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T. Fakhfakh (March 2021). Quasi-maximum likelihood for estimating
structural models, Technical report, Les Cahiers du GERAD G–2021–
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McGill, Université du Québec à Montréal, ainsi que du Fonds de
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activité à but lucratif ou pour un gain commercial;

• Peuvent distribuer gratuitement l’URL identifiant la publica-
tion.

Si vous pensez que ce document enfreint le droit d’auteur, contactez-
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Abstract : The estimation of the structural model poses a major challenge as its underlying asset (the
firm’s asset value) is not directly observable. We extend the maximum likelihood (ML) method of Duan
(1994 and 2000), and propose a quasi-maximum likelihood (QML) approach that remains appropriate
under alternative Markov assumptions, arbitrary debt payment schedules, and extended balance sheets.
QML alternates between dynamic programming and maximum likelihood to simultaneously solve and
estimate general structural settings. QML is highly flexible and effective. To support our construction,
we conduct a numerical investigation and show that ML and QML agree in Merton’s (1974) setting.
Then, we achieve an empirical investigation, spotlight the credit-spread puzzle, and discuss a partial
remedy via jumps and bankruptcy costs.

Keywords : Structural model, estimation, quasi-maximum likelihood, jump-diffusion processes,
credit-spread puzzle
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1 Introduction

The aim of this paper is to estimate complex structural models under alternative underlying processes.

Duan (1994 and 2000) developed a maximum likelihood (ML) approach to estimate Merton’s (1974)

model. Since then, the literature has reported several adaptations of ML used when corporate securities

can be valued in closed form. We propose a quasi-maximum likelihood (QML) approach that remains

appropriate under alternative underlying processes, arbitrary debt payment schedules, several seniority

classes, and multiple intangible assets. QML is a highly flexible and effective method that alternates

between dynamic programming (DP) and maximum likelihood (ML) to jointly solve and estimate

structural settings.

The main difficulty in estimating structural models lies in the fact that their common state process

(the firm’s asset value) is not directly observable. The literature prior to Duan (1994 and 2000) reports

several ad-hoc estimation procedures. The proxy approach combines market and accounting values of

corporate securities as well as the historical and the implicit approaches to infer the model’s unknown

parameters (Brockman and Turtle 2003, Leland 2004, Bharath and Shumway 2008, Huang and Huang

2012, and Afik et al. 2016). The proxy approach suffers from a major drawback in that accounting

values of corporate securities are not enough sensitive to changes in the firm’s credit quality. The

restricted volatility approach builds on equations that associate the non-observable firm’s asset value

and its volatility with the observable firm’s equity value (market capitalization) and its volatility

(Jones et al. 1984, Ronn and Verma 1986, Ogden 1987, Delianedis and Geske 2001 and 2003, Eom et

al. 2004, Vassalou and Xing 2004, Hull et al. 2005, Chen et al. 2006, Charitou et al. 2013). Developed

by Kealhofer, McQuown, and Vasicek, it gave rise to the well-known KMV licenced product, known

now as MKMV after its acquisition by Moody’s. KMV presents a shortcoming as it is specific to the

lognormal assumption.

The ML approach of Duan (1994 and 2000) has given rise to several empirical investigations (Wang

and Suo 2006, Li and Wong 2008, and Lee et al. 2015) and analytical modifications under 1– Merton’s

(1974) model (Duan et al. 2004 and 2005, Duan and Fulop 2009, Jovan and Ahcan 2017, Zhou and

Zhang 2020, and Aguilar et al. 2021), 2– Leland’s (1994) model (Ericsson and Reneby 2004 and 2005

and Forte and Lovreta 2012), 3– Brockman and Turtle’s (2003) model (Wong and Choi 2009 and

Dionne and Laajimi 2012), and 3– Black and Cox’s (1976) model (Wong and Li 2006 and Amaya et

al. 2019). The parallel between KMV and ML in Merton’s (1974) setting is analysed by Duan et al.

(2004) and Christoffersen et al. (2022).

When ML is unachievable, less demanding statistical principles are used, that is, 1– simulated ML

(Bruche 2005), 2– GMM (Li et al. 2004, Hsu et al. 2010, and Huang et al. 2020), and 3– MCMC

(Korteweg and Polson 2009 and Huang and Yu 2010).

QML combines between DP and ML to simultaneously solve and estimate structural settings. Since

the quasi-likelihood expression cannot be computed in closed form, QML works as follows:

1. Derive the quasi-likelihood function;

2. Set a value for the vector of the model’s unknown parameters;

3. Use dynamic programming and solve the model;

4. Extract the pseudo-time series of the firm’s asset value in accordance with its associated time

series of the firm’s equity value (market capitalization);

5. Compute the value of the quasi-likelihood function;

6. Go to step 2 and repeat until the quasi-likelihoood function reaches a maximum (MADS algorithm

is used herein).

QML is highly flexible and effective. To assess our construction, we use a Monte Carlo experiment

in Merton’s (1974) model, and show that QML and ML are consistent. Then, we conduct an empirical

investigation of a speculative corporate debt portfolio. The credit spreads are under-valued under the
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pure diffusion lognormal assumption. We include tax benefits and bankruptcy costs, and experiment

with the jump-diffusion Gaussian process. The credit spreads are adjusted high, which partially revisits

the credit-spread puzzle.

The rest of this paper is organized as follows. Section 2 develops the QML approach, and Section 3

presents a case study. Section 4 concludes.

2 The QML approach

2.1 The model

We consider the extended structural setting of Ayadi et al. (2016), which accommodates alternative

underlying processes, arbitrary interest and capital payment schedules, multiple seniority classes, and

several intangible corporate securities. The firm’s balance-sheet equality verifies

a+TBt (a)− BCt (a) (1)

= Ds
t (a) +Dj

t (a) + Et (a) ,
almost surely for all t and a = At ,

where TB represents tax benefits, BC bankruptcy costs, Ds the senior debt, Dj the junior debt,

Ds +Dj = D the debt portfolio, E the firm’s equity, and a = At a given level of the firm’s asset value

at time t. The left-hand side of Equation (1), indicated by TVt (a), is referred to as the total value of

the firm at (t, a). The default event at a debt payment date t, defined as TVt (a) ≤ Dt (a), is shown

to take the form

a = At ≤ bt,

where bt is the endogenous default barrier at the debt payment date t. This structural model includes

the fundamental settings of Merton (1974), Black and Cox (1976), Geske (1977), and Leland (1994).

Ayadi et al. (2016) use dynamic programming (DP) under the lognormal assumption, and evaluate

the corporate securities in Equation (1), seen as financial derivatives on the firm’s asset value.

Along the same lines, Ben-Ameur et al. (2016) use DP under alternative jump-diffusion processes

and evaluate Bermudan vanilla options. For the sake of clarity, we briefly present their dynamic

program, as the same approach is herein used for valuing the corporate securities in Equation (1).

Let X be the option underlying process, P = {t0, . . . , tM} the set of its exercise dates, where t0 is

the present date and tM the maturity date, and G = {a1, . . . , ap} a mesh of grid points that spans

the state space (0,∞) with the convention that a0 = 0 and ap+1 = ∞. The option (known) exercise

value function, holding value function, and overall value function at (tm, x) are respectively indicated

by vetm (x), vhtm (x), and vtm (x), where x = Xtm is a given level of the state variable Xtm at time tm.

The authors start their backward numerical procedure at the option maturity, where the option overall

value function is known in closed form, and propose an approximation ṽtM of vtM on G as follows:

ṽtM (ak) = vetM (ak) , for ak ∈ G,

given vhtM is null at the option maturity. Then, they use a piecewise linear approximation v̂tM , and

extend ṽtM from the grid points G to the overall state space (0,∞) as follows:

v̂tM (x) =

p∑
i=0

(
αM
i + βM

i x
)
I (ai < x ≤ ai+1) , for x = XtM ∈ (0,∞) ,

where I is the indicator function. The local coefficients αM
i and βM

i of v̂tM solve for

v̂tM (ak) = ṽtM (ak) , for ak ∈ G,
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while
(
αM
0 , βM

0

)
=

(
αM
1 , βM

1

)
and

(
αM
p , βM

p

)
=

(
αM
p−1, β

M
p−1

)
. Assume now that the model has been

solved backward in time from the option maturity tM to the debt payment date tm+1, and that

piecewise linear interpolations v̂ of v have been constructed on (0,∞) from tM down to tm+1. By

no-arbitrage pricing, one has

vhtm (x) = EQ [
e−r∆tmvtm+1

(
Xtm+1

)
| Xtm = x

]
,

where Q is a (the) risk-neutral probability measure, r the risk-free rate, and ∆tm = tm+1 − tm. The

expectation above cannot be computed in closed form and, thus, has to be approximated in some way.

To that end, the authors exchange vtm+1 for

v̂tm+1
(x) =

p∑
i=0

(
αm+1
i + βm+1

i x
)
I (ai < x ≤ ai+1) , for x ∈ (0,∞) ,

and approximate vtm on G in quasi-closed form as follows:

ṽhtm (ak) =EQ [
e−r∆tm v̂tm+1

(
Xtm+1

)
| Xtm = ak

]
=e−r∆tm

p∑
i=0

αm+1
i T 0

k,i + βm+1
i T 1

k,i,

where the αm+1
i and βm+1

i are the local coefficients of v̂tm+1 , while the T 0
k,i and the T 1

k,i are the

transition parameters of Xtm+1 given that Xtm = ak, defined as follows:

T 0
k,i =EQ [

I
(
ai < Xtn+1 ≤ ai+1

)
| Xtm = ak

]
=Q

[
Xtn+1

∈ (ai, ai+1] || Xtm = ak
]

and

T 1
k,i =EQ [

Xtn+1I
(
ai < Xtn+1 ≤ ai+1

)
| Xtm = ak

]
.

Higher-order piecewise polynomials require higher-order transition tables. Piecewise linear polyno-

mials achieve a good compromise between accuracy and computing time in addition to be simple to

implement. For example, T 0
k,i is the (risk-neutral) transition probability that the process X starts from

ak at tm and visits the interval (ai, ai+1] at tm+1. An approximation ṽtm of vtm on G comes

ṽtm (ak) = max
(
vetm (ak) , ṽ

h
tm (ak)

)
, for ak ∈ G.

Again, the authors use a piecewise linear interpolation v̂tm , and extend ṽtm , defined on the grid points

G, to the overall state space (0,∞) as follows:

v̂tm (x) =

p∑
i=0

(αm
i + βm

i x) I (ai < x ≤ ai+1) , for x ∈ (0,∞) ,

The local coefficients αm
i and βm

i of v̂tm solve for

v̂tm (ak) = ṽtm (ak) , for xk ∈ G,

while (αm
0 , βm

0 ) = (αm
1 , βm

1 ) and
(
αm
p , βm

p

)
=

(
αm
p−1, β

m
p−1

)
. The rest comes by backward induction.

Thus, for this dynamic program to run under alternative Markov processes, one mainly needs to

derive and compute their associated transition parameters. See Ben-Ameur et al. (2016) for an explicit

derivation of the transition parameters under jump-diffusion processes.
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2.2 The likelihood function

Let θ be the vector of estimable parameters that characterise the Markov state process A (the firm’s

asset value), fAu,θ (. | at) the (known) conditional density function of Au given At = at, for u ≥
t, under the physical probability measure P, and P =

{
0, . . . , t0 = T, . . . , tM = TD

}
be the set of

observation/payment/evaluation dates, where dates 0 and T are the first and last observation dates of

the firm’s equity value (market capitalization), while date TD is the maturity date of the firm’s debt

portfolio. Date T also represents the present date.

Let (e0, . . . , eT ) be the time series of the firm’s market capitalization (the observations) and

(a0, . . . , aT ) be the time series of their associated firm’s asset value (the pseudo observations). They

verify

e = Et (a) or, equivalently, a = E−1
t (e) , (2)

for e > 0 and a > bt, where bt is the endogenous default barrier at t ∈ P.

The likelihood function associated to the observed time series (e0, . . . , eT ) of the Markov process E
is

L (θ | e0, . . . , eT ) =fE0,θ (e0)×
T∏

t=1

fEt,θ (et | et−1)

=

T∏
t=1

fEt,θ (et | et−1) ,

where fEt,θ (. | et−1) is the (unknown) conditional density function of Et given Et−1 = et−1 under the

physical probability measure P, with the convention that fE0,θ (e0) = 1. We now rework this expression

to depend on the (known) conditional density functions fAt,θ (. | at−1).

For e > 0, the conditional cumulative density function of Et given Et−1 = et−1 verifies

FEt,θ (e | et−1)− FEt,θ (0 | et−1) =P (0 < Et ≤ e | et−1)

=P
(
bt < At ≤ Et (e)−1 | at−1

)
,

given Equation (2). By differentiation with respect to e > 0, one has

fEt,θ (e | et−1) =fAt,θ

(
E−1
t (e) | at−1

)
× E−1

t (e)
′

=
fAt,θ (a | at−1)

Et (a)′
,

for e > 0 and a = E−1
t (e) > bt. This results in the likelihood function

L (θ | e0, . . . , eT ) =
T∏

t=1

fAt,θ (at | at−1)

Et (at)′
, (3)

where at = E−1
t (et) is the pseudo-observation associated with the observation et, and Et (at)′ is the

derivative of Et evaluated at at, for t ∈ P.

The likelihood expression in Equation (3) can be reworked otherwise if we consider the Markov

underlying process Zt = log (At). The same arguments give

L (θ | e0, . . . , eT ) =
T∏

t=1

fZt,θ (zt | zt−1)

at × Et (at)′
, (4)

where z0 = log (a0) , . . . , zT = log (aT ). The general expressions in Equation (3)–(4) hold for all

structural settings, where the firm’s asset value is the sole underlying process.
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2.3 Resolution

The DP value functions of the corporate securities in Equation (1) are indicated by

T̂B, B̂C, D̂, and Ê .

In particular, one has

Êt (a) = αt
i + βt

ia,

where t ∈ P and a = At ∈ (ai, ai+1]. For a fixed value of θ, we exchange the true value functions of

corporate securities, default barriers, and the pseudo-observations by their known DP counterparts,

and compute the quasi-likelihood function L̂, while

Êt (ât)′ = βt
i , for at ∈ (ai, ai+1] .

The rest consists of solving the likelihood equation

θ̂QML = argmin
θ

− log L̂, (5)

given the observed time series e0, . . . , eT . This optimization problem is complex to achieve as L̂ is not

an explicit expression of θ. The grandient of L̂ with respect to θ is unavailable. We use the mesh

adaptive direct search (MADS) algorithm of Audet and Dennis (2006) to achieve the optimization

problem in Equation (5). Figure 1 shows the shape of L̂ under the lognormal assumption.

Figure 1: Curve of L̂

3 Numerical and empirical investigation

The code lines are written in C and compiled under CPP. We use the GSL and NOMAD software

libraries to ease solving the model and searching for the QML estimates. See Le Digabel (2011) for

further details on NOMAD. To assess our QML approach, we propose a two-step approach.

The first experiment is based on a Monte Carlo simulation under Merton’s (1974) setting. We set

the model’s true parameters as follows:

1. a drift and volatility of the underlying lognormal process µ0 = 10% (per year) and σ0 = 20%

(per year);

2. a risk-free rate r = 5% (per year);

3. a maturity and a principal amount of the pure corporate bond TD = 5 years and P = 100 dollars;

4. a daily observation window [0, T ] of two years assuming 250 days per year.
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We use the true value of θ0 = (µ0, σ0), simulate a daily path of A then of E over [0, T ] under the

physical probability measure, estimate the model as if the simulated path of E were observed from the

stock market, and provide the QML estimate of θ0. Then, we perform N = 2000 replications of the

same experiment, and compute the root mean square error (RMSE) of ML vs QML estimates of θ0.

Table 1: RMSE of ML vs QML – Simulated Merton’s (1974) setting

Estimation Search method RMSE(µ̂) RMSE(σ̂)

ML (Duan) Newton-based 10.4% 4.5%
QML Naive search 14.1% 5.1%
QML MADS algorithm 12.9% 3.4%

The naive search is performed over a mesh of grid points of (µ, σ) of size 5002. ML and QML

estimates of θ0 are comparable and show that the estimation of the volatility parameter is more

accurate than of the drift parameter, as documented in the literature.

The second experiment is a case study of Phar-Mor, a public chain of discount drug stores. Phar-

Mor went bankrupt in September 2001, while its debt maturity TD was in March 2002. We set the

present date T at one year then one year and a half before bankruptcy, and we observe the stock closing

price over the 2-years time window [0, T ]. The model respects the actual firm’s interest and capital

payment schedule over
[
0, TD

]
. The risk-free rate is taken as the yield to maturity of a Treasury pure

bond portfolio with an identical payment schedule to that of Phar-Mor.

Table 2 reports the QML estimates of θ in four structural settings à la Ayadi et al. (2016).

The version with frictions includes tax benefits at the rate rc = 35% and bankruptcy costs at the

rate w = 40%. Thus, under survival, the firm pays interest and saves taxes at the corporate tax

rate rc = 35%, while, under liquidation, 40% of the remaining firm’s asset value is used to finance

bankruptcy costs. The rest is used to (partially) pay bondholders, while equityholders are not paid at

all. We experiment with the pure diffusion lognormal process, where θ = (µ, σ), vs the jump-diffusion

Gaussian process, where θ = (µ, σ, λ, γ, δ). The parameters µ and σ are the drift and volatility of the

process A over its continuous part, λ is the average number of jumps per year (intensity of jumps), γ

the average of the relative price at jump times, and δ the standard deviation of the relative price at

jump times.

Table 2: QML estimates of θ – Phar-Mor

Present date T µ̂ σ̂ λ̂ γ̂ δ̂

Pure diffusion without frictions
18 months before bankruptcy -9.3% 28.6% – – –
12 months before bankruptcy -27.5% 29.0% – – –
Jump diffusion without frictions
18 months before bankruptcy -3.0% 25.0% 6.15 2.0% 5.0%
12 months before bankruptcy -24.0% 26.0% 6.20 1.5% 6.0%

Pure diffusion with frictions
18 months before bankruptcy -10.0% 30.0% – – –
12 months before bankruptcy -26.5% 31.0% – – –
Jump diffusion with frictions
18 months before bankruptcy -5.0% 26.0% 7.05 1.4% 5.0%
12 months before bankruptcy -26.0% 27.0% 7.88 1.0% 4.0%

Jumps tend to attenuate the (negative) drift and volatility parameters of the lognormal process.

This is compensated by multiple jumps (per year) with small amplitudes and fluctuations. Table 3

exhibits the yield to maturity (YTM) of Phar-Mor’s debt portfolio, its yield (credit) spread (YS), and

its term structure of total default probabilities (TDP) under the physical probability measure for the

horizons 6, 12, and 18 months at the present date T .
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Table 3: Credit-risk indicators – Phar-Mor

Present date T YTM YS TDP6 TDP12 TDP18

Pure diffusion without frictions
18 months before bankruptcy 7.31% 1.78% 4% 11% 20%
12 months before bankruptcy 8.24% 2.73% 26% 48% 70%
Jump diffusion without frictions
18 months before bankruptcy 7.63% 2.10% 7% 15% 28%
12 months before bankruptcy 8.21% 2.70% 25% 52% 77%

Pure diffusion with frictions
18 months before bankruptcy 9.12% 3.59% 3% 10% 20%
12 months before bankruptcy 12.08% 6.57% 22% 48% 74%
Jump diffusion with frictions
18 months before bankruptcy 9.35% 3.82% 7% 17% 35%
12 months before bankruptcy 13.59% 8.08% 24% 54% 81%

Credit-risk indicators deteriorate when we approach bankruptcy, but those computed under the

physical probability measure are more sensitive. This contradicts Delianedis and Geske (2003) who

focus on changes in risk-neutral credit-risk measures. In line with the literature on the credit-spread

puzzle, Phar-Mor’s yield spreads are adjusted high when we count for frictions and jumps. They

become more consistent with Moody’s B3 rating of Phar-Mor from November 1995 to February 2001,

as reported in Moody’s Default & Recovery Data Base.

See Collin–Dufresne et al. (2001), Driessen (2005), Chen (2010), Bao et al. (2011), Gemmill and

Keswani (2011), Huang and Huang (2012), and Du et al. (2019) for further details on the credit-spread

puzzle. We share the idea that frictions and jumps partially explain the credit-spread puzzle. We also

believe that credit spreads remain under-valued because market participants count for potential future

debt issues, which are refuted by structural settings.

4 Conclusion

We propose a flexible and efficient QML approach to estimate complex structural settings. QML

combines between DP and ML to simultaneously solve and estimate structural models. We conduct

an empirical investigation of a public company that went bankrupt. We show that its credit-risk

indicators deteriorate when we approach bankruptcy, while its credit spreads remain under-valued.

Credit spreads are adjusted high when we experiment with frictions and jumps, which is consistent

with the literature on the credit-spread puzzle.

A future research avenue consists of adjusting the design of structural settings to count for potential

future debt issues, reworking QML, and revisiting the credit-risk puzzle.
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