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du Québec – Nature et technologies.
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Abstract : Geostatistically simulated representations of mineral deposits are used for resource/reserve
assessments, mine design and production planning, project evaluation and so on. Categorical simulation
methods are part of the related framework and are used to generate realizations of geological units
and their boundaries. The simulation of the geological units of a gold deposit is presented in this
paper, based on a data-driven, high-order geostatistical simulation method. The latter method makes
neither distributional assumptions nor utilizes a training image, but consistently uses high-order spatial
statistics from the available data. The application at the Saramacca gold deposit, Suriname, shows the
practical aspects of the method, including the validation of simulated realizations of geological units
through the reproduction of the high-order statistics of the data.

Keywords : Categorical geostatistical simulation, high-order simulation, Saramacca gold deposit
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1 Introduction

Geological units correspond to different types of material found in a mineral deposit. These geolo-

gical units have different distributions in space and affect several aspects of deposit modeling, tonnage-

grade curves and evaluations, while also affecting mine design, planning and production scheduling.

The mathematical modelling of geological units with a single wireframe has been proposed in the past

based on implicit functions methods (Mallet 1988 ; Caumon et al. 2013 ; Renaudeau et al. 2019). These

methods automate the wireframing process to generate smooth surface representations that do not ac-

count for the variability and uncertainty of boundaries between geological units. Stochastic simulation

methods for geological units have been developed to account for the uncertainty and variability of geo-

logical boundaries, including the sequential indicator simulation method (Journel 1983), which makes

no assumption of the underlying probability distributions, but is based on two-point statistics that

do not capture complex spatial-geological patterns. Truncated Gaussian (Matheron et al. 1987) and

PluriGaussian methods (Galli et al. 1994) are also based on two-point statistics and assume Gaussian

distributions.

With the aim of reproducing complex spatial patterns, multiple point simulation methods (MPS)

were introduced (Guardiano and Srivastava 1993 ; Strebelle 2002, 2012 ; Krishnan and Journel 2003 ;

Journel 2005 ; Remy et al. 2009 ; Mariethoz et al. 2010 ; Mariethoz and Caers 2014). These MPS

methods rely not only on the available samples, but also on a training image (TI) from which spatial

patterns are obtained. Typically, simulated realizations using MPS methods reproduce the patterns

and statistics from the TI. However, when substantial drilling information is available, such a in the

case of mineral deposits mined, the TI patterns and related spatial statistics may conflict with the

statistics of the available sample data (Osterholt and Dimitrakopoulos 2007 ; Goodfellow et al. 2012).

High-order simulation methods (HOSIM) for continuous and categorical variables have been pro-

posed as a generalization of second-order simulation methods (Dimitrakopoulos et al. 2010 ; Mustapha

and Dimitrakopoulos 2010b, 2010a, 2011 ; Minniakhmetov and Dimitrakopoulos 2017a, 2017b, 2018,

2021 ; Yao et al. 2018). HOSIM not only overcomes any distributional assumption, similarly to MPS

approaches, but it also provides explicit mathematical approaches for inferring related probability

distributions. For this, HOSIM uses high-order spatial cumulants (or moments) to obtain complex

curvilinear geologic patterns, while taking in account their connectivity.

For continuous variables, the use of cumulants are described as combinations of moments of sta-

tistical parameters by Dimitrakopoulos et al. (2010). A data driven simulation method for continuous

variables was proposed by Mustapha and Dimitrakopoulos (2010a) where a conditional probability

density function (cpdf ) is approximated by Legendre polynomials. These developments are advanced

by Minniakhmetov et al (2017a) based on the introduction of Legendre-like orthogonal splines. For

categorical variables, cumulants and Legendre polynomials are replaced by moments and splines res-

pectively by Mustapha and Dimitrakopoulos (2010a). High-order statistics are computed by high-order

spatial indicator moments of data and are approximated through splines which allows inference. High-

order spatial indicator moments are consistently connected in their different orders through boundary

conditions, which provides the relation that lower orders are embedded in higher order spatial indicator

moments. As data statistics are consistently honored in their different orders, realizations are data-

driven rather than TI-driven, as in MPS methods. The method does not require the use of external

information from a TI, but it can still be included as an option.

The present work demonstrates a detailed of the HOSIM method proposed by Minniakhmetov

and Dimitrakopoulos (2021) at the Saramacca gold deposit in Surinam, where four geological units

of interest are considered. In the following sections, the HOSIM method utilized is first outlined.

Subsequently, the application of the method at the Saramacca gold deposit is detailed, including the

validation of the simulated realizations of the deposit. Conclusions and future work follow.
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2 Method

The high-order categorical simulation method applied to the Saramacca gold deposit was introduced

by Minniakhmetov and Dimitrakopoulos (2021) and is summarized in this section.

2.1 High-order spatial indicator simulation

Let (Ω, F, P ) be a probability space. Consider the stationary ergodic random field

Z = (Z1, Z2, . . . , ZG)
T
, Z : Ω → SG defined on a grid D = {x1,x2, . . . ,xG} , x ∈ Rm,m = 2, 3,

such that Z (xi) = Zi, i = 1, . . . , G. The space of all possible outcomes corresponds to Ω, F contains

all combinations of Ω, and P is the probability measure. For example, the probability for a given ran-

dom variable Z1, pZ1 (z1) = P (Z1 = k1) . SG is a set of states represented by categories k, k = 1, ..,K.

The high-order simulation method provides realizations of Z for all nodes of a grid D. Lower case z

stands for outcome of random variable Z.

High-order categorical simulation method is based on the concept of sequential simulation, where

the multivariate distribution pz(z) can be decomposed into the product of univariate conditional dis-

tribution functions

pZ
(
z
∣∣d1) =pZ

(
z1, z2, . . . , zG

∣∣d1)
=pZ1

(
z1
∣∣d1) · pZ2

(
z2
∣∣d2) · · · pZN

(
zN
∣∣dG) . (1)

Here d1 = {dn} , di = di−1 ∪ {Zi−1}, i = 1, . . . , G, and dn = {zα, α = 1, . . . , n} which represents the

set of initial conditioning data.

In practice, instead of considering all the points for each location, only the data and simulated points

inside a local neighborhood are used. Without loss of generality, for location x0, the neighborhood

Λ0 ⊆ d0 is be used (Dimitrakopoulos and Luo, 2004) :

pZ0

(
z0
∣∣d0) ≈ pZ0

(
z0
∣∣Λ0
)
. (2)

Conditional distribution in Equation (2) can be computed by

pZ0

(
z0
∣∣Λ0
)

=
pZ (z)

pZc
0

(zc0)
, (3)

where superscript c represents the complement of a field with respect the variable given by the sub-

script 0 ; for which Zc0 = Z\Z0 and zc0 = z\z0 are obtained. Denominator pZc
0
(zc0) is the normalization

coefficient

pZc
0

(zc0) =

K∑
k0=1

P (Z0 = k0, Z1 = k1, . . . , Zn = kn). (4)

The joint distribution pZ (z) is obtained through high-order spatial indicator moments, described

in the next subsection.

2.2 High-order spatial indicator moments

The joint distribution pZ (z) is equivalent to the spatial indicator moment M (Vargas-Guzman

2011)

P (Zi1 = k1, Zi2 = k2, . . .) = E (Ik1 (Zi1) , Ik2 (Zi2) , . . .) = Mk1,k2,... (Zi1 , Zi2 , . . .) (5)

where E is the expected value operator and Ik(Zi) is an indicator function

Ik (Zi) =

{
1 if Zi = k
0 if Zi 6= k.

(6)
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The second order spatial indicator moment of two random variables Zi1 , Zi2 which are separated

by lag h, can be expressed in function of their lag h, given by

Mk1,k2 (Zi1 , Zi2) = Mk1,k2 (h) . (7)

From Equation (7), border conditions |h| = 0 and |h| → ∞ are of particular interest. For |h| = 0,

the second order spatial indicator moment is reduced to the first order indicator moment

Mk1,k2(0) = P (Zi1 = k1, Zi1 = k2) = Mk1δk1,k2 , (8)

where δk1,k2 is the Kronecker Delta. For |h| → ∞, values Zi1 and Zi2 can be considered independent,

for which

Mk1k2 (|h| → ∞) = Mk1 ·Mk2 . (9)

This border condition relationship can be generalized to higher orders, which gives continuity

between them. If multiple directions are considered, a vector of distances h = {h1, . . . , hn} and the

vector of categories k = {k1, . . . , kn} can be defined and the next relation is obtained

Mk (h) = M0
k (h) + δMk(h) (10)

where M0
k (h) is a trend given by a boundary conditions which allows the connection of consecutive

lower and higher orders and δMk(h) is an approximation given by B-Spline regression between sampling

statistics and trend without boundary conditions. Details for empirical estimation of spatial indicator

moments can be found in Minniakhmetov and Dimitrakopoulos (2021).

The method is outlined in Algorithm 1.

Algorithm 1

Having available dataset dn, grid D and neighborhood parameters Λ :

1. Define random path visiting all the nodes from the grid D.

2. For each node in the path without value assigned :

(a) Define local neighborhood Λ0.

(b) Find values in neighborhood dΛ0 with their correspondent values kΛ0 .

(c) Calculate high order spatial indicator moments for categories inside neighborhood with Equation (10)
which represents joint distributions (See Equation (5)).

(d) Calculate conditional distribution from joint distributions with Equation (3).

(e) Draw a random value zi0 from conditional distribution and assign it to un-sampled location in the grid.

3 Application at Saramacca gold deposit

The Saramacca gold deposit is located approximately 25 km southwest of the Rosebel Gold Mine

milling facility in Surinam, owned by IAMGOLD Corp. This facility is located approximately 80 km

south of Paramaribo the capital of Suriname.

3.1 General description of gold deposit

Lithologies of the Saramacca gold deposit are shown in Figure 1. The lithologies considered corres-

ponds to Massive Basalt, Fault Zone, Pillow Basalt, a thin (<10 m) sedimentary top layer of Laterite

and “Rest”. Fault Zone corresponds to a vertical zone within rich gold mineralization is associated. Rest

zone corresponds Massive Basalt and Amygdular Basalt both combined given their similar properties

and considered to limit the SW extend of the gold rich Fault Zone.
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Figure 1 – Plan view of Saramacca Gold deposit lithologies (Leuangthong and Chartier 2018).

3.2 Data available

Available data includes 473 exploration drillholes spaced in a grid between 50 to 60 m and compo-

sited in 5 m heights. Drillholes are rotated 55 deg clockwise with respect the azimuth of Figure 1 and

shown in Figure 2a. Dimensions of the sampled volume are approximately 2 × 1 × 0.5 km.

(a) (b)

Figure 2 – Top (a) and lateral (b) views of exploration drillholes. Light blue, yellow and red corresponds to Laterite, Fault
and Pillow Basalt respectively. Dark blue corresponds to other lithologies combined of no interest named Rest.

3.3 Orebody model

Orebody model specifications are found in Table 1. To account for the topography and for a

certain mineralized volume, an arbitrary flag was defined as 1 to each of the nodes to be assigned with

a geological unit value (active for computation) and −999 for the rest (non-active for computation).
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The set of flagged nodes is called mask, and sections of it are shown in Figure 3. Positive flagged nodes

outline the mineralization and determines the domain where the categorical simulations of geological

units will be computed. The use of a mask allows the simulation to be constrained by the topography

and reduces the computational time as not all the nodes in a parallelepiped are needed to be computed.

In this case ∼ 164, 000 nodes are calculated rather than ∼ 2, 400, 000 without the use of the mask. The

same single mask is used for all the realizations.

Table 1 – Orebody model specifications.

Direction Block Size m Block Count Total Nodes Nodes with
Flag= 1

Nodes with
Flag=−999

X 15 198
2,471,436 164,158 2,307,278Y 10 158

Z 10 79

(a) (b)

(c)

Figure 3 – Sections of computational mask. Vertical (a) (b) and horizontal (c). Red and blue indicates nodes to compute
and not compute respectively.

3.4 Realizations

Two sections of the given wireframes and two sections for each two categorical simulations of the

geological units are shown in Figure 4. Each realization for the ∼ 164, 000 nodes took ∼ 20 hours on

a CPU of 3.2 GHz and 32 Gb of RAM. Fifteen realization were obtained. Differences between the

given wireframes and two out of fifteen realizations can be seen in Figure 4. Given wireframes present

smoother boundaries between the geological units than realizations, that rather show high variability

in these boundaries while maintaining consistency with data in the location of the units. This local

variability is a consequence of the uncertainty inherent in the sparse data sampled.

The local variability of boundaries is more evident in the realizations than the given wireframes as

shown in Figure 4a and Figure 4b. For Fault Zone in particular, which is the geological unit related
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with the highest grades, the presence of it surrounded by Rest could render a different extraction

sequence rather than using the single smoothed interpretation given by the wireframes, which simply

does not account for this possibility.

(a) (b)

(c) (d)

(e) (f)

Figure 4 – Vertical sections of given boundaries by wireframes (a,b) and respective R1 and R2 realizations (c,d,e,f).

3.5 Validation of statistics

The statistics considered for validation corresponds to their respective orders. The first order sta-

tistic corresponds to the probability of a single block to belong into a certain geological unit (one-point

statistic), i.e. the proportions of each geological unit in the domain of computation. Second order cor-

responds to the traditional indicator variogram along certain directions, which is related to the joint

probability of two points along one dimension to have the same values. Third and higher orders are

given by joint probability of corresponding points to belong to certain geological units. Joint proba-

bilities are given by high-order spatial indicator moments. In this case, validation is shown up until

fourth order. For the following comparison of statistics, it must be noted that rather than an exact

collation, validation is done by considering the reproduction of main patterns.

As seen in Figure 5, declustered proportions of each geological unit for data and realizations are

similar. The biggest proportion corresponds to Pillow Basalt followed by Rest, Fault and Laterite.

Small ergodic variations are found for realizations, as expected. Fine tuning of proportions could be

achieved by sensibility over neighborhood size as input for the method.

Indicator variograms are calculated and shown in figures 6 to 9, for each mineralized geological unit

along the different directions, for the data and realizations. In general, data variability is reproduced.

Laterite present less variability than Fault and Basalt geological units for the lags shown. High repro-

duction of variability of Basalt is attributed to the fact that is the geological unit with the highest

quantity of samples.
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Figure 5 – Proportions of geological units in data, given wireframes and realizations.

Figure 6 – Indicator variograms of Basalt for different directions.

Figure 7 – Indicator variograms of Rest for different directions.

Figure 8 – Indicator variograms of Fault for different directions.
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Figure 9 – Indicator variograms of Laterite for different directions.

Validation of higher-order statistics is done through the reproduction of the joint-probability distri-

butions of having certain categories at respective positions in a given orthogonal template, represented

by high-order spatial indicator moments maps. The codification of {Rest : 0 ; Laterite : 1 ; Fault : 2 ;

Basalt :3} is used for the indexation of M̂ . Figure 10 shows the third order spatial indicator moment

map for Fault geological domain for two directions of a L-shape template, for different lags, noted as

M̂222(h1,h2), with lags h1 = (idx, 0) and h2 = (0, kdz), indexed by i, j = 1, . . . , 10 where dx and dy

are 15 m × 10 m. As expected, the joint probability is higher for shorter lags, shown in red, rather than

long ones, shown in blue, meaning that there is a higher chance of finding this pattern of geological

unit in shorter rather than longer distances. It is also found that this relation is similar for vertical (Z)

and horizontal direction (X), not showing any preferential behaviour for one of these directions.

(a) (b)

(c)

Figure 10 – Third-order spatial indicator moment maps M̂222(h1,h2). Approximated spatial indicator moment of data (a)
and of two realizations (b,c).
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Similarly, Figure 11 shows the third-order spatial indicator moments where the center value corres-

ponds to Fault Zone while the other two correspond to Rest geological domain, noted M̂200(h1,h2).

This template characterizes the size of Fault embedded in Rest for planes (or sections) defined by these

two vectors of variable lags. The fact that the joint-probability of having this configuration is higher

for lags of 4 to 8 in the X (E–W) direction and 6 to 10 in the Z direction, indicates an anisotropy

of the clusters of Fault in Rest for the section considered. This can be seen in the sections shown in

Figure 4 (left) where a Fault Zone is shown more continuous in the vertical direction (Z) rather than

horizontal (X) in the East part of the deposit. Figure 11 also indicates low probability of finding the

pattern of very elongated structures of Fault either in X or Z directions, noted by the blue rows of

Z = 1 far all X, and X = 1 for all Z.

(a) (b)

(c)

Figure 11 – Third-order spatial indicator moment map for border between Fault Zone and Rest M̂200(h1,h2). Approximated
spatial indicator moment of data (a) and of two realizations (b,c).

Finally, Figure 12 shows the fourth-order spatial indicator moments where the center and horizontal

values in X and Y directions corresponds to Fault Zone while the last vertical Z correspond to Basalt,

noted M̂2223(h1,h2,h3), with lags h1 = (idx, 0), h2 = (0, jdy) and h3 = (0, kdz), indexed by i, j, k =

1, . . . , 10, where dx,dy and dz are 15 m × 10 m× 10 m. As Fault Zone is a relative thin zone with

respect to the Y (S–N) direction, low probabilities are found for almost any lag higher than two in this

direction.
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(a) (b)

(c)

Figure 12 – Fourth-order spatial indicator moment for Fault Zone in vertical, strike and perpendicular to strike directions

noted M̂2223(h1,h2,h3). Approximated spatial indicator moment of data (a) and of two realizations (b,c).

4 Conclusions

This manuscript presented an application of the high-order, data-based categorical simulation me-

thod proposed by Minniakhmetov and Dimitrakopoulos (2017b, 2021) at the Saramacca gold deposit,

Suriname. Four geological units identified at the deposit (Laterite, Fault zone, Basalt, Rest) were si-

mulated and validated through the comparison between the spatial statistics of the available data and

the simulated realizations of the four geological units of the deposit. The application demonstrated the

applied aspects of the related high-order simulation method that does not utilize a training image. The

results show the reproduction of low- and high-order indicator statistics of the available data by the

simulated realizations, as tested up to the fourth-order indicator spatial moments. Future work could

include the simulation of grades inside their respective geological units at the Saramacca deposit for

use in subsequent mine planning objectives.
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