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Citation suggérée : M. Thiongane, W. Chan, P. L’Ecuyer (Décembre
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tifique.

The series Les Cahiers du GERAD consists of working papers
carried out by our members. Most of these pre-prints have been
submitted to peer-reviewed journals. When accepted and published,
if necessary, the original pdf is removed and a link to the published
article is added.

Suggested citation: M. Thiongane, W. Chan, P. L’Ecuyer (De-
cember 2020). Learning-based prediction of conditional wait time
distributions in multiskill call centers, Technical report, Les Cahiers
du GERAD G–2020–84, GERAD, HEC Montréal, Canada.
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– Bibliothèque et Archives Canada, 2020

The publication of these research reports is made possible thanks
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Legal deposit – Bibliothèque et Archives nationales du Québec, 2020
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• Peuvent télécharger et imprimer une copie de toute publica-
tion du portail public aux fins d’étude ou de recherche privée;

• Ne peuvent pas distribuer le matériel ou l’utiliser pour une
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Abstract : Based on data from real call centers, we develop, test, and compare forecasting methods to
predict the waiting time of a call upon its arrival to the center, or more generally of a customer arriving
to a service system. We are interested not only in estimating the expected waiting time, but also its
probability distribution (or density), conditional on the current state of the system (e.g., the current
time, queue sizes, set of agents at work, etc.). We do this in a multiskill setting, with different call
types, agents with different sets of skills, and arbitrary rules for matching each calls to an agent. Our
approach relies on advanced regression and automatic learning techniques such as spline regression,
random forests, and artificial neural networks. We also explain how we select the input variables for
the predictors.

Keywords: Delay prediction, wait time, distributional forecast, automatic learning, service systems,
multiskill call centers
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1 Introduction

1.1 How long will I wait?

You make a phone call to reach your airline, bank, utility, or credit card provider, or some government

service, and get a too familiar message: “All our agents are currently busy. Your call is very important

to us. Please hold and one of our representatives will be with you as soon as possible.” or “We currently

experience a larger volume of calls than usual.” Most often, the message gives no information on how

much you have to wait. Sometimes, it provide a forecast of your waiting time, but the forecast can be

quite inaccurate and you have no idea of its accuracy, so it may be more misleading than useful.

In a dream situation, you would be told upon arrival the exact time when the service will start.

Then you could do some other activity and show up (or pick the phone) only at the right moment.

Of course, this is unrealistic. The wait time is usually random and often hard to predict. A more

reasonable wish could be to receive an estimate of your expected wait time, conditional on the current

state of the system upon arrival. This conditional expectation can be computed exactly for very

simple models, but in more realistic and complex systems with multiple types of customers, different

types of servers, and nontrivial routing and priority rules, it is generally hard to compute and even to

approximate.

Telling the customer its conditional expected wait time upon arrival only provides limited and

unsatisfactory information. If you are told “your predicted waiting time is 18 minutes” with no

additional qualification, and you end up waiting 28 minutes, or you come back after 15 minutes only

to find that you have missed your turn, you may conclude that those predictions are not so useful in

the end. An improvement can be to provide a prediction interval (PI), such as “we predict with 95%

confidence that your waiting time will be between 13 and 25 minutes.” Or even better, a plot of

the density of the waiting time distribution conditional of the current state of the system, with PIs

indicated on the plot. The aim of this paper is to propose methods that can compute such distributional

forecasts and compare their performance on real data taken from a call center.

Figure 1 gives an example of what information could be shown on the phone screen of a customer,

for a call made at 13:00:00. The plot gives an estimate of the conditional density of the time at which

the call will be answered, with a red line marking the expectation and two green lines indicating a

90% PI (they are at the 5% and 95% quantiles of the predicted distribution). The estimated expected

answering time is at 13:05:43, and the PI is (13:03:56, 13:08:17). A key question is: How can we

construct such predictors?

13:03:56 13:05:43 13:08:17 Clock time

call made
at 13:00:00

Figure 1: Predicted distribution of the answering time of a call when it arrives, at 13:00:00. The red line marks the expected
answering time and the two green lines are the boundaries of a 90% PI. Each tail filled in orange contains 5% of the probability
density.

One simple model for which the exact distribution of the wait time can be computed when the

call arrives, conditional on the number of waiting calls (the queue length) at that time, is a G/M/s

queue [7, 17, 26]. In that model, the arrival process is arbitrary, but there is a single call type, the calls

are answered by order of arrival, there are s identical servers, each one handling one call at a time,

and the service times are assumed independent with an exponential distribution of rate µ. In that
case, if all servers are busy and there are q other calls waiting in queue when a call arrives, then the
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wait time of this arriving call is the sum of q + 1 independent exponential random variables with rate

µ. This is an Erlang random variable with shape parameter q+ 1 and rate parameter µs. It has mean

(q+1)/(µs), variance (q+1)/(µs)2, and density f(x) = (µs)q+1xqe−µsx/q! for x > 0. The explanation

is that the arriving call must wait for q + 1 ends of service before getting attention, and the times

between the successive ends of service when the s servers are busy are independent and exponential

with rate µs. Independent exponential service times are rather unrealistic and, more importantly, in

this paper we are interested in multiskill call centers, with different call types and separate groups

of agents having different skill sets (each group can handle a different subset of the call types). No

analytic formula for the wait time density or expectation is available for this case, and making the

conditional predictions is much harder.

Our discussion so far was in terms of phone calls to a call center, but the models and methods

studied in this paper apply more generally to “customers” or “users” who have to wait for a service;

for example patients arriving to a medical clinic, or people grabbing a numbered ticket on their arrival

to a store or at some governmental service such as the passport office. In the following, we use “call”

and “customer” interchangeably, an “agent” is the same as a “server”, and the “wait time” is also

called “delay.”

1.2 Brief review of earlier work

Previous research on wait time prediction was mostly for systems with a single type of customers and

identical servers. There are two main categories of proposed prediction methods for that case: the

queue-length (QL) predictors, and the delay-history (DH) predictors. QL predictors use the queue

length at the customer arrival, together with some system parameters, to predict the wait time. The

exact analytic formula given earlier for the G/M/s example is an example of a QL predictor. It can

predict not only the expectation, but also the density of the wait time, and it is the best possible

predictor in that situation. This type of QL predictor has been studied by [21, 23, 24, 39]. DH

predictors use the wait times of the previous customers to predict the wait time of a new arriving

customer; see [2, 11, 22, 30, 36]. For example, one can predict the wait time of this customer by the

wait time of the most recent customer of the same type who had to wait and already started its service

(so we know its wait time), or maybe the average wait time of a few of those (e.g., the three to ten

most recent ones). There are other variants. These predictors are generally designed to produce only

a point estimate, i.e., only predict the expected wait time. They are further discussed in Section 2.1.

For queueing systems with multiple customer types but a single group of identical agents that can

handle all types, delay predictors based on QL and DH have beed examined in [32].

For the general multiskill setting with multiple types of customers, where each type has its own

queue, each server can handle only a subset of these types, and the matching between customers and

servers can be done using complicated rules, predicting the delay is much more difficult. Very little has

been done so far for this situation. A simple QL predictor that looks only at the queue length for the

type of the arriving customer does not work well, because it neglects too much information; e.g., the

lengths of the queues for the other types that the agents serving this type can also serve. If the agents

that can serve the arriving type are too busy serving some other types, then the arriving customer

can wait much longer. It appears difficult to extend the QL predictors to multiskill settings. For this

reason, earlier work used mostly DH predictors. They are easy to apply even for complicated multiskill

systems, but unfortunately they often give large prediction errors. See [35, 36] and Section 2.1.

The basic idea of a point predictor for the delay is to select a set of input variables that represent

the current relevant information (the state of the system), and define a real-valued predicting function

of these variables that would represent the expected delay given the current information. This is a

multivariate function approximation problem. Given available data, finding a good candidate function

is a (nonlinear) multivariate regression problem. There are many ways to perform this regression

and some have been examined in the literature. In particular, Thiongane et al. [35] proposed and

compared such data-based delay predictors for multiskill queueing systems, using regression splines

(RS) and artificial neural networks (ANN) to define (or learn) the predicting function. The input
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variables were the lengths of selected queues and the wait time of the most recent customer of the

same type having started its service. The different proposed methods were compared on simulated

models of call centers. In a similar vein, lasso regression (RL) was explored in [1] to predict wait

times in emergency health-care units. The input variables included the queue lengths for the different

priority levels, the overall load, etc. Some of these variables correspond to QL predictors that are not

applicable for general multiskill call centers. Nevertheless, RL is also usable for multiskill call centers,

with appropriate inputs. In this health-care application, the patients are classified by priority levels

(the priority corresponds to the customer type), and the agent groups are defined differently than by

subsets of the types; they may correspond to doctors, nurses, assistants, etc.

Thiongane et al. [37] made further comparisons between various types of DH predictors and

regression-based (or learning-based) methods, including multilayer feed-forward neural networks, using

data taken from a real call center. They also proposed a method to select a set of relevant input

variables. The performance of these regression-type predictors depend very much on which inputs

variables are considered, and on how much relevant data is available for the learning. If important

variables are left out, the performance may degrade significantly. If there is too little data, or if the

current setting differs too much from the one in which the data was obtained, then the forecasting

error is also likely to be large. Too little data combined with too many input variables also lead to

overfitting.

All the methods and papers discussed so far for the multiskill systems are for point predictions only,

i.e., to predict the conditional expected wait time (a single number), and not to predict its distribution.

A few papers examine quantile prediction of the waiting times of patients in health-care emergency

departments[10, 34]. The authors predict the median, 10%, 90% or 95% percentiles of the wait times

using multiple regression.

1.3 Contribution and outline

The present paper is follow up to [37]. As an important extension, we propose methods to estimate

the conditional density and quantiles of the wait time, as in Figure 1, instead of only the expectation.

We also report additional experiments, and use data from a second call center.

The rest of the paper is organized as follows. In the next section, we specify and discuss the DH

and regression-based delay predictors considered in our experiments. In Section 3, we explain how we

propose to estimate the conditional density of the wait time. In Section 4, we describe the experiment

setup, and in Section 5 and 6, we report on numerical experiments with data from two different call

centers. The first one is the call center of an Israeli bank, and the second one is from an information

technology (IT) company in the Netherlands. For each one, we describe the data, and we compare our

different point predictors and density predictors for the delay. Section 7 provides a conclusion.

2 Point predictors for multiskill systems

We now discuss different types of point predictors used and compared in our experiments. These

predictors return a single number, which may be interpreted as an estimate of the expected delay.

They are all “learning-based” in some sense, although for the DH predictors, the learning is based only

on the delays of the very recent customers. We exclude QL predictors, since they are not adapted to

multiskill settings.

2.1 Delay-history predictors

In a multiskill call center, a DH predictor estimates the wait time of a new arrival by looking only

at the delays of the most recent customers of the same type who started their service. There is no

learning based on lots of data to estimate function parameters, so these predictors are simple and easy

to implement. The DH predictors discussed here are the best performers according to our previous

experiments in [35, 36, 37].
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The simplest and most popular DH predictor is the Last-to-Enter-Service (LES) predictor. It

returns the wait time of the most recent customer of the same type among those who had to wait and

have started their service [22].

A generalization often used in practice [11] is to take the N most recent customers of the same

type who had to wait and have started their service, for some fixed positive integer N , and average

their wait times. This is the Averaged LES (Avg-LES).

One variant of the Avg-LES also takes the average of the wait times of past customers of the same

type who had to wait and have started their service, but the average is only over the customers who

found the same queue length as the current one when they arrived. This predictor was introduced

in [36] and was the best performing DH predictor in the experiments made in that paper. It is called

the Average LES Conditional on Queue Length (AvgC-LES).

Another one is the Extrapolated LES (E-LES), defined as follows [36]. For a new arriving customer,

it looks at the delay information of all customers of the same type that are currently waiting in queue.

The final delays of these customers are still unknown, but the (partial) delays elapsed so far are

extrapolated to predict the final wait times of these customers. E-LES returns a weighted average of

these extrapolated delays, as explained in [36].

The Proportional Queue LES (P-LES) predictor starts with the delay d of the LES customer and

makes an adjustment to account for the difference in the queue length qLES at the arrival of this LES

and the current queue length q when the new customer arrives [20]. The adjusted predictor is

D = d(q + 1)/(qLES + 1).

2.2 Regression-based predictors

Regression-Based Predictors construct a multivariate predictor function of selected input variables

deemed important. It approximates the conditional expectation of the delay W of an arriving customer

of type k, conditional on the current state of the system, which is represented by the vector x of these

input variables. The predictor function for customer type k is pk,θ(k), where θ(k) is a vector of

parameters which depends on k. It must be estimated (learned) from the data in a training step. The

predicted delay when in state x will be pk,θ(k)(x). Constructing this type of predictor involves three

main parts that are inter-related, for each k: (a) selecting which variables to put in x; (b) selecting the

general form of pk,θ(k); and (c) estimating (learning) the parameter vector θ(k). In the remainder of

this section, we explain how we have implemented these three parts in our experiments. The method

used for part (c) depends very much on the choice of predictor function in part (b). For that, we will

consider and compare the following three choices: (1) a smoothing (regression) cubic spline additive

in the input variables (RS), (2) a lasso (linear) regression (LR), and (3) a deep feedforward multilayer

artificial neural network (ANN).

2.2.1 Identifying the important variables

In the G/M/s queuing system discussed earlier, the analytic formula tells us clearly that the only

important input variables are the number s of servers and the number q of customers in the queue.

Everything else is irrelevant. For more complex multiskill systems, however, identifying the most

relevant inputs for the prediction for a given customer type k is not so simple. Leaving out important

variables is bad, and keeping too many of them leads to overfitting, as is well-known from regression

theory.

For our numerical examples with the call center data, we used the following methodology. We

started by putting as candidates all the observable variables that could have a chance of helping

the prediction, then we used a feature selection algorithm to perform a screening among them. The

candidate input variables were the following: the vector q of current queue lengths for all call types;

the number s of agents that are serving the given call type, the total number n of agents currently
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working in the system, the current time t (when the call arrives), the wait time of the N most recently

served customers of the given call type, and the delay predicted by the DH predictors LES, P-LES,

E-LES, Avg-LES, and AvgC-LES.

To screen out and make a selection among these inputs, we used a technique based on the ran-

dom forest (RF) bootstrapping methodology of Breiman [6]. Among the various feature selection

algorithms based on this methodology, we picked Boruta [27], which was the best performer in em-

pirical comparisons between many selection algorithms in [9]. The general idea of random forests is

to generate a forest of decision trees whose nodes correspond to the selection decisions for the input

variables. Boruta extends the data by adding copies of all input variables, and reshuffles these variables

to reduce their correlations with the response. These reshuffled copies are named the shadow features.

Boruta then runs a random forest classifier on this extended data set. It makes bootstrap samples

on the training set and constructs decision trees from these samples. The importance for each input

variable is assessed by measuring the loss of accuracy of the model when the values of this input are

permuted randomly across the observations. This measure is called the mean decrease accuracy. It

is computed separately for all trees of the forest that use the given input variable. The average and

standard deviation of the loss of accuracy is then computed for each input, a Z score is obtained by

dividing the average loss by its standard deviation, and this score is used as the importance measure.

The maximum Z-score among the shadow features (MZSA) is used to select the variables deemed

useful to predict the delay. The input variables are then ranked according to these scores, and those

with the highest scores are selected. The variables whose Z-scores are significantly lower than MZSA

are declared “unimportant”, those whose Z-scores are significantly higher than MZSA are declared

“important” [27], and decisions about the other ones are made using other rules.

2.2.2 Measuring the prediction error

The parameter vector θ is estimated by minimizing the mean squared error (MSE) of point predictions.

That is, if E = pk,θ(k)(x) is the predicted delay for a given customer of type k who receives service

after some realized wait time W , the MSE for type k calls is

MSEk = E[(W − E)2].

This expectation cannot be computed exactly, but we can estimate it by its empirical counterpart, the

average squared error (ASE), defined as

ASEk =
1

Ck

Ck∑
c=1

(Wk,c − Ek,c)2 (1)

for customer type k, where Ck is the number of customers of type k who had to wait and for which

we made a prediction. In the end, we use a normalized version of the ASE, called the root relative

average squared error (RRASE), defined as the square root of the ASE divided by the average wait

time of the Ck served customers, rescaled by a factor of 100:

RRASEk =
100 (ASEk)1/2

(1/Ck)
∑Ck

c=1Wk,c

.

We estimate the parameter vector θ(k) for each k in this way from a learning data set that represent 80%

of the collected data. The other 20% of the data is saved to measure and compare the accuracy of

these delay predictors.

2.2.3 Regression splines (RS)

Regression splines (RS) are a powerful class of approximation methods for general smooth functions [8,

25, 40]. Here we use smoothing additive cubic splines, for which the parameters are estimated by least-

squares regression after adding a penalty term on the function variation to favor more smoothness. If
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the information vector is written as x = (x1, . . . , xD), the additive spline predictor can be written as

pk,θ(k)(x) =

D∑
d=1

fd(xd),

where each fd is a one dimensional cubic spline. The parameters of all these spline functions fd form

the vector θ. We estimated these parameters using the function gam from the R package mgcv [41].

2.2.4 Lasso Regression (LR)

Lasso Regression is a type of linear regression [13, 25, 38] with a penalty term proportional to the sum

of absolute values of the magnitude of coefficients, added to reduce overfitting. The LR predictor is

pk,θ(k)(x) = β0 +

D∑
d=1

βd · xd,

where x = (x1, . . . , xD) is the input vector, as in ordinary linear regression, but the vector of coefficients

θ(k) = (β0, β1, . . . , βD) is selected to minimize the sum of squares of errors plus the penalty term. To

estimate the parameter vector θ(k), we used the function glmnet in the R package gmlnet [12].

2.2.5 Artificial neural networks (ANN)

An artificial neural network (ANN) is an effective tool to approximate complicated high-dimensional

functions [4, 28]. Here we use a deep feedforward ANN, which contains one input layer, one output

layer, and a few intermediate (hidden) layers. The outputs from the nodes at layer ` are the inputs for

all nodes at layer `+ 1. Each node of the input layer corresponds to one element of the input vector x.

The output layer has a single node, which returns the predicted delay. At each hidden node, we have a

rectifier activation function of the general form h(z) = max(0, b+w ·z), where z is the input vector for

this node, whereas b and the vector w are parameters learned by training [14]. At the output node, to

predict the delay, we use a linear activation function of the form h(z) = b+w · z where z is the vector

of outputs from the nodes at the previous hidden layer. Here, the vector θ represents the set of all the

parameters b and w, over all the nodes of the ANN. Good parameter values are learned by a back-

propagation algorithm that relies on a stochastic gradient descent method. Several hyperparameters

used in the training are determined empirically. For a guide on training, see [3, 5, 15, 18]. For this

paper, we did the training using the Pylearn2 software [16].

3 Density predictors

We saw that for a G/M/s queue, the delay of a customer who finds q waiting customers in front of

him upon arrival has an exact Erlang distribution whose density has an explicit formula. But for

more complex multiskill systems, the distribution of the delay conditional on the current state of the

system has an unknown density which is likely to be very complicated and is much harder to estimate.

Estimating a general univariate density in a non-parametric way, from a given data set coming from

this density, is already a difficult problem in statistics. With the best available methods, e.g., kernel

density estimators, the error in the density estimate converges at a slower rate than the canonical rate

of O(n−1/2) as a function of the number n of observations [31]. Estimating a conditional density which

is a multivariate function of several input variables is even more difficult.

After a few initial attempts, we decided not to estimate directly the density of the delay time

conditional on x, but we consider alternatives that fit the prediction errors to a simpler parametric

model conditional on selected information from x, and kernel density estimators that depend on this

limited information. We take our point predictor of the delay (the estimate of the expected wait time),

and add to it the estimated density of the prediction error. That is, for each predictor and each call

type, we first estimate (or learn) the parameters of the point predictor, then compute the prediction
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error for each customer. After that, we fit a parametric or non-parametric density to these errors, or

we train a learning algorithm to model these errors conditional on x. This provides an estimate of the

density of the prediction error. By adding the point predictor to this density, we obtain a predicted

density for the delay.

Specifically, let us write the wait time W of a customer as

W = pk,θ(k)(x) + ε(k,x), (2)

where ε(k,x) is the prediction error. The idea is to estimate the density of ε(k,x) and this will give us

the density of W , since pk,θ(k)(x) is a constant. The density of ε(k,x) certainly depends on k and x, so

a key issue is how to model this dependence. A very simple solution would be to ignore the dependence

on x and just pick a density for each k. A more refined solution is to partition the space of values of x

in a small number of subsets and estimate one density for each subset. The number of subsets should

not be too large, because it would lead to estimating too many different densities, and eventually to

overfitting.

In this paper, we consider two different ways to partition the domain space of x. The first approach

uses clearly defined cuts of the space defined by selecting which features of x to emphasize and which

ones are to be aggregated. The second method uses a learning-based algorithm, in which the partitions

are not explicitly defined. Note that these approaches can be used to estimate the error density of any

predictor, and are not limited to the RS, LR, and ANN methods presented in Section 2.

3.1 Parametric model conditional on queue length

To predict the mean wait time, we trained a function of the entire vector x. But predicting an

entire density as a function of x is more difficult. With the approach described here, we will make

our prediction as a function of a more limited amount of information. We partition the space of x

according to the most important predictive features for the waiting time, and aggregate the rest of

the features. Suppose we are predicting the density for call type k. For our case studies, the Boruta

algorithm described in Section 2.2 selected the queue length qk of call type k as the most important

feature. This motivates the idea of fitting a parametric probability model of the prediction errors

ε(k,x) conditional only to the queue length qk. That is, we would fit a different model for each value

of qk. By doing that, a lot of information in x is ignored, but we hope that much of the variability on

ε(k,x) is captured by qk.

In our numerical studies, we tried to fit several distributions to the realizations of ε(k,x) conditional

on qk, including the gamma, lognormal, log-logistic, and Weibull distributions, and shifted version of

them. Shifting these distributions is necessary because ε(k,x) must be allowed to take negative values.

That is, before fitting one of the distributions named above, we first shift the errors by adding an

positive constant τk(q) large enough so that τk(q) + ε(k,x) > 0 for all x with qk = q. Then the

distribution is fitted to the shifted observations. After that, a negative shift of −τk(i) is applied to

obtain the distribution of the prediction error. For each call type k and queue length qk, we used a grid

search to find the best value for τk(qk). In our case studies, the shifted log-logistic gave the best fit in

most cases, and the best shift did not depend much on qk. One explanation for this could be that both

the mean and standard deviation of the delay increase approximately linearly in qk, so the starting

point of the distribution does not change much. As an illustration, Figure 2 compares the density

functions of the errors fitted with the log-logistic, gamma, lognormal, and Weibull distributions, for

some call type k in our data, conditional to qk = 2. For this figure and for all the numerical results

reported in the paper, we fitted the parametric models using the R package fitdistrplus, and the

package actuar for the log-logistic distribution. For comparison, the figure also shows a kernel density

estimator (KDE) conditional on type k and qk = 2. This KDE was obtained as discussed in Section 3.2.
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Figure 2: The distribution of the prediction error made by the ANN predictor, conditional to qk = 2, for some call type k,
and four parametric densities (log-logistic, gamma, lognormal, and Weibull) fitted to this data. The black curve is a KDE.
Among the four parametric densities, the log-logistic gives the best fit.

For each k and each value of qk until a certain threshold where the amount of training data becomes

too small, we fit a different shifted log-logistic density. For queue lengths that have insufficient training

data, we can pool together several values of qk and fit one density for them. In the numerical section,

we set the threshold to qk = 5, and all states x for which qk > 5 are pooled in a single group, for

each k. Interestingly, when observing the empirical mean and standard deviation of the prediction

error conditional to qk, we find that we can also fit a simple model for the parameters of the log-

logistic as a function of qk. By design, the mean of the shifted log-logistic density for the prediction

error should be zero (or near zero). We have observed that the standard deviation is not far from

affine in qk. Figure 3 gives an illustration. This means that we can fit a linear regression model for the

standard deviation as a function of qk, for each k. The scale and shape parameters of the log-logistic

distribution can then be determined by the mean and standard deviation.
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Figure 3: Standard deviation (in seconds) of the prediction error made by the ANN predictor conditional on the queue
length, for one call type in the test data set.

According to Boruta, the second most important variable for the prediction after qk is t, the arrival

time of the call during the day. Therefore, to further refine the partition of the space of values of x,

we could model the density of the prediction error as a function of both qk and t. We did not do that

for the numerical experiments reported here, but this could be explored in the future.

3.2 A non parametric option: Using a Kernel density estimator

Parametric distributions are attractive because the entire density is defined by just a few parameters

(the scale, shape, and location parameters for the shifted log-logistic). However, the true density

function of the prediction error may have a shape that hardly matches any of the common families
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of distributions. A kernel density estimator (KDE) provides a much more flexible non-parametric

solution. The KDE can be used directly to estimate the density of the prediction error. Figure 4

compares the KDE with the best fitted shifted log-logistic. We see a significant gap between the two

densities for small queue length qk. For this figure and for all the numerical results reported in this

paper, the KDE was computed using the Epanechnikov kernel and the bandwidth was selected using

the heuristic of Silverman [19, 33].
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Figure 4: Log-logistic density (red) and KDE (black) for the prediction error (in seconds) made by an ANN predictor,
conditional to queue lengths qk from 0 to 5.

One drawback of the KDE is that it performs poorly when there are too few observations, and

it is also difficult to extrapolate the density obtained from the KDE for frequent values of qk to rare

(larger) values, as we did with the parametric log-logistic density. For this reason, we may want to use

a combined model: construct the KDE for queue lengths qk that have a large number of observations,

and use a parametric model to extrapolate the density for less frequent data points. Another possibility

could be to use the KDE with a scaling factor proportional to qk, but we did not do that.

3.3 Quantile regression with random forest

In the two previous subsections, we partitioned the space of values of x manually by reducing the

number of dimensions on x, and fitted a different distribution over each piece of the partition, for

each k. This makes a lot of distributions and it can hardly be used unless we select only a few

important features from x, say one or two. In this section, we take a different approach. We do not

partition explicitly the space of values of x, but we rather leave this task to a learning-based algorithm.

More specifically, we use a quantile random forest (QRF) algorithm that takes as input the entire

vector x, trains an ensemble of decision trees, and outputs the desired quantile and density functions.

The partition rules learned by QRF can be very complex, much more than simply aggregating x

conditionally to the queue length as in Section 3.1.
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The QRF is implemented and trained identically to an ordinary RF, except that each leaf of a tree

retains in memory the list of errors ε(k,x) for all training predictors x that ended in this leaf, instead

of only the average ε(k,x) as in a RF. That is, QRF is not trained specifically to predict the quantiles

or the density function, but it is a by-product of an RF trained to predict the expectation of ε(k,x).

Each decision tree v of the QRF defines a complete partition of the space of x, and consequently of

the training data set, say X̂ = ∪Lv

l=1X̂
v
l , where Lv is the number of leaves in tree v. Identical values of

x always fall in the same leaf of the tree v. However a leaf can be the end node for a large number of

different states x, with different prediction errors ε(k,x). The collection of these ε(k,x) is then used

to estimate the probability distribution of ε(k,x) for the x that belong to that leaf.

After completing the training stage, QRF estimates the α-th quantile of the error ε(k,x′) for a given

input x′ as follows. For each decision tree v, it identifies the terminal leaf lv(x
′) to which x′ belongs,

after traversing through the branches of the tree. Next, it computes the empirical α-th quantile from

the saved list of all values of ε(k,x) for x ∈ X̂v
lv(x′) in the training set. These steps are repeated for

every decision tree in QRF, and a weighted average of the α-th quantiles is finally returned.

To estimate the density conditional on some state x′ with the QRF, we take the saved list of all

values of ε(k,x) for x ∈ X̂v
lv(x′) in the training set, and merge these lists for all trees v into a single list

of observations. Then a KDE is constructed by using these observations, to obtain a predicted density

that depends on x′. Figure 5 shows an example with five density functions estimated via QRF (in

black) for five different vectors x with the same queue length qk = 2. These densities are compared

with the direct KDEs (in red) obtained as explained in Section 3.2, by using all the values of x for

which qk = 2. The QRF-based density estimator depends on more than just k and qk.
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Figure 5: Densities predicted by QRF (in black) for five different input vectors x, lying in different tree leaves but having
the same queue size qk = 2, for some call type k. The KDEs obtained for all x with qk = 2 are shown in red, for comparison.

Training a QRF model requires substantially more computing power and CPU time than fitting

a parametric distribution. It also involves many more parameters, which need to be saved after the

training. On the other hand, we only need to train one QRF for each call type, since the quantile

regression is conditional on the entire vector x. QRF has likely a higher learning capacity than a

parametric model, but it also faces a larger risk of overfitting. In Section 5, we compare it empirically

to the more classical KDE and to parametric methods, with the call center data. In all our experiments,

we use the QRF implemented in the R package quantregForest [29]. The learning capacity can be

adjusted by changing the number and the depth of the decision trees, but the results reported in this

paper were obtained with the default values.

4 Numerical experiment setup

Before presenting our numerical results, we describe our methodology for comparing the prediction

algorithms for the expected delay times and the density functions. We have data for two call centers.
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The first is the call center of a small bank in Israel and the second is from a large information

technology (IT) company located in the Netherlands. We will refer to them as the Bank and IT call

centers, respectively. The data set for each call center contains exactly one year of observations, from

January 1 to December 31 (but for different year). We partition each data set chronologically as

follows: the first 80% of the data is the training set and the remaining 20% is the test set.

First, we identify the important predictive features of the delay time by using the Boruta algorithm,

as explained in Section 2.2. For both the Bank and IT call centers, the features vector was chosen as

x = (q, a, l, s, n, t) where q is the vector of queue sizes for all call types, a and l are the delay prediction

by AvgC-LES and by LES, respectively, s is the number of agents that can serve this call, n is the

total number of agents, and t is the time of arrival of the call.

We train the regression-based predictors (RS, LR, ANN) to predict the mean waiting time, using

the training set. We compare their accuracy to those of the (simpler) DH predictors, which do not

require any training, based on the RRASE score, computed over the test set.

To compare the density predictors, we select ANN as the point predictor of the mean delay time,

because it often displays the best accuracy in our experiments. The training set for the density

predictors is the set of prediction errors obtained by the ANN over its training set. Then, we fit or

train a parametric log-logistic distribution (LLOG), a KDE, and a QRF.

Because the true density function of the prediction error is unknown, we compare the coverages

of 90% PIs instead, as well as the coverages of the tails. That is, we use the estimated conditional

density to compute a 90% PI on the answering time (or equivalently the wait time) of each call. Once

we know the true answering time, we can check where it lies among the three following possibilities (1)

to the left of the PI; (2) inside the PI; (3) to the right of the PI. Then we can compute the proportion

of calls falling in each of the three categories. Ideally, there should be 5% in each of categories (1)

and (3), and 90% in category (2). In our numerical experiments, we compare the observed proportions

to these ideal ones. We also do the same with a 80% PI.

5 Experiments with data from a bank call center

5.1 The call center and available data

Our first data set is from the small call center of a bank in Israel, recorded over the entire year of

1999. This center operates from 7:00 to midnight on weekdays (Sunday to Thursday), and on weekends

(Friday to Saturday) it closes at 14:00 on Friday and reopens at around 20:00 on Saturday. There are

five inbound call types, one outbound type, and the center has eight working agents on average.

About 65% of the calls are served by the Interactive Voice Response (IVR) unit and leave without

interacting with an agent. For the other 35%, the customer wants to speak to an agent. If no idle

agent is available, the customer is placed in a queue and receives information on the queue size and

the waiting time of the customer at the head of queue (the HOL predictor). The customers are served

in first-come-first-served (FCFS) order. Table 1 gives a statistical summary of the arrival counts and

wait times during the year. Type 1 has by far the largest volume.

Table 1: Statistical summary of arrival counts and waits for the Bank call center.

Call type 1 2 3 4 5

Total number calls 302 522 67 728 39 342 20 732 12 295

Served, no wait 42% 34% 36% 30% 44%
Served, waited 46% 36% 56% 51% 46%
Abandon 11% 30% 8% 19% 10%

Avg wait time (sec) 99 145 121 167 138
Avg service time (sec) 187 124 263 369 274
Avg queue length 6.3 2.5 2.0 1.7 0.9
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5.2 Experimental results on predictions

We first report in Table 2 the RRASE for six predictors of the mean delay. We see that all the

learning-based predictors are more accurate than the DH predictors. RS and ANN are the most

accurate. Among the DH predictors, AvgC-LES gives the best performance and is not too far from

RS and ANN for call type 1.

Table 2: The Bank call center: RRASE of the four largest-volume call types (lower is better). The RS and ANN are the
most accurate predictors here.

DH predictors Learning-based predictors

Type Avg-LES LES AvgC-LES RS LR ANN

1 0.925 0.941 0.765 0.731 0.737 0.701
2 0.980 0.990 0.933 0.762 0.849 0.751
3 0.922 0.941 0.853 0.725 0.750 0.737
4 1.348 1.541 1.320 1.178 1.205 1.185

Tables 3 and 4 compare the PI coverages for the error on the delay prediction for call type 1 by

ANN, when the density of the prediction error is estimated by the QRF, the fitted LLOG, and the

KDE, as explained in Section 3. We tried both 90% and 80% PIs. Recall that QRF is trained only

once with all the vectors x in the training data set, whereas LLOG and KDE are fitted separately for

each queue size qk.

The coverages were computed as explained in the last paragraph of Section 4. For each call

(represented by x) in the test set, the expected delay was estimated using the ANN predictor, and the

estimated 5%, 10%, 90%, and 95% quantiles of the prediction error were also computed using each of

the three methods: QRF, LLOG, and KDE. Because there are few data for large queue size, all x for

which q1 > 5 were grouped together. We computed the percentages of calls falling in each of the three

categories (1) to (3), for both the 90% and the 80% PI’s. The percentages are reported in the tables.

For call type 1, QRF clearly has a much better coverage accuracy than LLOG and KDE, with values

that are fairly close to the desired coverage levels.

Table 3: The Bank call center, call type 1: Coverage percentage of a 90% PI and of the 5% tail on each side for the test
data set, for different queue sizes.

Queue < 5% [5%, 95%] > 95% Total

size QRF LLOG KDE QRF LLOG KDE QRF LLOG KDE obs

0 5.05 10.25 2.76 92.02 89.21 96.88 2.94 0.53 0.35 6222
1 5.06 11.06 5.33 90.27 88.58 93.62 4.66 0.35 1.03 4738
2 5.10 9.42 13.36 89.28 90.26 85.97 5.60 0.31 0.66 3173
3 5.57 9.91 11.29 89.08 89.41 87.62 5.33 0.66 1.08 2117
4 4.47 8.95 9.84 91.34 90.00 87.99 4.17 1.04 2.16 1340
5 4.58 9.27 9.05 89.60 89.38 87.70 5.81 1.34 3.24 895

≥ 6 5.64 13.14 10.26 89.95 85.24 87.71 5.41 1.62 2.01 1294

Table 4: The Bank call center, call type 1: Coverage percentage of a 80% PI and of the 10% tail on each side for the
test data set, for different queue sizes.

Queue < 10% [10%, 90%] > 90% Total

size QRF LLOG KDE QRF LLOG KDE QRF LLOG KDE obs

0 9.77 14.15 17.76 81.28 82.29 81.71 8.95 3.55 0.53 6222
1 10.13 16.36 18.80 78.75 81.17 80.77 11.12 2.47 0.42 4738
2 9.90 15,73 16.75 79.55 81.31 81.54 10.56 2.96 1.71 3173
3 9.49 15.54 15.78 79.88 82.38 82.05 10.63 2.08 2.17 2117
4 7.90 14.62 14.54 83.00 82.48 81.73 9.10 2.91 3.73 1340
5 8.04 16.42 15.53 81.01 81.56 80.34 10.95 2.01 4.13 895

≥ 6 10.20 17.77 15.77 80.14 80.76 78.83 9.66 1.47 5.41 1294
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Table 5 shows some details on the values of the 10% and 90% quantiles that delimit a 80% PI that

would be announced to a customer in the test set, aggregated by the queue size. For a fixed queue size,

LLOG and KDE return constant estimates for the quantiles, because they estimate the density as a

function of the queue size only. QRF, on the other hand, returns quantile estimates that depend on x,

so it can return very different values for the same queue length qk. In the table, we give the mean and

standard deviation of these values for each qk. As expected, the width of the 80% PI increases with

the queue size for all three predictors. Figure 6 compares the density functions obtained by LLOG

fitting and by a KDE. LLOG has better fit when the queue is longer, but it has significant fitting error

when the queue is short (sizes 0, 1 and 2),

Table 5: The Bank call center, call type 1: the mean and standard deviation of the 10% and 90% quantiles on the
predictor error for QRF, and the actual quantiles for LLOG and KDE, conditional on the queue size.

10% 90%

Queue QRF LLOG KDE QRF LLOG KDE
size mean std dev. mean std dev

0 -64.85 27.97 -40.70 -30.62 31.89 7.92 39.99 55.73
1 -92.59 34.26 -58.26 -49.17 49.63 11.73 67.32 88.67
2 -109.12 36.57 -75.14 -71.16 69.72 13.93 90.13 101.84
3 -126.86 42.03 -85.79 -84.67 85.92 18.63 120.13 118.55
4 -140.02 44.92 -90.10 -91.48 98.12 22.80 126.39 120.07
5 -152.08 46.95 -97.73 -101.33 105.77 28.96 152.54 129.03

≥ 6 -176.40 62.09 -107.98 -118.73 121.04 36.89 214.05 161.03
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Figure 6: The Bank call center, call type 1: Estimated density of the prediction error (in seconds) for fitted LLOG and
the KDE, conditional on the queue size.
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6 Experiments with data from an IT call center

6.1 The available data

This is a call center of an information technology (IT) company located in The Netherlands. The

data was collected over the entire year of 2014, and contains a total of 1,543,164 call logs. The

center operated from 8:00 to 20:00 on weekdays (Monday to Friday), and served 27 call types with

approximately 312 agents. About 56% of the calls have received service immediately, 38% have waited

before getting a response, and 6% have abandoned. In this study, we consider only the five call types

(type 1 to 5) that represent the largest volume of incoming calls (more than 90% of the total volume).

Table 6 gives a statistical summary of the arrival counts, wait times, and service times, for the five

call types.

Table 6: The IT call center: a statistical summary of arrivals counts and waits during the year. Adapted from [37].

Type 1 Type 2 Type 3 Type 4 Type 5

Total number calls 568 554 270 675 311 523 112 711 25 839

Served, no wait 61% 52% 55% 45% 34%
Served, waited 35% 40% 40% 46% 54%
Abandon 4% 7% 5% 8% 12%

Avg wait time (sec) 77 91 83 85 110
Avg service time (sec) 350 308 281 411 311
Avg queue length 8.2 3.3 4.4 4.3 0.9

We partition the week days in two categories, according to the arrival patterns and volumes.

Monday forms its own category, while the four others days (Tuesday to Friday) form the second

category. For each call type k, we built two sets of prediction functions, one for each category. In

this paper, we report prediction results for the second category, for which we have more data. Results

on the prediction of the expected wait time were already presented in [37], but that paper did not

consider quantile and density prediction. We summarize the wait time prediction results here for the

sake of completeness.

6.2 Experimental results on predictions

Table 7 compares the RRASE values of six different predictors of the mean delay time, namely three

DH predictors and three learning-based predictors. ANN is the clear winner among those six.

Table 7: The IT call center: the RRASE for the five call types. The ANN has the best accuracy, followed by RS.

DH predictors Learning-based predictors

Type Avg.LES LES AvgC-LES RS RL ANN

Type 1 0.489 0.443 0.443 0.396 0.415 0.361
Type 2 0.610 0.565 0.577 0.492 0.515 0.462
Type 3 0.567 0.516 0.518 0.455 0.471 0.448
Type 4 0.487 0.424 0.445 0.395 0.385 0.377
Type 5 0.697 0.661 0.624 0.501 0.517 0.487

Tables 8 and 9 compare the PI coverages exactly as in Tables 3 and 4, for call type 1 of the IT call

center. In contrast with the Bank call center, here the KDE gives the coverage closest to the target

for the 95% and 90% quantiles (the right tail). For the 5% and 10% quantiles (the left tail), QRF does

better when the queue size is small whereas the KDE is more accurate for longer queue sizes. LLOG

lags behind.
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Table 8: The IT call center, call type 1: Coverage percentage of a 90% confidence predictor and of the two 5% tails for
the test data set, for different queue sizes.

Queue < 5% [5%, 95%] > 95% Total

size QRF LLOG KDE QRF LLOG KDE QRF LLOG KDE obs

0 4.79 10.34 8.15 93.93 85.36 86.28 1.27 4.29 5.55 3778
1 5.93 9.60 7.60 90.54 86.81 87.13 3.52 3.57 5.25 3693
2 5.48 9.29 7.07 90.37 87.86 88.17 4.13 2.83 4.75 3407
3 6.22 9.38 7.32 89.92 87.57 87.78 3.85 3.04 4.88 2907
4 6.34 8.55 6.26 89.45 88.59 88.73 4.20 2.85 5.00 2380
5 6.94 8.44 6.25 89.14 88.17 88.95 3.91 3.37 4.78 2046

≥ 6 8.36 6.54 5.32 86.54 90.77 89.69 5.11 2.69 4.99 10837

Table 9: The IT call center, call type 1: Coverage percentage of a 80% PI and for the two 10% tails, for the test data
set, for different queue sizes.

Queue < 10% [10%, 90%] > 90% Total

size QRF LLOG KDE QRF LLOG KDE QRF LLOG KDE obs

0 10.08 14.74 12.73 84.20 78.22 76.83 5.72 7.04 10.45 3778
1 11.40 14.32 12.48 79.53 78.45 77.23 9.07 7.23 10.29 3693
2 11.24 14.31 12.15 79.63 77.92 77.90 9.13 7.77 9.95 3407
3 11.35 14.62 12.32 80.29 77.85 77.74 8.36 7.53 9.94 2907
4 11.64 13.53 11.39 79.87 79.12 78.61 8.49 7.35 10.00 2380
5 12.70 13.10 11.32 79.46 79.52 78.59 7.84 7.38 10.09 2046

≥ 6 13.89 13.37 10.36 77.14 78.54 80.19 8.97 8.09 9.45 10774

Tables 10 and 11 show a different story for call type 2. QRF clearly dominates in the left tail,

whereas in the right tail, LLOG wins for small queue sizes and QRF catches up for larger queue sizes.

Figure 7 compares the density functions given by LLOG and KDE from the training data set. There is

significant fitting error when the queue size is short (0 to 2), but it improves when the queue is larger.

Overall, the coverage accuracies from LLOG and KDE are relatively similar.

Table 10: The IT call center, call type 2: Coverage percentage of a 90% PI and of the 5% tail on each side for the test
data set, for different queue sizes.

Queue < 5% [5%, 95%] > 95% Total

size QRF LLOG KDE QRF LLOG KDE QRF LLOG KDE obs

0 5.37 9.39 11.95 93.21 85.30 85.19 1.41 5.30 2.85 4450
1 6.45 11.46 13.77 90.65 83.82 83.30 2.88 4.71 2.91 3672
2 7.05 13.19 16.53 89.53 83.01 81.03 3.41 3.79 2.42 2637
3 8.28 15.96 18.78 88.01 80.00 78.50 3.70 4.03 2.70 1810
4 7.11 12.76 13.53 88.07 81.95 82.26 4.81 5.27 4.20 1308
5 6.92 14.18 14.18 87.48 81.67 82.12 5.58 4.13 3.68 895

≥ 6 7.65 13.21 11.67 87.61 84.29 85.72 4.74 2.50 2.60 1961

Table 11: The IT call center, call type 2: Coverage percentage of a 80% PI and of the 10% tail on each side for the test
data set, for different queue sizes.

Queue < 10% [10%, 90%] > 90% Total

size QRF LLOG KDE QRF LLOG KDE QRF LLOG KDE obs

0 11.98 12.90 13.65 82.22 77.51 67.59 5.80 9.60 18.76 4450
1 12.23 16.04 19.20 80.28 75.52 74.65 7.49 8.44 6.15 3672
2 14,26 18.54 21.05 78.27 74.59 74.52 7.47 6.86 4.44 2637
3 16.08 21.22 23.37 76.08 71.22 71.16 7.85 7.57 5.47 1810
4 13.23 17.43 17.97 76.76 73.39 74.77 10.02 9.17 7.26 1308
5 12.74 19.89 19.89 78.10 71.51 73.30 9.16 8.60 6.82 895

≥ 6 14.13 21.62 20.49 77.72 72.97 74.29 8.28 5.41 5.28 1961
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Figure 7: The IT call center, call type 2: Density function of the prediction errors for LLOG and KDE, conditional on the
queue size.

Figure 8 shows Q-Q plot of the empirical distributions from the training data set and the test data

set, for queue size from 2 to 5. These distribution of the training set and test set are different in the

tails, especially when the error is negative (i.e., the delay is higher than predicted). The significant

difference for qk = 3 can be seen from the coverage values in Tables 10 and 11.

7 Conclusion

We discussed and compared empirically different predictors for the waiting time of a call (or customer)

when this call arrives at a multi-skill call center. The more accurate predictors among those examined

are the predictors based on regression methods and automatic learning, and more specifically the

predictors defined by deep multilayer neural networks, at least when enough data is available. We also

examined different ways of modeling the distribution of the prediction error and estimating its density

and its quantiles. We tried fitting known parametric distributions as well as a KDE to the observations

of this prediction error conditional on the queue length, and the KDE usually gives a better fit even

for the independent test data. But another non-parametric method named QRF, based on the random

forest methodology, gave the best results in the majority of cases and performed reasonably well in

general. On the flip side, this method is computationally more intensive. Suggestions for follow-up

work include studying large call centers in which the waiting times are much longer, studying wait

time predictions in other types of service systems (e.g., healthcare clinics), and trying to find better

methods to estimate the density of the wait times.
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Figure 8: The IT call center, call type 2: Q-Q plot of the empirical distributions between the training data set and the
test data set.
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