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Dépôt légal – Bibliothèque et Archives nationales du Québec, 2020
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• Peuvent télécharger et imprimer une copie de toute publica-
tion du portail public aux fins d’étude ou de recherche privée;

• Ne peuvent pas distribuer le matériel ou l’utiliser pour une
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Abstract : An innovative strategic mine planning approach is applied to a multi-mine and multi-
process gold mining complex that simultaneously considers feasible capital investment alternatives and
capacity management decisions that a mining enterprise may undertake. The simultaneous stochastic
optimization framework determines the extraction sequence, stockpiling, processing stream, blending,
waste management and capital investment decisions in a single mathematical model. A production
schedule branches and adapts to uncertainty based on the likelihood of purchasing a number of feasible
investment alternatives that may improve mill throughput, blending or increase the tailings capacity.
Additionally, the mining rate is determined simultaneously by selecting the number of trucks and
shovels required to maximize the value of the operation. The mining complex contains several sources
– two open-pit gold mines and externally sourced ore material – stockpiles, waste dumps, tailings and
three different processing streams. The simultaneous optimization framework integrates the blending
of sulphates, carbonates, and organic carbon at the autoclave for refractory ore while managing acid
consumption. The production schedule generated branches over an investment in the autoclave expan-
sion; the first branch undertakes the capacity expansion at the autoclave resulting in a 6.4% increase
in NPV, whereas the second branch results in a 27.5% increase in NPV without the investment. The
adaptive approach is compared to a base case production schedule generated using a non-branching
two-stage stochastic integer program.

Keywords: Mining complex, simultaneous stochastic optimization, capital investments
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1 Introduction

Mining operations are capital-intensive ventures that require smart decisions to strategically time each

investment and sustainably produce valuable products. The simultaneous stochastic optimization

approach generates an optimal production schedule (Del Castillo & Dimitrakopoulos, 2019; Montiel &

Dimitrakopoulos, 2018; Goodfellow & Dimitrakopoulos, 2016, 2017; Montiel & Dimitrakopoulos, 2015,

2017). The optimized production schedule defines the extraction sequence, stockpiling, processing

stream, blending, waste management and capital investment decisions that maximize the net present

value (NPV). These decisions are obtained by considering the interactions throughout the entire mining

complex that for a mining complex, using a single mathematical formulation may consist of open

pit and underground mines, several processing facilities, crushers, stockpiles, and waste destinations

(Pimentel, Mateus, & Almeida, 2010). The stochastic approach also manages technical risk during

the optimization by integrating a set of stochastic geostatistical simulations of the in-situ material

supply, which reproduces the uncertainty and local variability of the material sourced from the mines.

Selecting the appropriate time to undertake a capital investment during the life of mine is challenging

due to a combination of supply uncertainty, high upfront costs and prolonged payback periods for each

investment. Nevertheless, investments in shovels, trucks, crushers, process plant upgrades, and waste

facilities are critical for maximizing the NPV of the long-term production schedule.

The uncertain aspects of mine planning and forecasting, which arise from supply uncertainty,

indicate there is large risk of undertaking capital investments (Ajaka, Lilford, & Topal 2018; Asad &

Dimitrakopoulos, 2013; Del Castillo & Dimitrakopoulos, 2014; Dowd, 1994; Githiria & Musingwini,

2019; Khan & Asad, 2019; Groeneveld & Topal, 2011; Dimitrakopoulos, 2018; Groeneveld, Topal, &

Leenders, 2012; Mai et al. 2018; Dowd, 1994; Ravenscroft, 1992). In particular, supply uncertainty

makes it challenging to produce an optimized production schedule with an investment plan that will

satisfy the various futures that may unfold. The optimal investment decision for one future outcome

may be very different from another scenario. This generates an interest in developing strategic mine

plans that can adapt to uncertainty, by considering feasible investment alternatives that directly impact

the production rate of certain components in the mining complex and manage technical risk.

Del Castillo and Dimitrakopoulos (2019) present an adaptive simultaneous stochastic optimization

approach that considers a number of feasible investment alternatives and determines the optimal time

to branch the production schedule to manage the potential risk of supply uncertainty. A set of orebody

simulations are generated for each mine to quantify supply uncertainty. Then, an adaptive approach

considers the probability of undertaking an investment in different groups of scenarios. If the decision
is counterbalancing, where a representative group of simulations takes on an investment and another

representative group does not, the production schedule splits or branches into alternative mine plans

based on these investments. Each of these branching alternatives are fully optimized based on the

investment that is undertaken, however, decisions made prior to the investment can not be changed once

branching occurs. This prevents the optimization model from anticipating the investment decisions and

changing the previous decisions that were made prior to choosing to invest, as the future investment

choices remain uncertain until they are executed. The adaptive optimization approach integrates

non-anticipativity constraints into the optimization formulation. The non-anticipativity constraints

ensure that the same decisions are taken unless there is an investment alternative that branches the

mine production schedule. If branching occurs, the resulting mine plan of each branch should be

distinguishably different based on the investment choice. Otherwise, the non-anticipativity constraints

are enforced and the same decision is taken over all the simulated scenarios. The single production

schedule generated with feasible investment alternatives provides an advanced method for determining

the optimal time to invest and identifies the risk of investing in new equipment, plant improvements,

and other infrastructure purchases (Dixit & Pindyck, 1994). Evaluating feasible alternatives and the

resulting mine plan creates opportunities to delay, pre-plan or undertake sizeable capital investments

(De Neufville & Scholtes, 2011). Boland et al. (2008) also incorporates non-anticipativity constraints

in a multistage optimization framework, however, this approach differs from the adaptive approach
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described above by Del Castillo & Dimitrakopoulos (2019). In the approach described by Boland et al.

(2009), the simulated orebody scenarios are differentiated based on the spatial distribution of metal

grades, which results in overfitting the production schedule to generate one mine plan per a simulated

orebody scenario. This method does not lead to an optimal production schedule, given that a single

scenario does not represent the uncertainty and local grade variability of the deposit, thus resulting

in erroneous production and financial forecasts that misrepresent reality. Contrary to that, in the

case study presented herein, the adaptive approach leverages the ability to branch over several capital

investments instead of each block’s simulated grades, leading to a practical production schedule with

feasible investment alternatives.

Similar multistage frameworks have been applied to strategically time the purchase of capital

investments and expand the production capacity in other industries (Ahmed, King, & Parija, 2003;

Gupta & Grossmann, 2017; Li et al., 2008; Singh, Philpott, & Wood, 2009). These frameworks remain

impractical for mine planning and design purposes as multistage frameworks lead to a production

schedule with one plan per scenario, which misrepresents the ability to change capacities and is the

major limitation of multistage approaches. Furthermore, when considering the execution of the long-

term production schedule, operations can not proceed without fixed guidance for the current year of

production. Groeneveld et al. (2012) suggest fixing the initial years of the mine production schedule,

to address this limitation, ensuring that operations have the appropriate production guidance and lead

time to consider different mining and plant options for the future.

The adaptive simultaneous stochastic optimization approach manages technical risk and delivers

a mine production schedule that can identify synergies between different components of the mining

complex. For example, in a Nevada type gold mining complex, the metal recovery of refractory ore

is influenced by the composition of sulfates and carbonates in the material that is delivered to an

autoclave processing facility (Montiel & Dimitrakopoulos, 2018; Thomas & Pearson, 2016). Blending

the material from several sources in the mining complex to maximize recovery may lead to a higher

NPV over the operating life and captures value that is unidentifiable using traditional sequential op-

timization methods (Gershon, 1983; Hustrulid & Kutcha, 2006; Whittle, 1999). Additionally, waste

management considerations such as the production of acid generating waste and tailings can be inte-

grated into the optimization to minimize environmental detriments and ensure permitting constraints

are satisfied (Levinson & Dimitrakopoulos, 2019; Saliba & Dimitrakopoulos, 2018). These advance-

ments are achieved by maximizing the value of the products sold (Goodfellow & Dimitrakopoulos,

2017; Montiel & Dimitrakopoulos, 2015), instead of the traditional approach that considers the eco-

nomic value of a block determined a priori and sequentially optimizes the extraction sequence, cut-off

grade and transportation of materials downstream (Hustrulid & Kutcha, 2006).

Furthermore, the proceeding case study strategically determines the optimal production rate dur-

ing the mine production scheduling process using an adaptive simultaneous stochastic optimization.

Several frameworks directly integrate investments into the optimization to achieve a certain level of

production and increase the value of the operation (Goodfellow, 2014; Groeneveld & Topal, 2011;

Groeneveld et al., 2012). These integrative frameworks allows the optimizer to decide the most suit-

able time to invest in capital investment overcoming limitations of defining the optimal mining and

processing rates prior to optimizing the production schedule (Del Castillo & Dimitrakopoulos, 2014;

Godoy & Dimitrakopoulos, 2004).

This work presents a major case study in a multi-mine and multi-process gold mining complex,

where an adaptive simultaneous stochastic optimization approach strategically considers investment

alternatives. The main contribution of this case study is the ability to simultaneously consider in-

vestments in process plant upgrades and the tailings management area, while allowing the model to

adapt to uncertainty based on the corresponding investment decisions. In the following sections, the

adaptive simultaneous stochastic optimization approach is outlined, followed by a comprehensive case

study at a gold mining complex containing two open-pit mines, twelve material types, twelve stock-
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piles, three external sources (including an underground mine) and three processing stream alternatives.

Subsequently, the conclusions and future work are presented.

2 Method

This section summarizes the method used for the adaptive simultaneous stochastic optimization ap-

proach proposed by Del Castillo and Dimitrakopoulos (2019), which allows the production schedule

to branch on a set of feasible investment alternatives. All sets, parameters, and decision variables are

defined in the following subsections and can be reviewed in Appendix A.

2.1 Definitions and notation

A mining complex is designed to include a set of open-pit and underground mines (M), stockpiles (S),

processors (P), and waste facilities (W) (Goodfellow & Dimitrakopoulos, 2016, 2017; Montiel & Dim-

itrakopoulos, 2018; Montiel & Dimitrakopoulos, 2015, 2017). There can be many material types that

are either extracted from the mine or generated through blending and processing. Each material has a

set of attributes which can be transferred through the mining complex (i.e. mass, metal content, etc.).

Attributes are further divided into two sub-categories; primary attributes that define the composition

of the material passed between various locations in the mining complex; and hereditary attributes

which are a derived through linear and non-linear expressions. Hereditary attributes track important

information in the model including the costs incurred at different locations, revenues from the various

processing streams, and metal grade. Two variables vp,i,t,s and vh,i,t,s quantify the value of primary

(p ∈ P) and hereditary (h ∈ H) attributes at each location i ∈ M∪ S ∪ P ∪W in period t ∈ T under

scenario s ∈ S, respectively. Hereditary attributes allow both non-linear and linear functions to be

incorporated into the model and are a function of the primary attributes, fh (p, i, k) for each primary

attribute p ∈ P at location i ∈ M ∪ S ∪ P ∪ W and considering each available capital investment

k ∈ K. The primary source of material for the mining complex is obtained by extracting a set of min-

ing blocks b ∈ Bm from mine m ∈ M. Every block b has a set of simulated primary attributes βp,b,s
(Goovaerts, 1997; Boucher & Dimitrakopoulos, 2009) which are inputs into the optimization model.

The recovery of each attribute p at location i ∈ P in each scenario s is defined as rp,i,t,s and are

calculated using a non-linear recovery function (Del Castillo, 2018; Farmer, 2016; Goodfellow, 2014).

2.2 Decision variables

Considering a life-of-mine of T time periods, the adaptive simultaneous stochastic optimization ap-

proach aims to maximize the NPV of a mining complex and minimize deviations from the annual

production targets. This is accomplished by simultaneously determining the optimal decisions for four

decision variables: (i) the mining block extraction sequence; (ii) destination policy; (iii) processing

stream; and (iv) capital investment decisions. The method uses a set of binary decision variables xb,t,s
that denote whether a block b is extracted in period t, in simulation s. The destination policy is

then defined by discretizing the range of metal grades into a set of bins to determine the cut-off grade

policy during the optimization process (Menabde et al., 2007). Bins or groups g ∈ G are defined using

k-means++ clustering algorithm for the primary block attributes βp′,b,s∀p
′ ⊆ P,b ∈ Bm,m ∈M, s ∈ S

of each material type (Goodfellow & Dimitrakopoulos, 2016). The destination policy decision variable

zg,j,t,s ∈ {0, 1} determines if the blocks in group g are sent to destination j ∈ O (g) in period t, where

O (g) is the set of locations where the group of materials can be delivered in scenario s. After the ma-

terial reaches the first set of destinations, based on the extraction sequence decisions, the downstream

material flow is controlled by the processing stream decision variables yi,j,t,s ∈ [0, 1]. The processing

stream variable defines the portion of product that is sent from destination i ∈ S ∪ P to destination

j ∈ O (i) ⊆ S ∪ P in period t ∈ T and scenario s ∈ S. Lastly, the capital investment decision variable

ωk,s,t defines if a capital investment k ∈ K is executed in period t ∈ T and scenario s ∈ S. Subsequently

explained in Section 2.3.
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2.3 Branching the production schedule

Two different sets are used to describe the different types of investments branching (K∗) and non-

branching (K=), where K∗ ∪K= = K. Branching alternatives are large capital investments decisions

that are only purchased once during the life of the mining complex. For example, purchasing large

crushers or constructing a new tailings facility. The non-branching investments may occur multiple

times over the planning horizon, for instance truck and shovel purchases. The decision tree outlines the

optimal timing of the branching investments and a new node n is created for each branching decision;

this is defined as a stage. An optimized mine plan is produced for each branch that is created. The

representative measure R ∈ (0, 0.5) is a user defined parameter, which is used to describe the confidence

interval for branching. R defines the probability threshold required to invest over all scenarios, branch

the production schedule, or not invest in each capital investment (Equation 1).

if the probability of investing in k∗ < R → do not invest in k∗ during tω

if probability of investing in k∗ ∈ [R, 1−R] → branch during tω

if the probability of investing in k∗ > 1−R → invest in k∗ during tω

(1)

The branching mechanism is described in the subsequent steps:

1. Calculate the probability of investing in all alternatives k∗ ∈ K∗ in each time period t.

2. If there are a representative number of scenarios that choose to purchase the investment alterna-

tive, within an allotted time window, the solution branches and a new stage is created. Although,

if the probability of investing is less than the threshold then the optimization will not branch,

and the investment is not purchased. On the contrary, if the probability is greater than (1−R)

there is no branching and the investment is made over all scenarios. This is mathematically

described in Equation 1.

3. Given there are Sn ⊆ S scenarios that belong to the root, these scenarios are partitioned into Sn1
and Sn2 when branching occurs. Therefore, when combined all the simulations from each branch

are at the root (Sn1 ∪ Sn2 = Sn) and when the simulations are partitioned each simulation can

only report to one of the two partitions (Sn1 ∩ Sn2 = ∅).

A time window, tω = {t− ω, t+ ω}, is used to stabilize the solution as often there may be a

representative number of scenarios between one or two consecutive periods making it more desirable

to invest in one of those two years rather than completely ignoring the investment opportunity. ω is

set as an integer value that allows the model to expand the time window of the branching mechanism.

The branching or new stage will begin during the floor of the expected time period of investment k∗

and is denoted as t∗. Lastly, N defines the minimum number of scenarios in a branch required to allow

for further branching in periods t+ 1 ∈ T.

2.4 Capital investments

Capital investments are critical decisions that require a lead time (τk) to assemble or construct. For

each investment alternative k ∈ K there is a life expectancy (λk) and a unitary increase in capacity

(κk,h) that comes at a discounted purchase cost
(
pKk,t

)
for each period t ∈ T. The periodicity (ψk) of

the investment decisions is also incorporated into the optimization model to simplify the optimization

process and ensure a practical plan. The number of investments undertaken is denoted by σk,t,s for

each investmentk ∈ K in period t ∈ T and scenarios ∈ S.
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2.5 Objective function and constraints

max
1

‖S‖
∑
s∈S

∑
t∈T


∑

i∈M∪S∪P∪W

∑
h∈H

ph,tvh,i,t,s︸ ︷︷ ︸
Profit of the mining complex

Part I

−
∑
k∈K=

pk,tσk,t,s︸ ︷︷ ︸
Cost of Truck and Shovel Investments

Part II

−
∑
k∈K∗

pK
∗

k∗,tσk∗,t,s︸ ︷︷ ︸
Cost of One Time Capital Investments

Part III

−
∑

i∈M∪S∪P∪W

∑
h∈H

(
c
+

h,t
d+h,i,t,s+c

−
h,td
−
h,i,t,s

)
︸ ︷︷ ︸

Penalties for Deviations
Part IV



(2)

The objective function (Equation 2) maximizes the expected profit obtained by summing the rev-

enues generated from the metal produced and subtracting the various costs, for example, transporta-

tion, mining, processing and refining costs (Part I). In addition, the objective aims to minimize the

costs of investing in trucks and shovels (Part II), and one-time capital investments (Part III). Part IV

minimizes the deviation from production targets, actively managing uncertainty. The adaptive opti-

mization approach will only purchase investments when they lead to an increase in overall profitability

and/or improve the capability to meet production targets in the mining complex.

Integrating the feasible investment alternatives into the optimization model changes the standard

formulation of capacity constraints, from static upper (Uh,i,t) and lower (Lh,i,t) bounds in Equa-

tions 3 and 4, respectively, to dynamically changing capacities that are determined during the optimiza-

tion. The capacities reflect changes in the corresponding investment decisions ωk,s,t. κk,h represents

the unitary increase in production capacity:

vh,i,t,s − d+h,i,t,s ≤ Uh,i,t +
∑

k∈K;t>τk

t−τk∑
t′=t−λk−τk

κk,h · ωk,s,t′ (3)

vh,i,t,s − d−h,i,t,s ≤ Lh,i,t +
∑

k∈K;t>τk

t−τk∑
t′=t−λk−τk

κk,h · ωk,s,t′ (4)

∀h ∈ H, i∈M ∪ S ∪ P ∪W, t ∈ T, s ∈ S, k ∈ K
d+h,i,t,s, d

−
h,i,t,s ≥ 0 (5)

When investments are activated the capacity expansions and contractions can be explored allowing

for changes to the extraction rate, processing capacity, and storage of waste materials.
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In addition, non-anticipativity constraints (Equations 7, 8, and 9) ensure that all scenarios within

the same branch must undertake the same decisions. The problem is initialized with the solution

from a two-stage stochastic integer program and then non-anticaptivity constraints are enforced for

the first period. Subsequently, the mechanism for branching iteratively solves a series of sub-problems

to determine the optimal period to invest. The non-anticipativity constraints are then dynamically

enforced over an iteratively increasing time frame Tα when a branching investment is undertaken. For

example, once the first branching period is established non-anticipativity constraints become active

for all periods up to t∗, the period a branching investment is undertaken. This ensures that the

optimization framework will not change earlier decisions in anticipation of the investments made in

future periods. A binary variable unk∗,t equals one when the design branches over option k∗ ∈ K∗

in node n in period t ∈ T and otherwise zero. Therefore, the variable A determines whether the

non-anticipativity constraints are activated (0) or not (1) for a given partition of scenarios in a single

branch:

A =

⌈∑
k∗∈K∗ u

n
k∗,t

|K∗|

⌉
= {0, 1} (6)

When there is no branching all decision variables must be the same for all scenarios. However, when

branching occurs the scenarios partition Sn1 = {s;wk∗,t∗,s = 1,∀s ∈ Sn}, Sn2 = Sn\Sn1. Examples of

the non-anticipativity constraints are below:

(1−A)
(
xb,(t+1),s − xb,(t+1),s′

)
= 0, ∀t ∈ T∝; b ∈M (7)

(1−A)
(
zg,j,(t+1),s − zg,j,(t+1),s′

)
= 0, ∀t ∈ T∝; g ∈ G; j ∈M∪ S ∪ P ∪W (8)

(1−A)
(
wk,(t+1),s − wk,(t+1),s′

)
= 0, ∀t ∈ T∝; k ∈ K (9)

The destination policy, extraction sequence, and capital investment decisions are the same for all

scenarios within each branch of the decision tree. Lastly, in order to ensure stochastic solution stability

there must be a minimum number of simulated scenarios in each partition.

2.6 Solution method

A multi-neighbourhood simulated annealing metaheuristic is used to solve the optimization model.

Metaheuristics are required as the number of decision variables are in the order of hundreds of millions

when considering multi-mine long term production schedule. The metaheuristic used in this work ex-
plores a neighbourhood or class of perturbations that are used to change decision variables and achieve

near optimal solutions in a short period of time (Goodfellow & Dimitrakopoulos, 2016, 2017; Montiel

& Dimitrakopoulos, 2015, 2017). Del Castillo (2018) introduces perturbations that change capital

investment decisions including adding or removing multiple investments in a period and swapping two

investments between periods. The simulated annealing algorithm then uses an acceptance probability

to determine whether the new solution is accepted or rejected to further explore the solution space

(Kirkpatrick, Gelatt, & Vecchi, 1983). The modified simulated annealing approach, used in the sub-

sequent case study, updates the probability of choosing a neighbourhood depending on its ability to

improve the objective function (Goodfellow & Dimitrakopoulos, 2016).

3 Case study at a gold mining complex

The adaptive simultaneous stochastic optimization approach is applied to a gold mining complex

that consists of two large open-pit mines with twelve different material types. These materials can

be transported to a number of destinations; an autoclave processing facility, oxide mill, oxide leach,

twelve stockpiles (one for each material type), waste facility, and a tailings management area. Each

mine contains a mixture of sulphide ores, which must be pretreated at the autoclave before processing,
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and oxide ores that can be sent to the oxide processor or oxide leach. The mining complex, includ-

ing each of its component, and the allowable material routing are presented in Figure 1. Sulphide

materials, a refractory ore type, can be extracted from either of the open-pit mines and sent to the

autoclave, stockpile or waste dump facility. Stockpiles are separated for each material type to provide

accessibility to materials of certain chemistry compositions, shown in Table 1. Material that is sourced

externally is used to supplement the ore feed that is produced at the two open-pit mines and sent to

the autoclave to help meet blending requirements. The optimizer seeks opportunities to increase value

and more effectively blend materials to obtain a satisfactory product quality for effectively running

the autoclave. Sulphide or refractory ores must be blended to achieve the permissible operating crite-

rion for the autoclave, by controlling the grades of sulphide sulphur (SS), carbonates (CO3), organic

carbon (OC), and the SS/CO3 ratio. Therefore, these deleterious attributes must be managed within

the optimization framework to ensure blending requirements will be meet. A constraint is added to

the model to maintain the grade of SS and CO3 from 3.8–4.2% and 4.5–6.5%, respectively. The de-

viations from these targets are penalized in the objective function to manage the risk similar to all

the other production targets. Acid is used to pre-treat the ore by neutralizing CO3 and ensuring the

appropriate SS/CO3 ratio (0.8–1.2) is entering the autoclave circuit. This becomes critical as there is

variability in the material received from the different sources and often there are not enough materials

with the desired qualities readily available. There is a maximum amount of acid (38,400 t) that can

be used on an annual basis which introduces a constraint in the optimization process. The autoclave’s

target production is 2.5 Mt/y. Oxide materials can either report to the oxide mill, leach, or stockpile

destinations and there are no constraints on the blending requirements for the oxide ore material. The

oxide mill has a production target of 1.4 Mt/y and the leach pad is not constrained. After processing,

the volume of mine tailings that are generated from the processing facilities are continuously exam-

ined to ensure there is a large enough containment area to continue mining, which then introduces a

constraint on the available tailings capacity. Stockpiling facilities are used as intermediate locations

to assist with blending and can be extracted from throughout the mine life. Lastly, any material that

does not positively contribute to the NPV of the mining complex is sent to the corresponding waste

dump facility.

Table 1: Material classification for blending and material routing.

Material Chemistry

Type CO3 SS OC Oxide

1 Med-Low Low - -
2 Med-Low High - -
3 Low Med - -
4 Low Low - -
5 Low Med-High - -
6 High - - -
7 Med-High Low - -
8 Low High - -
9 Very High - - -
10 High - Med-High -
11 - - High -
12 - - - High

In this case study, there are three one-time feasible investment alternatives considered throughout

the optimization process to test the adaptive optimization approach. First, the annual autoclave

processing throughput may be expanded by investing in two additional positive displacement piston-

diaphragm pumps (Eichhorn et al., 2014). Second, an investment in the process plant autoclave circuit

is evaluated to increase the allowable acid consumption and manage blending. Third, an investment

alternative that considers the construction of a new tailings storage area increases the life-of-mine

by allowing for the processors to continue operating. The pump installation increases throughput

at the autoclave by 25% which allows for more refractory ore to be processed. The capital cost of

this expansion is minimal, however, the cost of implementation and loss of production during the



Les Cahiers du GERAD G–2021–13 8

Figure 1: Mining complex and allowable material routing.

pump installation is also considered in the capital investment decision, resulting in a $1M investment.

Acid is ordered annually to satisfy production requirements, but storage areas and adaptations to

the autoclave pre-treatment circuit are required to safely utilize the additional acid. The expected

investment is $0.2M. The most significant investment decision is related to the addition of a new tailings

containment area which is expected to cost $200M to construct completely. The new tailings area

results in a 33% increase in tailings storage for the mining complex. Once any of the three investments

are purchased, they can be continuously used for the remainder of the mine life. Additionally, these

three capital investment decisions can potentially allow the production schedule to branch. In this case

study, a representativity measure R = 0.3 is used based on the acceptable risk of investing in capital

at this mining operation. Therefore, the production schedule branches when a representative number

of scenarios, between 30 and 70 %, invest in one of these three feasible alternatives. The scenarios are

then split, and further branching considerations are assessed in future periods. Further details on the

parameters considered for each of the capital investments are described in Table 2.

Table 2: Parameters and cost of capital investments.

Parameters Non-branching Branching Expansions

Shovel Truck Tailings Autoclave Acid
Lead Time (years) 2 2 3 2 3
Capital Cost (M$) 10 1.6 200 1 0.2
Life of Equipment (years) 7 7 13 13 13
Periodicity of Decision (years) 3 3 13 13 13
Increase in Capacity Feed for 5 trucks/unit 1.4 Mt/unit 5.75 MCM 925 kt 9.6 kt

The mine initially begins with 30 haul trucks and 6 shovels that have two years remaining in their

productive life before salvaging. The model dynamically considers the purchase of trucks and shovels

throughout the thirteen-year production schedule. Truck and shovel purchases define the annual mine

production rate. The cost per truck and shovel is $1.6M and $20M, respectively, which is accounted

for in the annual cashflows. Allowing for the optimizer to decide on the appropriate time to invest

in trucks and shovels throughout the mine life. The mining operation has an aging fleet and it is

planning to replace the originally purchased haul trucks with a new fleet. The ability to consider

the purchase of new equipment during the optimization provides an opportunity to re-establish the

optimal mining rate to satisfy the processor requirements and maximize the value of the operation.

The trucks and shovels have a corresponding lead time of two years to provide a suitable amount of

time for purchasing equipment from the manufacturer, shipping, and on-site assembly. In addition,

they have an expected equipment life of seven years and a purchase can be made every three years

stabilizing the production rate.
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3.1 Base case mine production schedule

A base case mine production schedule is defined herein using a simultaneous stochastic optimization

approach that considers capital investment decisions within the optimization framework while man-

aging uncertainty, however, branching is not considered. The base case mine production schedule can

choose to invest in trucks, shovels, and the available expansions, but it can not branch and adapt to

uncertainty by considering alternatives; it must either choose to invest or not invest. This is different

then the adaptive simultaneous stochastic optimization that can be used to evaluate different alter-

natives and their corresponding value, as there is a fixed production schedule that must be executed

in one way, which does not consider the value of having alternative options to manage uncertainty

to a greater extent. The results from the base case mine production schedule are compared with the

adaptive branching approach that considers feasible capital investment alternatives. Each method

uses a set of multi-variate stochastic simulation of the orebody for each open-pit as input into the

optimization model (Boucher & Dimitrakopoulos, 2009; Rossi & Deutsch, 2014). The external sources

are simulated based on historical data associated with variability in the supply and quality of material

received from other mines in the region. The variability and uncertainty of the material sources are

accounted for directly in the optimization framework, unlike conventional frameworks that use a single

estimated orebody model as input (Hustrulid & Kutcha, 2006). Lastly, the open-pit mines have a

block size of 30 m x 30 m x 20 m, representing the selective mining unit and contain 296k and 172k

blocks in Mine 1 and Mine 2, respectively.

The results from the base case production schedule including the extraction sequence, capital

investments, stockpiling, blending, mining rate and processing decisions follow. Figure 2 defines the

base case mining rate alongside the truck and shovel investment decisions. Noticeably the amount

of equipment that is required is decreasing as the mine life proceeds and as the older equipment

is approaching the end of its operational life. An opportunity arises to operate the two mines at

a lower mining rate. Although a lower mining rate is utilized, the ability to satisfy the autoclave

processor (Figure 3a) and oxide mill is fulfilled and a resulting NPV of $3.65B is achieved in the 50th

percentile (P-50). The base case mine production schedule invests in both the expansion of the tailings

management area and the additional acid storage facility. The investment in additional pumps do not

contribute an increase in the mining complex’s NPV when accounting for all scenarios, consequently

the pumps are not purchased. The blending constraints are satisfied, between the upper (UB) and

lower bounds (LB), in most years through the utilization of stockpiles and other available material

(Figure 3b, Figure 3c). However, during the first year, the blending constraints are unachievable as

the material that can be extracted during that year does not have the appropriate properties to meet

the blending requirements. As the production schedule proceeds, stockpiles are established to help

with blending in future years. The operational costs of stockpiling these materials are integrated into

the optimization to ensure that the stockpiling decisions contribute to the profitability of the mining

complex and help manage the technical risk.

Figure 2: The mining rate and shovel/truck purchase plan for the base case production schedule with no branching.
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Lastly, the base case production schedule invests in a tailings expansion in year 7. This investment

increases the storage capacity and becomes available in year 10 (Figure 4). The increased tailings

storage prolongs the mine life by three years and allows for 1–2 more years of gold production if the

duration of this schedule was increased. This results in an additional $0.7B in discounted cashflows

generated. Waste management considerations, such as tailings disposal, are important to optimize

directly in the mine production scheduling process in order to generate feasible life of mine designs.

Additionally, the processor upgrade that allows for additional acid consumption was purchased in

year 3 allowing for 20% increase in additional acid consumption in subsequent years (Figure 5). This

controls the blending requirements at the autoclave processing stream.

Figure 3: Base case autoclave throughput and blending (a) no expansion taken in the optimization for additional through-
put; (b) blending of SS; (c) blending of CO3; (d) maintaining the SS/CO3 ratio for ideal operating conditions.

Figure 4: Tailings production over the long-term production schedule and the available capacity expanded in year 10.
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Figure 5: Annual acid consumption with additional capacity obtained in year 6.

3.2 Adapting to supply uncertainty in a gold mining complex

The previously mentioned results will be compared with the adaptive stochastic optimization that

considers branching on feasible capital alternatives. During the adaptive simultaneous stochastic op-

timization groups of scenarios are optimized to determine if there is a beneficial time to invest in any

of the one-time capital investments alternatives described previously. The scenarios that lead to a

branching decision are separated based on those that invest and those that choose not to invest in

the time window. The scenarios that choose not to invest maintain the ability to invest in the capital

investment in future years, while the scenarios that invest lock-in that decision for that year activating

the non-anticipativity constraints. The scenarios are grouped into separate branches and optimized to

produce a feasible alternative for both investing and not investing in the solution. A representative

number (over 30%) of scenarios must undertake the same decision for the solution to consider branching

or investing in these alternatives, which reduces the number of branches and prevents overfitting the

decision tree to each scenario. It is important to note that the scenarios in each branch all undertake

the same decisions until a new branching decision is made.

Based on the available capital investments, it was first determined that the additional acid capacity

was a suitable investment for greater than 70% of the scenarios leading to a non-branching investment

decision. The first investment helped improve the ability to meet the quality requirements of the au-

toclave. After considering all the simulated scenarios (geostatistical simulations of each open-pit mine

and an uncertain external source) and the branching mechanisms criterion, the first branching deci-

sion is undertaken allowing for the expansion of the autoclave throughput by installing two additional

positive displacement pumps. This separates the number of scenarios into a group of 115 scenarios in

branch 1 (B1) that invest and 205 scenarios in branch 2 (B2) that do not invest. After the branching

occurs, the optimizer also decides to invest in the additional tailings capacity in more than 70% of

the scenarios, for both branches, preventing further growth of the scenario tree. The resulting feasible

alternatives both produce a higher NPV then the base case production schedule achieving a value of

$3.89B and $4.66B in B1 and B2, respectively (Figure 6). This accounts for a 6.4% and 27.5% increase

in NPV when comparing the P-50 of each alternative to the base case production schedule. Each of

the branches or feasible alternatives perform better than the base case production schedule, however,

this may not always be the case as there could be a group of scenarios that underperforms the base

case production schedule. The method prevents overfitting by ensuring a number of scenarios do not

become too few within each branch and that there is a significant difference in the number of scenarios

that either invest or maintain the same operating conditions, hence the representativity parameter

which ensures between 30-70% of the scenarios will be split and not a small group of outliers. This

substantially reduces the number of branches and ensures feasible stable solutions. The changes in

the investment decisions result in a very different response in the production scheduling process, as

shown in Figure 7, when comparing the N-S cross sections. First observing, the solution is the exact

same until branching occurs and then noticing the schedules change dramatically to take advantage

of the new capital investments. There are a number of similarities between the base case and B2 in
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terms of depth and extents of the mine. However, in B1 there is a large portion of the mine that is no

longer extracted in the north, when compared to the other two mine plans. This entails there is some

high material variability and uncertainty in this section of the mine that leads to large changes in the

resulting mine plan.

Figure 6: Comparison of the NPV from the adaptive branching and base case production schedule.

Figure 7: N-S cross section of production schedule Mine 1; a) base case (top left), b) branch 1 (top right), and c) branch
2 (bottom left).

B1 invests in the autoclave expansion (Figure 8), which can be fully utilized in year six, and has

the lowest mining rate over the long-term production schedule. A comparison of the mining rates

are reviewed in Figure 9, where the resulting production rates directly correlate to the amounts of

trucks and shovels purchased. The autoclave expansion results in lower grade refractory ore material

being processed and a higher throughput being used at the autoclave. Over the long-term production

schedule, there is a 9% reduction in the number of gold ounces produced over the life of mine when

compared with the P-50 of the base case scenario. However, the reduction in mining costs due to

the lower mining rate overcomes the loss in revenue and results in a higher NPV. The lower mining

rate is feasible as the throughput outweighs the grade of material through the autoclave changing

the selectivity between ore and waste material. Lower utilization of the oxide processing facilities

also decreased the operating costs. In B1, the optimizer has a challenging time meeting the blending

constraints and is unable to provide the appropriate material to attain the blending targets, making

the acid investment a critical decision for ensuring there is a suitable SS/CO3 ratio.

B2 performs quite differently and instead increases the size of the truck and shovel fleet, which

results in a higher extraction rate and ensures that higher-grade refractory ore is being sent to the

processor. The oxide processing streams are utilized far more in B2 than in B1 and their target

production is maintained during most years. A higher stripping ratio is required to move the additional

waste between years five and nine (Figure 11), which is the reason for the additional truck and shovel

requirements. Increasing the selectivity, between ore and waste, results in a substantially higher NPV,

which B1 was unable to achieve even with the autoclave capacity expansion. The larger contribution in

NPV is primarily due to the accessibility to oxide materials in the different groups of simulations and

the uncertainty and variability in the gold, SS, CO3, and OC grades. Here the adaptive approach is

able to take advantage of understanding the inherent variability of the mineral deposits and identifies
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there is an important investigation to commence. This includes more information with regards to the

mineralization of oxide materials and stricter guidelines in terms of the quality of material received

from external sources before deciding on the autoclave expansion. B2 produces 10% more gold by

fully utilizing all the processing stream capacities and better satisfying the blending constraints. The

increased utilization of the oxide leach and mill contribute significantly more gold ounces.

Figure 8: Autoclave throughput and targets a) B1 b) B2 with investments.

Figure 9: A comparison of the mining rates required to satisfy each production schedule.

Figure 10: Total waste production over long-term production schedule.

Figure 11: Total tailings production with investment decisions.
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The feasible alternatives B1 and B2 invest in the additional tailings containment area in year seven

and receive the capacity in year ten, similar to the base case. Had the tailings expansion not been

considered during the optimization process, processing would have been required to stop in year ten and

a loss of $1B and $1.3B of additional cashflow would be lost in B1 and B2, respectively. This would be a

larger loss than the resulting $0.7B in the base case production schedule. The potential loss highlights

the importance of simultaneously optimizing the entire mining complex to further understand the

intrinsic value of each investment decision.

4 Conclusions

The simultaneous stochastic optimization of a gold mining complex is presented using an adaptive

method that integrates feasible capital investment alternatives. The framework capitalizes on synergies

and adapts to uncertainty resulting in a 6.4% and 27.5% increase in NPV in B1 and B2, respectively,

while satisfying a wide array of production targets and managing supply uncertainty. Investments

in trucks and shovel define a new mining rate that minimizes capital expenditures and satisfies each

processors capacity. Additionally, an investment in a tailings facility expansion and additional acid

consumption increase the life of the mining complex and manage variable material quality at the

autoclave processor. Integrating tailings management into the optimization process increases the NPV

by 0.7B in the base case production schedule and leads to an additional $1B and $1.3B in B1 and

B2, respectively. This emphasizes the importance of considering waste and tailings management in

the optimization process to capitalize on the available synergies. The optimizer chooses to branch the

production schedule when the autoclave expansion is considered and identifies uncertainty and local

variability associated with the supply of oxide and refractory ores sent to each processor. This leads

to different mine plans and operating requirements for the processing streams and mining equipment,

which is dependent on whether the investment alternative is purchased. The feasible investment

alternatives provide a high-level insight on the appropriate attributes to investigate including highly

variable areas of the deposit and large differences in the quantity of oxide materials being mined. The

optimized production schedule does not branch for the first three years and provides the appropriate

lead time to evaluate each alternative decision and gather the required information to make an informed

final production schedule.

If either of the feasible alternatives are executed, the expected NPV increases substantially. The

base case and adaptive approaches capitalize on the synergies that exist between the different com-

ponents of the mining complex helping to manage the challenging blending constraints and determine

the appropriate size of the mining fleet directly in the optimization. The results from this case study

emphasize the importance of modelling the entire mining complex in a single optimization process. In

addition, the branching mechanism and adaptive ability of the optimizer provides a method to easily

evaluate several feasible alternatives and further understand the variability and uncertainty associated

with the mining complex.
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Appendix A

Adaptive simultaneous stochastic optimization sets, parameters, and decision vari-
ables

Sets and parameters

M Set of open-pit and underground mines
P Set of processors
W Set of waste facilities
S Set of stockpiles
G Set of groups or bins for different cut-off grades g ∈ G
T Set of scheduled time periods t ∈ T
S Set of simulated orebody scenarios s ∈ S where there are Sn ⊆ S scenarios that belong to the root,

these scenarios are partitioned into Sn1 and Sn2 when branching occurs therefore Sn1 ∪ Sn2 = Sn
and Sn1 ∩ Sn2 = ∅

P Set of primary attributes p ∈ P
H Set of hereditary attributes h ∈ H
K Set of available capital investments k ∈ K. There are two different subsets used to describe the

different types of investments branching (K∗) and non-branching (K=), where K∗ ∪K= = K
O (g) Set of locations where the groups of materials g can be delivered
Bm Set of mining blocks b ∈ Bm from mine m ∈M

βp,b,s Parameter that defines the set of simulated primary attribute p for block b in scenario s
rp,i,t,s Parameter that describes the recovery of each attribute p at location i ∈ P in each scenario s

R Representativity measure that describes the confidence interval for branching R ∈ (0, 0.5)
tω Time window used to stabilize solutions where ω represents the number of periods to search
N Defines theminimum number ofscenariosin abranchrequired for further branching periods (t+1)∈ T
τk Lead time to assemble or construct a capital investment k ∈ K
λk Life expectancy of each capital investment k ∈ K

κk,h Unitary increase in capacity that each investment k ∈ K leads to for each attribute h ∈ H
pKk,t Discounted purchase cost for each investment k ∈ K for each period t ∈ T
ψk The periodicity of the investment k ∈ K

Lh,i,t, Uh,i,t The static upper and lower bounds for each hereditary attribute h ∈ H, location i ∈M∪S∪P∪W,
and period t ∈ T

Decision variables

vp,i,t,s, vh,i,t,s Quantify the value of primary (p) and hereditary (h) attributes at each location i ∈M∪S∪P ∪W
in period t under scenario s, respectively

xb,t,s A set of binary extraction sequence decision variables that denotes if a block b is extracted in period
t in scenario s as 1, otherwise 0

zg,j,t,s A destination policy decision variable that takes a value of 1 if blocks in group g are sent to
destination j ∈ O (g), in period t ∈ T

yi,j,t,s A continuous processing stream decision variable that defines the portion of product that is sent
from one destination i ∈ S ∪ P to destination j ∈ O (i) ⊆ S ∪ Pin period t ∈ T and scenario
s ∈ S, yi,j,t,s ∈ [0, 1]

ωk,s,t A capital investment decision variable that defines if a capital investment k ∈ K is executed in
period t ∈ T and scenario s ∈ S

σk,t,s The number of investments undertaken for each investment k ∈ K in period t ∈ T and scenario
s ∈ S

unk∗,t A binary variable equals 1 when the design branches over option k∗ ∈ K∗ in node n in period
t ∈ T, otherwise 0

A A binary variable that activates the non-anticaptivity constraints taking on the value 0, 1 otherwise
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