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Abstract : We describe the implementation of RIPQP, an interior-point algorithm for convex
quadratic optimization. Our Julia implementation is open source, and accommodates computations
in multiple floating-point systems. In particular, it can be initialized in a low-precision system, such
as Float32, as a form of warm start, and gradually transition through higher-precision systems until it
reaches the prescribed accuracy. On platforms with hardware for various floating-point systems, our
strategy results in savings in terms of time, number of normalized iterations, and energy expended
during the solve. When we only dispose of double-precision hardware and we want to solve problems
in a higher floating-point system such as quadruple precision, RIPQP can perform some operations in
double precision, while still maintaining satisfying stopping criteria.

Keywords : Interior-point methods, convex quadratic optimization, multi-precision

Résumé : Nous présentons RipQP, un algorithme de points intérieurs pour ’optimisation quadratique
convexe écrit en Julia, libre de droit, dont le code source est libre d’acces, et qui est capable d’effectuer
des opérations dans plusieurs précisions de calcul. En particulier, RipQP peut étre initialisé dans une
précision de calcul faible telle que la simple précision, pour ensuite transitionner graduellement vers
des précisions de calcul plus élevées. Sur des plateformes pouvant effectuer nativement des calculs dans
plusieurs systémes en virgule flottante, notre méthode permet d’économiser du temps de calcul et de
réduire 1’énergie émise pour la résolution du probléeme. Si la plateforme utilisée dispose uniquement
de la double précision de maniere native, et que nous souhaitons résoudre des problemes dans une
précision plus élevée telle que la quadruple précision, RipQP peut effectuer certaines opérations en
double précision, tout en maintenant des criteres d’arrét satisfaisants.

Acknowledgements: Research of G. Leconte is supported by an IVADO Undergraduate Research
Scholarship. Research of D. Orban is partially supported by an NSERC Discovery Grant.
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1 Introduction

We describe an efficient implementation of an interior-point algorithm named RipQP for the convex
quadratic problem

minimize ¢’z + %.I‘TQJ? subject to Az =b, { <z < u, (1)
xr

where ¢ € R", Q = Q7 € R"*" is positive semi-definite, A € R™*" b € R™, £ € R", u € R",
and inequalities are understood elementwise. Although there already exist several commercial and
freely-available implementation of this type of method, ours has a number of distinguishing features,
including:

1. treatment of free variables, weak convexity and rank-deficient constraints by way of exact primal-
dual regularization (Friedlander and Orban, 2012);

2. effective scaling strategy based on that of Ruiz (2001);

3. our algorithm is entirely implemented in the Julia language (Bezanson et al., 2017) with no
compiled or operating-system-specific dependencies, and therefore is portable, is compiled on the
fly, and does not require a separate compiler;

4. a generic implementation that can be executed in any floating-point arithmetic supported by
Julia;

5. a multi-precision heuristic attempting to save time, computations and energy on appropriate
platforms;

6. double precision efficiency competitive with that of the commercial libraries CPLEX (IBM ILOG
CPLEX Optimization Studio), Gurobi (Gurobi Optimization, LLC, 2023) and Xpress (FICO
Xpress Optimization);

7. modular linear algebra for solving a linear system that is often considered as the most expensive
operation in interior-point algorithms;

8. our software is open source and freely available from https://github.com/JuliaSmooth
Optimizers/RipQP. jl.

For simplicity of exposition, we assume that all elements of ¢ and u are finite. Accommodating
absence of bounds is easily achieved by deleting rows and/or columns from matrices involving those
bounds. If linear inequality constraints by < Ax < b, are present, our implementation adds slack
variables Az — t = 0 and the bounds by <t < b, to recover the form (1).

The dual of (1) is

maximize y? b+ st £ — st u — %xTQw
Z,Y,8¢55u (2)
subject to — Qr + ATy +s; — sy =c¢, 50>0, 5, >0,

where y € R™, sy € R™ and s, € R™ are vectors of Lagrange multipliers associated with the equality
constraints, lower bounds, and upper bounds of (1), respectively. A solution (x,y, s¢, s,) of (1)—(2),
when one exists, satisfies the Karush-Kuhn-Tucker (KKT) conditions

—Qr+ ATy +sp—5,—c¢

Az —Db
F(z,y,s0,54) := Se(x —0) =0, (3a)
Su(u—x)
$¢ >0, 5,>0, (<zx<u, (3b)

where Sy := diag(s¢) and S, := diag(s,). The conditions (3) can be generalized to problems with
infinite bounds in ¢ and w by removing the associated components of z and columns of Sy and/or S,,.


https://github.com/JuliaSmooth
Optimizers/RipQP.jl
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The main computational cost of RIPQP consists in solving the Newton system

—Q AT 1 -1 Ax Te
A 0 0 0 Ay I (4)
Sg 0 X—-L 0 ASg 5@
S. 0 0 X -U| [Asy Eu

at each iteration, where X := diag(z), L := diag({), and U := diag(u). This system can be sym-
metrized, and some variables may be eliminated, in order to keep the computation time reasonable.
One of the modular advantages of RIPQP is that it allows the user to choose an equivalent formulation
of (4) to solve.

A reformulation of (4) that is often used in convex quadratic optimization is

e IME ”

where D = Sy(X — L)™' + S,(U — X)~!. This system is referred as the Ky formulation (Greif et al.,
2014; Ghannad et al., 2021), and may be numerically unstable in the sense that its condition number
grows without bound as convergence occurs (Greif et al., 2014). If A is rank deficient, (4) and (5) are
singular, which complicates the computation of the search direction. As a remedy, we use primal-dual
regularization such as that of Friedlander and Orban (2012):

—(Q+pl) AT I I Az T
A oI 0 0 Ay | _ |7
S@ 0 X—-L 0 AS@ - gg ’ (KS)
Su 0 0 X-U| [Asy &u

where the iteration-dependent positive regularization parameters p and § have small values (typically
close to the square root of machine precision). The system (5) then becomes

g -l

This system is symmetric quasi-definite (SQD), and may be solved in several ways (Orban and Arioli,
2017). RipQP implements two of the most efficient methods used to solve (K2): a signed Cholesky
factorization and a preconditioned Krylov method.

Most implementations used to solve (1) perform computations entirely in double floating-point
arithmetic. On platforms with hardware facilities to work in a lower precision, such as single precision
floating-point arithmetic, lower-precision computations are performed faster and expend less energy
than higher-precision computations, as observed by Haidar et al. (2020). Moreover, given that some
applications require solving (1) to high accuracy, or that some problems are inherently difficult to solve
numerically, it can be necessary to perform computations in higher floating-point systems (Ma et al.,
2017).

Similarly to the Julia interior-point solver for linear problems Tulip.jl from Tanneau et al. (2021),
our implementation can be employed in any floating-point system supported by Julia, including half (on
moderate-size problems), single, double and quadruple precision, with precision-dependent stopping
criteria. One of its interesting features is that it is also able to solve problems by starting in a low
precision and transitioning to a higher precision as the algorithm gets closer to a solution. This strategy
has similarities with the quadruple precision simplex solver DQQ from Ma et al. (2017), but is adapted
to an interior-point solver. In addition, when solving (K2) in a precision p, RIPQP can perform costly
operations in a lower precision ¢ < p, while maintaining an accuracy worthy of precision p.

The Julia programming language is convenient for writing generic type-stable algorithms thanks to
its multiple dispatch features, and allowed us to write efficient type-stable functions that can work with
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any floating-point system. Indeed, a specialized version of each function is compiled according to the
type of its arguments, so that, given the current precision of the data used to solve our problem, the
function compiled with the corresponding floating-point system is used. For example, when solving (1)
in precision p with some initial iterations in precision ¢ < p, the functions used in both precisions are
compiled in precision p and q.

2 Two different methods to solve the convex quadratic problem

Interior-point methods require solving one or several linear systems such as (4) at each iteration to
find a search direction (Ax, Ay, Asy, As,). If several systems need to be solved per iteration, they
have the same matrix, and a factorization approach is efficient as the factorization can be computed
once and reused. RIPQP provides two different methods to compute steps, which should be chosen by
taking into account the solver used to solve the linear systems.

2.1 The predictor-corrector method

The first method implemented within RIPQP is the classic predictor-corrector method of Mehrotra
(1992).

We define the primal and dual residuals as

ry = Az — b, (6a)
re = —Qu+ ATy + s/ — 5, —c. (6b)

The predictor step, or affine-scaling step, solves

—(Q+pl) AT I —I Azt Te
A 51 0 0 Ayt b
S, 0 X—L 0 ||as®| ™ " |S@-0] (7)
—Su 0 0 U—X| [As,2 Su(u — )

We then compute a steplength along the primal and dual search directions that preserves sufficient
strict feasibility:

aff

pri = arg max{a € (0,1] [z + alz®™ € [0+ 7(x —£),u—7(u—2)]} (8a)

(0%

agﬁal = arg max{a € (0,1] | sg + aAsM > 15, and s, + aAs, > > TSy} (8b)

for a user-defined 7 € (0, 1).

The duality gap is defined as

sT(e—6) + sT(u—a)

n= m ) (9)

and must converge to zero to satisfy (3).

The second step is the centering/corrector step, and is achieved by computing the duality gap that
would result from the predictor step, and setting the centering parameter o according to the heuristic
of Mehrotra (1992):

2= + oA Az (10a)
(™", 53, 537) = (4, 50, 50) + aua(Ay™, Asg™, Asy) (10b)

o= (" /p)’, (10c)
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where £ is the duality measure of (22, y*f 53 s2ff) The centering/corrector is then computed by
solving
—(Q+pl) AT T ~I Azce 0
A ST 0 0 Ayee| 0
Se 0 X-1L 0 Asi|  |ope — AS?HTA:EaH ' (11)
-8, 0 0 U-X||Ase opie + ASAET Agat

The overall search direction is the combined step

(Azx, Ay, Asp, As,,) = (Az, Ay, Asy, Asu)alcf + (A, Ay, Asg, As, ). (12)

2.2 The infeasible path-following method

The second method implemented within RIPQP is the infeasible path-following method, similar to
that of Kojima et al. (1993). The search direction is computed by solving the linear system

—(Q+pI) AT I —I Az -7
A ol 0 0 Ay | —Tp (13)
Se 0 X-L 0 Asg| | ope—Se(x—0) |
—S, 0 0 U—-X| |Asy, ope + Sy(u—x)
The centering parameter o is computed using the heuristic from Vanderbei and Shanno (1999):
. mini Se; (J}i — f,) mini sui(ui — CL‘Z')
§ = min ( sTx—10) ' sl(u—u) (14a)
. 1-¢ L\’

o=vmin | (1 —7) ¢ 20, (14b)
where we set r = 0.999 and v = 0.05. The objective of (14) is to follow the central path by trying
to preserve uniformity of the complementarity products sy ;(z; — ¢;) and s,;(uw; — x;), 1 € {1,...,n},

while reducing . We do not further expand on this matter, since numerous details about the central
path already exist in the litterature (Wright, 1997), (Nocedal and Wright, 2006, chapter 14).

3 The different formulations to solve at each iteration

The Newton system (K3), though its condition number is bounded under strict complementarity, is
rarely solved directly because of its size and of the fact that it is not symmetric. However, it can be
easily symmetrized by multiplying the last two block rows by S, ! and S, respectively, to get the
K3g system, which has the drawback of having an unbounded condition number. Forsgren, Greif et al.

(2014) and Ghannad et al. (2021) use a symmetric variant of K3g with a bounded condition number.

The system that is often favored to solve convex quadratic problems is the augmented system (K2),
which is sometimes referred to as the augmented system. Ghannad et al. (2021) also present a variant
of (K2) with bounded condition number:

~Xp2(Q+ D+ pDX, P X, AT

—1/2 1/2
) {Xeu Afﬂ] - {Xeu fm} : (K2.5)
AX} oI

Ay fy

where Xy, = (X —L)(U — X). The system (K2.5) can be viewed as a form of diagonal scaling of (K2).

When solving linear problems, the normal equations (K1) are often used:

(AQ+ D+ pl) " AT +61)Ay = f, + AQ + D + pI) ™ fa, (K1)
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because of their smaller size and their symmetric positive definiteness. All the formulations presented
in this section are implemented in RIPQP to be used with a Krylov method, but we only present
results with (K2) in this paper, since it is smaller than K3, K3g, K35, and because (K1) would require
factorizing @ + D + pI at each interior-point iteration, which would be costly for general Q). Even
though (K2.5) is usable within RipQP with a factorization algorithm and with Krylov methods, we
did not see significant improvements with factorization algorithms compared to (K2), and we decided
not to include it in our experiments.

4 A multi-precision algorithm

Thanks to the benefits of Julia’s multiple dispatch, RIPQP is able to solve a problem in any floating-
point system given that the stopping criteria are set accordingly to the precision of solve. We usually
use tolerances close to or greater than the machine epsilon of the required precision (our stopping
criteria are described in the beginning of Section 5.5). However, half-precision (and lower) solves may
not be robust since there can quickly be some overflow errors.

On compatible hardware, Haidar et al. (2020) indicate that, when dividing by a factor 2 the
precision of the floating-point system, operations can be up to 2 times faster and consume up to 4
times less energy. That is why we might wish to reduce the cost of performing operations that do not
require high accuracy by using multi-precision techniques. RIPQP uses several strategies to benefit
from computations in lower-precision systems.

4.1 Warm-start in a lower-precision floating-point system

As the interior-point iterates approach a solution, the condition number of (K2) becomes increasingly
high, which leads to inaccurate solves. That is why we might want to lower the precision of the
initialization and early iterations of RIPQP), since there are the easiest to compute. Once numerical
issues are encountered, usually when performing the factorization of an ill-conditionned matrix, or
when some residuals of the interior-point algorithm are sufficiently small, RIPQP converts the data of
the interior-point algorithm to a higher floating-point system to solve the systems with large condition
number. This mechanism is described in Algorithm 1 The criteria for increasing the precision are
described in Section 5.5.

Algorithm 1 Solving a quadratic problem in precision p with RipQP warm-started in a lower precision ¢ (multi-precision
mode).

Require: Q, A, ¢, co, b, £, u defined in (1) in precision p.

1: Duplicate @, A, ¢, co, b, ¢, u in precision q.

2: Solve (1) in precision g until a relaxed stopping criterion is reached.

3: Convert the current point (z,y, s¢, su) and all the necessary storage to precision p.

4: Solve (1) in precision p, bypassing the initialization procedure by choosing (z,y, s¢, su) as a starting point.

4.2 Solving systems with a Krylov method preconditioned by a lower-precision
factorization

Another way to perform operations in a lower floating-point system that is implemented within RipQP
is to solve (K2) with a Krylov method preconditioned by a factorization in a lower precision. Algo-
rithm 2 is a simplified version of that of Amestoy et al. (2023), used in two different floating-point
systems, and is similar to that of Arioli and Duff (2008). This can be seen as a form of iterative
refinement (Arioli et al., 1989). It consists of solving (K2) in precision p with the (approximate) signed
Cholesky factorization in precision g < p:

K2 ~ L2D2Lg, (15)
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where Lo is lower triangular with a diagonal of ones, and Dy is diagonal. Since we use a factorization
in precision ¢ < p to precondition the Krylov solver in precision p, this preconditioner is expected
to be cheap enough that the total cost of this method is lower than the factorization-only solve in
precision p.

Algorithm 2 Solve (K2) in precision p preconditioned by a signed Cholesky factorization in precision ¢, where g < p.

1: Compute a signed Cholesky factorization of (K2) in precision ¢ using the dynamic regularization procedure from
Altman and Gondzio (1999).

T
2: Solve (K2) with the computed signed Cholesky factorization in precision ¢ to get an initial solution [Awo Ayo] .

T
3: Solve (K2) in precision p using a Krylov method starting from [ACEO Ayo] , and preconditioned by the computed
signed Cholesky factorization in precision gq.

Sometimes, the regularization parameters p and ¢ in (K2) at a given interior-point iteration are too
small to be able to compute the factorization in precision ¢ without numerical issues (zero elements
in the diagonal of D). To avoid these issues, Saunders and Tomlin (1996) mention that we should
have pd > e)s for linear problems, where €y, is the machine epsilon relative to the precision of the
factorization. That is why we use the dynamic regularization procedure described by Altman and
Gondzio (1999) to avoid these numerical issues. When the factorization computes a Ds;; whose
absolute value is too close to zero, the procedure updates Ds;; < Da;; & €y, where €5 is a small
parameter, usually close to the square root of the machine precision q. The sign of the update is
determined by the index i of the pivot. n first pivots are negative, and m pivots are positive. The
dynamic regularization acts as a second form of regularization in precision ¢, but it is only used on
pivots that are close to zero, which has minimal effect on the matrix Ks.

It is also possible to scale Ky so that its rows and columns have an infinity norm of 1, using the
algorithm of Ruiz (2001). This scaling is employed by Amestoy et al. (2021) to prevent overflow issues
when factorizing a matrix in half-precision.

RIPQP is also able to use a limited-memory signed Cholesky factorization such as that of Orban
(2015). This limited-memory factorization can be computed in a lower precision system so that it is
usable with the multi-precision strategy, and allows to reduce even more the cost of computing the
preconditioner, at the expense of performing potentially more Krylov iterations.

4.3 Combining approaches

Thanks to the modular nature of RIPQP, it is possible to combine the techniques presented in Sec-
tion 4.1 and Section 4.2. This is achieved by using up to three different SolverParams, a type used to
define the algorithm used to solve the interior-point system. Each SolverParams enables the user to
choose the floating-point system used for the solve, as well as parameters specific to the solver used.
For exemple, it is possible to create a SolverParams that instructs RIPQP to solve the interior-point
system with GMRES used on (K2) in double precision with a signed Cholesky preconditioner in single
precision. Any combination of up to three SolverParams can be used within Algorithm 3, as long as
a conversion functions between adjacent SolverParams is implemented.

Algorithm 3 Solving a QuadraticModel using three different SolverParams. Each SolverParams may be in a different
floating-point system, given that the floating-point precision of the algorithm increases or stays the same when transitioning
from one SolverParams to another.

Require: a QuadraticModel gm.
1: Solve gm using the SolverParams sp until some criteria tol; are satisfied, or something fails in the solve,
2: get the current point 1, %1, 5¢,1, Su,1 and convert the floating-point system of the data used for the solves if needed,
3: Solve gm using the SolverParams sp2 starting from 21,91, s¢,1, Su,1, until some criteria tols are satisfied, or something
fails in the solve,
4: get the current point x2,y2, s¢ 2, su,2 and convert the floating-point system of the data used for the solves if needed,
5: Solve gm using the SolverParams sp3 starting from x2,y2, s¢,2, Su,2, until the global criteria are satisfied.
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stats = ripgp (

am, # QuadraticModel n Double6 (quadruple precision with DoubleFloats
Jjl)

mode = :multi,

# solve K2 in Float64 with GMRES and Float64 preconditioner

sp = K2KrylovParams (

kmethod = :gmres,

preconditioner = LDL(T = Float64, pos = :R),

p_min = 1.0e-8,
4_min = 1.0e-8,

mem = 50,

itmax = 50,

),

# solve K2 in Double64 with GMRES and Float64 preconditioner
sp2 = K2KrylovParams{Double64} (

kmethod = :gmres,

preconditioner = LDL(T = Float64, pos = :

I
sl

p_min = Double64 (1.0e-12),
d_min = Double64 (1.0e-12),
mem = 20,

itmax = 20,

)y

# solve K2 in Double64 with LDL factorization

sp3 = K2LDLParams{Double64} (
p_min = Double64 (1.0e-15),
6_min = Double64 (1.0e-15),

),

)

Figure 1: Example of configuration of RipQP to solve a QuadraticModel in quadruple precision using three SolverParams.
We reduce the regularization values as we use a more precise solver.

5 Implementation details

5.1 Modeling

R1pQP uses the Julia package QuadraticModels.jl (Orban et al., 2020b) to define quadratic problems
of the form

minimize ¢y + ¢l z + %xTQa: subject to fcon < Ax < ucon, ¢ <z < u. (16)
xr

Internally, RIPQP transforms the model to have the form (1) by adding slack variables. Once a
QuadraticModel, the datatype used to represent (16), has been created, it can be passed directly to
RiPQP.

5.1.1 Sparse coordinate format

The default input type for @ and A in the presolve procedure of QuadraticModels.jl (detailed in Sec-
tion 5.2) is the sparse coordinate format (COQO), as implemented in the Julia package SparseMatri-
cesCOO.jl. We chose this format because it is the format used in QPS files, a common storage type
for linear and quadratic models. The QPS format is used to represent all the quadratic models that
we tested in this paper, and can be read easily with the Julia package QPSReader.jl (Tanneau et al.,
2020).

Once the presolve has completed, it is possible to transform A and ) to another format. For
example, when using the pure-Julia signed Cholesky factorization LDLFactorizations.jl (Orban and
contributors, 2020), we work with arrays in compressed sparse column (CSC) format.

5.1.2 Linear operators

It is also possible to create a QuadraticModel with Q and A defined as abstract linear operators
(for instance, the linear operator K is defined by the function = — Kz), via the Julia package


https://github.com/JuliaSmoothOptimizers/QuadraticModels.jl
https://github.com/JuliaSmoothOptimizers/QuadraticModels.jl
https://github.com/JuliaSmoothOptimizers/SparseMatricesCOO.jl
https://github.com/JuliaSmoothOptimizers/SparseMatricesCOO.jl
https://github.com/JuliaSmoothOptimizers/QPSReader.jl
https://github.com/JuliaSmoothOptimizers/LDLfactorizations.jl

Les Cahiers du GERAD G-2021-03 - Revised 8

LinearOperators.jl (Orban et al., 2020a). With this QuadraticModel, the interior-point method should
be based on a Krylov method, since these methods only require operator-vector products. However,
solving a quadratic problem using linear operators might be more difficult because Krylov methods
often require an effective preconditioner to solve a linear system, especially in the last interior-point
iterations. An improvement to this functionality would be to compute matrix-free preconditioners
constructed from a linear operator.

5.2 Presolve and scaling

QuadraticModels.jl contains a rudimentary presolve procedure (currently in development) that imple-
ments some of the operations described by Gould and Toint (2004). It is also inspired by the package
MathOptPresolve.jl, which contains presolve routines for linear problems. However, our implementa-
tion is adapted to quadratic problems, with the storage format required by our modeling API. Our
presolve contains the operations described in Algorithm 4.

Algorithm 4 Presolve

1: Remove empty rows of A.

2: Remove singleton rows of A.

3: Remove linearly unconstrained variables (empty columns of A) that occur linearly in the objective function by fixing
them at one of their bound, chosen by the sign of the corresponding component of ¢, and detect if the problem is
unbounded.

4: Remove singleton columns of A whose associated variables have infinite bounds and occur linearly in the objective.
This also removes the associated rows corresponding to the row indices of the nonzero elements of the removed
columns.

5: Remove free rows of A (row ¢ is free if lcon; = —oco and ucon; = +00).

6: Remove fixed variables.

Q AT

Once the model has been presolved, RIPQP scales it so that [ A 0 ] has rows and columns with

unit ¢o.-norm using the scaling algorithm of Ruiz (2001).

5.3 Starting point

Our algorithm to compute a starting point first solves

~(@Q+pl) AT] H _ m , (17)

A ST | |7 b
and sets
5=Qi—ATj+c (18a)
5, =—(Qz — ATy +c). (18b)

As mentioned by Friedlander and Orban (2012), since (17) has the same sparsity pattern as (K2),
which is solved at each interior-point iteration, if we use a factorization to solve the interior-point
system, its symbolic analysis can be performed only once.

Next, we adapt the starting point procedure of Mehrotra (1992) to two-sided bounds. We introduce
0z, = max (—% min(z — ¢), 6}\//14>, 0y, = max (—% min(u — &), e}v/f), ds, = max (—% min(sy), 6}\44),

. 1/4 . . .. e .
and d,, = max (—% min(s,), € 1\//[ ), where €, is the machine precision of the initial precision, and set

5%+ 6., — 0)

Oz, = 0y + & AT (19a)
- T (u— & —6,,)
5, =6, 15U =T~ 0g,) 19b


https://github.com/JuliaSmoothOptimizers/LinearOperators.jl
https://github.com/JuliaSmoothOptimizers/QuadraticModels.jl
https://github.com/mtanneau/MathOptPresolve.jl
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N 1 gg(j""&wz_f)

Pse = 0s 25 (@i + 0gp — £) (18¢)
ds, = s, + ;;?(Z_Zi_ég:z). (19d)
Finally, we set the initial values
Lo =7+ 0y, — 0, (20a)
Sg0 =8¢+ 55@ (20b)
50,0 = 8y + 0s, - (20c)
This procedure ensures sgo > 0 and s, > 0. However, if for some ¢ € {1,...,n} we have —oco <
4; < wu; < +00, then we could obtain zg; & (¢;,u;). In this case, we set x; close to the bound it was

C . 1/4
violating, and leave sg o and s, unchanged. For example, if xg; < £;, we set xo,; = 4; + €, -

5.4 Updating the regularization

When solving (K2) with a signed Cholesky factorization (without the dynamic regularization described
in Section 4.2), some problems require lower regularization values to converge to the required tolerances.
We detect that a lower regularization is needed when the current point becomes too close to its bounds,
i.e., z —¢ and/or u— z have indices that are too close to zero, or when p is below the machine precision
enr- The latter case should not occur if the current point is not close to the central path, defined by
rp =0, 7. =0 and sg;(z; —¢;) = syi(u; —x;) =7 >0 forall i € {1,...,n}, and is therefore a good
indicator that we should adjust the regularization values.

But when the regularization values are too low, the factorization is likely to fail. When it does, we
decide to increase the regularization values and to recompute the factorization. When the factorization
fails more than 10 times, we decide that the problem cannot be solved to the required tolerances, and
we return the current point.

5.5 Stopping criteria and transition between floating-point systems

We define the relative primal-dual gap as
‘ch +27Qx — yTb— sTt + sfu‘

pdd = 1+ |chr + %mTQx|

(21)

A quadratic problem is deemed to have been solved once 7. and 7, defined in (6), and pdd defined
in (21), are smaller than some user-defined tolerances.

In multi-precision mode, the transition between several floating-point systems is also based on these
residuals, but with higher tolerances. In addition, the transition is performed if the signed Cholesky
factorization (used without dynamic regularization) fails, or if the current point becomes too close to
its bounds. As we know that the n first diagonal elements of (K2) increase when, for a given index
i, x; —¢; — 0 or u; —x; — 0, and gets close to zero when @;; = 0, s¢; — 0 and s,; — 0, we
decide that a point is too close from its bounds if the absolute value of the greatest diagonal element
of Ky is greater than i, and the absolute value of the smallest diagonal element is smaller than 11—0.
These additional transition criteria are similar to those of Section 5.4, but instead of modifying the
regularization values, we switch to a higher-accuracy floating-point system.

6 Numerical results

We present some results of various tests showing the performance and multi-precision features of
RipQP (Orban and Leconte, 2022) with (K2). The tests can easily be reproduced using the package
RipQPBenchmarks.jl, available from https://github.com/geoffroyleconte/RipQPBench
marks.jl.


https://github.com/geoffroyleconte/RipQPBench
marks.jl
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6.1 Time comparisons with other solvers in double precision

In this section, we compare RIPQP using (K2) with LDLFactorizations.jl to commercial solvers with
a single thread. The problems used for the comparisons are the 114 linear problems from the Netlib
dataset (Netlib), and the 138 convex quadratic problems from Maros and Mészédros (1999). All solvers
are used with their respective barrier algorithm implementation, and crossover disabled. The stopping
criteria for the solvers are 10~ for the primal and dual residuals, and 1078 for the relative primal-dual
gap. All the other parameters of the above solvers are left to their default value. However, since each
solver performs its own scaling, the primal and dual tolerances are not exactly the same. Neverthe-
less, the results in this section give a good indication as to the performance of RIPQP compared to
commercial solvers.

The solvers used are:

o CPLEX (IBM ILOG CPLEX Optimization Studio), via the Julia interface CPLEX.jl and Quadrat-
icModelsCPLEX.jl on top of it,

o Gurobi (Gurobi Optimization, LLC, 2023) via the Julia interface Gurobi.jl and QuadraticMod-
elsGurobi.jl on top of it,

o Xpress (FICO Xpress Optimization), via the Julia interface Xpress.jl and QuadraticModelsX-
press.jl on top of it,
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0.00,; = o 5 =

Within this factor of the best (log scale)
Figure 2: Time performance profile on Netlib problems between RipQP and some commercial solvers.

We can see from Figure 3 that CPLEX is the fastest solver, followed closely by RiPQP which is
faster than Gurobi and Xpress on most of the quadratic problems. RIPQP is also the most robust on
Maros and Meszaros problems. However, Figure 2 shows that it is slower than the other solvers on
linear problems. This may be due to the fact that these solvers use the smaller system (K1) instead
of (K2) to solve linear problems (solving (K1) is more difficult for quadratic problems when @ is
not diagonal because @ + D + pI has to be inverted at each iteration). Moreover, each solver has
its own presolve algorithm, and that of RIPQP is probably the least efficient. RipQP fails on the
two Netlib problems PILOT-JA (factorization breakdown) and PILOT-WE (reaches the maximum
number of iterations because the step sizes become increasingly small). These failures are linked to the
factorization of (K2) and may be prevented by changing the factorization algorithm (see Section 6.2)
and/or changing the default initial and minimal regularization values (but this might lead to failures
on other problems).


https://github.com/jump-dev/CPLEX.jl
https://github.com/JuliaSmoothOptimizers/QuadraticModelsCPLEX.jl
https://github.com/JuliaSmoothOptimizers/QuadraticModelsCPLEX.jl
https://github.com/jump-dev/Gurobi.jl
https://github.com/JuliaSmoothOptimizers/QuadraticModelsGurobi.jl
https://github.com/JuliaSmoothOptimizers/QuadraticModelsGurobi.jl
https://github.com/jump-dev/Xpress.jl
https://github.com/JuliaSmoothOptimizers/QuadraticModelsXpress.jl
https://github.com/JuliaSmoothOptimizers/QuadraticModelsXpress.jl
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Figure 3: Time performance profile on Maros and Meszaros problems between RipQP and some commercial solvers.

6.2 Tests of different factorization algorithms

In this section we present results with the different factorization algorithms available within RipQP
when solving a problem in factorization-only mode.

R1pQP solves by default the augmented system (K2) with the signed Cholesky factorization package
LDLFactorizations.jl (Orban and contributors, 2020). We also added interfaces to other factorization
packages, which can be used if they are imported before importing RIpQP:

o the CHOLMOD factorization from SuiteSparse (Chen et al., 2008),

o« HSL_MAS57 (Duff, 2004) with all default parameters and the SQD setting, and HSL_MA97
(Hogg and Scott, 2011) with all default parameters via the Julia interface HSL.jl (Orban and
contributors, 2021a),

o QDLDL.jl, a Julia implementation of the factorization QDLDL used in the OSQP solver (Stellato
et al., 2020).

A comparison of the performance of these factorization algorithms is shown in Figure 4 and Figure 5.

We can see that the performance of LDLFactorizations.jl and QDLDL.jl (two pure-julia factor-
izations) are similar. We also see that the choice of the factorization algorithm has an effect on the
robustness of RiPQP, for example with MA97, all the Netlib problems are solved. On most of the
problems shown in Figure 4 and Figure 5, MAS57 is the slowest algorithm. However, Table 1 shows
that when solving the problems that are solved the slowest with LDLFactorizations.jl, it becomes most
of the time the fastest algorithm.

6.3 Multiple centrality corrections

We implemented the centrality corrections from Gondzio (1996), with a slight modification on the
maximum number of corrections to perform described in Algorithm 5. We show in Figure 6 and Fig-
ure 7 the comparisons of RIPQP using (K2) and LDLFactorizations.jl with and without centrality
corrections. Centrality corrections seem to be most interesting on quadratic problems, but the differ-
ence is barely noticeable. Even though the number of iterations is almost always lower with centrality
corrections, the time to perform the additional solves often compensates for the iterations savings.


https://github.com/JuliaSmoothOptimizers/LDLfactorizations.jl
https://github.com/JuliaSmoothOptimizers/HSL.jl
https://github.com/oxfordcontrol/QDLDL.jl

Les Cahiers du GERAD G-2021-03 — Revised 12

1.00

0.75

0.50

Proportion of problems

—  ripgp_ldl
0.25 — ripgqp_mab7

—ripgp_ cholmod

— ripgqp_ ma97

— r1ipgp_ qdldl
0% 2 b > 2

Within this factor of the best (log scale)

Figure 4: Time performance profile on Netlib problems with LDLFactorization.jl (ripgp_Idl), QDLDL.jl (ripqp_qdldl),
MAGS7 (ripgp_ma57) and MA97 (ripgp_ma97) via HSL.jl, and CHOLMOD from SuiteSparse.jl (ripgp_cholmod).
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Figure 5: Time performance profile on Maros and Meszaros problems with LDLFactorization.jl (ripgp_Idl), QDLDL.jl
(ripgp_qdidl), MAS57 (ripgp_ma57) and MA97 (ripgp_ma97) via HSL.jl, and CHOLMOD from SuiteSparse.jl
(ripgp_cholmod).

Table 1: Time comparison between RipQP with LDLFactorizations.jl and MA57 on the 9 Netlib problems that are solved
the slowest.

problem time ripgp_ldl (s) time 7ipgp__mab7 (s)

DFL001 8.8e+01 4.2e+01
KEN-18 2.6e+01 2.9e+01
OSA-60 1.6e+01 3.8e+01
PDS-06 1.0e+01 9.0e+4-00
PDS-10 6.9e+01 2.6e+01
PDS-20 7.6e4-02 1.6e+02
PILOTS87 1.0e+01 6.8e+00
QAP12 5.1e+01 1.9e+01

QAP15 4.3e4-02 7.7e+01
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Algorithm 5 Computation of the maximal number of centrality corrections kmax.

1: Once the starting point is computed according to the procedure described in Section 5.3, compute Tf/s, the factor-
ization time divided by the solve time of the initial system.

2: if ry/s <10 then
3: kmaz =0
4: else if 10 <ry,, < 30 then
5: kmax =1
6: else if 30 <r;,, <50 then
7 kmax = 2
8: else
9: kmax =3
10: end if
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Figure 6: Time performance profile on Netlib problems with (ripgp_cc) and without (ripgp) centrality corrections.
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Figure 7: Time performance profile on Maros and Meszaros problems with (ripgp_cc) and without (ripgp) centrality
corrections.

6.4 Multi-precision vs mono-precision

In this section, we compare the mono-precision mode of RIPQP using a factorization in Float64 to
RIPQP in multi-precision mode, starting the solve in Float32, and then transitioning to Float64. All
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the tests are made with the predictor-corrector algorithm, and the linear system to solve at each
iteration is (K2). The results that we present are a simulation of what would be the benefits of using a
multi-precision algorithm on a platform with hardware facilities that can perform operations in Float32
and Float64. As stated by Haidar et al. (2020), dividing by two the precision of the computations might
be two times faster, and might save up to four times the energy required by the computations. That is
why, in our experiment, the performance profiles are displayed so that an iteration in Float32 counts
as one iteration, and an iteration in Float6/ counts as four iterations. We call the performance profiles
with this measure energy performance profiles.

Figure 8 and Figure 9 show the energy performance profiles between the mono-precision and multi-
precision modes. The criteria used to transition from single to double floating-point arithmetic specified
in Section 5.5 are 102 for pdd, 10~ for r;, and r., and a maximum number of 40 iterations. When
iterating in Float32, the regularization parameters p and ¢ of (K2) have to be set to a higher value so
that the factorization does not fail. However, some problems require very low regularization values
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Figure 8: Energy performance profile using LDLFactorizations.jl on Netlib problems with RipQP in Float64 only
(ripgp_mono) and RipQP in Float32 then Float64 (ripgp_multi).
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Figure 9: Energy performance profile using LDLFactorizations.jl on Maros and Meszaros problems with RipQP in Float64
only (ripgp_mono) and RipQP in Float32 then Float64 (ripqp_multi).
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to converge, which is why they are solved slower with the multi-precision mode, require more energy
and sometimes get stuck close to a bound or lead to factorization breakdowns. This could be avoided
by reducing the maximum number of iterations in Float32 for these difficult problems, but the energy
gains would be slower on the other problems. We show in Appendix A and Appendix B the detailed
results of this comparison, including the number of iterations performed in Float32 and Float6s.

We also made experiments with the time to solve problems, using MA57 from HSL.jl. This factor-
ization can work in Float32 and Float6/, and solves in Float32 are about two times faster than the
solves in Float64.

Figure 10 and Figure 11 are made with the same transition criteria to switch precision as in
Figure 8 and Figure 9. However, since the benefits of multi-precision here are only of a factor two
(instead of a factor four), we need to transition faster to Float64. Profiles 12 and 13 show results with
ripgp_mab7_multi2 which uses less strict transition criteria: 10~2 for the primal and dual residuals,
and 10° for the relative primal-dual gap. With this setting, we can see that the multi-precision mode
is faster than the mono-precision on more than 75% of the Netlib problems, and more than 60% of the
Maros and Meszaros problems.

Proportion of problems

0.25F
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Figure 10: Time performance profile using MA57 on Netlib problems with RipQP in Float64 only (ripgp_ma57) and
RipQP in Float32 then Float64 (ripgp_ma57_multi).
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Figure 11: Time performance profile using MA57 on Maros and Meszaros problems with RipQP in Float64 only
(ripgp_ma57) and RipQP in Float32 then Float64 (ripgp_ma57_multi).
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Figure 12: Time performance profile using MA57 on Netlib problems with RipQP in Float64 only (ripgp_ma57) and
RipQP in Float32 then Float64 with softer transition tolerances (ripgp_ma57_multi2).
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Figure 13: Time performance profile using MA57 on Maros and Meszaros problems with RipQP in Float64 only
(ripgp_ma57) and RipQP in Float32 then Float64 with softer transition tolerances (ripgp_ma57_multi2).

Future work could seek to improve the transition criteria when trying to decrease solve times. We
show energy performance profiles between RIPQP with MA57 in mono-precision, multi-precision and
multi-precision with softer transition tolerances in Figure 14 and Figure 15. Because the measure of
performance is different, these profiles are mostly in favor of ripgp__mab7__multi.

6.5 Preconditioning the augmented system with a lower-precision factorization

In this section, we compare the results of the multi-precision mode shown in Section 6.4 with an
algorithm using a Krylov method preconditioned by a lower-precision factorization as in Algorithm 2.
The goal is to improve the solve of a linear system by a lower-precision factorization using a form of
iterative refinement.

Algorithm 6 is based upon Algorithm 2. In its second step, the use of GMRES in Float64 with
a signed Cholesky factorization in Float6/ is only useful when (K2) becomes too badly conditionned.
Most of the time, only 0 or 1 iteration are needed. Even though (K2) is symmetric, we prefer using
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GMRES instead of MINRES because of the loss of orthogonality due to its poor condition num-
ber. Moreover, using MINRES would force us to modify our preconditioner to be positive-definite by
changing the pivots (computed by the signed Cholesky factorization) so that they are all positive. This
operation can be performed easily at no computational cost, but it has the drawback to require more
iterations of the Krylov method.
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Figure 14: Energy performance profile using MA57 on Netlib problems with RipQP in Float64 only (ripgp_ma57), RipQP
in Float32 then Float64 (ripgp_ma57_multi), and RipQP in Float32 then Float64 with softer transition tolerances
(ripgp_ma57_multi2).
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Figure 15: Energy performance profile using MA57 on Maros and Meszaros problems with RipQP in Float64 only
(ripgp_ma57), RipQP in Float32 then Float64 (ripgp_ma57_multi), and RipQP in Float32 then Float64 with softer
transition tolerances (ripgp_ma57_multi2).

When computing the energy performance profiles, we made the assumption that the cost of the
GMRES iterations could be neglected. Therefore, the profiles only monitor the energy of the fac-
torizations, but we can expect that the savings we observed for the factorizations are sufficient to
compensate for this additional costs, since we only perform a few GMRES iterations. The savings
cannot be verified with MA57 (which is about two times faster in single precision) because it does not
support dynamic regularization. However, in Section 6.7, we will show results using a similar algo-
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rithm to solve problems in quadruple precision that benefit from savings in the number of operations
performed in quadruple precision (since it is not supported natively by the processor that we used).

Algorithm 6 ripgp_multifact.

1: Run the predictor-corrector method using Algorithm 2 where p = Float64 and ¢ = Float32, using GMRES with
a memory and a maximum number of iterations of 10. We set the initial absolute and relative tolerances for the
residuals of GMRES to atol = rtol = 10~2, and we divide this value by 10 at every interior-point iteration until we
reach atol = rtol = 1078,

2: Run the predictor-corrector method using Algorithm 2 where p = Float64 and q¢ = Float64, using GMRES with a
memory and a maximum number of iterations of 5. We start from the current values of atol and rtol, and we divide
them by 10 at every interior-point iteration until we reach atol = rtol = 10~10.

Figure 16 and Figure 17 show that Algorithm 6 is efficient to reduce the number of interior-point
iterations. Using the equilibration scaling to scale (K2) does not change much the performance of the
algorithm.
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Figure 16: Energy performance profile on Netlib problems with RipQP in Float32 then Float64 (ripgp_multi), RipQP
with Algorithm 6 (ripgp_multifactl), and RipQP with Algorithm 6 and equilibration scaling of (K2) (ripgp_multifact2).
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Figure 17: Energy performance profile on Maros and Meszaros problems with RipQP in Float32 then Float64
(ripgp_multi), RipQP with Algorithm 6 (ripgp_multifactl), and RipQP with Algorithm 6 and equilibration scaling of (K2)
(ripgp_multifact2).
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6.6 Using a limited-memory factorization as a preconditioner

Instead of using a signed Cholesky factorization preconditioner in a lower precision system as presented
in Section 6.5, it is possible to use a limited-memory factorization. Orban (2015) presents a limited-
memory signed Cholesky factorization that we used for our experiments. The code is available in the
Julia package LimitedLDLFactorizations.jl (Orban and contributors, 2021b).

Algorithm 7 is a variant of Algorithm 6 where the first step in double precision preconditioned by
a single precision factorization uses a limited-memory signed Cholesky factorization with a memory of
20 instead of a complete signed Cholesky factorization.

Algorithm 7 ripgp_multifact_IidI.

1: Run the predictor-corrector method using Algorithm 2 with a limited-memory version of the signed Cholesky factor-
ization, where p = Float64 and q = Float32, using GMRES with a memory and a maximum number of iterations
of 10. The memory of the limited-memory factorization is set to 20.

2: Run the predictor-corrector method using Algorithm 2 where p = Float64 and ¢ = Float64, using GMRES with a
memory and a maximum number of iterations of 5.

We can deduce from Figure 18 and Figure 19 that the number of iterations is higher with the limited-
memory factorization. However, Figure 20 and Figure 21 show that the limited-memory factorization
is faster despite the additional number of iterations. In addition, we point out that our limited-memory
signed Cholesky factorization works with a symmetric matrix represented by its lower triangle, whereas
our signed Cholesky factorization works with a symmetric matrix represented by its upper triangle.
As a consequence, the conversion between the solvers requires some additional memory and time to
transpose (K2). This time could be reduced by writing a signed Cholesky factorization that works
with a symmetric matrix represented by its lower triangle.
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Figure 18: Energy performance profile on Netlib problems with Algorithm 6 and LDLFactorizations.jl (ripgp_multifactl),
and with Algorithm 7 and LimitedLDLFactorizations.jl (ripgp_multifact_IldI).

6.7 Solving difficult problems in quadruple precision

We also tested the multi-precision features of RiIPQP when solving the difficult problems of Ma et al.
(2017). Those problems require iterations in quadruple precision to reach satisfactory residuals. How-
ever, the early iterations of the interior-point method can still be performed in a lower floating-point
system. The platform used to solve these problems does not support quadruple precision natively, so
we had to maximize the operations in double precision to lower the solve time. For this purpose, we
used Algorithm 8, which has a double precision warm-start (D) that uses more GMRES iterations
than the previous algorithms. That is why we chose to perform only one (K2) solve with the infeasible
path-following method, instead of two solves with the predictor-corrector method.


https://github.com/JuliaSmoothOptimizers/LimitedLDLFactorizations.jl
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Figure 19: Energy performance profile on Maros and Meszaros problems with Algorithm 6 and LDLFactorizations.jl
(ripgp_multifact1), and with Algorithm 7 and LimitedLDLFactorizations.jl (ripgp_multifact_lIIdI).
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Figure 20: Time performance profile on Netlib problems with Algorithm 6 and LDLFactorizations.jl (ripgp_multifact1),
and with Algorithm 7 and LimitedLDLFactorizations.jl (ripgp_multifact_IIdlI).
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Figure 21: Time performance profile on Maros and Meszaros problems with Algorithm 6 and LDLFactorizations.jl
(ripgp_multifact1), and with Algorithm 7 and LimitedLDLFactorizations.jl (ripgp_multifact_IIdl).
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Table 2 shows the choice of the parameters of Algorithm 8 for the solvers multiquadl and
multiquad2 using respectively the presolve algorithms from CPLEX and from RipQP. Since the pre-
solve of CPLEX is more efficient than that of RIPQP, we allow more iterations for multiquadl in
double precision with fewer GMRES iterations. However, the drawback of the presolve of CPLEX is
that we cannot use its postsolve to find the original solution.

Algorithm 8 Algorithm multiquad to solve difficult problems in quadruple precision.

(D) Run the infeasible path-following method using Algorithm 2 with GMRES, where p = Float64 and q = Float64,
(Q) Run the predictor-corrector method using Algorithm 2 with GMRES, where p = Float128 and q = Float128,

Table 2: Parameters of Algorithm 8 used for RipQP in mode multiquadl and multiquad2. The regularization values are
the values of p and ¢ is (K2).

solver name multiquadl multiquad2
presolve algorithm CPLEX RipPQP
step D Q D Q
maximum GMRES iterations 50 5 100 5
minimal regularization values 1016 10716 10-16 10716
maximum number of IPM iterations 200 / 100 /

Table 3 shows that Algorithm 8 is the most efficient method to solve difficult problems in quadruple
precision. The problems were declared solved when the relative primal-dual gap and the primal and
dual residuals normalized by their respective initial value are lower than 107!®. The last problem
GlcAerWT is not solved by the mono and multi modes before the maximal time limit. In comparison,
Ma et al. (2017) had solve times of 385 seconds for TMA__ME, 12600 seconds for GlcAerWT, and 16200
seconds for GlcAlift with their multi-precision simplex algorithm DQQ to reach the smallest residuals
that they could get. For clarity, we show their results in Table 4. Even though these benchmarks
were not computed with the same computer, this gives us a good order of magnitude of the efficiency
of our method. Table 5 indicates the smallest residuals that we were able to reach with algorithm
multiquad2. These residuals only require a few more iterations than the number of iterations shown
in Table 3, and are only slightly higher than the residuals obtained by Ma et al. (2017).

Table 3: Results of RipQP in mono precision (Float128 only), in multi precision mode (Float64 then Float128), and
in multiquadl and multiquad2 modes described in Algorithm 8 with the parameters in Table 2. All the solvers use the
presolve of CPLEX, except multiquad2. obj is the primal objective, pdd is the relative primal-dual gap, pfeas and dfeas
are the primal and dual residuals.

Problem solver time (s) iter64 iter128 obj pdd pfeas dfeas
TMA_ME  multiquadl 5.5e+01 83 31 8.7e—07 1.3e—17 3.7e—21 1.3e—22
multi 7.9e+01 35 54 8.7e—07 5.1e—19 3.5e—23 1.3e—20

mono 1.4e+02 0 95 8.7e—07 4.4e—20 3.1e—26  3.5e—22

multiquad2 2.2e+02 100 68 8.7e—07 6.9e—18 1.2e—19 1.0e—21

GlcAlift multiquadl 8.7e+02 200 49  —7.0e+05 2.5e—18 1.6e—17 7.8e—18
multi 1.9e+03 98 161 —7.0e+05 9.1le—18 9.8e—25 1.7e—19

mono 3.5e+03 0 301 —7.0e+05 8.6e—18 1.2e—25 2.1e—17

multiquad2 3.0e+03 100 196 —7.0e4+05 3.5e—18 2.6e—18 1.5e—18

GlcAerWT  multiquadl 1.1e4-03 200 65 —7.0e+05 1.0e—18 5.1le—17 7.0e—18
multi 2.0e+04 100 1763 —7.0e+05 2.3e—07 7.2e—14 5.9e—08

mono 2.0e+04 0 1766  —7.0e+05 4.5e—06 4.1e—26 5.3e—08

multiquad2 8.3e+03 100 587 —T7.0e+05 2.6e—19 1.8e—17 1.5e—18
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Table 4: Smallest residuals reached with DQQ (Ma et al., 2017).

problem pfeas dfeas
TMA_ME 0 1032
GlcAlift 10718 10723

GlcAerWT 10721 1022

Table 5: Smallest residuals that we can reach with RipQP using algorithm multiquad2. itertot is the total number of
iterations (it is not an energy measure: itertot = iter64 + iter128). The first 100 iterations are performed in Float64, and
the others in Float128.

problem ppd pfeas dfeas itertot

TMA_ME 10727 10729 10-2° 174
GlcAlift 10—21 10725 10-21 319
GlcAerWT 10720 10-25 10-20 709

7 Discussion

We have presented in this paper several uses of our Julia solver RIPQP. In particular, the results
on convex quadratic problems show that it is competitive with commercial solvers. The modular
aspect of our algorithm allows the usage of several factorization algorithms and formulations. Other
factorization algorithms could be incorporated in a few lines of code.

The multi-precision features should allow the user to save about twice the required energy for the
solves when using suitable hardware. These features already show some benefits regarding the time to
solve difficult problems in quadruple precision, and extends the work done by Ma et al. (2017) for their
multi-precision simplex algorithm to an interior-point method. When disposing from a factorization
such as MA57, whose speed is increased by a factor two when changing the precision from Float64
to Float32, we have also shown that the time to solve the quadratic problem in double precision is
generally similar or slightly better in multi-precision. A faster factorization does not automatically
translates into a lot of speedups of the algorithm, because the factorization is less accurate in single
precision, and therefore the search directions are also less accurate, which leads to more interior-point
iterations. That is why we experimented with several transition criteria from single to double precision,
so that the single precision iterations do not add too many additional iterations compared to solving
the quadratic problem only in double precision.

There are a lot of ideas that we could not explore in order to remain concise. Here is a list of some
that could be interesting for future work:

e Use the formulation (K2.5) that has a bounded condition number. Since Krylov methods perform
poorly on badly conditioned matrices, this should improve the solves with GMRES.

e Analyze the solves of all the interior-point systems described in Section 3 with several Krylov
methods and preconditionners.

e Try to solve difficult problems in quadruple precision using a limited-memory factorization.

o Use strategies with (K1) when solving linear problems (which would require writing operations
to keep AA” as sparse as possible).

« Incorporate operations in half-precision (Float16). Overflow and underflow generally occur very
quickly when using interior-point methods in half-precision, but we could try to incorporate
some strategies at the very beginning of the algorithm, (before the condition number of (K2)
deteriorates), using for example some strategies described by Amestoy et al. (2021).

o Saunders and Tenenblat (2006) and Weber et al. (2019) present algorithms that performs suc-
cessive solves of refined linear are convex quadratic problems respectively, that we could try to
implement by changing the precision of each solve.
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A Detailed results in mono-precision

Table 6: RipQP results in mono-precision mode on Netlib problems.

Name n m status objective pdd pfeas dfeas time (s) iter tot iter64 iter32
25FV47 1571 821 first__order 5.5e+4-03 5.4e—10 6.7e—10 2.5e—12 1.5e—01 28 28 0
80BAU3B 9799 2262 first_order 9.9e+05 2.5e—09 1.8e—05 3.6e—12 3.8e—01 47 47 0
ADLITTLE 97 56 first_order 2.3e+05 6.2e—11 9.0e—13 6.2e—11 2.0e—03 14 14 0
AFIRO 32 27 first__order —4.6e+02 7.4e—11 1.5e—13 9.7e—16 6.0e—04 10 10 0
AGG 163 488 first__order —3.6e+07 4.2e—10 2.1e—08 8.1e—08 1.0e—02 23 23 0
AGG2 302 516 first__order —2.0e+07 2.6e—09 2.3e—10 3.4e—05 5.6e—02 23 23 0
AGG3 302 516 first__order 1.0e+407 1.2e—10 1.8e—08 2.0e—10 5.3e—02 22 22 0
BANDM 472 305 first__order —1.6e+02 8.5e—10 1.9e—11 9.5e—12 8.4e—03 17 17 0
BEACONFD 262 173 first__order 3.4e+04 5.5e—10 1.9e—10 3.9e—09 4.6e—03 12 12 0
BLEND 83 74 first_order —3.1le401 4.5e—11 2.1le—13 5.6e—11 2.1e—03 14 14 0
BNL1 1175 643 first_order 2.0e+03 9.5e—09 2.2e—08 2.7e—12 4.8e—02 36 36 0
BNL2 3489 2324 first_order 1.8e+03 l.4e—11 2.8e—10 5.0e—14 5.8e—01 44 44 0
BOEING1 384 351 first_order —3.4e+402 2.2e—10 8.4e—12 5.8e—11 1.9e—02 26 26 0
BOEING2 143 166 first_order —3.2e+02 1.9e—10 7.3e—12 5.9e—11 6.5e—03 22 22 0
BORE3D 315 233 first__order 1.4e+03 9.3e—10 2.0e—09 8.8e—11 4.0e—03 18 18 0
BRANDY 249 220 first__order 1.5e+03 2.0e—09 7.4e—10 2.5e—11 8.8e—03 19 19 0
CAPRI 353 271 first__order 2.7e403 1.0e—10 1.1le—10 1.2e—13 7.6e—02 24 24 0
CRE-A 4067 3516 first__order 2.4e+4-07 2.2e—09 3.6e—08 2.2e—09 1.3e—01 29 29 0
CRE-B 72447 9648 first__order 2.3e+07 3.6e—11 2.2e—09 8.5e—11 3.2e+00 47 47 0
CRE-C 3678 3068 first__order 2.5e+07 7.1le—09 5.9e—09 7.3e—08 1.1le—01 29 29 0
CRE-D 69980 8926 first_order 2.4e407 2.7e—09 2.9e—09 7.2e—08 2.5e4+00 47 47 0
CYCLE 2857 1903 first_order —5.2e+400 1.8e—09 1.4e—10 1.9e—12 4.8e—01 25 25 0
CZPROB 3523 929 first_order 2.2e+4-06 1.1e—09 3.9e—07 l.4de—12 5.3e—02 35 35 0
D2Q06C 5167 2171 first_order 1.2e+05 1.6e—11 6.4e—09 6.0e—09 1.1e+00 35 35 0
D6CUBE 6184 415 first__order 3.2e+02 5.3e—11 1.1e—08 2.7e—15 3.6e—01 23 23 0
DEGEN2 534 444 first__order —1.4e+03 8.1le—11 2.le—11 1.7e—11 3.0e—02 14 14 0
DEGEN3 1818 1503 first__order —9.9e+02 1.7e—10 3.1le—11 2.8e—11 3.8e—01 18 18 0
DFLO001 12230 6071 first__order 1.1e+407 5.7e—09 8.4e—07 1.5e—08 8.1e+01 44 44 0
E226 282 223 first__order —1.2e+01 1.2e—09 3.7e—09 1.7e—08 2.0e—02 30 30 0
ETAMACRO 688 400 first__order —7.6e+02 3.7e—09 4.6e—12 5.9e—08 4.0e—02 31 31 0
FFFFF800 854 524 first__order 5.6e+05 2.6e—11 7.0e—10 7.0e—08 7.4e—02 35 35 0
FINNIS 614 497 first_order 1.7e405 4.2e—09 2.0e—09 4.4e—12 2.3e—02 36 36 0
FIT1D 1026 24 first__order —9.1e+4-03 4.5e—10 1.1le—10 6.7e—13 2.7e—02 20 20 0
FIT1P 1677 627 first_order 9.1e+03 2.6e—10 7.0e—11 2.8e—11 2.5e—02 13 13 0
FIT2D 10500 25 first_order —6.8e+04 2.0e—11 6.9e—10 3.4e—13 3.0e—01 24 24 0
FIT2P 13525 3000 first__order 6.8e+04 9.7e—09 7.3e—10 3.0e—10 2.0e—01 18 18 0
FORPLAN 421 161 first__order —6.6e+02 1.5e—09 5.5e—12 3.6e—10 2.1le—02 33 33 0
GANGES 1681 1309 first__order —1.1e+05 3.4e—09 5.1le—05 6.8e—12 5.2e—02 26 26 0
GFRD-PNC 1092 616 first__order 6.9e+06 5.7e—09 3.0e—06 1.6e—10 1.6e—02 22 22 0
GREENBEA 5405 2392 first__order —7.3e+07 1.3e—09 1.3e—03 5.8e—09 2.9e+400 267 267 0
GREENBEB 5405 2392 first__order —4.3e4-06 1.1le—09 1.1le—07 5.1le—10 7.6e—01 81 81 0
GROW15 645 300 first__order —1.1e+08 1.6e—09 8.3e—07 1.6e—13 1.5e—02 14 14 0
GROW22 946 440 first_order —1.6e+408 1.0e—09 1.3e—06 5.8e—14 2.5e—02 15 15 0
GROWT 301 140 first__order —4.8e+07 5.8e—11 4.0e—09 2.8e—14 7.5e—03 14 14 0
ISRAEL 142 174 first_order —9.0e+05 3.5e—09 5.0e—10 3.7e—10 9.5e—03 23 23 0
KB2 41 43 first__order —1.7e+03 5.8e—11 1.2e—09 5.3e—09 1.5e—03 18 18 0
KEN-07 3602 2426 first__order —6.8e+08 4.5e—09 1.4e—09 3.9¢—09 3.2e—02 16 16 0
KEN-11 21349 14694 first__order —7.0e+09 1.1e—09 9.6e—10 1.1le—08 4.4e—01 26 26 0
KEN-13 42659 28632 first__order —1.0e+10 7.3e—10 2.3e—08 5.3e—11 1.5e+00 30 30 0
KEN-18 154699 105127 first__order —5.2e+10 5.1le—11 1.8e—06 3.4e—09 2.2e+401 42 42 0
LOTFI 308 153 first__order —2.5e+01 1.5e—11 1.9e—09 1.8e—15 6.5e—03 21 21 0
MAROS-R7 9408 3136 first__order 1.5e+06 5.8e—09 9.7e—11 2.5e—12 7.7e400 17 17 0
MAROS 1443 846 first_order —5.8e+4+04 1.0e—09 5.8e—08 3.3e—08 6.1e—02 25 25 0
MODSZK1 1620 687 first_order 3.2e+402 1.3e—09 1.1e—10 9.1e—13 2.4e—02 27 27 0
NESM 2923 662 first_order 1.4e+407 5.4e—09 3.7e—08 1.5e—11 1.0e—01 37 37 0
OSA-07 23949 1118 first_order 5.4e+05 8.8e—11 2.2e—09 5.8e—12 6.8e—01 20 20 0
OSA-14 52460 2337 first__order 1.1e+06 2.8e—09 1.3e—09 2.7e—11 3.2e+00 31 31 0
OSA-30 100024 4350 first__order 2.1e4-06 2.1le—09 6.2e—09 5.5e—11 7.6e4-00 42 42 0
OSA-60 232966 10280 first__order 4.0e+06 7.3e—09 2.0e—08 3.8e—11 1.6e+01 30 30 0
PDS-02 7535 2953 first__order 2.9e+10 3.0e—10 4.1e—08 1.1le—08 2.3e—01 38 38 0
PDS-06 28655 9881 first__order 2.8e+10 6.7e—09 8.1e—08 5.0e—08 9.5e+00 44 44 0
PDS-10 48763 16558 first__order 2.7e+10 2.4e—09 3.2e—07 3.7e—08 5.6e+01 51 51 0
PDS-20 105728 33874 first__order 2.4e+10 4.5e—11 3.1e—07 2.2e—09 6.8e+02 63 63 0
PEROLD 1376 625 first_order —9.4e+403 3.0e—12 1.5e—05 3.0e—10 1.5e—01 39 39 0
PILOT-JA 1988 940 unknown —6.1e+403 1.3e—05 4.7e—10 6.3e—05 1.4e4-00 211 211 0
PILOT-WE 2789 722 max__iter —2.7e+406 1.3e—02 7.6e—02 9.3e+400 1.5e400 800 800 0
PILOT 3652 1441 first_order —5.6e+02 8.1e—09 4.4e—07 2.2e—11 2.2e+4-00 49 49 0
PILOT4 1000 410 first__order —2.6e+03 1.6e—09 1.3e—07 2.4e—11 4.4e—02 34 34 0
PILOTS87 4883 2030 first__order 3.0e+02 6.7e—09 3.7e—09 9.8e—11 8.9e+00 47 47 0
PILOTNOV 2172 975 first__order —4.5e+03 5.8e—11 3.2e—10 1.0e—10 3.7e—01 61 61 0
QAP12 8856 3192 first__order 5.2e+4-02 1.0e—09 7.4e—12 8.3e—11 4.4e+01 18 18 0
QAP15 22275 6330 first__order 1.0e+03 8.1e—09 1.5e—11 2.1le—10 3.9e+02 22 22 0
QAPS 1632 912 first__order 2.0e+02 9.4e—11 7.3e—13 9.8e—14 5.3e—01 9 9 0
RECIPELP 180 91 first__order —2.7e402 2.5e—09 7.5e—11 2.4e—10 2.0e—03 10 10 0
SC105 103 105 first_order —5.2e401 3.7e—10 2.2e—12 5.2e—11 1.5e—03 11 11 0
SC205 203 205 first__order —5.2e+01 2.5e—09 1.0e—11 6.1le—11 3.4e—03 15 15 0
SC50A 48 50 first_order —6.5e+01 4.0e—10 4.le—12 9.83e—12 7.6e—04 9 9 0
SC50B 48 50 first_order —7.0e+01 5.7e—09 6.2e—12 1.1e—09 6.7e—04 8 8 0
SCAGR25 500 471 first__order —1.5e+07 1.5e—10 1.8e—09 2.9¢e—09 6.3e—03 17 17 0
SCAGR7 140 129 first__order —2.3e+06 3.9e—09 2.5e—11 9.9e—09 1.8e—03 13 13 0
SCFXM1 457 330 first__order 1.8e+04 1.2e—11 2.2e—09 3.4e—14 1.4e—02 23 23 0
SCFXM2 914 660 first__order 3.7e+04 3.1le—11 4.6e—09 1.2e—13 3.0e—02 25 25 0
SCFXM3 1371 990 first__order 5.5e404 2.2e—09 3.9e—07 9.9e—12 4.4e—02 25 25 0
SCORPION 358 388 first__order 1.9e+03 1.4e—10 5.5e—12 l.le—12 4.0e—03 12 12 0
SCRS8 1169 490 first_order 9.0e+402 8.le—11 1.3e—12 1.4e—12 1.4e—02 19 19 0
SCSD1 760 77 first_order 8.7e+400 2.2e—10 1.7e—13 2.4e—13 4.4e—03 8 8 0
SCSD6 1350 147 first_order 5.1e4+01 1.6e—09 1.8e—13 1. 8.6e—03 10 10 0
SCSD8 2750 397 first_order 9.1e+02 6.3e—10 5.6e—13 l.de—12 1.7e—02 10 10 0
SCTAP1 480 300 first__order 1.4e+03 6.8e—10 l.le—12 9.1le—14 6.7e—03 15 15 0
SCTAP2 1880 1090 first__order 1.7e+03 l.le—11 l.le—12 3.9e—14 2.8e—02 14 14 0
SCTAP3 2480 1480 first__order 1.4e+03 3.8e—09 l.le—11 1.2e—12 3.8e—02 15 15 0
SEBA 1028 515 first__order 1.6e+04 2.6e—11 4.7Te—12 2.2e—13 1.4e—02 20 20 0
SHARE1B 225 117 first__order —7.7e+04 1.1le—10 5.2e—08 1.6e—07 5.3e—03 24 24 0
SHARE2B 79 96 first__order —4.2e4-02 1.4e—10 5.1le—12 5.1e—10 2.4e—03 13 13 0
SHELL 1775 536 first__order 1.2e+09 3.9e—09 6.9e—07 1.6e—10 1.8e—02 24 24 0
SHIP04L 2118 402 first_order 1.8e+4-06 2.9e—10 1.3e—09 1.8e—11 1.6e—02 14 14 0
SHIP04S 1458 402 first_order 1.8e+4-06 2.0e—10 3.6e—09 3.0e—12 1.2e—02 16 16 0
SHIPOSL 4283 778 first_order 1.9e+06 1.2e—09 2.2e—10 3.6e—12 3.3e—02 20 20 0
SHIP08S 2387 778 first_order 1.9e+06 6.3e—09 2.4e—08 2.0e—09 1.7e—02 18 18 0

Continued on next page
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Name n m status objective pdd pfeas dfeas time (s) iter tot iter64 iter32
SHIP12L 5427 1151 first__order 1.5e+406 1.3e—11 3.3e—11 7.3e—12 3.9e—02 17 17 0
SHIP12S 2763 1151 first__order 1.5e406 2.6e—11 1.3e—11 1.6e—11 1.8e—02 15 15 0
SIERRA 2036 1227 first__order 1.5e407 2.5e—09 4.3e—09 8.6e—11 4.3e—02 22 22 0
STAIR 467 356 first__order —2.5e+402 6.1e—10 8.6e—09 1.3e—11 1.9e—02 19 19 0
STANDATA 1075 359 first_order 1.3e+03 2.5e—10 6.0e—13 7. 7Te—12 8.7e—03 12 12 0
STANDGUB 1184 361 first__order 1.3e+403 2.5e—10 6.0e—13 T.Te—12 8.7e—03 12 12 0
STANDMPS 1075 467 first__order 1.4e+03 3.0e—09 1.4e—11 1.4e—11 1.6e—02 20 20 0
STOCFOR1 111 117 first_order —4.1e+4+04 2.7e—11 6.9e—11 4.4e—13 2.0e—03 13 13 0
STOCFOR2 2031 2157 first__order —3.9e+04 4.3e—09 3.1e—08 1.2e—11 4.7¢e—02 19 19 0
STOCFOR3 15695 16675 first__order —4.0e+404 1.9e—09 5.0e—08 2.7Te—11 7.3e—01 37 37 0
TRUSS 8806 1000 first__order 4.6e+05 2.3e—09 4.9e—11 5.9e—10 1.4e—01 17 17 0
TUFF 587 333 first__order 2.9e—01 5.5e—11 1.7e—10 1.2e—13 2.5e—02 25 25 0
VTP-BASE 203 198 first__order 1.3e405 1.6e—11 3.6e—11 1.8e—12 1.5e—03 14 14 0
WOOD1P 2594 244 first__order 1.4e+400 3.9e—11 3.7e—10 5.0e—14 1.2e—01 16 16 0
WOODW 8405 1098 first__order 1.3e+00 3.9e—11 2.0e—09 2.7e—14 1.5e—01 27 27 0
Table 7: RipQP results in mono-precision mode on Maros and Meszaros problems.
Name n m status objective pdd pfeas dfeas time (s) iter tot iter64 iter32
AUG2D 20200 10000 first__order 1.7e+06 6.4e—12 5.5e—12 2.2e—13 1.8e+00 5 5 0
AUG2DC 20200 10000 first__order 1.8e+06 8.0e—12 6.8e—12 2.7e—13 1.6e—01 5 5 0
AUG2DCQP 20200 10000 first__order 6.5e+06 9.8e—11 4.8e—12 1.5e—05 3.4e—01 12 12 0
AUG2DQP 20200 10000 first__order 6.2e+06 4.4e—09 7.1le—13 1.9e—05 3.5e—01 12 12 0
AUG3D 3873 1000 first__order 5.5e4-02 4.7e—11 4.2e—11 2.6e—11 1.0e—01 3 3 0
AUG3DC 3873 1000 first__order 7.7e4+02 1.9e—10 1.5e—10 6.7e—11 1.8e—02 3 3 0
AUG3DCQP 3873 1000 first__order 9.9e+02 5.7e—10 2.7e—14 4.4e—08 5.1e—02 12 12 0
AUG3DQP 3873 1000 first__order 6.8e+02 1.5e—09 4.0e—15 1.3e—15 5.3e—02 12 12 0
BOYD1 93261 18 first_order —6.2e407 8.8e—09 2.9e—02 9.2e—03 1.8e+00 30 30 0
BOYD2 93263 186531 first__order 2.1e+401 1.6e—10 7.8e—03 1.8e—08 1.6e+01 106 106 0
CONT-050 2597 2401 first_order —4.6e+00 3.1e—09 3.4e—13 2.4e—11 1.4e—01 12 12 0
CONT-100 10197 9801 first_order —4.6e+00 4.2e—09 8.2e—13 5.2e—11 1.2e+00 12 12 0
CONT-101 10197 10098 first__order 2.0e—01 2.1le—10 1.8e—14 7.4e—13 1.4e+00 14 14 0
CONT-200 40397 39601 first__order —4.7e+4+00 2.3e—09 5.4e—13 1.3e—11 1.2e+01 13 13 0
CONT-201 40397 40198 first__order 1.9e—01 3.8e—10 1.7e—14 6.le—12 1.4e+01 14 14 0
CONT-300 90597 90298 first__order 1.9e—01 2.4e—10 8.9e—15 2.8e—12 7.8e4-01 16 16 0
CVXQP1_L 10000 5000 first__order 1.1e+408 9.0e—10 7.2e—10 1.0e—02 6.2e+4+01 12 12 0
CVXQP1_M 1000 500 first__order 1.1e+406 3.6e—10 3.3e—11 7.0e—05 1.6e—01 12 12 0
CVXQP1_8S 100 50 first_order 1.2e+04 8.4e—10 2.9e—10 1.5e—07 1.5e—03 6 6 0
CVXQP2_L 10000 2500 first__order 8.2e+07 3.3e—10 1.5e—11 2.9e—03 4.1e+4+01 11 11 0
CVXQP2_ M 1000 250 first__order 8.2e+05 2.0e—11 4.2e—12 2.8e—05 7.5e—02 9 9 0
CVXQP2_S 100 25 first__order 8.1le+03 8.6e—10 2.0e—12 3.5e—06 1.5e—03 8 8 0
CVXQP3_L 10000 7500 first__order 1.2e+08 1.9e—09 1.1e—10 1.9e—03 6.9e+01 12 12 0
CVXQP3_M 1000 750 first__order 1.4e+06 4.0e—11 2.5e—10 2.7e—06 2.3e—01 16 16 0
CVXQP3_S 100 75 first__order 1.2e+04 1.7e—11 5.7e—12 2.2e—08 2.2e—03 9 9 0
DPKLO1 133 7 first__order 3.7e—01 2.7e—10 1.1le—10 1.6e—10 2.1e—03 3 3 0
DTOC3 14999 9998 first__order 2.4e4-02 3.5e—12 8.0e—15 9.9e—15 1.0e—01 6 6 0
DUAL1 85 1 first__order 3.5e—02 9.2e—10 0.0e+00 4.7e—07 7.8e—03 9 9 0
DUAL2 96 1 first__order 3.4e—02 5.3e—09 1.1le—16 7.1le—07 4.5e—03 7 7 0
DUAL3 111 1 first__order 1.4e—01 4.2e—09 8.9e—16 1.8e—06 7.6e—03 9 9 0
DUAL4 75 1 first__order 7.5e—01 7.3e—09 2.2e—16 4.8e—13 2.8e—03 8 8 0
DUALC1 9 215 first__order 6.2e+03 5.9e—10 6.8e—13 1.1e—08 3.6e—03 10 10 0
DUALC2 7 229 first__order 3.6e+03 1.4e—11 9.1le—13 9.0e—11 2.9e—03 8 8 0
DUALCS5 8 278 first_order 4.3e+02 1.1le—11 2.3e—13 5.7e—09 3.2e—03 7 7 0
DUALCS8 8 503 first__order 1.8e+04 4.4e—10 5.8e—13 1.6e—07 5.7e—03 7 7 0
EXDATA 3000 3001 first__order —1.4e+402 1.7e—09 1.8e—13 1.6e—07 1.6e+01 12 12 0
GENHS28 10 8 first__order 9.3e—01 1.4e—09 1.5e—07 3.9e—07 3.2e—04 2 2 0
GOULDQP2 699 349 first__order 1.8e—04 1.5e—09 3.7e—15 3.2e—07 2.3e—02 T4 T4 0
GOULDQP3 699 349 first__order 2.1e4-00 3.9e—11 3.3e—15 7.4e—12 6.3e—03 15 15 0
HS118 15 17 first__order 6.6e+02 1.le—11 1.4e—14 1.4e—11 4.8e—04 12 12 0
HS21 2 1 first__order —1.0e+02 1.3e—11 0.0e+00 1.2e—10 2.1e—04 7 7 0
HS268 5 5 first__order 3.8e—09 8.1le—09 1l.4e—14 5.5e—12 3.5e—04 20 20 0
HS35 3 1 first_order 1.1e—01 3.3e—10 1.2e—14 8.5e—11 2.1le—04 7 7 0
HS35MOD 3 1 first__order 2.5e—01 2.5e—09 1.7e—13 8.5e—16 2.4e—04 12 12 0
HS51 5 3 first__order 0.0e+00 7.9e—10 3.6e—10 2.3e—10 1.8e—04 3 3 0
HS52 5 3 first__order 5.3e4-00 1.2e—09 6.5e—10 7.3e—10 1.9e—04 3 3 0
HS53 5 3 first__order 4.1e4+00 3.2e—09 3.7e—13 6.2e—10 2.le—04 4 4 0
HST76 4 3 first__order —4.7e+00 2.2e—10 1.8e—13 2.le—10 2.4e—04 6 6 0
HUES-MOD 10000 2 first__order 3.5e+4+07 1.3e—09 6.8e—12 9.1e—08 3.7e—02 9 9 0
HUESTIS 10000 2 first__order 3.5e+11 9.9e—12 3.6e—12 5.0e—04 4.4e—02 11 11 0
KSIP 20 1001 first__order 5.8¢—01 1.5e—09 7.9e—12 3.4e—08 4.0e—02 14 14 0
LASER 1002 1000 first__order 2.4e+406 5.5e—12 3.0e—10 4.6e—07 8.3e—02 134 134 0
LISWET1 10002 10000 first_order 3.6e+01 1.0e—09 4.4e—16 2.1le—10 2.1e—01 30 30 0
LISWET10 10002 10000 first__order 4.9e+01 6.3e—09 5.6e—16 4.2e—10 5.0e—01 e 77 0
LISWET11 10002 10000 first__order 5.0e+401 1.1e—09 6.7e—16 8.3e—08 5.6e—01 89 89 0
LISWET12 10002 10000 first_order 1.7e+03 2.0e—09 7.5e—16 1.2e—09 1.1e+00 179 179 0
LISWET2 10002 10000 first__order 2.5e4-01 3.1e—09 5.7e—14 2.5e—10 2.0e—01 20 20 0
LISWET3 10002 10000 first__order 2.5e4-01 3.7e—09 5.1le—11 3.6e—07 1.3e—01 15 15 0
LISWET4 10002 10000 first__order 2.5e4-01 1.2e—09 1.1le—11 3.2e—07 1.8e—01 22 22 0
LISWETS5 10002 10000 first__order 2.5e4-01 3.2e—09 6.6e—11 6.6e—07 1.5e—01 17 17 0
LISWET6 10002 10000 first__order 2.5e401 6.4e—09 l.1le—11 1.0e—06 7.1le—01 107 107 0
LISWET7 10002 10000 first__order 5.0e+402 9.2e—09 7.8e—16 2.3e—09 2.2e—01 30 30 0
LISWETS8 10002 10000 first__order 7.1le4+02 1.2e—09 4.5e—16 1.1e—07 6.2e—01 96 96 0
LISWET9 10002 10000 first__order 2.0e+03 6.3e—09 2.6e—15 9.3e—10 6.9e—01 109 109 0
LOTSCHD 12 7 first__order 2.4e+03 1.0e—10 1.8e—12 1.8e—11 4.1le—04 8 8 0
MOSARQP1 2500 700 first__order —9.5e+402 1.0e—09 7.4e—12 2.5e—06 2.2e—02 9 9 0
MOSARQP2 900 600 first_order —1.6e+03 7.5e—09 3.8e—12 8.0e—06 2.0e—02 10 10 0
POWELL20 10000 10000 first__order 5.2e410 1.0e—10 3.6e—10 1.7e—07 2.5e—01 31 31 0
PRIMAL1 325 85 first__order —3.5e—02 1.6e—11 4.4e—13 4.8e—10 1.1e—02 10 10 0
PRIMAL2 649 96 first__order —3.4e—02 1.5e—10 1.3e—13 3.8e—10 1.4e—02 8 8 0
PRIMAL3 745 111 first__order —1.4e—01 7.3e—10 1l.le—11 1.6e—08 4.6e—02 10 10 0
PRIMAL4 1489 75 first__order —7.5e—01 6.4e—09 4.2e—11 3.2e—15 3.2e—02 10 10 0
PRIMALC1 230 9 first_order —6.2e+403 7.2e—11 4.3e—08 2.2e—08 2.7e—03 10 10 0
PRIMALC2 231 7 first__order —3.6e+03 9.2e—11 1.8e—11 1.8e—09 2.1e—03 8 8 0
PRIMALCS 287 8 first__order —4.3e+02 3.8e—09 1.4e—11 7.3e—09 2.3e—03 7 7 0
PRIMALCS 520 8 first__order —1.8e+04 1.6e—10 7.6e—10 6.0e—09 4.1e—03 8 8 0
Q25FV47 1571 820 first__order 1.4e+07 4.2e—09 4.6e—08 1.5e—02 5.3e—01 27 27 0
QADLITTL 97 56 first__order 4.8e+05 9.3e—09 1.6e—08 5.4e—04 1.6e—03 11 11 0
QAFIRO 32 27 first__order —1.6e+400 6.le—11 1.6e—14 4.0e—11 5.6e—04 10 10 0
QBANDM 472 305 first__order 1.6e+04 9.6e—09 1.1e—09 7.5e—05 8.5e—03 18 18 0
QBEACONF 262 173 first__order 1.6e+4+05 6.6e—10 1.2e—10 1.6e—09 4.9e—03 15 15 0
QBORE3D 315 233 first__order 3.1e4+03 4.1e—10 2.0e—09 8.8e—11 3.9e—03 18 18 0
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QBRANDY 249 220 first__order 2.8e4-04 8.2e—11 8.2e—10 6.5e—09 7.8e—03 17 17 0
QCAPRI 353 271 first__order 6.7e4+07 6.7e—09 4.6e—08 9.1e—06 1.4e—02 30 30 0
QE226 282 223 first__order 2.1e4-02 5.2e—09 2.4e—12 2.4e—07 1.2e—02 19 19 0
QETAMACR 688 400 first_order 8.7c4+04  5.4e—09  4.3e—10  5.3e—04  4.le—02 26 26 0
QFFFFF80 854 524  first_order 8.7¢4+05  6.0e—11  1.3e—08  1.4e—06  7.6e—02 31 31 0
QFORPLAN 421 161 first__order 7.5e4+09 9.1e—09 2.5e—06 1.8e—02 1.4e—02 23 23 0
QGFRDXPN 1092 616 first_order 1.0e+11 1.7e—09 2.8e—05 2.4e—04 1.3e—02 21 21 0
QGROW15 645 300 first__order —1.0e+08 6.9e—09 1.7¢e—08 5.0e—01 2.2e—01 17 17 0
QGROW22 946 440 first_order —1.5e+08 2.4e—09 1.7¢e—08 2.3e—01 3.2e—02 20 20 0
QGROWT 301 140 first_order —4.3e+07 5.0e—09 1.0e—08 1.4e—01 9.3e—03 17 17 0
QISRAEL 142 174 first__order 2.5e4-07 8.8e—09 2.0e—06 2.4e—03 1.1e—02 24 24 0
QPCBLEND 83 74 first__order —7.8e—03 3.0e—10 5.7Te—12 2.2e—07 2.2e—03 16 16 0
QPCBOEI1 384 351 first__order 1.2e+407 7.1le—09 4.8e—08 5.4e—03 2.0e—02 27 27 0
QPCBOEI2 143 166 first__order 8.2e+06 2.1e—09 1.2e—07 5.6e—03 9.7e—03 36 36 0
QPCSTAIR 467 356 first_order 6.2e406  2.7e—11  6.6e—12  3.4e—04  2.1e—02 21 21 0
QPILOTNO 2172 975  first_order 4.7¢406  8.7e—09  1.0e—05  1.5e—08  5.9e—01 94 94 0
QPTEST 2 2 first__order 4.4e+00 5.5e—10 2.7e—15 8.3e—13 3.8e—04 10 10 0
QRECIPE 180 91 first__order —2.7e+402 8.6e—10 1.9e—11 5.8e—12 2.6e—03 16 16 0
QSC205 203 205 first__order —5.8¢—03 5.3e—11 1.5e—11 5.6e—10 3.3e—03 12 12 0
QSCAGR25 500 471 first_order 2.0e+4-08 1.3e—09 4.5e—10 8.7e—06 7.3e—03 17 17 0
QSCAGRT7 140 129 first__order 2.7e407 7.7e—10 2.5e—10 1.1e—06 2.3e—03 17 17 0
QSCFXM1 457 330 first__order 1.7e+07 8.9e—09 5.8e—07 1.3e—02 1.6e—02 23 23 0
QSCFXM2 914 660 first__order 2.8e4-07 4.1e—09 5.3e—06 2.1le—04 3.9e—02 30 30 0
QSCFXM3 1371 990 first__order 3.1le4+07 6.5e—10 7.3e—06 7.4e—11 5.5e—02 29 29 0
QSCORPIO 358 388 first__order 1.9e+403 5.4e—10 2.5e—11 1.8e—08 4.7e—03 13 13 0
QSCRS8 1169 490  first_order 9.0e4+02  5.0e—11  3.4e—08  6.7e—10  1.8e—02 21 21 0
QSCsD1 760 77 first_order 8.7¢4+00  2.2e—10  1.6e—13  8.6e—11  5.9e—03 8 8 0
QSCSD6 1350 147 first__order 5.1e+01 1.6e—10 1.2e—13 5.4e—08 1.4e—02 12 12 0
QSCSD8 2750 397 first__order 9.4e+02 4.7e—10 9.5e—12 1.0e—06 2.6e—02 11 11 0
QSCTAP1 480 300 first__order 1.4e+03 6.9e—11 5.9e—12 1.4e—09 8.3e—03 16 16 0
QSCTAP2 1880 1090 first__order 1.7e+03 1.le—11 1.le—12 1.7e—10 3.5e—02 14 14 0
QSCTAP3 2480 1480 first__order 1.4e+03 5.9e—11 9.9e—13 9.0e—11 5.1le—02 16 16 0
QSEBA 1028 515 first__order 8.1le+07 7.9e—10 4.5e—09 1.1le—04 2.0e—02 26 26 0
QSHARE1B 225 117 first__order 7.2e4-05 3.5e—09 2.4e—08 1.7e—05 5.2e—03 22 22 0
QSHARE2B 79 96 first__order 1.2e+04 9.8e—10 3.5e—11 1.8e—07 2.6e—03 14 14 0
QSHELL 1775 536 first_order 1.6e+12  1.6e—09  7.2e—08  1.5e—01  4.2e—02 30 30 0
QSHIPO4L 2118 402 first__order 2.4e+406 2.6e—10 6.8e—10 2.7e—07 1.8e—02 15 15 0
QSHIP04S 1458 402 first__order 2.4e+406 1.1e—10 7.9e—10 5.0e—08 1.1e—02 12 12 0
QSHIPO8L 4283 778 first_order 2.4e+406 1.1e—09 1.7e—10 1.8e—04 3.4e—01 12 12 0
QSHIPO08S 2387 778 first__order 2.4e+06 8.2e—10 6.8e—10 5.7e—04 5.1le—02 12 12 0
QSHIP12L 5427 1151 first__order 3.0e+06 1.3e—09 7.8e—09 6.3e—05 4.5e—01 14 14 0
QSHIP12S 2763 1151 first__order 3.1e+06 2.0e—09 1.6e—09 2.2e—05 5.3e—02 14 14 0
QSIERRA 2036 1227 first__order 2.4e4-07 8.5e—11 1.7e—08 5.5e—07 4.6e—02 21 21 0
QSTAIR 467 356 first__order 8.0e+06 2.8e—10 1.1e—06 1.8e—04 2.7e—02 22 22 0
QSTANDAT 1075 359 first__order 6.4e+03 1.1e—09 2.le—12 6.5e—08 1.0e—02 11 11 0
S268 5 5 first__order 3.8e—09 8.1e—09 1.4e—14 5.5e—12 4.1e—04 20 20 0
STADAT1 2001 3999  first_order  —2.9e4+07  5.8¢—12  3.7e—09  3.6e—08  4.0e—01 188 188 0
STADAT2 2001 3999  first_order  —3.3e4+01  8.2e—11  1.9e—11  1.2e—11  1.3e—01 55 55 0
STADAT3 4001 7999  first_order  —3.6e4+01  2.0e—09  7.0e—10  1.6e—10  2.9¢—01 58 58 0
STCQP1 4097 2052 first__order 1.6e+05 1.2e—09 0.0e+00 3.6e—05 1.7e—02 8 8 0
STCQP2 4097 2052 first__order 2.2e+404 5.3e—10 0.0e+00 3.5e—06 3.2e—02 9 9 0
TAME 2 1 first__order 0.0e+00 4.6e—11 3.5e—14 7.5e—13 2.7e—04 4 4 0
UBH1 18009 12000 first__order 1.1e+00 5.9e—10 4.5e—13 3.0e—11 1.4e—01 13 13 0
VALUES 202 1 first__order —1.4e+400 4.4e—09 2.8e—17 1.4e—06 5.3e—03 12 12 0
YAO 2002 2000 first__order 2.0e4-02 1.9e—09 3.le—15 6.8e—11 6.9e—02 53 53 0
ZECEVIC2 2 2 first__order —4.1e+00 1.7e—10 2.5e—14 2.5e—10 3.7e—04 7 7 0
B Detailed results in multi-precision
Table 8: RipQP results in multi-precision mode on Netlib problems.
Name n m status objective pdd pfeas dfeas time (s) iter tot iter32 iter64
25FV47 1571 821 first__order 5.5e4-03 6.9e—09 2.5e—08 6.7e—11 1.4e—01 27 14 13
80BAU3B 9799 2262 maz_iter 6.8¢4+25  1.6e4+07  4.0e4+07  1.2e4+163  1.7e401 800 5 795
ADLITTLE 97 56 first_order 2.3¢4+05  1.8¢—09  2.7e—08 9.4c—08  2.4e—03 15 12 3
AFIRO 32 27 first_order —4.6e+402 2.4e—09 2.6e—08 1.2e—09 6.6e—04 10 8 2
AGG 163 488 first__order —3.6e+07 8.1le—10 2.4e—08 2.2e—06 1.3e—02 31 9 22
AGG2 302 516 first__order —2.0e+07 9.3e—10 1.1e—05 1.5e—05 1.1e—01 50 20 30
AGG3 302 516 first__order 1.0e+07 7.7e—10 1.3e—07 3.6e—08 9.3e—02 43 21 22
BANDM 472 305 first__order —1.6e+402 1.1e—09 2.5e—09 9.0e—09 8.6e—03 18 12 6
BEACONFD 262 173 first__order 3.4e+04 4.1le—10 2.2e—07 9.8e—09 5.3e—03 14 4 10
BLEND 83 T4 first__order —3.1e401 1.0e—11 1.9e—11 2.2e—10 2.0e—03 14 11 3
BNL1 1175 643 first__order 2.0e4-03 4.7e—09 1.2e—08 5.4e—09 9.9e—02 80 5 75
BNL2 3489 2324 first__order 1.8e+403 8.2e—09 1.2e—08 3.1le—12 5.8e—01 44 5 39
BOEING1 384 351  first_order  —3.4e4+02  3.6e—10  8.3e—08 1.8¢—07  3.2e—02 50 5 45
BOEING2 143 166 first__order —3.2e+402 1.9e—10 1.5e—11 5.1e—07 1.8e—02 70 26 44
BORE3D 315 233 first__order 1.4e+403 3.2e—09 3.8e—10 1.5e—05 1.1e—02 68 12 56
BRANDY 249 220 first__order 1.5e+403 6.1le—10 7.5e—09 4.9e—09 1.0e—02 21 14 7
CAPRI 353 271 first__order 2.7e+03 3.5e—09 1.1e—09 3.5e—10 1.9e—02 43 15 28
CRE-A 4067 3516 first__order 2.4e407 2.5e—11 9.7e—09 2.2e—07 1.3e—01 31 15 16
CRE-B 72447 9648 first__order 2.3e407 1.7e—11 3.3e—09 2.9e—09 2.6e400 46 21 25
CRE-C 3678 3068 first__order 2.5e4-07 1.5e—11 1.5e—10 1.3e—07 1.1e—01 33 14 19
CRE-D 69980 8926 first__order 2.4e4-07 5.7e—09 5.6e—08 6.2e—06 2.0e4-00 42 18 24
CYCLE 2857 1903 first__order —5.2e400 2.4e—10 5.3e—10 1.9e—13 2.0e—01 25 7 18
CZPROB 3523 929  first_order 2.2¢4+06  6.0e—09  6.4e—08 3.7¢—08  5.2e—02 37 12 25
D2QO6C 5167 2171 first_order 1.2e405  1l.le—10  2.2e—07 3.7¢—09  1.1e+00 35 5 30
D6CUBE 6184 415 first__order 3.2e+02 1.4e—09 3.3e—08 1.6e—11 3.6e—01 25 16 9
DEGEN2 534 444 first__order —1.4e+403 8.4e—11 1.0e—11 1.3e—10 2.8¢—02 14 8 6
DEGEN3 1818 1503 first_order —9.9e+402 3.0e—10 2.1e—07 7.le—12 5.6e—01 28 10 18
DFLO001 12230 6071 max__time 3.1le+07 6.0e+05 1.0e+00 1.8e+04 1.2e+03 625 12 613
E226 282 223 first__order —1.2e4-01 5.8e—11 2.1le—11 7.le—12 2.9e—02 23 16 7
ETAMACRO 688 400 first__order —7.6e402 5.7e—09 3.8e—06 9.8e—06 5.1le—02 29 5 24
FFFFF800 854 524 max__iter 5.6e4-05 1.7e—02 5.8e—05 1.5e+402 1.5e400 800 15 785
FINNIS 614 497 first__order 1.7e405 2.2e—09 6.1e—08 1.0e—08 1.6e—02 27 5 22
FIT1D 1026 24 first__order —9.1e403 2.0e—09 6.2e—08 3.6e—11 2.6e—02 21 13 8
FIT1P 1677 627  first_order 9.1e403  6.3e—11  5.le—10 2.3e—09  3.1le—02 13 8 5
FIT2D 10500 25  first_order  —6.8¢404  5.1e—09  4.6e—08 2.0e—11  2.8e—01 23 13 10
FIT2P 13525 3000 first__order 6.8e+04 1.7e—11 1.1le—12 5.5e—10 2.1e—01 19 11 8
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FORPLAN 421 161 first__order —6.6e402 5.7e—09 4.9e—08 2.2e—09 3.2e—02 45 10 35
GANGES 1681 1309 first__order —1.1e405 5.9e—09 3.1e—05 6.8e—09 5.3e—02 27 5 22
GFRD-PNC 1092 616 first__order 6.9e+4+06 1.1e—09 2.2e—06 1.5e—09 1.7e—02 25 7 18
GREENBEA 5405 2392 first_order  —7.3e4+07  3.Te—10  3.3e—06 1.8e—10  3.8e+00 366 5 361
GREENBEB 5405 2392 first_order  —4.3e4+06  5.4e—09  1.7e—06 7.7e—10  4.2e—01 42 7 35
GROW15 645 300 first__order —1.1e+408 2.0e—11 2.4e—07 5.6e—12 4.4e—02 47 15 32
GROW22 946 440 first__order —1.6e+408 7.le—10 3.1le—06 4.6e—10 7.4e—02 61 16 45
GROWT 301 140 first__order —4.8e+07 2.5e—10 4.2e—08 4.9e—12 2.4e—02 57 13 44
ISRAEL 142 174 first__order —9.0e+05 7.4e—11 2.5e—08 4.6e—09 9.6e—03 24 15 9
KB2 41 43 first__order —1.7e403 4.0e—09 3.7e—08 1.2e—06 1.5e—03 20 14 6
KEN-07 3602 2426 first__order —6.8e4-08 1.9e—09 1.7e—11 4.0e—06 3.6e—02 21 11 10
KEN-11 21349 14694 first__order —7.0e409 6.5e—11 1.1le—11 8.8e—08 5.0e—01 30 14 16
KEN-13 42659 28632 first__order —1.0e+410 2.0e—09 7.4e—08 2.4e—10 1.5e400 28 5 23
KEN-18 154699 105127 first__order —5.2e+10 2.2e—11 4.7e—08 7.0e—10 2.4e401 41 5 36
LOTFI 308 153 first_order  —2.5e4+01  2.6e—09  9.3e—10 2.8¢—09  6.9e—03 23 6 17
MAROS-R7T 9408 3136 first_order 1.56+06  4.1e—09  4.6e—09 5.36—09  1.le+01 24 14 10
MAROS 1443 846 first__order —5.8e+4+04 1.0e—09 7.4e—07 7.5e—10 7.0e—02 27 11 16
MODSZK1 1620 687 first__order 3.2e+02 1.9e—10 4.7e—11 4.5e—13 2.3e—02 23 3 20
NESM 2923 662 first__order 1.4e+07 8.4e—09 3.1le—06 2.4e—09 1.1e—01 37 5 32
OSA-07 23949 1118 first__order 5.4e+05 1.8e—09 5.9e—09 2.0e—10 1.0e+00 32 8 24
OSA-14 52460 2337 first__order 1.1e+406 3.4e—09 8.8e—08 7.4e—10 2.9e4-00 29 8 21
OSA-30 100024 4350 first__order 2.1e4-06 2.8e—09 4.9e—07 4.5e—11 5.5e4-00 33 9 24
OSA-60 232966 10280 first__order 4.0e+06 5.9e—09 1.8e—07 7.2e—10 2.7e+01 49 10 39
PDS-02 7535 2953 first__order 2.9e410 1.2e—10 1.7e—08 1.4e—07 2.0e—01 31 5 26
PDS-06 28655 9881 first__order 2.8e+10 9.7e—09 1.8e—08 1.0e—05 1.2e401 43 5 38
PDS-10 48763 16558  first_order 2.7¢4+10  2.6e—09  2.6e—08 3.2e—07  1.1e+02 50 10 40
PDS-20 105728 33874 max__time 2.4e+10 1.5e—04 7.3e—04 3.0e—03 1.2e+403 45 10 35
PEROLD 1376 625 first__order —9.4e+403 4.2e—09 2.4e—07 2.8¢—09 6.1le—01 165 5 160
PILOT-JA 1988 940 unknown —6.1e+403 2.5e—03 1.5e—05 7.4e—03 5.2e—01 68 5 63
PILOT-WE 2789 722 unknown —2.7e+406 1.6e—06 1.7e—05 1.6e—01 2.6e—01 119 5 114
PILOT 3652 1441 first__order —5.6e+402 5.9e—09 1.6e—05 3.8e—09 2.4e+00 51 5 46
PILOT4 1000 410 max__iter —1.1e403 1.1le—01 6.7e—04 3.0e+00 9.1e—01 800 5 795
PILOTS87 4883 2030 first__order 3.0e+02 9.2e—09 9.1e—07 2.6e—08 1.0e+01 52 5 47
PILOTNOV 2172 975 unknown —4.5e+403 6.7e—04 1.0e—05 2.8e—09 2.3e—01 31 5 26
QAP12 8856 3192 first__order 5.2e4-02 3.0e—10 2.7e—08 4.6e—10 1.1e402 40 8 32
QAP15 22275 6330  first_order 1.0e+03  1.3e—09  1.0e—10 7.1e—07  4.5e+02 23 9 14
QAPS 1632 912 first_order 2.0e402  3.2e—11  1.2e—12 5.9e—12  5.8e—01 9 6 3
RECIPELP 180 91  first_order  —2.Te+02  9.3e—09  2.9e—08 1.4¢—08  3.3e—03 10 7 3
SC105 103 105  first_order  —5.2e401  7.9e—09  4.7e—10 3.6e—08  5.5¢—02 653 9 644
SC205 203 205 first_order —5.2e+401 1.5e—09 2.7e—10 3.0e—13 6.9e—02 434 16 418
SC50A 48 50 first__order —6.5e+401 3.2e—11 2.3e—13 1.7e—11 2.2e—03 21 9 12
SC50B 48 50 first__order —7.0e+401 3.1le—10 1.8e—08 7.8e—11 9.8e—04 11 9 2
SCAGR25 500 471 first__order —1.5e+4+07 6.2e—11 4.9e—09 5.7e—08 1.1e—02 18 11 7
SCAGRT 140 129 first__order —2.3e+4-06 5.5e—10 6.6e—08 1.8e—06 2.2e—03 14 8 6
SCFXM1 457 330 first__order 1.8e+04 4.6e—11 8.5e—09 1.4e—11 2.7e—02 43 15 28
SCFXM2 914 660 first__order 3.7e+04 1.0e—09 2.7e—08 4.5e—10 3.3e—02 24 9 15
SCFXM3 1371 990  first_order 5.5e4+04  4.3e—09  7.1e—07 1.2e—09  4.9e—02 24 10 14
SCORPION 358 388  first_order 1.9¢+03  1l.4e—11  6.6e—12 1.2e—09  8.5e—03 26 s 18
SCRS8 1169 490 first__order 9.0e+02 3.4e—09 1.2e—08 2.0e—08 1.9e—02 26 9 17
SCSD1 760 77 first__order 8.7e+00 2.9e—10 4.0e—11 7.6e—10 4.9e—03 8 6 2
SCSD6 1350 147 first_order 5.1e+01 2.4e—09 1.3e—11 9.4e—12 1.2e—02 10 6 4
SCSD8 2750 397 first__order 9.0e+02 3.8e—10 4.7¢e—09 4.1e—09 1.9e—02 10 8 2
SCTAP1 480 300 first__order 1.4e+403 3.le—11 5.4e—12 3.0e—12 7.3e—03 16 11 5
SCTAP2 1880 1090 first__order 1.7e+403 1.0e—11 2.3e—11 1.9e—11 2.8e—02 14 11 3
SCTAP3 2480 1480 first__order 1.4e+403 9.5e—09 5.0e—08 1.0e—08 4.2e—02 15 13 2
SEBA 1028 515 first__order 1.6e+04 1.1le—11 5.1le—12 6.5e—11 1.5e—02 19 14 5
SHARE1B 225 117 first__order —7.7e+404 2.4e—09 1.1e—06 5.3e—08 2.1e—02 112 10 102
SHARE2B 79 96 first_order  —4.2e402  1.0e—11  1.le—10 1.5e—10  2.8e—03 14 9 5
SHELL 1775 536 first_order 1.2¢409  3.0e—09  8.0e—07 4.0e—10  2.0e—02 25 s 17
SHIPO04L 2118 402 first__order 1.8e+406 1.3e—09 5.5e—09 5.7e—10 1.7e—02 14 8 6
SHIP04S 1458 402 first_order 1.8e+06 2.1e—09 1.0e—08 1.5e—08 1.2e—02 15 8 7
SHIPOSL 4283 778 first__order 1.9e+06 1.9e—09 3.0e—10 1.3e—09 3.8e—02 23 6 17
SHIPO08S 2387 778 first__order 1.9e+06 6.3e—11 1.6e—10 1.5e—06 2.4e—02 25 9 16
SHIP12L 5427 1151 first__order 1.5e+406 2.0e—10 3.4e—10 4.8e—10 7.4e—02 31 12 19
SHIP12S 2763 1151 first__order 1.5e+406 5.0e—10 1.2e—11 6.2e—06 5.2e—02 57 10 47
SIERRA 2036 1227 first__order 1.5e407 1.4e—09 6.5e—06 1.1e—05 5.9e—02 28 10 18
STAIR 467 356 first__order —2.5e402 2.2e—10 1.5e—11 1.6e—11 2.4e—02 25 14 11
STANDATA 1075 359  first_order 1.3e+03  3.3e—09  2.3e—07 4.4e-09  9.3e—03 12 10 2
STANDGUB 1184 361  first_order 1.3e403  3.3e—09  2.3e—07 4.4¢-09  9.3e—03 12 10 2
STANDMPS 1075 467 first__order 1.4e+403 1.5e—10 2.7Te—12 1.8e—12 1.5e—02 19 12 7
STOCFOR1 111 117 first__order —4.1e+404 l.1le—11 8.3e—11 2.8¢—11 2.7e—03 17 7 10
STOCFOR2 2031 2157 first__order —3.9e+04 3.0e—09 2.4e—08 4.1le—10 5.4e—02 22 9 13
STOCFOR3 15695 16675 first__order —4.0e+04 9.9e—11 8.5e—08 1.7e—10 7.7Te—01 35 6 29
TRUSS 8806 1000 first__order 4.6e+05 7.1le—10 1.7e—07 2.1e—07 1.5e—01 18 16 2
TUFF 587 333 first__order 2.9e—01 3.2e—11 1.1e—10 1.3e—12 3.2e—02 32 12 20
VTP-BASE 203 198 first__order 1.3e+405 3.8e—09 7.9e—10 2.5e—06 2.5e—03 24 10 14
WOOD1P 2594 244 first__order 1.4e400 2.1e—10 2.2e—10 2.5e—12 1.2e—01 16 11 5
WOODW 8405 1098 first__order 1.3e+400 2.3e—11 9.0e—11 3.4e—12 1.5e—01 27 19 8
Table 9: RipQP results in multi-precision mode on Maros and Meszaros problems.

Name n m status objective pdd pfeas dfeas  time (s)  iter tot  iter32  iter64

AUG2D 20200 10000 first__order 1.7e+06 4.1le—10 3.5e—10 1.3e—11 1.7e—01 6 4 2

AUG2DC 20200 10000 first__order 1.8e+06 5.3e—10 4.5e—10 1.6e—11 1.9e—01 6 4 2

AUG2DCQP 20200 10000 first__order 6.5e+06 2.9e—12 9.5e—12 3.0e—06 3.8e—01 14 10 4

AUG2DQP 20200 10000 first_order 6.2e+06 2.8e—09 1.6e—12 2.5e—10 3.3e—01 12 8 4

AUG3D 3873 1000 first__order 5.5e4-02 2.1e—09 4.8e—07 3.0e—08 9.9e—03 3 2 1

AUG3DC 3873 1000 first__order 7.7e4+02 4.5e—09 4.2e—07 1.2e—07 1.9e—02 3 2 1

AUG3DCQP 3873 1000 first__order 9.9e+02 5.7e—10 2.8e—14 4.4e—08 5.3e—02 12 7 5

AUG3DQP 3873 1000 first__order 6.8e+02 1.5e—09 1.8e—15 1.1le—14 3.8e—01 12 6 6

BOYD1 93261 18 first_order  —6.2e407  7.le—10  6.4e—02  1.7e—03  1.8e+00 31 5 26

BOYD2 93263 186531  first_order 2.1e4+01  3.8¢—09  2.3e—01  5.7e—08  1.2e+401 74 5 69

CONT-050 2597 2401 first__order —4.6e+00 1.7e—09 2.5e—12 7.9e—10 2.7e—01 23 12 11

CONT-100 10197 9801 unknown —4.6e+00 4.5e—04 3.4e—09 1.7e—03 4.4e+00 41 6 35

CONT-101 10197 10098 max__iter 2.3e—01 6.5e—01 5.0e—08 6.4e—02 7.5e+01 800 10 790

CONT-200 40397 39601 max__iter —4.7e+00 1.5e—02 3.7e—08 5.4e—03 7.5e+02 800 6 794

CONT-201 40397 40198 max__iter 2.6e—01 5.5e—01 1.5e—07 2.5e—01 7.5e402 800 7 793

CONT-300 90597 90298 max__time 5.3e—01 2.6e4-00 9.9e—08 2.4e—01 1.2e+03 306 7 299

CVXQP1_L 10000 5000 first__order 1.1e+08 5.6e—12 4.3e—13 2.8e—04 6.8e+02 63 22 41

CVXQP1_M 1000 500 first__order 1.1e+4+06 1.0e—09 6.le—11 3.0e—05 7.8e—01 30 23 7

CVXQP1_S 100 50 first__order 1.2e+04 2.0e—11 5.1e—09 6.9e—07 3.9e—03 7 5 2
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Name n m status objective pdd pfeas dfeas time (s) iter tot iter32 iter64
CVXQP2_L 10000 2500 first__order 8.2e+07 1.3e—10 5.6e—11 5.2e—03 2.6e+02 18 9 9
CVXQP2_M 1000 250 first__order 8.2e+05 7.5e—11 3.0e—11 2.6e—05 3.1le—01 15 7 8
CVXQP2_8S 100 25 first__order 8.1e+03 1.1e—09 2.8e—09 1.5e—06 4.1e—03 8 6 2
CVXQP3_L 10000 7500 first__order 1.2e408 5.1le—10 7.Te—12 1.4e—02 5.2e+02 44 21 23
CVXQP3_M 1000 750 first_order 1.4e406 5.6e—10 1.0e—12 3.9e—04 2.0e400 140 13 127
CVXQP3_S 100 75 first_order 1.2e+04 1.1le—10 6.0e—11 5.7e—07 2.6e—03 13 8 5
DPKLO1 133 7 first__order 3.7e—01 8.8e—09 2.0e—06 9.6e—08 2.8e—03 3 2 1
DTOC3 14999 9998 first__order 2.4e4-02 3.5e—10 9.3e—13 5.6e—13 1.0e—01 10 7 3
DUAL1 85 1 first__order 3.5e—02 1.6e—09 l.le—12 6.8e—07 4.3e—03 9 5 4
DUAL2 96 1 first__order 3.4e—02 5.2e—09 1.3e—10 7.1le—07 4.5e—03 7 5 2
DUAL3 111 1 first__order 1.4e—01 4.2e—09 4.9e—14 1.7e—06 7.6e—03 9 5 4
DUAL4 75 1 first__order 7.5e—01 7.2e—09 1.2e—13 4.8e—10 2.9e—03 8 5 3
DUALC1 9 215 first__order 6.2e+03 1.5e—10 4.4e—09 1.7e—05 4.0e—03 12 9 3
DUALC2 7 229 first__order 3.6e+03 7.3e—10 2.1e—07 3.4e—06 2.8e—03 8 6 2
DUALCS5 8 278 first_order 4.3e+02 1.0e—11 8.0e—11 7.3e—09 3.3e—03 7 4 3
DUALCS8 8 503 first_order 1.8e+404 6.0e—10 1.6e—04 6.3e—02 5.7e—03 7 6 1
EXDATA 3000 3001 first_order —1.4e+402 3.4e—10 1.4e—13 1.2e—08 1.6e+01 13 8 5
GENHS28 10 8 first__order 9.3e—01 2.9e—14 1.9e—13 2.4e—13 3.9e—04 4 2 2
GOULDQP2 699 349 first__order 1.8e—04 8.9e—10 5.1le—14 2.0e—08 7.5e—03 17 5 12
GOULDQP3 699 349 first__order 2.1e4-00 8.5e—09 1.5e—12 9.1e—09 6.9e—03 17 9 8
HS118 15 17 first__order 6.6e+02 5.0e—11 1.0e—12 6.2e—11 5.8e—04 12 8 4
HS21 2 1 first__order —1.0e+02 1l.le—11 5.1le—10 2.6e—10 2.4e—04 6 4 2
HS268 5 first__order 1l.le—11 1.5e—11 1.8e—14 7.3e—12 4.4e—04 26 21 5
HS35 3 1 first__order 1.1e—01 1.1le—10 7.6e—11 3.0e—10 2.4e—04 7 5 2
HS35MOD 3 1 first__order 2.5e—01 2.5e—09 2.8e—12 1.9e—12 2.6e—04 12 6 6
HS51 5 3 first__order —8.9e—16 3.3e—13 2.0e—13 1.7e—13 2.2e—04 4 2 2
HS52 5 3 first__order 5.3e4-00 6.1e—09 7.5e—10 1.3e—07 2.1le—04 3 2 1
HS53 5 3 first_order 4.1e+00 3.2e—09 2.0e—13 3.5e—10 2.4e—04 4 2 2
HS76 4 3 first__order —4.7e+400 1.5e—10 1.3e—10 1.8e—10 2.7e—04 6 4 2
HUES-MOD 10000 2 first__order 3.5e+07 1.3e—09 3.9e—12 9.4e—08 3.5e—02 9 6 3
HUESTIS 10000 2 first__order 3.5e+11 9.8e—12 1.0e—11 5.0e—04 4.1e—02 11 6 5
KSIP 20 1001 first__order 5.8e—01 7.6e—10 2.2e—12 1.8e—08 4.1e—02 13 6 7
LASER 1002 1000 first__order 2.4e+4-06 1.7e—11 1.6e—09 4.3e—07 2.4e—02 36 5 31
LISWET1 10002 10000 first__order 3.6e+01 2.4e—10 8.9e—16 1.5e—09 2.2e—01 32 9 23
LISWET10 10002 10000 first__order 4.9e+401 4.6e—09 1.0e—15 8.3e—10 2.7e—01 37 9 28
LISWET11 10002 10000 first_order 5.0e4+01 5.5e—10 2.7e—14 4.1e—07 2.8e—01 37 9 28
LISWET12 10002 10000 first_order 1.7e403 6.0e—09 2.0e—15 1.9e—09 2.8e—01 42 9 33
LISWET2 10002 10000 first_order 2.5e+401 4.4e—09 1.0e—13 5.8e—08 2.1le—01 31 9 22
LISWET3 10002 10000 first_order 2.5e+401 6.6e—09 1.3e—09 2.7e—06 1.7e—01 23 9 14
LISWET4 10002 10000 first__order 2.5e+01 4.3e—10 9.4e—11 7.1le—07 1.8e—01 25 9 16
LISWET5 10002 10000 first__order 2.5e4-01 8.3e—10 1.5e—10 5.6e—07 1.7e—01 22 9 13
LISWET6 10002 10000 first__order 2.5e4-01 7.2e—12 3.7Te—12 6.2e—08 1.8e—01 25 9 16
LISWETT7 10002 10000 first__order 5.0e+4-02 1.0e—10 5.6e—16 1.9e—09 2.0e—01 28 9 19
LISWETS8 10002 10000 first__order 7.1le4+02 7.8e—09 3.9e—14 1.7e—07 2.4e—01 36 9 27
LISWET9 10002 10000 first__order 2.0e+03 5.1e—09 2.2e—15 1.9e—09 2.9e—01 38 9 29
LOTSCHD 12 7 first__order 2.4e4-03 1.0e—10 2.9e—10 2.1le—10 6.6e—04 8 5 3
MOSARQP1 2500 700 first_order —9.5e+02 1.0e—09 1.0e—09 2.5e—06 2.2e—02 9 6 3
MOSARQP2 900 600 first_order —1.6e+03 7.5e—09 2.4e—11 8.0e—06 2.0e—02 10 5 5
POWELL20 10000 10000 first_order 5.2e+10 1.9e—11 1.7e—10 6.1e—08 3.0e—01 31 23 8
PRIMAL1 325 85 first_order —3.5e—02 2.0e—09 2.7e—12 3.3e—08 1.0e—02 9 6 3
PRIMALZ2 649 96 first__order —3.4e—02 2.0e—11 9.8e—14 1.1le—10 1.4e—02 8 4 4
PRIMALS3 745 111 first__order —1.4e—01 6.9e—10 5.0e—12 1.4e—08 4.5e—02 10 5 5
PRIMAL4 1489 75 first__order —7.5e—01 6.6e—09 2.5e—12 3.2e—12 3.2e—02 10 5 5
PRIMALC1 230 9 first__order —6.2e+03 7.5e—09 1.1le—07 5.6e—08 2.4e—03 10 7 3
PRIMALC2 231 7 first__order —3.6e+03 9.7e—10 3.6e—05 3.4e—07 1.8e—03 8 6 2
PRIMALCS 287 8 first__order —4.3e402 2.0e—09 2.5e—09 4.1e—09 3.0e—03 12 6 6
PRIMALCS 520 8 first__order —1.8e4-04 l.le—11 1.6e—07 3.1le—10 4.2e—03 9 6 3
Q25FV47 1571 820 first_order 1.4e407 2.8e—09 2.4e—06 1.5e—02 5.2e—01 26 14 12
QADLITTL 97 56 first_order 4.8e+05 9.0e—09 6.5e—06 5.6e—05 1.7e—03 13 11 2
QAFIRO 32 27 first_order —1.6e+4-00 2.7e—10 3.9e—09 2.4e—10 5.4e—04 10 8 2
QBANDM 472 305 first__order 1.6e+04 2.6e—09 1.4e—08 1.4e—04 1.0e—02 21 13 8
QBEACONF 262 173 first__order 1.6e+05 6.4e—11 1.9e—09 5.5e—09 5.7e—03 19 7 12
QBORE3D 315 233 first__order 3.1e+03 1.4e—09 3.8e—10 1.5e—05 9.9e—03 68 12 56
QBRANDY 249 220 first__order 2.8e+4-04 1.5e—10 1.2e—08 5.1e—07 7.8e—03 16 13 3
QCAPRI 353 271 first__order 6.7e+07 9.1e—09 8.1e—07 1.2e—05 1.6e—02 35 7 28
QE226 282 223 first__order 2.1le+02 1.4e—09 4.1e—10 8.3e—08 1.2e—02 20 15 5
QETAMACR 688 400 first__order 8.7e+04 5.6e—09 1.0e—09 4.1le—04 5.9e—02 39 12 27
QFFFFF80 854 524 first__order 8.7e+05 6.1le—11 1.4e—07 1.5e—06 8.2e—02 34 11 23
QFORPLAN 421 161 first_order 7.5e4+09 9.5e—09 8.0e—07 5.7e—02 1.5e—02 25 7 18
QGFRDXPN 1092 616 first_order 1.0e+11 8.8e—10 4.1e—06 3.7e—07 1.4e—02 21 5 16
QGROW15 645 300 first__order —1.0e+4-08 1.2e—09 2.7e—06 1.4e—01 4.6e—02 53 13 40
QGROW22 946 440 first__order —1.5e+08 7.5e—09 1.8e—05 2.4e—01 1.1le—01 77 33 44
QGROWT 301 140 first__order —4.3e+07 6.1e—09 1.3e—05 1.4e—01 3.1e—02 76 36 40
QISRAEL 142 174 first__order 2.5e4-07 8.9e—09 2.8e—07 2.1e—03 1.1le—02 25 10 15
QPCBLEND 83 74 first__order —7.8e—03 1.7e—09 1.4e—12 1.0e—06 2.0e—03 16 5 11
QPCBOEI1 384 351 first__order 1.2e+07 9.0e—09 1.2e—07 5.4e—03 1.9e—02 27 5 22
QPCBOEI2 143 166 first__order 8.2e+06 3.2e—09 3.2e—08 1.7e—02 1.2e—02 49 6 43
QPCSTAIR 467 356 first__order 6.2e+06 2.5e—11 3.3e—10 4.1le—04 2.3e—02 24 12 12
QPILOTNO 2172 975 unknown 4.7e+406 1.5e—06 4.5e—03 1.2e—06 2.8e—01 42 5 37
QPTEST 2 2 first_order 4.4e+00 8.4e—10 4.6e—14 3.0e—12 3.9e—04 10 5 5
QRECIPE 180 91 first_order —2.7e+402 1.7e—09 5.8e—08 2.83e—10 2.2e—03 15 9 6
QSC205 203 205 first__order —5.8—03 2.4e—10 6.8e—13 1.2e—11 2.5e—03 11 7 4
QSCAGR25 500 471 first__order 2.0e4-08 8.3e—10 3.3e—08 3.0e—06 6.3e—03 17 11 6
QSCAGRY7 140 129 first__order 2.7e407 4.2e—12 1.8e—08 9.9e—07 2.1e—03 18 10 8
QSCFXM1 457 330 first__order 1.7e+07 2.6e—09 1.9e—07 2.4e—04 1.5e—02 24 13 11
QSCFXM2 914 660 first__order 2.8e+4-07 7.1e—09 4.0e—06 1.0e—04 4.0e—02 33 16 17
QSCFXM3 1371 990 first__order 3.1e+07 1.1e—09 3.5e—06 1.2e—04 5.3e—02 29 10 19
QSCORPIO 358 388 first__order 1.9e+03 1.4e—10 4.0e—13 1.5e—08 4.2e—03 13 5 8
QSCRSS8 1169 490 first__order 9.0e+02 4.1e—09 8.3e—10 7.6e—07 2.0e—02 31 10 21
QSCsD1 760 7T first_order 8.7e+00 1.6e—10 7.2e—11 6.8e—10 4.9¢e—03 8 6 2
QSCSD6 1350 147 first__order 5.1e401 4.le—11 2.1le—10 4.6e—08 1.2e—02 13 11 2
QSCSD8 2750 397 first_order 9.4e+02 4.8e—10 2.0e—11 8.9e—07 2.2e—02 11 8 3
QSCTAP1 480 300 first__order 1.4e+03 4.0e—09 1.0e—07 1.3e—07 7.6e—03 17 15 2
QSCTAP2 1880 1090 first__order 1.7e+03 3.3e—09 3.1e—08 8.1e—08 3.9e—02 14 12 2
QSCTAP3 2480 1480 first__order 1.4e+03 6.1e—09 1.4e—07 2.7e—07 5.1e—02 16 14 2
QSEBA 1028 515 first__order 8.1e4+07 3.5e—09 1.1le—09 3.2e—04 1.7e—02 25 5 20
QSHARE1B 225 117 first__order 7.2e+405 4.1le—11 3.9e—08 8.6e—08 1.1e—02 63 29 34
QSHARE2B 79 96 first__order 1.2e+04 4.5e—09 1.5e—07 1.1le—04 4.2e—03 30 8 22
QSHELL 1775 536 first__order 1.6e+12 9.2e—09 4.1e—07 5.6e—01 3.8e—02 30 9 21
QSHIPO04L 2118 402 first__order 2.4e4-06 6.8e—09 4.8e—11 3.5e—06 1.6e—02 16 8 8
QSHIP04S 1458 402 first_order 2.4e+406 1.5e—10 3.6e—12 2.1e—07 1.2e—02 18 9 9
QSHIPOSL 4283 778 first__order 2.4e4-06 4.9e—10 1.5e—11 1.2e—04 4.9e—01 19 10 9
QSHIP08S 2387 778 first_order 2.4e+406 6.0e—11 3.8e—11 8.3e—06 6.5e—02 18 9 9
QSHIP12L 5427 1151 first__order 3.0e+06 1.1e—09 8.7e—12 3.3e—04 1.1e+00 39 8 31
QSHIP12S 2763 1151 first__order 3.1e+06 3.5e—10 l.le—11 2.9e—04 1.0e—01 35 10 25

Continued on next page
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Name n m status objective pdd pfeas dfeas time (s) iter tot iter32 iter64
QSIERRA 2036 1227 first__order 2.4e+4-07 5.6e—11 2.2e—06 1.6e—06 6.7e—02 34 10 24
QSTAIR 467 356 first__order 8.0e+06 7.0e—09 8.2e—06 3.4e—03 3.2e—02 28 13 15
QSTANDAT 1075 359 first__order 6.4e+403 8.0e—09 1.6e—07 2.2e—06 8.3e—03 11 9 2
S268 5 5 first__order l.le—11 1.5e—11 1.8e—14 7.3e—12 4.5e—04 26 21 5
STADAT1 2001 3999 first_order —2.9e+407 2.1e—09 1.0e—07 1.1e—06 1.5e—01 75 5 70
STADAT2 2001 3999 first__order —3.3e+01 2.3e—09 4.6e—10 2.8e—11 4.9e—02 19 5 14
STADAT3 4001 7999 first__order —3.6e+401 1.1le—10 2.0e—10 4.1le—11 1.1e—01 22 7 15
STCQP1 4097 2052 first__order 1.6e+05 1.2e—09 0.0e+00 3.6e—05 1.4e—02 8 5 3
STCQP2 4097 2052 first__order 2.2e4-04 5.1e—10 0.0e+00 3.4e—06 2.9e—02 9 6 3
TAME 2 1 first__order 0.0e+00 5.1le—11 3.8e—14 7.8e—13 2.8e—04 4 2 2
UBH1 18009 12000 mazx__iter NaN NaN NaN NaN 5.0e+00 800 40 760
VALUES 202 1 first__order —1.4e+00 6.7e—10 2.5e—10 8.8e—09 4.9e—03 12 10 2
YAO 2002 2000 first__order 2.0e+02 6.6e—10 9.1le—15 5.2e—10 3.2e—02 23 10 13
ZECEVIC2 2 2 first__order —4.1e4-00 4.6e—10 2.6e—11 9.5e—10 3.3e—04 7 5 2
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