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b Département d’informatique et de mathématique, Univer-
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Abstract : Robotic process automation (RPA) is used in various fields of human activity in order
to implement faster and more secure processes through a reduction in the risks or errors but also an
increase in the productivity rates. The increase of its use and importance calls for evermore efficient
solution methods for this problem. In this paper, the RPA is addressed in the context of a financial
institution. The problem consists in assigning transactions to software robots, whereas each type of
transaction has a different clearance day and processing time. First, four types of heuristics are used
to compute an upper bound on the number of required software robots. Then, this bound is given
as a parameter to an integer linear program, which is used to assign the transactions to the different
robots. The quality of the solutions are assessed by an extensive experimental study on a set of 39000
instances. The results show that two heuristics outperform the others and that the LP problem solved
with a timeout of 60 seconds allows to find the optimal solution for most of the instances.

Keywords: Robotic process automation, linear integer programming, bin packing, heuristics, upper
bound
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1 Introduction

Throughout history, new inventions have allowed mankind to achieve ever-better productivity. Nowa-

days, advanced software that completes complicated tasks is widely available. This allows to automate

certain processes in several fields of application. This automation is often achieved by writing codes

that can interact and process data directly. In various industries, well-established software relies on

human intervention through a Graphical User Interface (GUI) to complete tasks. Such a software

can be expensive or unsafe to replace, especially in fields where older, tested and more secure soft-

ware is preferred over newer, more efficient programs that might have security flaws. Robotic Process

Automation (RPA) increases productivity in such situations and is considered a highly promising ap-

proach with an increasing number of real-life applications [15]. Indeed, more and more companies

rely on this technology to complement their working teams and optimize their internal processes [15].

This form of automation relies on software that mimics human mouse movements and other inputs

when interacting with a GUI. These software robots are programmed to perform specific tasks faster

and with more accuracy than humans [14, 16]. Furthermore, the software runs continuously and

does not feel boredom or exhaustion, which are human risk factors. Many companies now use RPA

successfully [2, 6, 9, 11]. A specific field in which RPA is used to automate critical operations is

banking. Financial institutions must handle a large volume of transactions daily. Each transaction

is associated with a type, which has specific market hours, volumes, clearance dates and processing

times. In the context of RPA implementation, these transactions are to be assigned to software robots

that will process them. While RPA can lead to better efficiency and accuracy, it comes with a cost.

Indeed, each software robot requires a paid license to operate. Therefore, there is a significant incen-

tive to minimize the number of software robots necessary to process a certain number of transactions.

As stated by the authors of [8], even though industry is interested in the RPA problem, academic

literature is lacking on this specific problem, but recently gained attention [13]. In this paper, the

technical implementation of such problem is proposed.

Several recent papers deal with applying RPA on real case studies; all of them highlight a given gain

in productivity achieved by the company after implementing RPA. In [1], the authors compare assigning

back-office tasks to robots and to humans. Back-office tasks being often tedious and repetitive, when

the are assigned to humans, the latter tend to get exhausted or bored after a given time which increases

the risks of error and extends the processing times while the robots do not have these drawbacks.

Indeed, the research showed a gain of up to 20% in the number of cases treated by the company with

the implementation of RPA in complement of their existing teams. In [9], Lacity et al. showed that

using RPA at the company Telefònica O2 both enhanced consumer experience and lowered the costs
incurred. Another study by Lamberton et al. [10] showed that the number of people required to

process claims of an insurance company would be up to 300% larger without the implementation of

RPA.

In [12], an integer linear program is proposed to minimize the total costs. Periods are defined at

the intersections of market operating hours for all of the transactions, leading to a reduced variable

space. A first phase allows to compute the total number of robots required, whereas the second

phase assigns the transactions to the robots. Preliminary results on only two test cases led to feasible

results, but further experimentation’s showed that transactions could not be divided between robots,

therefore leading to a higher number of actual robots required. Also, the actual use of a period is

not considered, which could lead to having periods where robots are only active, for example, 5% of

the available time. Another approach [3] solves a network flow in the first phase and an assignment

problem in the second phase. The network flow allows to find a lower bound on the number of robots.

The complexity of the problem, but also the computational time to obtain a solution is significantly

lower than the first proposed approach [12]. Extensive experiments also show that this method suffers

from the indivisibility of the transactions between the robots.

It is also worth mentioning that since RPA is a relatively new technology, many companies still tend

to have some difficulty to grasp its effects, the means to implement it in practice and also its challenges.

In a attempt to fill that gap, Wewerka and Reichert present in [15] a systematic literature review and a
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framework to analyze and compare publications on RPA. That paper highlights the differences between

RPA and other similar technologies and details where RPA can be implemented, the tools that are used

to implement it, its effects and the future improvements that should be considered in future studies.

The RPA problem presented in this paper consists in assigning financial transactions to robots.

Each transaction type is constrained by market operation hours and a clearance date. It also has a

volume (number) of transactions to be completed, each of which require a given processing time. The

solution to the problem provides a schedule for the robots that minimizes the maximal number of

active robots at a given period for different transactions combinations.

This paper is based on a previous work completed by the authors in [12] and describes an improved

method to solve the RPA assignment problem. To do so, four different heuristics are proposed to

compute an upper bound on the total number of required robots. In a second phase, an integer linear

program uses the computed upper bound to find an optimal assignment of the transactions to the

robots. Numerical results show that the upper bounds found by the heuristics are of good quality and

computed very fast.

The paper is organized as follows. Section 2 describes the RPA problem and the proposed linear

integer formulation. Section 3 details the proposed heuristics to compute the upper bound on the

number of robots. Numerical results are presented in Section 4 and final remarks are presented in

Section 5.

2 Problem description

The RPA assignment problem is stated as follows. Several transactions are to be completed using

the lowest possible number of robots for each period. A period is defined by the different types of

operations that can be processed between the beginning and the end of that period. In other words,

periods are defined by the intersections of market operating hours for all of the transactions; if the set

of transaction types that can be processed changes at a certain time, a new period is defined.

Each transaction type is characterised by its market hours, clearance date, processing time and

volume. The available market hours of a type is what determines the set of periods during which it

can be processed. Transactions that share the same characteristics are regrouped under a type, and

the number of such operations of the same type is referred to as the volume.

The aim is to assign each transaction to a given period. The number of transactions completed

in a period is constrained by the length of the period, the number of robots assigned to the period,

as well as the processing time of each operation. Every robot has the time limit of the period it is

assigned to at any moment. The objective of the RPA assignment problem is to find an assignment

that minimizes the largest number of robots required among all periods, for any given set of operations

to complete under their respective clearance dates.

In this paper, the operations are financial transactions and each robot is a software license that

incurs a fixed cost. Therefore, minimizing the largest number of robots among all periods reduces

license costs. In what follows, a linear integer program is first presented. It aims at improving the

previous models studied in [3, 12] and providing a one-phase simpler model.

2.1 Mathematical model

This integer linear program assigns the transactions to the robots and requires an upper bound on

the total number of robots. The upper bound Nub is computed using heuristics and is discussed in

Section 3.

Sets are defined as follows:

P = set of transaction types,
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K = set of periods,

R = set of robots.

Parameters are described as follows:

vp = volume of transactions of type p ∈ P ,

tp = process time of transaction type p ∈ P ,

lk = length of period k ∈ K,

wkp =

{
1 if transaction type p ∈ P can be processed in period k ∈ K,
0 otherwise,

Nub = upper bound on the number of robots required (calculated with heuristic).

The model variables are as follows:

yrk =

{
1 if robot r ∈ R is active in period k ∈ K,
0 otherwise,

xrkp = number of transactions of type p ∈ P processed by robot r ∈ R in period k ∈ K,

N = number of robots.

The model minimizes the maximal number of robots required for all periods:

min N (1)

s.t. N ≥
∑
r∈R

yrk, ∀k ∈ K, (2)

∑
k∈K

∑
r∈R

xrkp = vp, ∀p ∈ P, (3)

∑
r∈R

xrkp ≤ wpkvp, ∀p ∈ P,∀k ∈ K, (4)

∑
p∈P

xrkptp ≤ lkyrk, ∀k ∈ K,∀r ∈ R, (5)

∑
p∈P

xrkp ≥ yrk, ∀k ∈ K,∀r ∈ R (6)

N ≤ Nub (7)

yrk ∈ B, ∀k ∈ K,∀r ∈ R, (8)

xrkp ∈ R+, ∀k ∈ K,∀r ∈ R,∀p ∈ P. (9)

Equation (2) are used to minimize the maximal number of robots N . Equation (3) are used to

assign every transaction of each type. Equation (4) sets the value of xrkp to 0 when wpk is 0, so that

no transaction is assigned outside of its market hours. Equation (5) are used to enforce the respect of

the period lengths. They also ensure that xrkp is 0 if ykr is 0, which means that transactions can only

be assigned to active robots. Finally, Equation (6) state that a robot can only be active if transactions

are assigned to that robot and the bound on the number of robots is given by Equation (7).Variables’

domains are given by Equations (8)–(9).

3 Heuristics to compute upper bound

It is worth mentioning that since the RPA assignment problem is NP-complete, any exact method for

its resolution would have exponential complexity. The mathematical model presented in Section 2.1

requires a parameter Nub that is an upper bound on the number of actual robots required and is

obtained with heuristics which are detailed in this section. Solving the model where Nub is a variable

would require an enormous amount of time given the complexity of the problem.
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In order to calculate the value of the upper bound, heuristics which are known to provide close to

optimal solutions rather fast are used. The aforementioned heuristics provide an upper bound on the

number of robots for the presented mathematical model. To this end, four heuristics are developed.

Using the provided upper bound, solving the mathematical model allows to find an optimal assignment

of the transactions to the robots.

3.1 Proof of NP-completeness

In this section, it is shown that the RPA assignment problem is NP-complete. In order to do so, a

reduction from the well-known bin packing problem to the RPA assignment problem is proposed.

3.1.1 The bin packing problem

The bin packing is an optimization problem that is known to be NP-hard [7]. In this problem, p

indivisible packages of sizes s1, s2, ..., sP must each be assigned to bins. The objective is to assign all

packages using the least possible number of bins of equal capacity c. The Figure 1 presents an example

of such a problem where five packages must be placed in three bins.

Figure 1: Example of a bin packing problem.

3.1.2 Proof of NP-completeness

Proof. It is clear the RPA assignment problem is in NP . Indeed, any solution can be verified in

polynomial time. Now, consider a restriction of the RPA assignment problem where every transaction

type has a volume of one and can be processed in a single period of length L. Then, the objective is to

find the minimum number of robots in the period that can complete all transactions. Each robot can

work for at most L units of time, and each transaction has an associated processing time requirement

t1, t2, ..., tP . This restriction of the RPA assignment problem is equivalent to a bin-packing problem

for which each package of size sp : p ∈ P is a transaction with a processing time tp : p ∈ P , and where

a new bin with capacity c is equivalent to a robot active in the period if L = c.

A visual representation of this reduction is presented in Figure 2. By comparison with Figure 1, it

is obvious that the two problems are equivalent. Bins correspond to robots and packages to different

transactions. Therefore, the RPA assignment problem is NP-hard.

Figure 2: RPA problem equivalent to the bin packing example.
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3.2 Heuristic algorithms

Four Heuristic methods are tested. Each are inspired by the First fit [5] and First Fit Decreasing [4]

algorithms used to solve the bin packing problem.

1. First Fit (FF) Algorithm. (Algorithm 1)

This algorithm is very similar to the FF used in the offline bin packing problem found in the lit-

erature. Transaction types are considered in the order they are given, and periods are considered

in chronological order. The entire volume of a certain transaction type is assigned before moving

on to another type. Each transaction is assigned to the first possible period that is in the set

of valid periods and has enough time to complete it. If there is no period in which a particular

transaction can be executed, a new robot is added to all periods. However, a new robot for any

period is only used if all previously added robots in all other possible periods are full.

2. FF with Decreasing Transaction Processing Time Algorithm. (Algorithm 2)

The only difference with this algorithm and the FF is that the different transaction types are

ordered in decreasing order of processing time before being assigned to a period.

3. FF with Decreasing Period Length Algorithm. (Algorithm 3)

This algorithm is also similar to the FF. However, the periods are ordered in decreasing order of

length. This means that, for any given transaction, the algorithm tries to assign it to the longest

period in which it can be executed, before checking the other ones.

4. FF with Decreasing Transaction Processing Time and Decreasing Period Length

Algorithm. (Algorithm 4)

This algorithm is essentially a mix of both previously described algorithms. It is similar to the

first one described, except both the transactions and the periods are sorted in decreasing order.

4 Experimental results

This section details how the synthetic test cases are generated and describes the testing environment

for the different algorithms. Numerical results are then presented, followed by a discussion.

4.1 Synthetic test cases generation

The RPA assignment problem in this study is applied in the context of a financial institution. A bank

in North America provided a real test case with 12 transaction types. In order to further assess the

quality of our methods, synthetic test cases are generated based on the distribution of data of the real

test case. For each synthetic transaction type generated, the market operating hours and the clearance

date were selected randomly from those of the set of transaction types of the real case. As for the

processing time and volume, bounds were randomly selected from the real case, then random values

were generated for both attributes, while being limited by the upper and lower bounds previously

selected.

Synthetic cases with between 12 and 50 transaction types are generated in order to observe the

impact of the instance sizes on both the solution quality and the running time of methods. In order to

obtain meaningful results, 1000 instances are generated for each number of different transaction types

ranging from 12 to 50. A total of 39 000 instances are used to test the proposed methodology.

All tests are conducted on an “E2-Standard” Google Cloud Platform virtual machine. It consists

of 4 virtual CPUs, 16 GB of main memory and an Intel Haswell platform. The operating system used

is Debian 10 (Buster). The C programming language is used to implement the heuristics, wihthout

parallelism or multhithreading. It is worth mentioning that computing time would be reduced if

parallelism, multithreading or another sorting algorithm was used. For this paper, the qsort function

is used. For the integer linear program, Python programming language and Xpress solver are used.
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4.2 Numerical results and analysis

As this study is based on previous work, the number of robots and calculation times are of most

importance, given that the assignment of the transactions to the robots has been assessed before.

Therefore, numerical results focus on the these elements.

First, the heuristics are used to determine an upper bound on the number of robots that is then

used as a parameter in the optimization model. Each heuristic is run until it finds a solution and the

linear integer program is first limited to a 60 seconds timeout in order to find a solution quickly. For

the instances that did not reach optimality after 60 seconds, the timeout is set to 15 minutes and the

instances are re-solved.

The different heuristic methods provided good quality results in general. Figure 3 shows the

median deviation percentages of the heuristics compared to the linear program (LP), more precisely

the difference, in percentage, between the number of robots found by the heuristics and the optimal

number of robots in the LP. For the sake of fairness, only the instances for which optimal solutions

were obtained by the LP were considered. It can be seen that the median deviation percentages does

not exceed 20% which provides a rather good upper bound that allows to speed up the resolution of

the LP. The best heuristic is Algorithm 4, which is FF with decreasing transaction processing time

and period length. The worst heuristic is the FF algorithm and results show that Algorithm 4 greatly

improves the bound.

Figure 3: The median deviation percentages for all the solution methods.

Furthermore, the heuristics are, in some cases, able to find the optimal solution to several instances.

Figure 4 presents the success rates of the different methods, i.e. the percentage of instances for which

optimal solutions are found by each method. Even if this rate decreases with the increase in the number

of transaction types, heuristics are still able to provide good quality upper bounds that become good

starting points for the resolution of the LP. On all instances, the best algorithm is Algorithm 4 as it

is the only one that is non-dominated.

It is worth mentioning that for a small percentage of instances, the LP was not able to find optimal

solutions and in rarer cases, was not able to find any solution, even after 15 minutes. The percentages

are presented in Figures 5 and 6. In the case of large instances, allowing a 15 minutes timeout reduces

the percentage of instance with no optimal solution from 14 % to about 9 %. It is also worth mentioning

that the LP almost always finds a solution after 15 minutes, and that less than 0.4 % of instances are

left without a solution.
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Figure 4: The success rate of the different solution methods.

Figure 5: Percentage of instances with non-optimal solutions found by the LP solver. The dark line is after 60 seconds
and the pale line after 15 minutes.

Figure 6: Percentage of instances with no solutions found by the LP solver after 60 seconds (dark line) and 15 minutes
(pale line).

In the cases where non-optimal solutions are found, their gap does not exceed 7% as shown in

Figure 7. For the cases where no solutions are found by the LP, the heuristics are a good alternative

since they provide good quality solutions in a very short time.
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Figure 7: Median optimality gaps for the LP solver after 60 seconds (dark line) and 15 minutes (pale line).

For the LP, the running time is almost instant for 12 transaction types and 2.5 s for 50 instances.

Of course, the time grows exponentially with the number of transactions. Concerning the running

times for the heuristics, they can be viewed on Figure 8. Algorithm 1 and Algorithm 2 are at least two

times faster than Algorithm 3 and Algorithm 4. The heuristics are three to six orders of magnitude

faster than the LP.

Figure 8: The median running times of heuristics in microseconds.

Figure 9 presents the median differences in the number of robots between the heuristics and the

LP for the instances where an optimal solution is found. As expected, this difference increases with

the increase in the number of transaction types. Algorithm 4 is the best algorithm on large instances.

As previously mentioned, the solver for the LP was first run with a 60 seconds timeout, if no

optimal solution is found, the timeout is set to 15 minutes. In most cases, the number of robots is

improved by only one unit which represents less than 0.5% improvement in average. This leads to

the conclusion that 60 seconds of timeout is enough since the heuristics provide a good quality upper

bound which, combined with the LP, allows to obtain quite good solutions in a very short time.

Figure 10 shows the median optimality gap differences between solutions found after 60 seconds

and after 15 minutes. The majority of instances sees a reduction of 0.5% in the optimality gap. This

shows that running the LP solver with a 60 second timeout is sufficient. Also note that the heuristic

used to compute the bound is the Algorithm 4 for this comparison.
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Figure 9: The median difference of the number of robots with respect to the optimal solution.

Figure 10: The improvement in the optimality gap between the 60 seconds and the 15 minutes runs of the LP solver.

4.2.1 Analysis

Results show that heuristics allow to obtain a good upper bound on the number of robots for the linear

integer program. Since the heuristics run in microseconds, it is worthwhile to compute a bound before

conducting the optimization. As for the LP, setting a 60 second timeout is sufficient, given that 5.75%

of the instances do not lead to an optimal solution in the given timeout. Of the total 39 000 instances,

this represents about 2243 instances. For most of the instances without an optimal solution in 60

seconds, the optimality gap is around 2% for the LP. The instances with no feasible solutions after

both timeouts are rather rare, representing only 0.6 % of the total number of instances. Also, it is

worth mentioning that using a 15 minute timeout leads to a reduction in the number of non-feasible

instances as shown in Figure 6.

Algorithm 3 and Algorithm 4 are the best since they offer the best bounds when compared to the

optimal solution. In an operational perspective, these heuristics should be used before solving the

optimization model. Indeed, even if they are slower than Algorithms 1 and 2, they are still very fast

as they always run well under one second, even for the largest instances.
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5 Conclusion

This paper presents a methodology to solve the RPA problem. First, four heuristics are compared

to determine the best algorithm in terms of quality of the solution and second, this bound is used

as a parameter in a linear integer optimization problem. A solution to the RPA problem is proposed

to assign financial transactions to software robots and 39 000 instances are generated to test the

methodology. The results show that the heuristics provide a good bound, allowing to solve the LP

problem with a timeout of 60 seconds. The results are conducted on static test cases, but in a dynamic

mindset, where transactions arrive in real-time, this methodology could easily be adapted to find a

good solution in a short amount of time.
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[3] I. Benkaläı, S. Séguin, H. Tremblay, and G. Glangine. Computing a lower bound for the solution of
a robotic process automation (rpa) problem using network flows. In 7th International Conference on
Control, Decision and Information Technologies, Prague, Czech Republic, June 2020.
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