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The series Les Cahiers du GERAD consists of working papers carried
out by our members. Most of these pre-prints have been submitted
to peer-reviewed journals. When accepted and published, if necessary,
the original pdf is removed and a link to the published article is added.

CITATION ORIGINALE / ORIGINAL CITATION

Adil Khurram, Roland Malhame, Luis A Duffaut Espinos Duffaut Espinosa, Mads Almassalkhi, Identification of Hot Water
End-use Process of Electric Water Heaters from Energy Measurements, Power Systems Computation Conference 2020, Porto,
Portugal, 2020 https://pscc-central.epfl.ch/repo/papers/2020/428.pdf.

La publication de ces rapports de recherche est rendue possible grâce
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• Peuvent télécharger et imprimer une copie de toute publica-
tion du portail public aux fins d’étude ou de recherche privée;

• Ne peuvent pas distribuer le matériel ou l’utiliser pour une
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Abstract : This paper presents an algorithm for the identification of parameters for a stochastic
hot water end-use process that drives a homogeneous population of thermostatically controlled electric
water heaters (EWH). Usually, only metered interval consumption data (kWh) is collected and the hot
water end-use process is unobservable to utility and aggregators. However, the availability of EWHs
for demand response (DR) is closely coupled with the hot water end-use process. In this context, the
hot water end-use process is modeled as a two-state Markov chain (Use / No use), which causes the
thermostatic ON-OFF switching process to behave as a Markov renewal process (MRP). A set of first
passage-time problems is developed to obtain the moments of the transition probability densities of the
MRP. These problems are addressed by establishing a system of coupled partial differential equations
characterizing the temperature evolution of the EWH population. A key quantity in the methodology
for estimating the parameters is the total time an EWH is ON within a period of interest. It is referred
to as the total busy time. Total busy time in this approach is a random variable for which analytical
expressions of the moments are developed as a function of the metered window length. The latter
expressions become the basis of a hot water demand model identification algorithm which is validated
using agent-based simulations of EWHs.

Keywords: Electric water heaters, demand response, estimation, Markov renewal processes, first
passage time
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1 Introduction

Connectivity is becoming ubiquituous and, with smart appliances today, it is technically and eco-

nomically feasible to leverage available distributed energy resources (DERs), such as “smart” air-

conditioners and electric water heaters (EWH) to provide ancillary services using demand dispatch [1].

In demand dispatch, the DERs are aggregated, coordinated, and dispatched to provide grid services

while taking into account local quality of service (QoS) requirements for the end-users. For example,

the QoS requirement for EWHs dictates the temperature range specifying the device’s thermostatic

controller parameters needed to ensure that water in the tank is maintained within a desirable tem-

perature range. Together with QoS requirements, the DER end-use dynamics, such as hot water

extraction rates from an EWH, place limits on the feasible range of demand dispatch schemes. This is

because QoS specifications and end-use dynamics together determine the nominal power consumption

of the device. Since QoS specification (e.g., temperature range) do not change over time, they are

static and relatively simple to model. However, end-use is generally a stochastic process and strongly

affects nominal power consumption of a DER. Thus, having an accurate estimate of the uncontrollable

end-use process can be valuable to predict performance of demand dispatch schemes.

Several DER control architectures have been proposed in the literature for demand dispatch schemes

and a variety of local/distributed control policies to model the aggregate response (or flexibility) of

DER populations [2–6]. Their overall aim is to utilize the flexibility available from the DERs while

preserving QoS. However, these aggregate models assume that the underlying end-use process is known

a priori, which in a practical setting is generally not the case. In other words, the expected capability

of these demand dispatch schemes strongly depends on knowing the end-use process. In this paper, we

propose a method to overcome this challenge by estimating representative end-use process parameters

for a population of EWHs only from measured electric utility meter data (kWh) and physical water

heater parameters.

Aggregate models of DERs generally assume the underlying end-use process to be white noise with

drift that represents the fluctuations in energy due to uncontrollable end-user events as in [3]. The

aggregated heat loss or gain due to end-user events in the case of heating and cooling loads such

as electric space heaters and refrigerators can be accurately represented by the white noise process.

However, the energy losses in an EWH are only due to: (i) water extraction from the tank and (ii)

standing losses due to ambient conditions. Therefore, white noise is not an adequate representation

of the end-use process for EWHs [7]. In [8], the end-use process is described by a Poisson random

pulse (PRP) with randomized pulse amplitudes and widths, which is representative of the physics of
water extraction processes [7]. While a hot water end-use process consists of varying water extraction

rates, this paper focuses on a two state continuous-time Markov chain with constant water extraction

rates as a starting point for the challenging stochastic parameter estimation problem [9]. Relatively

constant periods of hot water extraction rates is a reasonable assumption due to the correlated nature

of human activities over the hours of a day.

The literature on estimating end-use process parameters include data-driven methods [10], where

historical electric meter data is used to develop regression-based models for load forecasting purposes.

However, these “business as usual” regression-based models are insufficient to predict both DER be-

havior and the effect on QoS when subjected to demand dispatch [9]. A method to generate hot water

profile based on average energy consumption per activity such as bath and laundry is developed in [11].

Statistical models using time use data of daily activities of household members gathered from surveys

such as American Time Use Survey (ATUS) data or time use data by Statistics Sweden (SCB), to

predict the controlled load behavior have been developed to tackle this modeling gap [12–15]. These

household activity data inform a model about the interaction between humans and their appliances.

Then, the models are aggregated to predict the energy consumption of all residential households.

While this approach is promising, it relies on high fidelity data, which is usually unavailable and not

generalizable.



Les Cahiers du GERAD G–2020–80 2

The impact of utility control on the load behavior can be seen from Figure 1 which shows the

aggregate power consumption of approximately 1700 EWHs in Vermont over several days. Daily

profiles of power consumption usually consist of a morning peak, between 7 am and 9 am in Figure 1

and an evening peak. In this figure, the utility turned OFF all water heaters between 2pm to 6pm

resulting in cold load pick-up setting a peak right after 6pm. This peak is significantly different than

the one observed in the morning and is due to the type of demand response program deployed by

the utility. Note that the aggregate demand profile of EWHs can be divided into hourly periods of

relatively constant demand as characterized by constant water extraction rates. Therefore, capturing

the underlying water extraction process is helpful to predict even the controlled load dynamics as

shown herein.

Figure 1: Average power consumption of 1700 real EWHs in VT.

This paper builds on and extends the estimation methods presented in [9, 16, 17] where physics-

based models of electric space heaters are employed. The estimation scheme first introduces a total

busy-time random variable defined as the total ON time of the heater within fixed-time intervals.

The rationale for defining this quantity is that by splitting the power consumption data of an electric

water heater into periods of stationary statistics, one can relate the total thermostat ON time to

the underlying likewise stationary water extraction statistics. Recursive relations for the moments of

the total busy time are then used to develop an estimation algorithm for calculating the parameters

of the stochastic hot water end-use process [9]. This paper extends the estimation scheme to the

physically-based models of electric water heaters with two key contributions:

(1) The analytical results from [7], which were only valid for low water extraction rates have now

been generalized to the case of arbitrary water extraction rates. This includes: (i) The generalization

of the coupled Kolmogorov equations representing the aggregate dynamics of a homogeneous group of

EWHs to the case of arbitrary water extraction statistics; and (ii) the development of an adequate

set of first passage-time probability density functions that are used to obtain the moments of the total

ON time over fixed time windows.

(2) From the analytical contribution, a practically relevant identification procedure is developed

and validated for estimating stochastic parameters of the unmeasured, hot water end-use process

based only on interval meter readings and physical (tank) parameters for a homogeneous population

of EWHs.

2 Overview of identification procedure

This section provides a overview of the inputs and outputs of the identification procedure, as illustrated

in Figure 2.
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2.1 Availability of the metered data

In general, gathering data on hot water end-use processes requires expensive, device-level flow meters.

In rare cases, sensors may be available to measure water extraction rates for the entire residence (all

water) or device-level (hot water only) [18]. Furthermore, it can be seen from Figure 1 that the power

consumption of electric water heaters driven by the end-use process vary significantly throughout a day

since it is a non-stationary random process. However, it can be considered stationary during durations

of near-constant electric demand [7, 17], e.g. the morning peak between 7am and 9am in Figure 1.

Thus, we classify the daily kWh meter data into periods of statistically stationary hot water usage

and propose the estimation strategy on one such period. This strategy can easily be generalized to

multiple distinct periods that make up a representative day or a week.

2.2 The electric water heater model

The EWH considered herein consists of a first-order, simplified model with just a single equivalent

heating element and an “average,” lumped temperature state. The hot water is extracted from the

top of the tank and the cold water enters from the bottom. The temperature dynamics are governed

by the following ordinary differential equation (ODE),

dx(t)

dt
=
P ratem(t)

cρLη
− (x(t)− xa)

τL
− (x(t)− xin)

60L
w̄(t), (1)

where x(t) is the average temperature of the electric water heater, xin is the temperature of the cold

water entering through the tank inlet, xa is the ambient temperature, c = 4.186 [kJ/kg-oC] is the

specific heat capacity of 50◦C water, ρ = 0.988 [kg/liters] is the density of hot water, L [liters] is the

capacity of the water heater tank, P rate is the rated power in kW of the heating element, η is the

heat transfer efficiency, τL is the time constant representing the standing losses. The uncontrollable

rate at which hot water is extracted from the tank is given by w̄(t) := w(t)q(t) [liters/min], where

q(t) ∈ {0, 1} is the logic state for the hot water usage process, i.e., q(t) = 1, if water is extracted from

the tank at rate w(t) [liters/min] at time t; else w̄(t) = q(t) = 0. The EWH operates in thermostat

mode and m(t) ∈ {0, 1} represents the physical state of the mechanical relay (open ≡ 0) at time t.

The thermostat control logic maintains the temperature within the user-specified, fixed dead-band

[x−, x+], x− < x+. The logic switches from ON (m(t) = 1) to OFF (m(t) = 0) at the upper boundary

(x+) and from OFF to ON at the lower boundary (x−).

This paper considers the case of a homogeneous group of electric water heaters whose physical

parameters and dead-band settings are known from manufacturer specifications and user-preferences,

respectively. Energy measurements are then used as proxies for the time an EWH is ON within a time

window of interest and referred to as the total busy time. The moments of the total busy time random

variable are derived in Section 5. The proposed estimation strategy, shown in Figure 2, takes as input

the energy measurements and computes the total busy time within successive time windows of interest.

Statistics of the total busy time along with the physical parameters of a homogeneous group of EWH

are used to estimate the parameters of the unobservable end-use process, which is mathematically

described in the next section.

Get moments of 
occupation time 

Estimation 
from 

moments

1. Measured kWh data
2. EWH parameters e.g. tank 
size, rating of heating element

Input

Parameters of 
end-use 
process

Output

Figure 2: Overview of the end-use process identification problem.
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3 Modeling of the hot water end-use process and estimation

This section describes the modeling of water heater end-use process and the corresponding Markov

renewal process (MRP) defined at the switching instants of the thermostat. A set of first passage time

problems are then presented to determine the transition density functions of the MRP.

3.1 Modeling water heater end-use process

Consider the rate of hot water extraction from the tank of an individual EWH to be constant (i.e.,

w(t) ≡ W ). Then, the hot water end-use process is either in demand (q(t) = 1) or not in demand

(q(t) = 0), and evolves according to what is assumed to be a two-state ({0, 1}) Markov chain model

q(t) (see [7]). The corresponding time invariant transition probabilities are given by,

P (q(t+ h) = 1 |q(t) = 0) = λ0h+ o(h) (2)

P (q(t+ h) = 0 |q(t) = 1) = λ1h+ o(h) (3)

where h > 0 is a small time increment. The electric water heater operating under this simplified

demand process maintains the temperature within the deadband by the operation of the thermostat

switch. A Markov renewal process, y(t) is defined by recording the thermostatic switching instants

(m(t)) which occur at the edges of the deadband [7]. The Markov renewal process, y(t) consists of

four states {0, 0′, 1, 1′}, as illustrated in Figure 3, where 1 represents the onset of a power consumption

without hot water use, 1′ indicates the onset of a power consumption in the presence of hot water use.

Similarly, 0 denotes the onset of a power interruption with no hot water use and, finally, 0′ indicates

the onset of a power interruption but with hot water use. The transitions between states can only

occur at the edges of the deadband, i.e. the switching instants of the EWH’s thermostat transitions

from 1 to 0, if x(t) = x+ without hot water use and transitions from 1 to 0′, if x(t) = x+ with hot

water use. The remaining transitions follow in a similar fashion. Note that Figure 3 also includes the

first passage time probability density functions, gij(t), which are defined as,

gijdτ := P [t ≤ t̄ < t+ dτ, y(t̄) = j] , (4)

∀i, j = {1, 1′, 0, 1′}, where t̄ is the first time the MRP y(t) switches to state j given that y(t) has just

switched to state i at t = 0. The transitions between the states 1 and 1′ and 0 and 0′ are not possible

since the MRP y(t) as defined, switches state only when the thermostat changes state, at which time

the end-use state q(t) is also recorded . More specifically, g11′(t) = g1′1(t) = g00′(t) = g0′0(t) = 0.
In the next subsection, the statistical evolution of the ensemble of homogeneous EWHs is obtained

from two coupled Kolmogorov equations with boundary conditions. These equations are then used to

express the gij probability density functions.

3.2 Partial differential equation description of load dynamics

The probability density functions, fi, fi′ , associated with the Markov process consisting of the contin-

uous state x(t), the discrete state m(t) and the hot water end-use process q(t) are defined by,

fi(λ, t)dλ = P [λ ≤ x(t) ≤ λ+ dλ,m(t) = i, q(t) = 0] (5)

fi′(λ, t)dλ = P [λ ≤ x(t) ≤ λ+ dλ,m(t) = i, q(t) = 1] (6)

for i = {1, 0}. The probability density functions satisfy the following system of coupled partial differ-

ential equations [7],

∂

∂t
~fi(x, t) = Vi

∂

∂x
~fi(x, t) + Λ> ~fi(x, t) (7)



Les Cahiers du GERAD G–2020–80 5

1

Power consumption
      (measured)

End-use process
(unobservable)

Markov renewal process

1'

0'0

0 1

1

0

y(t)

m(t)

q(t)

g01

g10

g01′

g1′0

g0′1

g10′

g0′1′

g1′0′

λ0
λ1

Figure 3: State transition diagram of the Markov renewal process.

where,

~fi(x, t) =

[
fi(x, t)
fi′(x, t)

]
, Vi = diag{vi, v′i}, (8)

Λ =

[
λ0 −λ0

−λ1 λ1

]
, vi =

x− − xa
τ

−
(
P rate

cρLη

)
i,

vi′ =
x− − xa

τ
−
(
P rate

cρLη

)
i+A,

for all i ∈ {0, 1}, where A := x−−xin

60L W is the heat loss from the tank due to hot water extraction.

In A, note that variable x(t) has been replaced with constant x− in order to make the analysis more

tractable. This is an acceptable approximation since the exact loss rate should not vary too much over

a small (a few degrees) temperature deadband. The cooling rates are represented by, v1, v1′ ≤ 0 when

thermostat is ON, and v0, v0′ when the thermostat is OFF. The conditional transition probability

functions gij(t) are obtained by the first passages of the x(t) temperature process to the x− or x+

boundaries. The corresponding transition probability functions are given by (see [7])

gij(t) = vifi(x+, t), (9)

gji(t) = vjfj(x−, t), ∀ i = {1, 1′}, j = {0, 0′}. (10)

In the next subsection, we use (7), (9) and (10) to derive a set of recursive equations yielding analytical

expressions of any order moments of the gij(t) first passage-time densities.

3.3 High water usage case and the first passage time problems

The previous section introduced the coupled system of PDEs that govern the time evolution of the

probability density functions ~fi(x, t) away from the edges of the thermostat deadband. It should be

noted here that v1 ≤ 0 and v1′ ≤ 0 represents the case of low hot water use in which the temperature

of the tank increases in the presence of hot water use. However, during periods of high hot water use,

the tank temperature decreases instead and is characterized by v1 ≤ 0 and v1′ > 0. The first passage

time analysis for the case of lower hot water use was developed in [7]. In this section, the focus is on

the more important case of high hot water use in which the temperature decreases in the presence of

hot water use even though the thermostat is ON which is represented by v1 ≤ 0, v1′ > 0 in the system

of coupled PDEs.
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Theorem 1 Let ~mk(x) :=
[
m

(1)
k (x),m

(1′)
k (x)

]>
be the vector of moments of the kth order corresponding

to the vector probability density function: ~f1(x, t), k ≥ 0. The vectors ~mk(x) satisfy the following

recursive system of linear ordinary differential equations (ODE):

d

dx
~m0(x) = V −1

1 Λ> ~m0(x) + V −1
1

~f1(x, 0), (11)

and for all k ≥ 1, we have

d

dx
~mk(x) = V −1

1 Λ> ~mk(x)− kV −1
1 ~mk−1(x), (12)

with the absorbing boundary conditions ~f1(x+, t) = ~0 and ~f1(x0, t) = ~0, where −∞ < x0 < x−,~0 ∈ R2×1

and the initial condition,

~f1(x, 0+) =

[
δ(x− x−)

0

]
(13)

for the first passage time in 1 and

~f1′(x, 0
+) =

[
0

δ(x− x−)

]
(14)

for the first passage time in 1′. Further defining,

~Γk(x)> =
[
~m0(x) ~m1(x) . . . ~mk(x)

]
, (15)

it obeys the following ODE,

d

dx
~Γk(x) = Ak~Γk(x) +Bkuk(x) (16)

Ak =


V −1

1 Λ> 0 0 . . . 0
V −1

1 V −1
1 Λ> 0 . . . 0

0 2V −1
1 V −1

1 Λ> . . . 0
... 0

. . .
. . . 0

0 . . . . . . kV −1
1 V −1

1 Λ>



Bk =


V −1

1 0 . . . 0
0 I . . . 0
...
0 0 0 I

 , u(x) =


~f(x, 0)

0
...

0


with the condition,

lim
x0→−∞

~Γ(x0) = 0, −∞ < x0 < x−. (17)

Proof. See Appendix A

It should be noted here that in the case under consideration of high water usage, MRP y(t) can only

exit from 1 and 1′ in state 0, owing to the fact that temperature always decreases in the presence of

water demand. Furthermore, one can derive a similar system of equations for the moments starting

at 0 or 0′. It is omitted for lack of space.

The previous theorem provides initial conditions, boundary conditions and a system of linear ODEs

to carry out first passage time computations under high water extraction rates. By solving the system

of ODEs in (16) one can derive analytical expressions of the moments of the first passage time densities

gij . First passage time process is conceptually depicted in Figure 4. It follows the temperature of an

EWH and corresponding MRP states visited, as it enters the lower edge (x−) in state 1 and transitions

to 0 at the top edge (x+) of the deadband. Within the deadband, temperature decreases with rate −v1′

when water is being extracted from the tank and increases otherwise with rate −v1. The particular

set-up of Figure 4 is used to obtain the moments of g10 and g10′ .
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Figure 4: This figure illustrates the first passage time process starting at the lower edge of the deadband (x−) in state 1
(thermostat ON and without hot water use). The first passage time corresponds to the first time the temperature reaches
the upper boundary (x+) of the deadband.

4 Illustrative example

In this section, an illustrative example is presented for the first passage time moment calculations

described in the previous section. These moments lead to approximate analytical expressions for

the transition probability density functions gij that are essential to relate the statistics of the power

consumption data to the end-use process.

4.1 Solution of first passage time problems

Consider a homogeneous group of electric water heaters with cooling rates v1, v1′ and v0, v0′ and

simplified case of two moments, i.e., ~m0(x) and ~m1(x). The linear system (16) can be written for the

first passage time in 1 as,

d

dx
~Γ1(x) = A1

~Γ1(x)−B1~u(x) (18)

A1 =


λ0

v1
−λ1

v1
0 0

− λ0

v1′
λ1

v1′
0 0

− 1
v1

0 λ0

v1
−λ1

v1

0 − 1
v1′

− λ0

v1′
λ1

v1′

 , B1 =

[
V −1 0
0 I

]
, (19)

~u(x) =

[
~f1(x, 0)
~0

]
, V1 =

[
v1 0
0 v1′

]
(20)

~m0(x) =

[
m

(1)
0 (x)

m
(1′)
0 (x)

]
, ~m1(x) =

[
m

(1)
1 (x)

m
(1′)
1 (x)

]
, (21)

~f(x, 0) =

[
δ(x− x−)

0

]
,Λ> =

[
−λ0 λ1

λ0 −λ1

]
, (22)

where zero vector ~0 ∈ R2×1, zero matrix 0 ∈ R2×2, and I is identity matrix. This system has two

repeated eigenvalues:

γ1 =
λ0 + λ1

v1v1′

(
λ0

λ0 + λ1
v1′ +

λ1

λ0 + λ1
v1

)
(23)

γ2 = 0. (24)
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The average heating rate should be positive or equivalently the average cooling rate should be neg-

ative, because the probability flux should escape entirely from the upper boundary (x = x+). The

mathematical consequence of this fact is that the nonzero eigenvalue (γ1) of the system should be

positive (γ1 > 0) and the average cooling rate(
λ0

λ0 + λ1
v1′ +

λ1

λ0 + λ1
v1

)
< 0, (25)

which indeed implies that γ1 > 0. Solving the initial value problem described in the previous section

results in the following zero order and first order moments,

~m0(x+) =
[
− 1
v1
, 0

]T
(26)

~m1(x+) =

[(
1
v1

)
∆

λ1
λ0+λ1

v1+
λ0

λ0+λ1
v1′
, 0

]T

(27)

Similarly, first passage time calculations can be performed for the 1′ state. For the remaining states

(0, 0′) a similar procedure is used and its details are omitted here.

4.2 Approximation of gij by moment matching

The conditional probability density functions (pdfs) gij are approximated by the moment matching

techniques, in which the pdfs are represented by the approximated functions ĝij whose moments match

those obtained from the solution of the first passage time problems. In this paper, only the zero and first

order moments are considered resulting in the following Markovian-type (exponential) approximation

of the pdf,

ĝij(t) =
mij

0

mij
1

exp

{
−m

ij
0

mij
1

t

}
(28)

where mij
0 ,m

ij
1 are the appropriate zero order and first order moments of gij . In Laplace domain,

Ĝij(s) =

(
(mij

0 )2

mij
1

)(
s+

mij
0

mij
1

)−1

(29)

This result can be extended to generalized phase-type distributions by matching any number of mo-

ments depending upon the desired accuracy and is the topic of ongoing work [19].

5 Parameter estimation from total busy time

In this section, we bring together the results from prior sections and propose an estimation strategy

based on the available data. The MRP defined at the switching instants of the thermostat classifies

the process into four states {1, 1′, 0, 0′}. However, the available utility grade power consumption data

cannot distinguish between 1 (thermostat ON, without hot water use) and 1′ (thermostat ON, with hot

water use) states since the hot water end-use process is not observed. Similarly, the states 0 and 0′ are

indistinguishable from measurements. However, in the stationary steady-state of the MRP, the total

ON time random variables become identically distributed since the state at the start of a measurement

interval becomes random with a common distribution. Therefore, in the stationary steady-state the

states 1 and 1′ are combined into an ON state with a density obtained by combining the 1 and 1′

densities with weights m
(01)
0 and m

(01′)
0 and similarly with states 0 and 0′ which are probabilistically

combined into an OFF state. The thermostat ON and OFF are represented by 1A and 0A, respectively,

and the resulting process is a 1A-0A alternating renewal process (ARP). Subscript (.)A is added to

distinguish between the states of the MRP and the ARP. The stationary ARP statistics are then used

to identify the parameters of the underlying hot water end-use process.
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5.1 Moments of the total busy time

The parameters of 1A-0A ARP in its stationary steady-state which is blind to the initial MRP state at

the start of power measurement windows, are now identifiable from the data available for estimation.

Furthermore, let ξ(t) =
∫ t

0
m(τ)dτ be the total time the thermostat is ON within a time period

of length t. This variable ξ(t) is also called total busy time random variable over an interval of

length t. Recursive expressions for the moments of ξ(t) in steady state were derived in [9] that do

not require the knowledge of the state of the thermostat at the start of the window. The first-

order and the second-order moments of ξ(t), in the Laplace domain, are obtained after application

of [Theorem 2 in 9] resulting in the following equilibrium distribution expressions,

Eeq[ξ(t)](s) =
µ1A

µ1A + µ0A

1

s2
, (30)

Eeq[ξ2(t)](s) =
µ1A

µ1A + µ0A

1

s2
−

2

(µ1A + µ0A)s4

(1− F0A(s))(1− F1A(s))

(1− F0A(s)F1A(s))
, (31)

where Fi(s) = L[fi(t)], i ∈ {1A, 0A}, is the Laplace transform the pdf associated with 1A and 0A states,

and µi = E[fi(t)], i ∈ {1A, 0A} with E[.] being the usual expectation operator. A short description on

computation of Fi(s), µi for i ∈ {1A, 0A} is provided in Appendix B. We are finally in a position to

estimate λ0, λ1 from the moments of ξ(t) as is presented next.

5.2 Numerical validation of parameter estimation

The parameter estimation strategy is demonstrated on a period of relatively stationary water demand

for example, the morning peak between 7am and 9am in Figure 4. The case here is that of high

water usage with the end-use parameters φ = {λ0, λ1}, for which the transitions probability functions

(gij) are derived in 4. Data for this type of estimation can be obtained by measuring the aggregated

power consumption of a group of EWHs within the same period of interest over the course of several

days, and then appended together. Following this line of thought, 10, 000 EWHs are simulated for 16

hours, with tank size 250 litres, heating element rated at 4.5 kW, hot water rate of extraction of 5.4

litres/min, ambient and inlet temperature 21.1◦ C, thermostat set-point and deadband adjusted at

51◦ C and 6◦ C respectively. Aggregated power consumption of this group is measured where each 2

hour period is assumed to represent a single day. The simulated data then represents the aggregate
power consumption over 8 days and in what follows, we show that this data at least in the simulation

environment is sufficient to accurately estimate the unknown φ.

The proposed estimation problem determines φ∗ = {λ∗0, λ∗1} that minimizes the loss function,

φ∗ =
argmin
φ

||~r(t, φ)− ~̂r(t, φ)||22 (32)

where ~̂r(t, φ) = (Êeq[ξ(t)](t, φ), Êeq[ξ2(t)](t, φ))> is the empirical mean and second moment obtained

from the data, ~r(t, φ) = (Eeq[ξ(t)](t, φ),Eeq[ξ2(t)](t, φ))> is the analytical mean and second order

moment from (30), (31). The estimation problem (32) is solved using lsqcurvefit in Matlab for

t ∈ {1, 2, 5, 15} minutes. It can be seen from Table 1 that the estimated φ̂ are close to true φ.

An immediate observation from the results in Table 1, is that shorter windows result in the estimated

parameters closer to the true values. This type of analysis will enable the utilities to collect appropriate

metered data that results in reasonable estimates of the end-use consumption. Therefore, we show

next the accuracy of the estimated φ̂ in the context of cold-load pickup of Figure 1.

The objective now is to show a potential application of the estimation scheme in demand dispatch.

Consider the same group of EWHs that generated the data for estimation under constant water de-

mand. After 2 hours all EWHs are forced OFF for a period of 4 hours and subsequently allowed

to turn back ON, mimicking the direct load control scheme from Figure 1. Aggregate response of
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Table 1: Comparison between estimated and actual parameters.

Window size Actual 1 min 2 min 5 min 15 min

λ0 0.0014 0.0014 0.0016 0.0021 0.0029
λ1 0.0083 0.0084 0.0095 0.0120 0.0170

EWHs for the actual and estimated parameters is shown in Figure 5 with t = 2 minutes. Clearly, the

aggregated power demand and the mean tank temperature match well. Similar results are obtained

for t ∈ {1, 5, 15} minutes. The difference however, is in the transient response after EWHs are allowed

to turn back ON, as shown in Figure 6.

Figure 5: Aggregate power consumption of the group of EWHs is shown here when all EWHs are forced OFF for 4 hours.
The window size for estimation is 2 minutes.

Figure 6: The aggregate power consumption of EWHs using the parameter estimates of φ obtained from different window
sizes t ∈ {1, 2, 5, 15} is plotted on the left and the shaded region is enhanced in the right plot. It shows that the aggregate
power consumption differ in the oscillations before steady state is achieved.

The estimated φ̂ differs slightly from the true φ as seen in Table 1 even though the steady state

response of the estimated system is exact. This is because the estimated φ̂ = {λ̂1, λ̂0} corresponds to

the same steady state of the end-use process as the actual φ. The difference in the transient response,

as shown in Figure 6, is apparent from the nonzero eigenvalue γ1 in (23). For the window size of

15 minutes, it follows from (23) that the nonzero eigenvalue obtained from the estimated parameters

is twice the eigenvalue obtained from true parameters. One possible explanation for this behavior is
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that shorter windows correspond to increasing the sampling frequency of the ARP. Therefore, several

window sizes may result in the same occupation behavior of the ARP. Furthermore, the estimates can

be improved by including the correlation information between occupation time of successive windows

for estimation as in [9]. However, further work is required to fully characterize the impact of this

aliasing-type effect observed here. Nonetheless, the estimated values are helpful to model steady-state

demand and average EWH QoS under homogeneous conditions.

6 Conclusion and future work

This paper develops preliminary results for an identification algorithm to estimate the parameters of

an underlying hot water end-use process of electric water heaters from energy measurement. Unlike

prior work in the area, which focused on low hot water extraction rates, this identification procedure

has been generalized herein to include arbitrary extraction rates and validated within a conventional

DR setting for 10,000 EWHs. The estimated parameters serve to accurately model the dynamics of a

homogeneous fleet of EWHs and is valuable for utilities to predict the controlled load behavior when

subjected to demand dispatch.

Future work seeks to extend the procedure to estimate the water intensity rate, w(t), to relax the

homogeneous assumption on the fleet, and study the role of uncertainty in the physical EWH (tank)

parameters on the end-use process estimates. Finally, we will incorporate actual interval meter data

from a utility partner to estimate and optimize demand dispatch capability from a fleet of EWHs and

compare against similar estimates from “black box” learning-based methods.

Appendix

A. Proof of theorems

Proof. (Theorem 1) Upon taking the Laplace transforms of the partial differential equations in (7) for

i = 1 results in

∂ ~F (x, s)

∂x
= V −1

1 (sI − Λ>)~F (x, s)− V −1
1

~f(x, 0). (33)

Since the kth order moment is defined as,

~mk(x) = (−1)k
∂k ~F (x, s)

∂sk

∣∣∣∣∣
s=0

, ∀ k = 0, 1, . . . , (34)

therefore, setting s = 0 in (33) yields the linear first order ODE of zero order moment (~m0(x)) as,

d~m0(x)

dx
= −V −1

1 Λ> ~m0(x)− V −1
1

~f(x, 0+). (35)

The first order moment is obtained by taking the derivative of (33) w.r.t. s and consequently setting

s = 0 which results in,

d~m1(x)

dx
= −V −1

i Λ> ~m1(x)− V −1
i ~m0(x). (36)

Hence the kth order moments is given by,

d~mk(x)

dx
= −V −1

i Λ> ~mk(x)− kV −1
i ~mk−1(x) (37)

which can be written in the form of the system of ODE of (16). The system of (16) consists of 2k

equations and 4k unknowns. However, recall from the discussion in section II-C that g10′(t) = g1′0′ = 0.
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Therefore, ~m
(1′)
k = ~0 which reduces the number of unknowns to 3k. Furthermore, owing to the decrease

in temperature in 1′ state, Γk(x−) 6= 0 and is unknown, since there will always be some probability

flux that crosses x−. However, in a properly designed EWH, the long term mean upward temperature

drift is positive and, the temperature of the tank will eventually reach x+. To obtain the remaining

1k linearly independent equations, consider an arbitrary boundary x− such that −∞ < x0 < x− with

the condition (17). Evaluating (16) at x = x0 and xi = x− gives the remaining equations necessary to

obtain the moments of first passage time densities.

B. Calculation of F1A , F0A

Probability density function F1A
(s), F0A

(s) corresponding to the 1A, 0A of ARP are given by,

F1A
(s) = G10(s)m

(01)
0 +G1′0(s)m

(01′)
0 , (38)

F0A
(s) = G01(s)m

(10)
0 +G01′(s)m

(1′0)
0 , (39)

where, G10(s), G01(s), G1′0(s), G01′(s) are the transition probability functions obtained by solving first

passage time problems as derived in Section 4, and m
(ij)
0 is the zero order moment of gij . The mean µ1A

and µ0A
associated with F1A

and F0A
respectively follows from (38), (39) after taking the expectation,

µ1A = m
(01)
0 m

(10)
1 +m

(01′)
0 m

(1′0)
1 , (40)

µ0A
= m

(10)
0 m

(01)
1 +m

(1′0)
0 m

(01′)
1 . (41)

References

[1] A. Brooks, E. Lu, D. Reicher, C. Spirakis, and B. Weihl, “Demand dispatch,” IEEE Power and Energy
Magazine, 8(3):20–29, May 2010.

[2] S. P. Meyn, P. Barooah, A. Busic, Y. Chen, and J. Ehren, “Ancillary service to the grid Using intelligent
deferrable loads,” IEEE Transactions on Automatic Control, 60(11):2847–2862, Nov. 2015.

[3] J. L. Mathieu, S. Koch, and D. S. Callaway, “State estimation and control of electric loads to manage
real-time energy imbalance,” IEEE Transactions on Power Systems, 28(1):430–440, 2013.
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