5 Polynomial IPS

Now we can summarize our new algorithm in the following diagram:
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c, A, b, x0, ε

Solve the RLP
and update x
as the optimal

solution of the RLP

Get x a better
extreme solu-
tion from x+

Choose the param-
eters of NCLP

Compute x+ a
significant better
feasible solution
x+ := x + d

Formulate and
solve the NCLP

z ≥ −ηcTx η

xε

x := x0

x

S,R, λ, γ

z, d

false

x+

x

true

subproblems
RLP : Reduced problem
NLCP: New Complemetary problem

variables
x0: initial basic solution
x : current basic solution
z : optimal solution of NCLP
d : optimal direction from NCLP
xε : ε−optimal solution.

parameters: The parameters of NCLP are
chosen from the current basic solution x as
explained in the proof of the Proposition 3.

Proposition 6 The algorithm converges in polynomial time, i.e., the number of iterations (calls to the

complementary problem) is polynomial.

Proof. As the problem is assumed to be bounded, the result can be deduced directly from Propositions 3

and 5.

6 Numerical example

In this section, we study a simple numerical example that illustrates the benefit of using our new

formulation instead of the standard formulation of IPS. The example is as follows. For h,H > 0 such

that h < 1 and h < H
10 , consider the linear program:

(LP) :

min −x1 − x2

x1 + x2 ≥ h
x1 − x2 ≤ h

−(H − h)x1 +Hx2 ≤ hH
−(H − h)x1 + (H − 2h)x2 ≥ −hH
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this example can be formulated using the slack variables as

(LP) :

min −x1 − x2
1 1 −1 0 0 0
1 −1 0 1 0 0

−(H − h) H 0 0 1 0
−(H − h) (H − 2h) 0 0 0 −1



x1

x2

x3

x4

x5

x6

 =


h
h
hH
−hH



In Table 1, we summarize the results obtained by applying the standard formulation of IPS and our

new formulation with h = 0.1, ε = 0.01 and for several values of H starting from the basic solution

x =
(
h, 0, 0, 0, h(2H − h), h2

)
. The improvement factor in the Table 1 is defined as the ratio obtained

by dividing the difference of the optimal value and the value after the first iteration by the difference of

the optimal value and the value of the objective value before iteration :

∣∣∣∣ cT (x0 − x+)

cT (x0 − x∗)

∣∣∣∣.
Table 1: Improvement factor for h = 0.1, ε = 0.01

H IPS standard New formulation

2 5.12% 94.79%
24 0.42% 99.58%
46 0.21% 99.78%
68 0.14% 99.78%

To explain why the new formulation gets a solution that is relatively close to the optimal, one can

draw the set of feasible solutions and the two directions obtained by each method after one iteration.

In red, we see the direction d1 given by the standard IPS heading from the basic solution (h, 0) to the

basic solution (2h, h). On the other hand, the new formulation gives us the direction d2 which does not

ensure reaching a basic solution but ensures that the improvement factor is much larger than the factor

obtained by standard IPS.

·
(h, 0)

·(0, h) · (2h, h)

·
(H,H)

x1

x2

d1

d 2

·x+

Ex
tr
em

al
iza
tio
n

Figure 1: Descent directions given by standard IPS and IPS with new complementary problem formulation
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7 Summary of results and future research

In this paper, we provided a theoretical proof that an IPS with the proposed formulation of the

complementary problem can ensure a significant improvement of the objective function at each iteration,

guaranteeing hence a polynomial behavior, i.e., the new IPS finds an ε-approximation of the optimal

solution in a polynomial number of iterations. At each iteration the complementary problem to solve is

smaller than the original problem and can be efficiently solved with the dual simplex because it is not

dual degenerated.

In the future, it would be interesting to discuss the practical relevance of the new IPS to numerically

solve difficult problems and compare it to state of the art solvers including interior-point ones. We think

that acceleration strategies like the warm starts and the multiphase strategies proposed in Saddoune

et al. (2011) would reduce deeply the solution time of the complementary problem and make the new

IPS very competitive.
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