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recherche du Québec – Nature et technologies.
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les exigences légales associées à ces droits. Ainsi, les utilisateurs:
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Abstract: Berth allocation and pilotage planning are the two most important decisions made by
a seaport for serving incoming vessels. Traditionally, the berth allocation problem and the pilotage
planning problem are solved sequentially, leading to suboptimal or even infeasible solutions for vessel
services. This paper investigates a vessel service planning problem (VSPP) in seaports that addresses
berth allocation and pilotage planning in combination. We introduce a compact mixed-integer linear
programming formulation for the problem, which can be solved by general-purpose solvers. To solve
large-scale instances, we develop an exact solution approach that combines Benders decomposition and
column generation in a novel and effective way. Unlike the traditional three-phase Benders decompo-
sition and column generation method, which does not guarantee optimality, we propose a branching
scheme that enables the approach to determine an optimal solution to the VSPP. The approach is en-
hanced through practical acceleration strategies. Extensive computational results using data instances
from one of the world’s largest seaports show that these acceleration strategies significantly improve
the performance of our solution approach and that it can obtain optimal or near-optimal solutions for
instances of realistic scale. We perform sensitivity tests to demonstrate the robustness of the approach
against variations in problem settings. We also show the benefits brought by integrated optimization
by comparing our solution approach with a method that handles berth allocation and pilotage planning
sequentially.

Keywords: seaport operations, vessel service planning, berth allocation, pilotage planning, Benders
decomposition, column generation
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1 Introduction

Seaports have long been the key nodes in the global supply chain. In 2018, more than 10 billion

tons of cargo were handled by seaports around the world, and the volume is still growing (UNCTAD

2019). Due to the growth of seaborne trade, the number and size of vessels that need to be served at

seaports have increased continuously. Seaports and vessels involve huge investments; to recoup these

investments, port authorities and shipping companies aim to achieve very high utilization of their

capacities, making it critical for vessel services to be efficient (Fransoo and Lee 2013, Roy et al. 2020).

In addition, given that vessels are major sources of harmful air pollutants, rapid vessel turnaround

at seaports helps to relieve the environmental burden on local communities (Du et al. 2015, Wu and

Wang 2020).

Figure 1 shows the layout of a typical seaport, which generally can be divided into three parts: the

anchorage, the navigation channel, and the terminals. The quay of a terminal is divided into a set of

berths. Vessels coming from the open sea first reach and wait in the anchorage before traveling through

the channel and arriving at the designated berths to be handled. After being served at the berths, the

vessels leave the berths, sail to the anchorage by passing through the navigation channel, and finally

return to the open sea. In most seaports, pilotage is compulsory to enhance navigational safety. In

particular, whenever a vessel is moving in port waters (including sailing in the channel and berthing

into or unberthing from the berths), a pilot must be onboard to provide navigational guidance to the

vessel master (Wu et al. 2020).

Vessels BerthsQuay Legends:

ChannelAnchorage Terminals

Figure 1: Layout of a seaport.

Given a set of calling vessels, the service plan made by a seaport includes two main components:

berth allocation and pilotage planning. Berth allocation determines the berthing position and time of

each vessel, while pilotage planning involves vessel traffic management and pilot scheduling. Berths

are the most important resource in a seaport. In busy seaports, vessels often have to wait for berths

to become available due to the limited number of berths compared with the number of calling vessels.

Efficient berth allocation promotes efficient cargo dispatch and rapid vessel turnaround. Hence, berth

allocation is at the core of seaport operations.

Pilotage planning, another important problem faced by seaport operators, involves the management

of vessel traffic in port waters and the assignment of marine pilots for serving the vessels. Vessel

movements must be carefully controlled to ensure smooth and collision-free traffic, and pilot assistance

is indispensable in this regard. Given their importance, pilots are among the most highly compensated

professionals in a seaport. In the U.S., the average yearly salary for marine pilots is more than

US$400,000 (NPR News 2012). Moreover, pilotage is a very demanding job that requires intense

concentration and high skill levels. Workload management is thus a key component to improve the

health of pilots and mitigate fatigue (International Maritime Organization 2001). Therefore, effective

and functional pilotage planning is essential to avoid accidents, secure fluency in port operations,

reduce port authorities’ operational costs, and relieve work-related anxieties.
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Traditionally, the berth allocation problem (BAP) and the pilotage planning problem (PPP) are

solved sequentially, with the output of the first problem being an input of the second one. However,

this sequential solution approach may lead to suboptimal or even infeasible solutions in vessel services.

In this paper, we consider a vessel service planning problem (VSPP) that addresses berth alloca-

tion and pilotage planning in an integrated way. To solve large-scale instances, we develop an exact

solution approach that embeds Benders decomposition and column generation in a branch-and-bound

framework. To the best of our knowledge, our study is the first to solve the BAP and the PPP jointly.

Our study makes three main contributions:

1. We propose a research problem that integrates two important problems in seaport operations

and develop a compact mixed-integer linear programming (MILP) formulation for the problem

that can be well solved by general-purpose optimization solvers on small-scale instances.

2. We develop an efficient exact approach based on Benders decomposition and column generation

that can solve large-scale instances. The structure of the approach is general enough to be applied

to other problems that involve synchronized scheduling of multiple resources and can easily be

tailored for such purposes. We also propose several acceleration strategies that greatly improve

the performance of the approach.

3. We conduct extensive numerical experiments using data instances from one of the world’s largest

seaports. The results demonstrate the benefits of integrated vessel service planning against the

traditional sequential decision method.

The remainder of this paper is structured as follows. We review the relevant studies in Section 2.

We formally describe the problem and formulate it as a compact MILP model in Section 3. The

solution approach is described in Section 4. Computational experiments are reported in Section 5,

followed by conclusions in Section 6. We provide all mathematical proofs in the EC.1 of the electronic

companion.

2 Literature review

Seaport operations have received considerable attention in the scientific literature. For surveys of

studies in this area, we refer readers to Stahlbock and Voß (2008), Bierwirth and Meisel (2010, 2015),

and Carlo et al. (2015). Of many problems related to seaport operations that have been studied in

the literature, the ones most closely related to the VSPP are the berth allocation problem, the vessel
traffic management problem, and the pilot scheduling problem. In the following subsections, we review

studies that focus on these problems.

2.1 Review of studies on berth allocation

The berth allocation problem (BAP) has been the subject of intensive research over the past two

decades. Broadly, the BAP can be divided into two streams depending on the spatial constraints on

berthing positions: the discrete BAP and the continuous BAP (Imai et al. 2005, Xu and Lee 2018). In

the discrete BAP, the quay of the seaport is partitioned into a set of discrete berths, and each berth

can handle at most one vessel at a time. In the continuous case, vessels can berth at arbitrary positions

within the boundaries of the quay. In this study, we consider discrete berth allocation and thus limit

our review to studies in this stream.

The discrete BAP was initially studied by Imai et al. (1997), who presented the first MILP formu-

lation for the problem. In the formulation, all berths are available from the beginning of the planning

horizon, and all vessels are already waiting in the seaport. The objective considered by the authors was

to minimize the total turnaround time of vessels. Imai et al. (2001) extended this study by allowing

vessels to arrive dynamically during a planning horizon. A Lagrangian relaxation method was pro-

posed to solve the problem. Imai et al. (2003) considered a BAP with service priorities and solved the

problem using a genetic algorithm. Cordeau et al. (2005) studied a BAP with time windows on vessel
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handling completion; they proposed a multi-depot vehicle routing problem formulation and developed

a tabu search algorithm for solving the problem. Monaco and Sammarra (2007) strengthened the

formulation provided by Imai et al. (2001) and developed a Lagrangian relaxation method for solving

the problem. Buhrkal et al. (2011) presented a general set-partitioning model for the discrete BAP

that was shown to outperform all other existing models.

2.2 Review of studies on vessel traffic management

The aim of traffic management in seaports and other restricted waters is to achieve smooth and

collision-free traffic flows. The vessel traffic management problem has gained increasing attention from

academia in recent years. Using a simulation, Tang et al. (2016) showed that the handling capacity of

a seaport may greatly depend on the configuration and capacity of its navigation channel. Building on

Tang et al. (2016), most studies in this area have examined ways to manage traffic in seaports based

on predetermined berth allocation plans (Zhang et al. 2016, Lalla-Ruiz et al. 2018, Jia et al. 2019, Li

and Jia 2019). Zhang et al. (2016) considered a scheduling problem for vessels entering and leaving a

seaport and passing through a navigation channel, the objective being to minimize the total waiting

time of vessels at berths or in the anchorage. The problem was solved by a metaheuristic based on

simulated annealing and genetic search. Lalla-Ruiz et al. (2018) investigated a similar problem arising

in the Port of Shanghai, where vessel traffic has to be scheduled in two parallel waterways. The

authors modeled the problem as a multi-depot vehicle routing problem and proved that the problem is

NP-hard. A greedy heuristic and a simulated annealing algorithm were proposed to solve the problem.

Jia et al. (2019) and Li and Jia (2019) extended the problem studied by Zhang et al. (2016) and Lalla-

Ruiz et al. (2018) by considering the use of the anchorage area in the port basin, where vessels can

wait near the berths. They proposed Lagrangian relaxation- and column generation-based methods

for solving the problem. In addition to vessel traffic management in seaports, Lübbecke et al. (2019)

proposed an approach to schedule vessel traffic in the Kiel Canal, a bidirectional waterway in Germany.

To mathematically formulate the problem, the authors divided the canal into a set of segments with

different nautical rules and showed that the problem shares similarities with the single-track train

scheduling problem, which can be formulated as a job-shop scheduling problem. A local-search-based

heuristic was developed to solve the problem.

The BAP and the traffic management problem in seaports are interconnected and generate more

value if solved jointly. The integration of the two problems has been discussed in two studies. Zhen

et al. (2017) investigated the BAP in a container terminal and imposed channel capacity limitations

such that the total number of vessels simultaneously sailing in a channel cannot exceed a given upper

bound. A column generation method was developed to solve this problem. Corry and Bierwirth (2019),

noting that channel restrictions based on a maximum throughput capacity may not be sufficient for

channel traffic management, proposed and studied a joint BAP and channel traffic control problem.

They tackled the problem as a special no-wait flow shop scheduling problem and formulated it as an

MILP model. The computational results demonstrated that their model could well solve instances

with up to 10 berths and 20 vessels using a general-purpose optimization solver.

2.3 Review of studies on pilot scheduling

Although pilots play a critical role in seaport operations, studies on pilot scheduling are rare. Wermus

and Pope (1994) studied a pilot rostering problem to determine work shift start and end times assigned

to each pilot, without considering the scheduling of pilotage services. A simple rule-based heuristic was

developed to solve the problem. Edwards (2010) investigated a problem for assigning a group of pilots

to a set of pilotage tasks, whereby each task corresponds to a vessel entering or leaving a terminal and

has a fixed start time. They solved the problem using a heuristic based on column generation.

Two recent works considered the PPP in seaports based on predetermined berth allocation plans.

Wu et al. (2020) considered a PPP for jointly scheduling pilots and managing vessel traffic in a seaport.

In the problem, work schedules for guiding vessels sailing into and out of berths are generated for pilots

working on different shifts. All pilots in the problem were assumed to be homogenous. The authors
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proved that the PPP is strongly NP-hard and proposed a solution algorithm based on branch-and-price.

Jia et al. (2020) investigated an integrated daily vessel traffic and pilot scheduling problem, whereby

the seaport has multiple navigation channels and vessels can wait in the anchorage area located near

the berths. No working time limits were considered, and pilots were assumed to be able to work all

day long. The problem was solved by a Lagrangian relaxation algorithm.

2.4 Review of other related studies

From a modeling perspective, the VSPP jointly solves a resource allocation problem and a personnel

scheduling problem. Problems with a similar structure have been studied in other areas. The most

well-known examples of such problems include the integrated aircraft routing and crew pairing problem

in airlines (Cordeau et al. 2001, Mercier et al. 2005, Sandhu and Klabjan 2007, Ruther et al. 2017), the

integrated rolling stock and train driver scheduling problem in railways (Dauzère-Pérès et al. 2015),

and the integrated vehicle routing and truck driver scheduling problem in road transportation (Goel

and Irnich 2017).

The VSPP is different from these problems in multiple ways. First, the problems in airline and

railway operations are based on given timetables of flights or trains, and the resources and crew

members are scheduled in accordance with these timetables. In the VSPP, however, the times to serve

the vessels are also among the decision variables. Second, in the VSPP, pilots can move between the

vessels not only through the vessels they serve but also through dedicated transfer vehicles (e.g., pilot

boats and helicopters). For airline crews and train or truck drivers, there are no dedicated transfer

vehicles that can affect scheduling; rather, personnel movements must conform to the movements of

aircraft, trains, and trucks. For this reason, personnel scheduling has more flexibility in the VSPP than

in these other problems. A further distinguishing feature of the VSPP relates to regulations on channel

traffic, which lead to precedence and non-simultaneity constraints between vessel movements (discussed

in the next section); such constraints generally do not exist in the other aforementioned problems.

3 Problem statement and compact formulation

In this section, we first describe the background of the VSPP in Section 3.1 and then introduce the

notation used for formulating the problem in Section 3.2. A compact MILP formulation for the VSPP

is presented in Section 3.3. We introduce a series of inequalities for strengthening the formulation in

Section 3.4.

3.1 Problem background

In the VSPP, we are given a set of vessels that dynamically call at a seaport in a planning horizon.

These vessels go through a four-stage procedure in their port stay. As shown in Figure 2, after arriving

at the anchorage, a vessel waits there until it is ready to sail into the channel (Stage 1). Then, a

pilot boards the vessel at the entrance of the channel, navigates it through the channel, and moors it

into the designated berth (Stage 2). The pilot leaves the vessel once mooring is completed, and cargo

handling at the berth commences (Stage 3). When the vessel is ready to leave the berth, a pilot gets

on board and maneuvers the vessel toward the anchorage by passing through the channel (Stage 4).

Finally, the pilot deboards the vessel in the anchorage, and the vessel returns to the open sea. Without

loss of generality, we assume that each vessel is given time windows for sailing into and out of a berth

(i.e., for starting the second and fourth stages).

We consider the following restrictions on vessel traffic in a seaport based on common practices

(Corry and Bierwirth 2019, Jia et al. 2019). First, vessels must sail at the same slow and constant

speed in the channel. Second, vessels sailing in the same direction (i.e., entering or leaving berths)

must queue up in the channel, with no overtaking. Third, there must be a minimum headway between

a vessel entering the channel and those following it. Fourth, as the water depth is limited and affected

by tides, vessels with large drafts may be able to sail in the channel only in high-tide periods. Fifth,
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Pilots:

Handling at the berths

Time

Vessels:
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Figure 2: A vessel’s port stay.

to avoid collisions, vessels with extra widths cannot sail simultaneously in opposite directions in the

channel. Finally, as vessels are allowed to moor only in the anchorage or at berths, en-route stops

are not allowed during the journey between the anchorage and the berths. That is, a vessel has to

sail directly to the berth once it leaves the anchorage and has to sail directly to the anchorage once it

leaves the berth.

When moving in port waters, a vessel must be navigated by a pilot. The seaport manages a group

of pilots and divides the planning horizon into a set of shifts to coordinate pilot assignments. Pilots

are scheduled to work during these shifts and can only serve the vessels within their assigned shifts.

Depending on the labor policy in a seaport, shifts may or may not overlap. A pilot can serve in

multiple vessel movements in one shift, but there is a minimum setup time between two consecutive

services conducted by the same pilot. As the repositioning of pilots through the channel can take a

considerable amount of time, the setup time between two pilotage services is longer if the first service

terminates and the second service starts at different ends of the channel (and is shorter if they occur at

the same end of the channel). For example, after a pilot guides a vessel into a berth, the repositioning

time is considerably shorter in the case of guiding another vessel out of a berth than in the case of

guiding another vessel into a berth. A typical shift lasts eight hours, and each shift includes a rest

period during which there are no assignments. Finally, we assume that pilots are identical and that

the number of pilots who can work in each shift is not a binding constraint in the problem (but the

seaport has to pay for each pilot assigned to a shift).

In the VSPP, the seaport wants to optimize both the service level and operational costs. We

quantify the service level by considering delays in cargo dispatch (i.e., delays at the start of discharging

cargo from vessels) and vessel turnaround. Meanwhile, operational costs include vessel handling costs

(vessels typically have berth-wise handling costs) and pilot dispatching. The objective of the VSPP

is to generate a vessel service plan that achieves the best optimization goal without violating any

regulation regarding berth allocation, traffic management, or pilot scheduling.

3.2 Notation

This section describes the notation that we will use to formulate the VSPP as a compact MILP model.

For ease of presentation, we use the notation Z[z,z] to denote the set of integers that are no smaller

than z and no larger than z throughout the paper. In addition, we use Z+ to denote the set of

nonnegative integers and R to denote the set of real numbers.

We consider the VSPP with a discrete-time finite planning horizon. We denote by T = Z[1,T ] the

set of evenly distributed time steps in the planning horizon, which are indexed by t. The planning

horizon is divided into a set S of shifts, indexed by s. Let Ts ⊆ T be the set of time steps in shift s,

and Ts = Z[T s,T s]. We have
⋃
s∈S Ts = T . Besides, let St be the set of shifts that contain time step t.
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Let K, indexed by k, be the set of vessels calling at the seaport in the planning horizon. The port

has a set B of berths indexed by b. Let ab be the available time of berth b, such that vessels in K can

only moor into berth b at time steps in the set Z[ab,T ]. Vessel k can be handled at a berth from a

subset Bk ⊆ B. The handling time of vessel k at berth b is denoted by hk,b.

We denote by I, indexed by i, the set of pilotage tasks or tasks corresponding to pilot services

in vessel movements in the seaport. Let Iin ⊆ I and Iout ⊆ I be the sets of tasks corresponding

to vessels sailing into and out of the berths, respectively. Furthermore, let Ik be the set of tasks for

serving vessel k. Note that |Ik| = 2. The time window to start each task i is given by Ei = {Ei, ..., Ei},
where Ei and Ei represent the earliest and latest feasible start times of task i, respectively. The

duration of task i is denoted by di. For navigational safety, a minimum headway denoted by fi
must be ensured between the start times of task i ∈ Iin (resp. Iout) and its followers from Iin
(resp. Iout). A pair of vessels with extra widths are not be allowed to sail in opposite directions

in the channel simultaneously. To impose this restriction, we define a set U of task pairs such that

U := {(i, j) ∈ I × I|i and j cannot be performed simultaneously, i, j ∈ I}.

Let Ps be set of pilots who can work in shift s. To streamline the formulation, in our model, pilots

are “shift-specific” such that p ∈ Ps does not correspond to a particular pilot in practice, but refers

to a generic pilot who is able to work in shift s. By definition, Ps ∩ Ps′ = ∅ if s 6= s′. Because we

assume that the number of pilots available in each shift is not binding, when implementing the model,

we let |Ps| be equal to the maximum number of tasks that can start in shift s. Given Ps, we set

P =
⋃
s∈S Ps.

Any pilot p ∈ Ps, ∀s ∈ S, if scheduled to work in this shift, should be awarded a rest period

that starts within a predetermined time window and lasts for at least a given minimum duration. For

each s, the time window for pilots working in this shift to start the rest period is denoted by Ls, and

Ls = Z[Ls,Ls]. Meanwhile, the minimum duration of the rest period in this shift is denoted by gs.

From the modeling perspective, a rest period can also be modeled as a task. Hence, we let Jp be the

set (singleton) of the rest period for pilot p. Corresponding to i ∈ Jp, we let Ei and di be the time

window to start the rest period and its minimum duration, respectively. Here Ei = Ls and di = gs,

∀i ∈ Jp, p ∈ Ps, s ∈ S. We further define J =
⋃
p∈P Jp. For ease of presentation, we use the term

activity to refer to a task or a rest period in the remainder of this paper.

Pilots may perform multiple activities in a shift. For any two consecutive activities i and j per-

formed by a pilot, we denote by qi,j the minimum setup time between them. In particular, we set

qi,j = 0 if i or j corresponds to a rest period. We assume that the triangle inequality holds for the

setup times between tasks so that qi,j ≤ qi,i′ + di′ + qi′,j ,∀i, i′, j ∈ I, i 6= j 6= i′. Moreover, to tighten

the MILP model, ∀i, j ∈ I ∪ J , i 6= j, we let

Mi,j =

{
max{0, Ei + di + qi,j − Ej}, if j ∈ I,
Ei + di + qi,j , if j ∈ J .

We consider the following cost components in the VSPP. First, given task i and its start time t, we

denote by c1i,t the penalty cost associated with delays in cargo dispatch (if i ∈ Iin) or vessel turnaround

(if i ∈ Iout) for starting this task at this time step. In practice, c1i,t is set by port authorities based on

the service priority of task i and the delay between the earliest start time (Ei) and time step t. Note

that our model can handle any relationship between the penalty cost and the delay. Second, let c2k,b
be the cost of handling vessel k at berth b. Third, the cost of assigning a pilot to work in shift s is

denoted by c3s.
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The following decision variables are used to formulate the VSPP:

uk,b: binary variable, which takes value 1 if and only if vessel k is handled at berth b;
vink,t: binary variable, which takes value 1 if and only if vessel k reaches a berth at time

step t;
voutk,t : binary variable, which takes value 1 if and only if vessel k leaves a berth at time

step t;
wk,b,t: binary variable, which takes value 1 if and only if vessel k occupies berth b at time

step t;
xi,t: binary variable, which takes value 1 if and only if task i starts at time step t;

yp,0,j : binary variable, which takes value 1 if and only if activity j is the first activity
performed by pilot p;

yp,i,j : binary variable, which takes value 1 if and only if pilot p performs activity j immedi-
ately after activity i;

yp,i,0: binary variable, which takes value 1 if and only if activity i is the last activity per-
formed by pilot p;

zs,i: binary variable, which takes value 1 if and only if task i is performed by a pilot in
shift s;

ns: integer variable, representing the number of pilots working in shift s.

3.3 The VSPP formulation

We present a compact MILP formulation for the VSPP, which is an extension of the formulations

for the BAP, the vessel traffic management problem, and the PPP studied by Zhen et al. (2017), Jia

et al. (2019), Xie et al. (2019), Wu et al. (2020), and Jia et al. (2020). We first present the objective

function:

[M1] min
∑
i∈I

∑
t∈Ei

c1i,txi,t +
∑
k∈K

∑
b∈Bk

c2k,buk,b +
∑
s∈S

c3sns. (1)

This objective function minimizes the total cost of the vessel service plan, which equals the sum of

the penalty cost of starting tasks later than their earliest feasible start times (the first term), the cost of

handling vessels (the second term), and the cost of assigning pilots (the third term). The constraints

can be divided into four blocks: constraints (2)–(8) regulate berth allocation; constraints (9)–(14)

control vessel traffic in the channel; constraints (15)–(24) are related to pilot scheduling; and the

domains of the variables are defined in constraints (25)–(31). The first block is the following:∑
b∈Bk

uk,b =1 ∀k ∈ K (2)

∑
t∈T

vink,t =1 ∀k ∈ K (3)∑
t∈T

voutk,t =1 ∀k ∈ K (4)∑
t∈T

tvink,t ≥
∑
b∈Bk

abuk,b ∀k ∈ K (5)

∑
t∈T

tvoutk,t ≥
∑
t∈T

tvink,t +
∑
b∈Bk

hk,buk,b ∀k ∈ K (6)

wk,b,t ≥uk,b +

t∑
t′=1

vink,t′ +

T∑
t′=min{t+1,T}

voutk,t′ − 2 ∀t ∈ T , b ∈ B, k ∈ K (7)

∑
k∈K

wk,b,t ≤1 ∀t ∈ T , b ∈ B. (8)
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Constraints (2) require that a suitable berth be allocated for handling each vessel. Constraints (3)

and (4) require that each vessel reaches and leaves a berth at one and only one time step, respectively.

A vessel cannot moor into a berth before the berth becomes available (constraints (5)). Constraints (6)

ensure that a vessel has sufficient time for cargo handling when mooring at a berth. Constraints (7)

state that berth b is occupied by vessel k at time step t (wk,b,t = 1) if (i) the berth is allocated to

handle the vessel (uk,b = 1), (ii) the vessel has reached the berth at the time step (
∑t
t′=1 v

in
k,t′ = 1),

and (iii) the vessel has not left the berth (
∑T
t′=min{t+1,T} v

out
k,t′ = 1). At any time, a berth can handle

at most one vessel, as required by constraints (8). The second block contains these constraints:∑
t∈Ei

xi,t = 1 ∀i ∈ I (9)

∑
i∈Iin

∑
t′∈Z[t−fi+1,t]∩Ei

xi,t′ ≤ 1 ∀t ∈ T (10)

∑
i∈Iout

∑
t′∈Z[t−fi+1,t]∩Ei

xi,t′ ≤ 1 ∀t ∈ T (11)

∑
t′∈Z[t−di+1,t]∩Ei

xi,t′ +
∑

t′∈Z[t−dj+1,t]∩Ej

xj,t′ ≤ 1 ∀t ∈ T , (i, j) ∈ U (12)

∑
t∈T

tvink,t = di +
∑
t∈Ei

txi,t ∀i ∈ Iin ∩ Ik, k ∈ K (13)

∑
t∈T

tvoutk,t =
∑
t∈Ei

txi,t ∀i ∈ Iout ∩ Ik, k ∈ K. (14)

Constraints (9) require that each pilotage starts within a given time window. The minimum

headway between any vessel sailing into the channel and those following it is imposed by constraints (10)

and (11). Constraints (12) enforce that tasks in any pair in set U cannot be performed simultaneously.

Start times of pilotage tasks associated with a vessel are linked with the times when the vessel enters

and leaves a berth in constraints (13) and (14). Note that Iin∩Ik and Iout∩Ik are singletons, ∀k ∈ K.

The following constraints constitute the third block:∑
j∈I∪Jp

yp,0,j ≤1 ∀p ∈ P (15)

yp,0,i +
∑

j∈I∪Jp\{i}

yp,j,i =yp,i,0 +
∑

j∈I∪Jp\{i}

yp,i,j ∀i ∈ I ∪ Jp,

p ∈ P (16)∑
j∈I∪Jp

yp,0,j =
∑

i∈I∪Jp

yp,i,0 ∀p ∈ P (17)

∑
p∈Ps

yp,0,i +
∑
p∈Ps

∑
j∈I∪Jp\{i}

yp,j,i =zs,i ∀i ∈ I,

s ∈ S (18)

xi,t ≤
∑
s∈St

zs,i ∀t ∈ Ei,

i ∈ I (19)∑
t∈Ei

xi,t =
∑

j∈I∪Jp

yp,0,j ∀i ∈ Jp,

p ∈ P (20)

yp,0,i +
∑

j∈I∪Jp\{i}

yp,j,i =
∑

j∈I∪Jp

yp,0,j ∀i ∈ Jp,

p ∈ P (21)
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∑
t∈Ej

txj,t ≥
∑
t∈Ei

txi,t + di + qi,j +Mi,j(yp,i,j − 1) ∀i, j ∈ I ∪ Jp,

i 6= j, p ∈ P (22)∑
t∈Ej

txj,t ≥
∑
t∈Ei

txi,t + di + qi,j +Mi,j(yp,i,i′ + yp,i′,j − 2) ∀i, j ∈ I,

i 6= j, i′ ∈ Jp,
p ∈ P (23)∑

p∈Ps

∑
i∈I∪Jp

yp,0,i =ns ∀s ∈ S. (24)

Each pilot has at most one starting activity in the planning horizon (constraints (15)). Con-

straints (16) and (17) enforce the activity flow balance for each pilot. Constraints (18) link the z and y

variables. Constraints (19) ensure that if a task i starts at time step t, then it should be performed by

a pilot who works in a shift that contains the time step. A rest period has to be arranged for a pilot

that works in the planning horizon, and this rest period should start within the allowable time window

(constraints (20)). Constraints (21) require that the rest period be included in the activity flow of a

pilot if the pilot works in the planning horizon. The minimum setup time between two consecutive

activities performed by one pilot is imposed by constraints (22). Constraints (23) avoid infeasible setup

times in the event that the duration of a rest period is shorter than the time required to reposition

a pilot between two tasks that start right before and immediately after the rest period. We calculate

the number of pilots required to work in each shift in constraints (24). The domains for the decision

variables are defined in the constraints listed below:

uk,b ∈{0, 1} ∀b ∈ Bk, k ∈ K (25)

vink,t, v
out
k,t ∈{0, 1} ∀k ∈ K, t ∈ T (26)

wk,b,t ∈{0, 1} ∀k ∈ K, b ∈ B, t ∈ T (27)

xi,t ∈{0, 1} ∀t ∈ Ei, i ∈ I ∪ J (28)

yp,0,j , yp,i,j , yp,i,0 ∈{0, 1} ∀i, j ∈ I ∪ Jp, i 6= j, p ∈ P (29)

zs,i ∈{0, 1} ∀i ∈ I, s ∈ S (30)

ns ∈Z+ ∀s ∈ S. (31)

Our model is formulated for the VSPP faced by a seaport with a bidirectional channel that has

a constant nautical condition in each direction. However, the model can easily be adapted to solve

the VSPP under different channel configurations. For example, the channels in some seaport are

unidirectional (i.e., vessels must sail in the same direction in these channels). To handle the VSPP

under such a channel configuration, one can set U in the model to include all task pairs that consist

of one task corresponding to a vessel entering berths and another corresponding to a vessel leaving

berths. In addition, some seaports have channels with multiple segments, some bidirectional and

others unidirectional (Corry and Bierwirth 2019). To handle such cases, one can extend U to be U ′ :=

{(i, t, j, t′) ∈ I × T × I × T |i cannot start at time step t if j starts at time step t′, i, j ∈ I, t, t′ ∈ T }.
By carefully setting U ′, one can avoid having two vessels sail in opposite directions in a unidirectional

segment at the same time.

3.4 Valid inequalities

Model M1 can be strengthened by several families of valid inequalities. The first family of inequalities

tightens the model by shrinking the time windows for starting the tasks. This is achieved by considering

the precedence relationship between tasks and the requirements regarding the rest period in each shift.

In particular, a vessel cannot leave its berth before completing cargo handling, and the earliest time

step when vessel k can complete cargo handling (denoted by F outk ) can be calculated by F outk =
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minb∈Bk
{max{Ei + di, ab} + hk,b}, where i denotes the pilotage task associated with vessel k sailing

into berths. Similarly, to ensure that vessels leave their berths within the given time windows, vessel k

must start sailing into the berths no later than F
in

k = Ej−minb∈Bk
{hk,b}−di, where i and j represent

the pilotage tasks associated with vessel k sailing into and out of berths, respectively.

In addition, considering the requirements regarding rest periods, any pilot working in shift s cannot

start performing task i at time step t if t < Ls + gs (which disallows resting before the task) and

t > Ls − di (which disallows resting after the task). Based on this observation, for each i ∈ I and

s ∈ S, we let Qs,i := {t|t < Ls + gs, t > Ls − di, t ∈ Ei}, which is the set of time steps in shift s when

task i cannot start. Define Q̄i :=
⋂
s∈S Qs,i. It can be readily seen that the following inequalities are

valid for the VSPP:

xi,t =0 ∀t ∈ Ei ∩ Z[1,F out
k −1], i ∈ Iout ∩ Ik, k ∈ K (32)

xi,t =0 ∀t ∈ Ei ∩ Z
[F

in
k +1,T ]

, i ∈ Iin ∩ Ik, k ∈ K (33)

xi,t =0 ∀t ∈ Ei ∩ Q̄i, i ∈ I. (34)

In the second family of valid inequalities, we tighten M1 by using the relationship between x and

z in any optimal solution to M1. These inequalities are as follows:

zs,i ≤
∑

t∈Ts∩Ei

xi,t ∀i ∈ I, s ∈ S. (35)

The constraints enforce zs,i = 0 if i does not start at any time step in shift s, s ∈ S, i ∈ I.

Finally, because all pilots in Ps are identical ∀s ∈ S, we can further strengthen the formulation by

breaking symmetries in pilot scheduling. To this end, we present Ps and I as Ps = {P s, P s+1, ..., P s}
and I = {1, 2, ..., |I|}, respectively. By following Jans (2009) and Adulyasak et al. (2014), we introduce

the third family of valid inequalities as follows:∑
j∈I∪Jp

yp,0,j ≥
∑

j∈I∪Jp+1

yp+1,0,j

∀P s ≤ p ≤ P s − 1, s ∈ S (36)

i∑
i′=1

(yp,0,i′ +
∑

j∈I∪Jp\{i′}

yp,j,i′)2
(i−i′) ≥

i∑
i′=1

(yp+1,0,i′ +
∑

j∈I∪Jp+1\{i′}

yp+1,j,i′)2
(i−i′)

∀i ∈ I, P s ≤ p ≤ P s − 1, s ∈ S. (37)

We refer to Model M1 with inequalities (32)–(37) as SM1.

4 A Branch-price-and-Benders-cut approach

In the previous section, we formulate the VSPP as a compact MILP model. Using a general-purpose

optimization solver (e.g., CPLEX), model SM1 can be well solved for instances of small scale. How-

ever, this “throwing a model into a solver” method fails to deliver satisfying solutions for large-scale

instances. In this section, we propose an exact branch-price-and-Benders-cut (BPBC) approach to

solve the VSPP on large instances.

Our approach is based on the set-covering reformulation of SM1 (see Section 4.1). The approach

solves the set-covering model by first relaxing the integrality requirements for the columns and gradu-

ally imposing these constraints using a branch-and-bound method (see Section 4.4). At each node of

the branch-and-bound tree, one thus obtains a linear programming (LP) relaxation of the set-covering

problem. We solve the LP relaxation of the set-covering problem at each node by Benders decompo-

sition (Benders 1962).
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The master problem in the decomposition can be viewed as the LP relaxation of the berth allocation

problem with vessel traffic flow control, and the subproblem can be viewed as the LP relaxation of the

pilot scheduling problem (see Section 4.2). Both the master problem and the subproblem are solved

by Dantzig-Wolfe decomposition (Dantzig and Wolfe 1960) through dynamic column(-and-constraint)

generation (see Section 4.3).

When a feasible integer solution is generated at a node, an upper bound for the problem is ob-

tained, which can be used to prune branches of the tree. The approach terminates when there are no

active nodes in the tree or when the optimality gap is lower than a given threshold. To improve the

performance of the approach, we propose a series of acceleration techniques, which are explained in

Section 4.5.

Our approach is inspired by the three-phase Benders decomposition and column generation method,

which was proposed by Cordeau et al. (2001) and has been applied to solve many complicated opti-

mization problems (Mercier et al. 2005, Zeighami and Soumis 2019). Note that this method provides

valid lower and upper bounds but does not guarantee to converge to optimality (Cordeau et al. 2001),

because the integrality constraints for the subproblem in Benders decomposition are relaxed in the

entire process of the method except for the last step, where the integer subproblem is solved only once

given a feasible integer solution for the master problem. In many studies (e.g., Mercier et al. 2005,

Zeighami and Soumis 2019), however, the optimality gap when the algorithm terminates is sufficiently

small to guarantee high-quality solutions.

Our approach extends this method in two directions. First, we design a tailored branching scheme

that enables the approach to find an optimal solution to the VSPP. Second, we propose several accel-

eration strategies that have proven to be very effective in improving the performance of the approach.

The framework of the BPBC approach and some acceleration strategies are sufficiently general and

adaptable to be applied to solve other similar problems.

4.1 The Set-covering formulation

In the VSPP, the port stay of a vessel can be depicted as a vessel route that records the movements

of the vessel in the seaport. Let Ω, indexed by ω, denote the set of feasible vessel routes that satisfy

constraints (2)–(6), (9), (13), (14), (25), (26), (28), and (32)–(34). We denote by Ωk ⊆ Ω the routes

for vessel k.

For each ω, let k(ω) denote the associated vessel. We define two binary parameters αω,i,t and

βω,b,t,t′ , ∀i ∈ I, b ∈ B, t, t′ ∈ T , ω ∈ Ω, where αω,i,t is equal to 1 if and only if task i is included in the

route and the task starts at time step t, and βω,b,t,t′ is equal to 1 if and only if vessel k(ω) reaches

berth b at time step t and leaves the berth at time step t′. Besides, let c̄ω denote the cost of the route,

which is calculated by c̄ω =
∑
i∈I
∑
t∈Ei αω,i,tc

1
i,t +

∑
b∈B

∑
t∈T

∑
t′∈T βω,b,t,t′c

2
k(ω),b.

The activities performed by a pilot in a shift can also be represented as a pilot route that records

the tasks and rest period conducted by the pilot. Let Φ, indexed by φ, denote the set of feasible pilot

routes that satisfy constraints (15)–(17), (22)–(23), (28) (for all feasible start times of each activity),

and (29). Let Φs ⊆ Φ denote the set of pilot routes for a pilot in shift s. The cost of a pilot route

φ ∈ Φs is denoted by c̄φ and is equal to c3s. For each φ, let γφ,i,t be a binary parameter set to 1 if and

only if task i is covered in the route and the task starts at time step t, ∀i ∈ I, t ∈ T .

In the set-covering model, we use binary decision variables χω to indicate the flows in vessel routes

and binary decision variables µφ to indicate the flows in pilot routes. The model can be formulated as

follows:

[M2] min
∑
ω∈Ω

χω c̄ω +
∑
φ∈Φ

µφc̄φ (38)

s.t.
∑
ω∈Ωk

χω = 1 ∀k ∈ K (39)
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∑
ω∈Ω

χω

τ∑
t=1

T∑
t′=min{τ+1,T}

βω,b,t,t′ ≤ 1 ∀τ ∈ T , b ∈ B (40)

∑
ω∈Ω

χω
∑
i∈Iin

t∑
t′=max{t−fi+1,1}

αω,i,t′ ≤ 1 ∀t ∈ T (41)

∑
ω∈Ω

χω
∑
i∈Iout

t∑
t′=max{t−fi+1,1}

αω,i,t′ ≤ 1 ∀t ∈ T (42)

∑
ω∈Ω

χω

t∑
t′=max{t−di+1,1}

αω,i,t′ +
∑
ω∈Ω

χω

t∑
t′=max{t−dj+1,1}

αω,j,t′ ≤ 1 ∀t ∈ T , (i, j) ∈ U (43)

∑
φ∈Φ

µφγφ,i,t −
∑
ω∈Ω

χωαω,i,t = 0∀t ∈ T , i ∈ I (44)

χω ∈ {0, 1} ∀ω ∈ Ω (45)

µφ ∈ {0, 1} ∀φ ∈ Φ. (46)

The objective function (38) minimizes the sum of vessel movement scheduling cost and pilot schedul-

ing cost. Each vessel is matched with one and only one vessel route (constraints (39)). The berth

capacity limitations are imposed by constraints (40). Constraints (41) and (42) enforce the minimum

headway requirements for vessels sailing into the channel when approaching and leaving berths, re-

spectively. The non-simultaneity constraints between tasks are given in (43). Constraints (44) connect

vessel routes with pilot routes. Constraints (45) and (46) define the variables to be binary.

The number of feasible vessel routes and pilot routes can be prohibitively large even for small-scale

instances, and enumerating all feasible routes is technically impossible. Therefore, our approach solves

M2 through column generation (i.e., by gradually generating vessel routes and pilot routes that may

be used in an optimal solution). The method starts from a restricted LP relaxation of M2, where only

small initial sets of vessel and pilot routes are included (to ensure the feasibility of the model) and the

integrality requirements for the routes in constraints (45) and (46) are dropped. Next, vessel routes

and pilot routes that may possibly reduce the objective function value are added to the problem, and

integrality constraints are imposed gradually by a branch-and-bound method.

At each branch of the branch-and-bound tree, one obtains an LP relaxation of M2. However, due to
constraints (44) that couple the vessel routes and the pilot routes, the LP relaxation of M2 is difficult

to solve by column generation directly. We observe that once the χω variables are fixed, the problem

reduces to a pilot scheduling problem in a (generally) sparse space-time network, which is much easier

to solve. Based on this motivation, we propose a Benders decomposition method to solve the LP

relaxation of M2. We explain the method in the next section.

4.2 Benders reformulation

In this section, we explain how to decompose the LP relaxation of M2 at a node in the branch-and-

bound tree. We start by formulating the primal Benders subproblem, then introduce the dual of it,

and finally present the Benders master problem.

Given a node in the branch-and-bound tree, let X be the set of vectors for the χω variables that

satisfy 0 ≤ χω ≤ 1, ∀ω ∈ Ω and satisfy constraints (39)–(43). For any given vector χ̄ ∈ X, the

LP relaxation of M2 reduces to the following primal Benders subproblem (PBSP) involving only µφ
variables:

[PBSP] min
∑
φ∈Φ

µφc̄φ (47)

s.t.
∑
φ∈Φ

µφγφ,i,t −
∑
ω∈Ω

χ̄ωαω,i,t = 0 ∀i ∈ I, t ∈ T (48)
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µφ ≤ 1 ∀φ ∈ Φ (49)

µφ ≥ 0 ∀φ ∈ Φ. (50)

When solving the PBSP through column generation, in the pricing subproblem we only need to consider

tasks i and time steps t such that
∑
ω∈Ω χ̄ωαω,i,t > 0. This enables us to formulate the pricing

subproblem in a space-time network with significantly fewer nodes than the original network that

contains all time steps for starting a task. Due to this favorable structure, the PBSP can be solved

very efficiently.

We let δ = (δi,t|i ∈ I, t ∈ T ) and ζ = (ζφ|φ ∈ Φ) denote the vectors of dual variables associated

with constraints (48) and (49), respectively. The dual of the Benders primal subproblem, called the

dual Benders subproblem (DBSP), can be formulated as follows:

[DBSP] max
∑
i∈I

∑
t∈T

∑
ω∈Ω

χ̄ωαω,i,tδi,t +
∑
φ∈Φ

ζφ (51)

s.t.
∑
i∈I

∑
t∈T

γφ,i,tδi,t + ζφ ≤ c̄φ ∀φ ∈ Φ (52)

δi,t ∈ R ∀i ∈ I, t ∈ T (53)

ζφ ≤ 0 ∀φ ∈ Φ. (54)

Proposition 1 The DBSP is always feasible and bounded.

Proposition 1 indicates that it is sufficient to add only Benders optimality cuts in the Benders

master problem. Let ∆ denote the polyhedron defined by constraints (52)–(54), and let Γ∆ be the set

of extreme points of ∆. Introducing the additional variable η, the LP relaxation of M2 can thus be

reformulated as the following Benders master problem (BMP):

[BMP] min
∑
ω∈Ω

χω c̄ω + η (55)

s.t. (39)–(43)

η ≥
∑
i∈I

∑
t∈T

∑
ω∈Ω

χωαω,i,tδi,t +
∑
φ∈Φ

ζφ ∀(δ, ζ) ∈ Γ∆ (56)

χω ≤ 1 ∀ω ∈ Ω (57)

χω ≥ 0 ∀ω ∈ Ω (58)

η ≥ 0. (59)

Observe that BMP contains a large number of Benders optimality cuts (56). However, most of these

cuts are inactive in an optimal solution. Hence, these constraints need not be generated exhaustively.

Instead, an iterative algorithm is used to generate only a subset of cuts that are sufficient for identifying

an optimal solution. The algorithm will be explained in Section 4.3.

4.3 Column and Benders Cut Generation

We solve the BMP at each node with a column and Benders cut generation (C&BCG) algorithm.

Let Γ0
∆ be the initial set of Benders cuts i.e., extreme points (δ, ζ) for the BMP. The framework of the

algorithm can be presented in Algorithm 1.

The method to initialize the set of Benders cuts at the beginning of the C&BCG algorithm will be

explained in Section 4.5.3. In C&BCG algorithm, both the BMP and the PBSP are solved by Dantzig-

Wolfe decomposition (Dantzig and Wolfe 1960), which iterates between a restricted master problem

and a pricing subproblem for column generation. We develop efficient polynomial-time algorithms for

solving the pricing subproblems in the BMP and PBSP. Details of the column generation methods for

the two problems are explained in Sections 4.3.1 and 4.3.2, respectively.
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4.3.1 Column generation for the BMP

To define the pricing problems in the Dantzig-Wolfe decomposition of the BMP, we let π = (πk|k ∈ K),

λ = (λb,t|t ∈ T , b ∈ B), θ = (θt|t ∈ T ), ϑ = (ϑt|t ∈ T ), κ = (κt,(i,j)|t ∈ T , (i, j) ∈ U), and

ϕ = (ϕ(δ,ζ)|(δ, ζ) ∈ Γ̃∆) denote the vectors of dual variables associated with constraints (39)–(43)

and (56), respectively.

Algorithm 1 Column and Benders Cut Generation (C&BCG).

1: Initialize the set of Benders cuts as Γ̃∆ = Γ0
∆. . The algorithm can start with Γ0

∆ = ∅.
2: while 1 do
3: Solve the BMP with the current set Γ̃∆ of Benders cuts by column generation (Section 4.3.1); let Z∗

BMP and
(χ∗, η∗) denote the optimal objective function value and the optimal solution to the BMP, respectively.

4: Let χ̄ = χ∗, and solve the PBSP by column generation (Section 4.3.2); let Z∗
PBSP and µ∗ denote the optimal

objective function value and the optimal solution to the PBSP, respectively; let (δ∗, ζ∗) denote the vectors of the
values of the associated optimal dual variables.

5: if Z∗
PBSP > η∗ then

6: Update Γ̃∆ = Γ̃∆ ∪ (δ∗, ζ∗).
7: else
8: Break.
9: end if

10: end while
11: Return Z∗

BMP , χ∗, and µ∗.

New vessel routes are generated by solving a pricing problem for each vessel k ∈ K and each berth

that can handle it (i.e., b ∈ Bk). We denote the pricing problem associated with vessel k and berth b

by MPPk,b (here, the letter “M” represents BMP, and we will use “SPP” to denote pricing problems

for the PBSP). The MPPk,b can be defined as a problem that identifies the arc with the minimum cost

in a space-time network Gk,b = (Nk,b, Ak,b), where Nk,b is the set of nodes and Ak,b is the set of arcs.

In particular, Nk,b = {(i, t)|t ∈ Ei, i ∈ Ik}, and Ak,b = {[(i, t), (i′, t′)]|t′ − t ≥ di + hk,b, (i, t), (i
′, t′) ∈

Nk,b, i ∈ Iin, i′ ∈ Iout}. The cost of sending a unit flow through arc [(i, t), (i′, t′)], denoted by

ĉ[(i,t),(i′,t′)], is calculated by

ĉ[(i,t),(i′,t′)] =c1i,t + c1i′,t′ + c2k,b − πk

−
τ=t′−1∑
τ=t+di

λτ,b −
t+fi−1∑
τ=t

θτ −
t′+fi′−1∑
τ=t′

ϑτ −
∑
j∈I

∑
(i,j)∈U

t+di−1∑
τ=t

κτ,(i,j)

−
∑
j∈I

∑
(i′,j)∈U

t′+di′−1∑
τ=t′

κτ,(i′,j) +
∑

(δ,ζ)∈Γ̃∆

ϕ(δ,ζ)(δi,t + δi′,t′).

(60)

Finally, observe that the minimum-cost arc can be found by enumeration, in O(|Ei||Ei′ |) time, where i

and i′ denote the tasks associated with vessel k sailing into and out of berth b, respectively. The newly

generated columns with negative reduced costs will then be added to the BMP, which will be solved

again. This procedure terminates when no routes with negative reduced costs can be detected.

4.3.2 Column generation for the PBSP

In the PBSP, we are given a vector χ̄ that represents the solution of the χ variables for the associated

BMP. Given χ̄, let H = {(i, t)|
∑
ω∈Ω χ̄ωαω,i,t > 0, t ∈ Ei, i ∈ I}, and Hs = {(i, t)|s ∈ St, (i, t) ∈ H},

∀s ∈ S.

New pilot routes for the PBSP are generated by solving |S| pricing problems, each corresponding

to a shift. We denote the pricing problem for shift s ∈ S by SPPs. With a slight abuse of notation,

the SPPs is defined as a shortest-path problem in a space-time network denoted by Gs = (Ns, As),

where Ns and As represent the set of nodes and the set of arcs, respectively. We let Ns = Hs ∪
Js ∪ {O,D}. Here, Js represents the set of nodes corresponding to starting a rest period. Because

the requirements of the rest periods are identical for all pilots working in the same shift, we define
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Js as Js = {(i, t), t ∈ Ei, i ∈ Jp,∃p ∈ Ps}. Besides, O and D denote the dummy source and the

dummy sink, respectively. Given Ns, we let A1
s = {[(i, t), (i′, t′)]|(i, t), (i′, t′) ∈ Ns, t + di + qi,i′ ≤ t′},

A2
s = {[O, (i′, t′)]|(i′, t′) ∈ Ns}, and A3

s = {[(i, t), D]|(i, t) ∈ Ns}, and let As = A1
s∪A2

s∪A3
s. The SPPs

is equivalent to finding the shortest elementary path in Gs that travels from O to D and contains

exactly one node from Js. The cost of sending a unit flow through any arc [m,m′] in Gs (denoted by

ĉ[m,m′]) is calculated by

ĉ[m,m′] =


−δi,t, if [m,m′] ∈ A1

s, [m,m
′] = [(i, t), (i′, t′)], (i, t) ∈ Hs,

c3s, if [m,m′] ∈ A2
s, [m,m

′] = [O, (i′, t′)],
−δi,t, if [m,m′] ∈ A3

s, [m,m
′] = [(i, t), D], (i, t) ∈ Hs,

0, otherwise.

(61)

To solve the shortest-path problem, we develop a tailored label correcting algorithm that solves the

SPPs in O(|Hs|2) time. The algorithm is explained in EC.2 of the electronic companion. The newly

generated columns with negative reduced costs will be added to the PBSP, which will be solved again.

This procedure continues until no routes with negative reduced costs can be found.

4.4 Branching scheme

The optimal solution to the BMP at a node in the tree may have fractional flows in vessel or pilot

routes. In this case, the node is branched into two child nodes so that (i) the current fractional solution

is infeasible for the BMP at both child nodes and (ii) the overall optimal integer solution for the two

child nodes remains the same as that for the BMP at the current node. The detailed branching scheme

is explained as follows.

We let χ∗ and µ∗ denote the optimal solutions to the BMP and the associated PBSP at a node,

respectively. To facilitate branching decisions, we make use of the following additional variable vectors:

Λ = (Λk,b|b ∈ Bk, k ∈ K), Ξ = (Ξi,t|t ∈ Ei, i ∈ I), Π = (Πi,s|s ∈ S, i ∈ I), and Ψ = (Ψi,j |i, j ∈
I ∪ {0} ∪ J , i 6= j). Here, we use 0 to denote the dummy source or sink of a pilot route. The values

of these variables are calculated by:

Λk,b =
∑
ω∈Ω

χ∗ω
∑
t∈T

∑
t′∈T

βω,b,t,t′ ∀b ∈ Bk, k ∈ K (62)

Ξi,t =
∑
ω∈Ω

χ∗ωαω,i,t ∀t ∈ Ei, i ∈ I (63)

Πi,s =
∑
φ∈Φs

µ∗φ
∑

t∈Ts∩Ei

γφ,i,t ∀s ∈ S, i ∈ I (64)

Ψi,j =
∑
φ∈Φ

µ∗φσφ,i,j ∀i, j ∈ I ∪ {0} ∪ J , i 6= j, (65)

where σφ,i,j is a binary parameter which equals 1 if and only if route φ travels directly from activity i

(or the dummy source) to activity j (or the dummy sink).

Let Λk̄,b̄, Ξī,t̄, Πī,s̄, and Ψī,j̄ denote the variables that are closest to 0.5 among the variables in

vectors Λ, Ξ, Π, and Ψ, respectively. The branching decisions are made as follows:

• If there are fractional Λk,b variables, we separate the current node by generating one child node

with the additional constraint Λk̄,b̄ = 0 imposed on the associated BMP and one child node with

the additional constraint Λk̄,b̄ = 1 imposed on the associated BMP.

• If all Λk,b variables are integer, but there are fractional Ξi,t variables, we separate the current node

by generating one child node with the additional constraint Ξī,t̄ = 0 imposed on the associated

BMP and one child node with the additional constraint Ξī,t̄ = 1 imposed on the associated BMP.

• If all Λk,b and Ξi,t variables are integer, but there are fractional Πi,s variables, we separate the

current node by generating one child node with the additional constraint Πī,s̄ = 0 imposed on

the associated PBSP and one child node with the additional constraint Πī,s̄ = 1 imposed on the

associated PBSP.
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• If all Λk,b, Ξi,t, and Πi,s variables are integer, but there are fractional Ψī,j̄ variables, we separate

the current node by generating one child node with the additional constraint Ψī,j̄ = 0 imposed

on the associated PBSP and one child node with the additional constraint Ψī,j̄ = 1 imposed on

the associated PBSP.

To preserve the structures of the BMP and the PBSP, all branching constraints are imposed on the

corresponding pricing problems for generating columns.

In the BPBC approach, we adopt a best-bound strategy for selecting the nodes to solve. In

particular, among all unsolved and unfathomed nodes in the branch-and-bound tree, we solve the one

that has the minimum objective function value of the associated BMP.

Theorem 1 The BPBC approach can generate an optimal solution for model M2.

4.5 Computational enhancements

We now describe the computational enhancements that improve the efficiency of the BPBC approach.

4.5.1 Lower-bound lifting inequalities

Because parts of the objective function (38) are projected out in the Benders reformulation, the

optimality gap of the BMP may be large in the initial stages of the algorithm due to the low quality of

the lower bound. A large number of Benders cuts are thus needed to close the gap (Adulyasak et al.

2015). To address this issue, Adulyasak et al. (2015) proposed a method to lift the lower bound of

the Benders master problem by using inequalities that contain some information about the parts of

the original objective function that were removed. Following this idea, we lift the lower bound of the

BMP by using initial cuts, called the lower-bound lifting (LBL) cuts. In particular, we use the LBL

cuts to estimate a lower bound of the cost in pilot dispatching and lift the lower bound of the BMP

by requiring the variable η to be no smaller than the lower bound of the pilot dispatching cost.

In pilot scheduling, a minimum setup time (qi,j) is required when a pilot is repositioned from

task i to task j. In the LBL inequalities, we relax the minimum setup time requirement, by setting an

identical minimum setup time between task i and any other task (denoted by q
i
) to be q

i
= min
j∈I:j 6=i

{qi,j}.
Let νi,t,s be a binary variable which is equal to 1 if and only if task i starts at time t and is performed

by a pilot in shift s. The following LBL cuts are valid for the BMP:

η ≥
∑
s∈S

c3sns (66)

ns ≥
∑
i∈I

t∑
t′=max{T s,t−di−qi+1}

νi,t′,s ∀t ∈ Ts, s ∈ S (67)

∑
s∈St

νi,t,s =
∑
ω∈Ω

χωαω,i,t ∀t ∈ Ei, i ∈ I (68)

νi,t,s ≤ 1 ∀i ∈ I, t ∈ T , s ∈ S (69)

νi,t,s ≥ 0 ∀i ∈ I, t ∈ T , s ∈ S (70)

ns ≥ 0 ∀s ∈ S. (71)

Constraint (66) provides a lower bound for the pilot dispatching cost. Constraints (67) calculate the

number of pilots required to work in each shift. Constraints (68) synchronize the scheduling of tasks

and the assignment of pilots. The domains of the νi,t,s and ns variables are defined in the last three

sets of constraints (they are relaxed to be continuous variables).

We can lift the LBL inequalities by tightening constraints (67) to be

ns ≥
∑
i∈I

t∑
t′=max{T s,t−di−q′i,t,s+1}

νi,t′,s ∀t ∈ Ts, s ∈ S. (72)
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For each i ∈ I, t ∈ Ts, s ∈ S, q′
i,t,s
≥ q

i
and is set as follows:

q′
i,t,s

=

{
T , if Īi,t,s = ∅,
min

j∈Īi,t,s
min

t′∈Z[t+di+qi,j ,Ts]∩Ej
t′ − di, if Īi,t,s 6= ∅,

where Īi,t,s = {j|j ∈ I,Z[t+di+qi,j ,T s] ∩ Ej 6= ∅, j 6= i}. Observe that Īi,t,s is the set of tasks that can

be performed by a pilot working in shift s after completing task i which starts at time step t in this

shift.

Proposition 2 The LBL inequalities (66) and (68)–(72) are valid for the BMP.

Finally, we note that after adding these inequalities, the BMP has been changed, not only with

more decision variables (columns) but also with more constraints. As a sequence, the pricing problems

and their solution algorithms should also be modified to incorporate the changes. Consider the pricing

problem for vessel k and berth b (denoted by MPP′k,b). The MPP′k,b can be defined as a problem that

identifies the arc with the minimum cost in a three-dimensional task-time-shift network. We present

the details of the pricing problems for the BMP with the LBL cuts in EC.3 of the electronic companion.

To solve the MPP′k,b, we extend the enumeration method for the original pricing problem MPPk,b
by not only enumerating all feasible pairs of start times for the vessel to sail into and out of the

berth but also enumerating all feasible pilot assignment patterns (in terms of working shifts) for the

associated pilotage tasks. Observe that this enumeration method for solving the MPP′k,b still has

polynomial time complexity and solves the problem in O(|Ei||Ei′ ||S|2) time, where i and i′ denote the

tasks corresponding to vessel k sailing into and out of berth b, respectively.

4.5.2 Variable fixing

In each iteration of the column generation procedure for solving the BMP, one has to solve
∑
k∈K |Bk|

pricing problems. In this section, we show that the column generation procedure can be accelerated

by fixing the value of χω at zero if χω cannot take value 1 in an optimal integer solution for M2.

When solving the BMP at a node in the branch-and-bound tree, at each stage of column generation,

we obtain (i) the optimal objective function value denoted by Υ, and (ii) the minimum reduced cost

obtained by solving pricing problem MPPk,b (or MPP′k,b) which is denoted by rk,b, where k ∈ K, b ∈ Bk.

Then we have:

Lemma 1 Υ +
∑
k∈K

∑
b∈Bk:rk,b<0 rk,b is a lower bound for the BMP at the current node.

For notational simplicity, let LB = Υ +
∑
k∈K

∑
b∈Bk:rk,b<0 rk,b, and let Ωk,b denote the set of

columns corresponding to vessel k being handled at berth b, where b ∈ Bk, k ∈ K. We further have:

Proposition 3 Given a pair of b and k such that b ∈ Bk, k ∈ K and rk,b ≥ 0, LB + rk,b gives a

lower bound for the BMP with the constraint
∑
ω∈Ωk,b

χω = 1 at the current node and any child nodes

generated from this node.

Suppose that UB is the best (integer) upper bound for model M2. Then, consider a pair of b and k

that satisfies LB + rk,b ≥ UB. In this case, in any optimal solution for the BMP with the constraint∑
ω∈Ωk,b

χω = 1 at the current node, the resulting objective function value is no smaller than the

upper bound. Note that due to constraints (39), in an integer solution for the BMP at any node, the

value of
∑
ω∈Ωk,b

χω either takes 1 or 0. Hence, in any integer solution for the BMP with the objective

function value smaller than UB at the current node, one must have
∑
ω∈Ωk,b

χω = 0. To accelerate the

column generation procedure, we “fix” χω = 0, ∀ω ∈ Ωk,b by not solving the pricing problem MPPk,b
(or MPP′k,b) at the current node and any child nodes generated from this node.
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4.5.3 Warm start for the BMP

We warm start the C&BCG algorithm for solving the BMP at a node by using a set of initial Benders

cuts in the first iteration of the algorithm and by using a set of initial columns in each subsequent

iteration.

Let Θι denote the set of branching constraints regarding the variables in Π and Ψ, as defined in

Section 4.4, imposed on the PBSP at a node denoted by ι. The method for initializing Benders cuts

for the BMP is based on Proposition 4 and Corollary 1.

Proposition 4 For two nodes ι and ι′, if we have Θι′ ⊆ Θι, then the Benders cuts that are valid for

the BMP at node ι′ are also valid for the BMP at node ι.

Corollary 1 The Benders cuts that are valid for the BMP at the root node are also valid for the BMP

at any other node.

When solving the BMP at node ι, we let the initial set of Benders cuts (denoted by Γ0
∆ in the

C&BCG algorithm) include all Benders cuts that are generated for solving the BMP at any node ι′

such that Θι′ ⊆ Θι (including the root node).

Moreover, in each iteration of the C&BCG algorithm (except for the first iteration), we also initialize

a set of columns for the BMP. In particular, the set of initial columns, denoted by Ω0, is set as

Ω0 = {ω|χ∗ω > 0, ω ∈ Ω̃}, where Ω̃ and χ∗ω denote the set of columns (vessel routes) generated for

solving the BMP in the previous iteration in the algorithm and their optimal solutions, respectively.

4.5.4 Primal heuristics

A high-quality upper bound for M2 helps prune branches in the branch-and-bound tree in the early

stages. It can also accelerate the column generation procedure for solving the BMP through variable

fixing. To quickly identify high-quality upper bounds, the approach leverages two methods to generate

feasible integer solutions for M2.

The first method detects integer solutions within the C&BCG algorithm for solving the BMP. In

particular, in any iteration of the algorithm, let (χ∗, η∗) and Z∗1 be the optimal solution and the optimal

objective function value of the BMP, respectively, and let µ∗ and Z∗2 be the optimal solution and the

optimal objective function value of the associated PBSP, respectively. If all values in χ∗ and µ∗ are

integral, then we obtain a feasible integer solution (χ∗,µ∗) to M2 and a corresponding upper bound

equal to Z∗1 − η∗ + Z∗2 .

The second method is used each time the C&BCG algorithm completes solving the BMP and

delivers a fractional solution for it. In this case, we run a heuristic that tries to construct a feasible

integer solution for M2 based on the current fractional solution. Details of the heuristic are explained

in EC.4 of the electronic companion.

4.5.5 Parallel computing for pricing problems

We also accelerate the approach by exploiting multi-thread computing. In each iteration of the column

generation procedure for the BMP or the PBSP, the approach solves a set of independent pricing

problems. Although all of the pricing problems for the BMP and the PBSP have polynomial time

complexity, their large number still hinders the solution process. To alleviate this computational

burden, our approach solves multiple pricing problems simultaneously by using parallel computing.

5 Computational experiments

We now perform extensive computational experiments to confirm the applicability and effectiveness

of our model and algorithm. The experiments include four parts. In the first part, we examine the
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impacts of the acceleration techniques on the performance of the BPBC approach. In the second part,

we compare the performance of the approach with that of a standard MILP solver applied to models

M1 and SM1. In the third part, we evaluate the robustness of the BPBC approach against variations

in problem settings. In the fourth part, we analyze the value of the integration by comparing the

results delivered by our approach with those obtained by a method that solves the BAP and the PPP

sequentially.

We performed the experiments on an Intel Core i7 2.20 GHz PC with 32 GB RAM, and the pricing

problems for the BMP and the PBSP were solved in a six-thread environment (i.e., at most six pricing

problems are solved simultaneously). All algorithms were coded in C++ calling CPLEX 12.6. The

time limit for any approach to solve any instance was set to 3,600 seconds.

5.1 Instance generation

We created a set of instances for the experiments based on real operational data from the Hong Kong

Container Port, which is the eighth largest container port in the world (The Marine Department of

Hong Kong 2020a).

Let L, B, and V be the length of the planning horizon (days), the number of berths, and the

number of vessel arrivals in an instance, respectively. In all instances, we let L ∈ {1, 2}, B ∈ {10, 15}.
Then, given each combination of L and B, we set V = R · L · B, where R is the vessel arrival rate

(vessel arrivals per berth per day) and R ∈ {1.0, 1.2, 1.4}. Hence, there are 12 combinations of L, B,

and V . For each combination, we created five random instances, yielding 60 instances in total. In all

instances, the unit time is set to 10 minutes; i.e., a time step lasts 10 minutes, and a day contains 144

time steps. A day is divided into three shifts, covering 0:00-8:00, 8:00-16:00, and 16:00-24:00. The

planning horizon in an instance starts from 0:00 on a given day. Details of the operational data of

the Hong Kong Container Port and the settings of other parameters in the instances are explained in

EC.5 of the electronic companion.

5.2 Impacts of the computational enhancements

We proposed five acceleration strategies in Section 4.5 to improve the performance of the BPBC

approach. Table 1 reports the performance of the BPBC approach on the 60 instances when all of

these acceleration strategies were used and also when each of them was not applied. The first column

shows the settings of (L,B, V ) in a group of five instances. Column BPBC indicates the BPBC with
all enhancements, and other columns show the results when different computational enhancements

were not used. The abbreviations LBL, VF, WS, PH, and PC correspond to the lower-bound lifting

inequalities, variable fixing, warm start for the BMP, primal heuristics, and parallel computing for

pricing problems, respectively. For each group of instances, we report the number of instances solved

to optimality, the average optimality gap (in percentage terms), and the average computational time (in

CPU seconds) for each solution method in the corresponding columns Opt, Gap, and CPU, respectively.

The results confirm that all acceleration strategies can significantly improve the performance of

the BPBC approach. In particular, the total number of instances solved to optimality increased

by 2, 2, 7, 4, and 1, and the average computational time decreased by 23.9%, 9.1%, 48.2%, 21.0%,

and 9.7%, respectively, after incorporating LBL, VF, WS, PH, and PC. In addition, the use of primal

heuristics enabled the BPBC approach to generate feasible solutions for all instances, which results in

a significant decrease in the average optimality gap.

5.3 Comparisons with CPLEX

In this section, we compare the performance of the BPBC approach with methods that use optimization

solvers to solve MILP models M1 (the original formulation) and SM1 (M1 with valid inequalities [32]–

[37]). We adopted CPLEX 12.6 as the optimization solver.
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Table 1: Average computational results of the BPBC approaches.

BPBC No LBL No VF No WS No PH No PC

(L,B, V ) Opt Gap CPU Opt Gap CPU Opt Gap CPU Opt Gap CPU Opt Gap CPU Opt Gap CPU

(1, 10, 10) 5 0.0 10.1 5 0.0 24.0 5 0.0 10.9 5 0.0 23.3 5 0.0 16.3 5 0.0 11.8
(1, 10, 12) 5 0.0 5.2 5 0.0 26.9 5 0.0 6.0 5 0.0 12.8 5 0.0 5.8 5 0.0 7.2
(1, 10, 14) 5 0.0 35.9 5 0.0 92.2 5 0.0 45.0 5 0.0 76.7 5 0.0 41.8 5 0.0 47.6
(2, 10, 20) 5 0.0 149.6 5 0.0 249.1 5 0.0 220.0 5 0.0 885.2 5 0.0 419.2 5 0.0 177.4
(2, 10, 24) 5 0.0 254.7 5 0.0 455.8 5 0.0 287.0 5 0.0 1084.9 5 0.0 353.7 5 0.0 333.0
(2, 10, 28) 3 0.1 1646.3 3 0.2 1930.6 3 0.2 1798.6 3 0.2 2313.6 2 40.1 2297.1 3 0.1 1702.3
(1, 15, 15) 5 0.0 94.0 5 0.0 160.3 5 0.0 135.8 5 0.0 321.8 5 0.0 130.9 5 0.0 94.8
(1, 15, 18) 5 0.0 26.2 5 0.0 105.0 5 0.0 30.2 5 0.0 83.0 5 0.0 30.5 5 0.0 44.3
(1, 15, 21) 5 0.0 276.6 5 0.0 431.7 5 0.0 351.5 4 0.0 1703.3 5 0.0 378.5 5 0.0 350.8
(2, 15, 30) 5 0.0 1152.8 4 0.0 1591.9 4 0.0 1241.6 3 0.2 2169.7 3 40.0 1634.3 5 0.0 1376.2
(2, 15, 36) 4 0.0 1470.2 4 0.0 1826.8 3 0.0 1620.0 2 0.5 2527.5 3 20.0 1705.1 3 0.0 1649.8
(2, 15, 42) 2 0.8 2548.7 1 1.0 3179.2 2 0.9 2686.7 0 1.5 3600.0 2 60.0 2699.0 2 0.8 2697.2

Total 54 0.1 639.2 52 0.1 839.5 52 0.1 702.8 47 0.2 1233.5 50 13.3 809.4 53 0.1 707.7

Note 1. We take the optimality gap as 100% if a method failed to obtain a feasible solution for an instance.

Note 2. Abbreviations: LBL: lower-bound lifting inequalities; VF: variable fixing; WS: warm start for the BMP; PH: primal

heuristics; PC: parallel computing for pricing problems.

For the comparisons, we used 15 instances from three groups with L = 1, B = 10, and

V ∈ {10, 12, 14}. Table 2 summarizes the results produced by the BPBC approach and CPLEX

on M1 and SM1. For each method, we show the number of instances for which feasible solutions were

found in column Fs1 and the number of instances solved to optimality in column Opt. Columns Gap

and CPU report the average optimality gap in percentage terms and the average computational time

for solving the instances in each group, respectively.

Table 2: Average computational results of the BPBC approach and CPLEX.

BPBC M1 SM1

(L,B, V ) Fsl Opt Gap CPU Fsl Opt Gap CPU Fsl Opt Gap CPU

(1, 10, 10) 5 5 0.0 10.1 1 0 81.6 3600.0 5 4 0.4 1688.8
(1, 10, 12) 5 5 0.0 5.2 0 0 100.0 3600.0 5 0 6.8 3600.0
(1, 10, 14) 5 5 0.0 35.9 0 0 100.0 3600.0 3 0 49.4 3600.0

Total 15 15 0.0 17.1 1 0 93.9 3600.0 13 4 35.8 2962.9

Note. We take the optimality gap as 100% if a method failed to obtain a feasible solution for an instance.

For the 15 instances, CPLEX on M1 produced feasible solutions to only one instance within the

time limit. The computational time of CPLEX on M1 for each instance reached 3,600 seconds, and the

average optimality gap exceeds 93%. In comparison, CPLEX on SM1 found feasible solutions for 13

instances, and four were solved to optimality within the time limit. The average optimality gap of the

method is 35.8%, which is significantly smaller than that generated by the solver on M1. For instances

with 10 vessels, the average solution time of CPLEX on SM1 is also much shorter than that needed

by the solver on M1. These indicate that the valid inequalities (32)–(37) can significantly improve the

performance of an MILP solver for solving the instances.

Moreover, as shown in Table 2, the BPBC approach can solve all 15 instances to optimality, and the

average computational time is 17.1 seconds, which is 173 times faster than CPLEX on SM1. Hence,

the BPBC approach significantly outperforms CPLEX for solving the VSPP instances.

5.4 Sensitivity analyses

In this section, we evaluate the performance of the BPBC approach and the solution quality when the

problem settings are changed.

To this end, we solved the 15 instances with L = 1 and B = 10 under 20 pilot scheduling settings.

Here, a pilot scheduling setting is associated with a shift arrangement and a cost for assigning a pilot

to work in a shift. In particular, we considered four shift arrangements in which shifts still last eight
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hours but the intervals between the start times of two consecutive shifts are set as one, two, four, and

eight hours, respectively. Note that a day contains 24, 12, six, and three shifts when the intervals

between the start times of two consecutive shifts are one, two, four, and eight hours, respectively, and

that shifts can overlap in the first three settings. In addition, we considered five pilot dispatching costs

by setting the cost of assigning a pilot to work in a shift (i.e., c3s) to 48, 60, 72, 84, and 96, respectively.

In all instances, the planning horizons start at 0:00 on a given day, and the first shifts start at the

same time.

The results are shown in Table 3. υ denotes the interval (hours) between the start times of two

consecutive shifts. The second column shows the settings of (L,B, V ) in a group of five instances.

For each group of instances under each setting (with respect to υ and c3s), we report the number

of instances solved to optimality, the average optimality gap (in percentage terms), and the average

computational time (in CPU seconds) obtained by the BPBC approach in the corresponding columns

Opt, Gap, and CPU, respectively.

Table 3: Average computational results on instances under different settings.

c3s = 48 c3s = 60 c3s = 72 c3s = 84 c3s = 96

(L,B, V ) Opt Gap CPU Opt Gap CPU Opt Gap CPU Opt Gap CPU Opt Gap CPU

υ = 1

(1, 10, 10) 5 0.0 37.7 5 0.0 53.8 5 0.0 383.1 5 0.0 1195.2 4 0.1 1803.2
(1, 10, 12) 5 0.0 83.1 5 0.0 573.6 5 0.0 957.5 5 0.0 1559.2 3 0.5 2517.3
(1, 10, 14) 5 0.0 287.2 5 0.0 618.2 4 0.0 1950.2 2 0.4 2338.1 2 0.5 2519.3

Total 15 0.0 136.0 15 0.0 415.2 14 0.0 1096.9 12 0.1 1697.5 9 0.4 2279.9

υ = 2

(1, 10, 10) 5 0.0 15.3 5 0.0 25.2 5 0.0 89.0 5 0.0 357.3 4 0.0 1392.1
(1, 10, 12) 5 0.0 20.7 5 0.0 51.6 5 0.0 266.1 4 0.0 953.5 4 0.1 1555.6
(1, 10, 14) 5 0.0 68.3 5 0.0 378.4 4 0.1 1481.3 2 0.4 2426.3 1 1.0 2887.0

Total 15 0.0 34.8 15 0.0 151.7 14 0.0 612.2 11 0.1 1245.7 9 0.4 1944.9

υ = 4

(1, 10, 10) 5 0.0 17.6 5 0.0 71.3 5 0.0 194.6 5 0.0 701.8 4 0.0 1595.7
(1, 10, 12) 5 0.0 17.0 5 0.0 45.2 5 0.0 120.1 5 0.0 436.1 4 0.0 1305.1
(1, 10, 14) 5 0.0 26.9 5 0.0 107.2 5 0.0 355.1 4 0.0 1266.2 3 0.5 1962.6

Total 15 0.0 20.5 15 0.0 74.6 15 0.0 223.3 14 0.0 801.4 11 0.2 1621.1

υ = 8

(1, 10, 10) 5 0.0 10.1 5 0.0 31.5 5 0.0 78.3 5 0.0 215.9 5 0.0 608.4
(1, 10, 12) 5 0.0 5.2 5 0.0 17.2 5 0.0 47.3 5 0.0 150.9 5 0.0 848.7
(1, 10, 14) 5 0.0 35.9 5 0.0 71.0 5 0.0 201.7 5 0.0 569.0 5 0.0 1599.2

Total 15 0.0 17.1 15 0.0 39.9 15 0.0 109.1 15 0.0 311.9 15 0.0 1018.8

The results demonstrate that the BPBC approach can efficiently solve instances under various pilot

scheduling settings. In particular, the algorithm generated optimal solutions in 274 of the 300 tests

within the time limit (one hour). The average optimality gaps are all within 0.5%. These results

indicate that the approach can generate high-quality solutions for instances under different settings

within a reasonable time. We can also see from the results that instances with fewer shifts and lower

pilot dispatching costs are generally easier to solve. In particular, the approach provided optimality

certificates to all instances with c3s ≤ 60 or υ = 8.

To further examine the impacts of varying the settings of c3s and υ on the solution structure,

we compare the average numbers of working pilots and the average objective function values of the

instances under different settings. The results are shown in Figure 3.

As shown in Figure 3, the average number of working pilots decreases and the average objective

function value (total cost) increases with the increase in dispatching cost. The figure also demonstrates

that a smaller υ is associated with fewer working pilots and a lower total cost of vessel services.

5.5 Benefits of integration

The last part of the experiments focuses on the benefits of solving the BAP and the PPP in the VSPP

using an integrated optimization method. To this end, we developed a method that solves the VSPP
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(a) Number of working pilots. (b) Objective function value.

Figure 3: Average number of working pilots and objective function value under different settings.

by solving the BAP with vessel traffic flow control and the resulting PPP sequentially. We used this

sequential method to solve the 15 instances from three groups with L = 1, B = 10, and V ∈ {10, 12, 14}
under 20 pilot scheduling settings. This led to 300 tests. Table 4 compares the average results obtained

by the integrated optimization method (the BPBC approach) and the sequential method for solving

instances in each group and under each pilot scheduling setting.

Column #P(S) shows the average numbers of working pilots in the solutions generated by the

sequential method. The average numbers of working pilots in the solutions generated by the BPBC

approach under different settings are presented in columns #P(I). For a certain instance under a

certain pilot scheduling setting, let ovS and ovI be the objective function values associated with the

solutions delivered by the sequential method and the BPBC approach, respectively. We calculated the

percentage gap between ovS and ovI by 100(ovS − ovI)/ovS . Columns Gap(%) report the average of

these gaps for different instance groups under different settings.

Table 4: Value of integration under different settings.

c3s = 48 c3s = 60 c3s = 72 c3s = 84 c3s = 96

(L,B, V ) #P(S) #P(I) Gap(%) #P(I) Gap(%) #P(I) Gap(%) #P(I) Gap(%) #P(I) Gap(%)

υ = 1

(1, 10, 10) 9.8 6.8 1.7 6.8 2.5 6.6 3.3 6.6 4.0 6.6 4.7
(1, 10, 12) 10.6 8.0 1.6 7.6 2.2 7.3 2.9 7.2 3.6 6.8 3.9
(1, 10, 14) 11.8 8.2 1.5 8.0 2.2 8.0 2.9 7.8 3.3 8.0 3.9

Total 10.7 7.7 1.6 7.5 2.3 7.3 3.0 7.2 3.6 7.1 4.2

υ = 2

(1, 10, 10) 9.8 7.0 1.6 6.8 2.4 6.6 3.2 6.6 3.9 6.6 4.6
(1, 10, 12) 10.8 8.0 1.7 8.0 2.3 7.8 2.9 7.4 3.6 6.8 4.3
(1, 10, 14) 12.4 8.6 1.8 8.6 2.5 8.2 3.1 8.4 3.6 8.6 3.8

Total 11.0 7.9 1.7 7.8 2.4 7.5 3.1 7.5 3.7 7.3 4.2

υ = 4

(1, 10, 10) 10.2 8.0 1.5 7.7 2.1 7.5 2.7 7.4 3.4 6.8 4.1
(1, 10, 12) 11.4 8.6 1.6 8.4 2.2 7.6 2.9 7.4 3.7 7.4 4.5
(1, 10, 14) 12.8 8.8 1.9 8.8 2.7 8.4 3.4 8.2 4.1 8.2 4.5

Total 11.5 8.5 1.6 8.3 2.3 7.8 3.0 7.7 3.7 7.5 4.4

υ = 8

(1, 10, 10) 11.2 8.0 2.0 7.6 2.9 7.4 3.7 7.4 4.6 7.4 5.4
(1, 10, 12) 12.2 8.8 1.9 8.8 2.6 7.8 3.5 7.8 4.3 7.4 5.2
(1, 10, 14) 15.0 10.2 2.3 9.8 3.2 9.8 4.1 9.4 5.0 8.8 5.8

Total 12.8 9.0 2.0 8.7 2.9 8.3 3.8 8.2 4.6 7.9 5.5
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As shown in Table 4, compared with the sequential method, the solutions generated by the BPBC

approach require three to five fewer pilots on average, resulting in a 30% to 40% average reduction

in the total pilot dispatching cost. Depending on the pilot scheduling settings, the BPBC approach

reduces total vessel service costs by an average of 1.6% to 5.5% compared with the sequential method.

These results demonstrate that by solving the BAP and the PPP jointly, the BPBC approach generates

significant benefits for port authorities compared with a sequential decision method.

6 Conclusions

In this paper, we have introduced a VSPP in seaports that addresses the BAP and the PPP in

combination. We have formulated the problem as a compact MILP model and have proposed several

valid inequalities to strengthen the LP relaxation of the model. This model can be solved efficiently

by a general-purpose solver for small-scale instances. To solve large-scale instances, we have proposed

a BPBC approach. The approach is further improved by several computational enhancements: LBL

inequalities, variable fixing, warm start for the BMP, primal heuristics, and parallel computing for

pricing problems. The computational results show that these enhancements significantly improve the

performance of the BPBC approach.

We have also tested the performance of the BPBC approach with instances under different shift

arrangements and pilot dispatching costs. The results show that the approach performs robustly to

solve instances under different settings. Finally, we have compared the performances of the BPBC

approach and a sequential optimization method, and the results demonstrate that integrating the

BAP and the PPP in the VSPP brings significant benefits to port authorities.

The current study can be extended in several ways. First, while we assume deterministic parame-

ters, the arrival and handling times of vessels are uncertain in practice. Thus, a promising extension

direction of this research is to design solution methods for the VSPP under conditions of uncertainty.

Second, in our problem, we consider the most common seaport layout, i.e., one consisting of an

(uncapacitated) anchorage located at the outermost part of the seaport, a set of berths, and one

navigation channel that lies between them. In some large seaports, however, there may be another

anchorage that lies between the channel and the berths. Such “inner” anchorages provide temporary

mooring areas for vessels before entering the terminals, and they generally have limited capacities.

Some large seaports also may have multiple navigation channels. Future studies can consider extending

the models and solution approach developed in this paper to solve the VSPP in seaports with different

layouts.

Finally, along with pilots, tugboats also play an important role in berthing and unberthing vessels

in a seaport. In many seaports, tugboats are managed by companies that are independent of port

authorities, e.g., the Port of Hong Kong and the Port of Montreal (The Marine Department of Hong

Kong 2020b, The Port of Montreal 2020). Nevertheless, it would be interesting to develop methods to

further integrate towage services in the VSPP.
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