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Abstract : A small polygon is a polygon of unit diameter. The maximal area of a small polygon
with n = 2m vertices is not known when m > 7. Finding the largest small n-gon for a given number
n > 3 can be formulated as a nonconvex quadratically constrained quadratic optimization problem.
We propose to solve this problem with a sequential convex optimization approach, which is a ascent
algorithm guaranteeing convergence to a locally optimal solution. Numerical experiments on polygons
with up to n = 128 sides suggest that the optimal solutions obtained are near-global. Indeed, for even
6 < n < 12, the algorithm proposed in this work converges to known global optimal solutions found
in the literature.

Keywords: Planar geometry, small polygons, maximal area, quadratically constrained quadratic
optimization, sequential convex optimization, concave-convex procedure

Acknowledgements: The author thanks Charles Audet, Professor at Polytechnique Montreal, for
helpful discussions on largest small polygons and helpful comments on early drafts of this paper.
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1 Introduction

The diameter of a polygon is the largest Euclidean distance between pairs of its vertices. A polygon is
said to be smallif its diameter equals one. For a given integer n > 3, the maximal area problem consists
in finding the small n-gon with the largest area. The problem was first investigated by Reinhardt [1]
in 1922. He proved that

e when n is odd, the regular small n-gon is the unique optimal solution;
e when n = 4, there are infinitely many optimal solutions, including the small square;

e when n > 6 is even, the regular small n-gon is not optimal.

The maximal area is known for even n < 12. In 1961, Bieri [2] found the largest small 6-gon,
assuming the existence of an axis of symmetry. In 1975, Graham [3] independently constructed the
same 6-gon, represented in Figure 2c. In 2002, Audet, Hansen, Messine, and Xiong [4] combined
Graham’s strategy with global optimization methods to find the largest small 8-gon, illustrated in
Figure 3c. In 2013, Henrion and Messine [5] found the largest small 10- and 12-gons by also solving
globally a nonconvex quadratically constrained quadratic optimization problem. They also found the
largest small axially symmetrical 14- and 16-gons. In 2017, Audet [6] showed that the regular small
polygon has the maximal area among all equilateral small polygons. In 2020, Audet, Hansen, and
Svrtan [7] determined analytically the largest small axially symmetrical 8-gon.

The diameter graph of a small polygon is defined as the graph with the vertices of the polygon, and
an edge between two vertices if the distance between these vertices equals one. Graham [3] conjectured
that, for even n > 6, the diameter graph of a small n-gon with maximal area has a cycle of length n—1
and one additional edge from the remaining vertex. The case n = 6 was proven by Graham himself [3]
and the case n = 8 by Audet, Hansen, Messine, and Xiong [4]. In 2007, Foster and Szabo [8] proved
Graham’s conjecture for all even n > 6. Figure 1, Figure 2, and Figure 3 show diameter graphs of
some small polygons. The solid lines illustrate pairs of vertices which are unit distance apart.

In addition to exact results and bounds, uncertified largest small polygons have been obtained both
by metaheurisitics and nonlinear optimization. Assuming Graham’s conjecture and the existence of an
axis of symmetry, Mossinghoff [9] in 2006 constructed large small n-gons for even 6 < n < 20. In 2018,
using a formulation based on polar coordinates, Pinter [10] presented numerical solutions estimates of
the maximal area for even 6 < n < 80. However, the solutions obtained by Pinter are not optimal for
even n > 32.

The maximal area problem can be formulated as a nonconvex quadratically constrained quadratic
optimization problem. In this work, we propose to solve it with a sequential convex optimization
approach, also knows as the concave-convex procedure [11, 12]. This approach is an ascent algorithm
guaranteeing convergence to a locally optimal solution. Numerical experiments on polygons up to
n = 128 sides suggest that the optimal solutions obtained are near-global. Indeed, without assuming
Graham’s conjecture nor the existence of an axis of symmetry in our quadratic formulation, optimal
n-gons obtained with the algorithm proposed in this work verify both conditions within the limit of
numerical computations. Moreover, for even 6 < n < 12, this algorithm converges to known global
optimal solutions. The algorithm is implemented as a MATLAB-based package, OPTIGON, which is
available on GitHub [13]. OPTIGON requires that CVX [14] be installed.

The remainder of this paper is organized as follows. In Section 2, we recall principal results on
largest small polygons. Section 3 presents the quadratic formulation of the maximal area problem and
the sequential convex optimization approach to solve it. We report in Section 4 computational results.
Section 5 concludes the paper.
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Figure 1: Two small 4-gons (P4, A(P4))

(a) (Re,0.649519) (b) (rRT,0.672288) (c) (s, 0.674981)

Figure 2: Three small 6-gons (Pg, A(Pg))

(a) (Rs,0.707107) (b) (RF,0.725320) (c) (Us,0.726868)

Figure 3: Three small 8-gons (Pg, A(Pg))

2 Largest small polygons

Let A(P) denote the area of a polygon P. Let R,, denote the regular small n-gon. We have

5 (sin =~ —tan %) if n is odd,
A(Rn) = Yn - 2n . .
g sin % if n is even.

We remark that A(R,) < A(R,—1) for all even n > 6 [15]. This suggests that R, does not have
maximum area for any even n > 6. Indeed, when n is even, we can construct a small n-gon with a
larger area than R,, by adding a vertex at distance 1 along the mediatrix of an angle in R,,_;. We

denote this n-gon by R:_l and we have

n—-1/. « 7r . T 1.
AR ) = 5 <s1nn_1—tanzn_2>—|—sm2n_2—2smn_1.
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Theorem 1 (Reinhardt [1]) For all n > 3, let A} denote the mazimal area among all small n-gons

and let A,, := 3 (sin% — tan zln)

o When n is odd, A} = A, is only achieved by R,,.
o A3 =0.5 < Ay is achieved by infinitely many 4-gons, including Ry and R3 illustrated in Figure 1.
o Whenn > 6 is even, A(R,) < A% < A,.

When n > 6 is even, the maximal area A} is known for n < 12. Using geometric arguments,
Graham [3] determined analytically the largest small 6-gon, represented in Figure 2c. Its area A§ ~
0.674981 is about 3.92% larger than A(Rg) ~ 0.649519. The approach of Graham, combined with
methods of global optimization, has been followed by [4] to determine the largest small 8-gon, repre-
sented in Figure 3c. Its area A ~ 0.726868 is about 2.79% larger than A(Rg) =~ 0.707107. Henrion
and Messine [5] found that Aj, ~ 0.749137 and A}, ~ 0.760730.

For all even n > 6, let U,, denote the largest small n-gon.

Theorem 2 (Graham [3], Foster and Szabo [8]) For even n > 6, the diameter graph of U, has a
cycle of length n — 1 and one additional edge from the remaining vertex.

Conjecture 1 For even n > 6, U, has an axis of symmetry corresponding to the pending edge in its
diameter graph.

From Theorem 2, we note that R,ffl has the same diameter graph as the largest small n-gon U,.
Conjecture 1 is only proven for n = 6 and this is due to Yuan [16]. However, the largest small polygons
obtained by [4] and [5] are a further evidence that the conjecture may be true.

3 Nonconvex quadratically constrained quadratic optimization

We use cartesian coordinates to describe an n-gon P,,, assuming that a vertex v;, ¢ = 0,1,...,n — 1,
is positioned at abscissa x; and ordinate y;. Placing the vertex vg at the origin, we set g = yo = 0.
We also assume that the n-gon P,, is in the half-plane y > 0 and the vertices v;, i = 1,2,...,n — 1,
are arranged in a counterclockwise order as illustrated in Figure 4, i.e., y;112; > x;41y; for all i =

1,2,...,n— 2. The maximal area problem can be formulated as follows

n—2

my S a

st (@5 — @) 4+ (y; —w)? < 1 Vi<i<j<n-1, (1b)
iyl <1 Vi<i<n-—1, (1c)
yi >0 Vi<i<n-—1, (1d)
2’U,i S Yi+1T; — Ti4+1Ys V1 S ) S n — 2, (16)
u; >0 Vi<i<n-—2. (1f)

At optimality, for all t = 1,2,...,n— 2, u; = (Yi+12; — T;+1Y;)/2, which corresponds to the area of the
triangle vov;v;41. It is important to note that, unlike what was done in [4, 5], this formulation does
not make the assumption of Graham’s conjecture, nor of the existence of an axis of symmetry.

Problem (1) is a nonconvex quadratically constrained quadratic optimization problem and can be
reformulated as a difference-of-convex optimization (DCO) problem of the form

max go(z) — ho(2) (2a)
s.t. gi(z) —hi(2) >0 V1 <i<m, (2b)
where gg, ..., gm and hg, ..., h,, are convex quadratic functions. We note that the feasible set

Q:={z:9i(z) —hi(z) >0,i=1,2,...,m}
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Figure 4: Definition of variables: Case of n = 6 vertices

is compact with a nonempty interior, which implies that go(z) — ho(z) < oo for all z € €.
For a fixed ¢, we have g.(z;¢) == gi(c) + Vgi(e)(z —¢) < gi(2) for all i = 0,1,...,m. Then the
following problem

max g (z;¢) — ho(2) (3a)

z

s.t. g.(z3¢) —hi(z) >0 Vi<i<m (3b)

is a convex restriction of the DCO problem (2) as stated by Proposition 1. Constraint (1le) is equiva-
lent to

(i1 = 20)* + (i1 +9:)° + 8ui < (yir1 + )% + (Ti1 — y:)?
for all i =1,2,...,n — 2. For a fixed (a,b) € R"~! x R"~! if we replace (1le) in (1) by

(Yir1 =)+ (@ip1+4)+8ui < 2(big1+a5) (Yirr +23) = (bir1+a:)* +2(ai01 =bi) (Tir1 —yi) = (air1—b;)°
forall i =1,2,...,n — 2, we obtain a convex restriction of the maximal area problem.

Proposition 1 If z is a feasible solution of (3) then z is a feasible solution of (2).

Proof. Let z be a feasible solution of (3), ie., g,(z;¢) — hi(z) > 0 for all i = 1,2,...,m. Then
9i(z) — hi(z) > g,(z;¢) — hi(z) > 0 for all i = 1,2,...,m. Thus, z is a feasible solution of (2). O

Proposition 2 If ¢ is a feasible solution of (2) then (3) is a feasible problem. Moreover, if z* is an
optimal solution of (3) then go(c) — ho(c) < go(z*) — ho(2*).

Proof. Let ¢ be a feasible solution of (3), i.e., g;(c) — h;(c) > 0 for all i = 1,2,...,m. Then there
exists z = ¢ such that g (c;¢) — hi(c) = gi(c) —hi(c) = 0 for all i = 1,2,...,m. Thus, (3) is a feasible
problem. Moreover, if z* is an optimal solution of (3), we have go(c) — ho(c) = g,(c;e) — ho(c) <
9,(2":¢) = ho(2") < go(2") — ho(2"). O

From Proposition 2, the optimal small n-gon (x,vy) obtained by solving a convex restriction of
Problem (1) constructed around a small n-gon (a,b) has a larger area than this one. Proposition 3
states that if (a,b) is the optimal n-gon of the convex restriction constructed around itself, then it is
a local optimal n-gon for the maximal area problem.

Proposition 3 Let ¢ be a feasible solution of (2). We suppose that Q(c) := {z: g,(z;¢) — hi(z) >
0,i=1,2,...,m} satisfies Slater condition. If ¢ is an optimal solution of (3) then c is a critical point

of (2).
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Proof. If c is an optimal solution of (3) then there exist m scalars py, pa, - . ., ftm such that

Vg, (cic) + Z 1iVg,(c;e) = Vho(e) + Z,uthi(c),
i=1

=1
g,(c;e) > hi(c) Vi=1,2,...,m,
/,6120 Vi:l,Z,...,m,
nig,(c;e) = pihi(c) Vi=1,2,...,m.

Since g,(c;¢) = gi(c) and Vg, (c;¢) = Vgi(c) for all i = 0,1,...,m, we conclude that c is a critical
point of (2). O

We propose to solve the DCO problem (2) with a sequential convex optimization approach given
in Algorithm 1, also known as concave-convex procedure. A proof of showing that a sequence {z;}72
generated by Algorithm 1 converges to a critical point z* of the original DCO problem (2) can be
found in [11, 12].

Algorithm 1: Sequential convex optimization

1: Initialization: choose a feasible solution zp and a stopping criteria € > 0.

2: z1 € argmax{g,(z;20) — ho(2): g,(z;20) — hi(2) 2 0,i=1,2,...,m}

3: k=

4: while 125211l > ¢ do

5: Zgy1 € arg max{go(z; zk) — ho(2): gi(z; zg) —hi(z) >0,i=1,2,...,m}
6: k:=Fk+1

7

: end while

4 Computational results

Problem (1) was solved in MATLAB using CVX 2.2 with MOSEK 9.1.9 and default precision (toler-
ance € = 1.49x1078). All the computations were carried out on an Intel(R) Core(TM) i7-3540M CPU
@ 3.00 GHz computing platform. Algorithm 1 was implemented as a MATLAB package: OPTIGON,
which is freely available at https://github.com/cbingane/optigon. OPTIGON requires that CVX
be installed. CVX is a MATLAB-based modeling system for convex optimization, which turns MAT-
LAB into a modeling language, allowing constraints and objectives to be specified using standard
MATLAB expression syntax [14].

We chose the following values as initial solution:

apg = 0, bo = 0,
sin 2% 1 — cos 2% .
U = -———F7— = —Qp_j, b= ————F— =bp_; Vi=1,...,n/2 -1,
2 cos 2 cos
2n—2 2n—2
Ap /2 = 0, bn/2 =1,

which define the n-gon R:ﬁh and the stopping criteria ¢ = 107°. Table 1 shows the optimal values

A’ of the maximal area problem for even numbers n = 6,8,...,84,90, 100, 110, 120, 128, along with
the areas of the initial n-gons Rz_u the best lower bounds A,, found in the literature, and the upper
bounds A4,,. We also report the number k of iterations in Algotithm 1 for each n. The results support

the following keypoints:

1. For6 <mn <12, A, — A} < 1078, i.e., Algorithm 1 converges to the best known optimal solutions
found in the literature.

2. For 32 <n <80, A, < A(R_,) < A%, i.e., the solutions obtained by Pinter [10] are suboptimal.


https://github.com/cbingane/optigon
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(a) (U16,0.771861) (b) (Usz,0.782133) (c) (Usa,0.784596)

Figure 5: Three largest small n-gons (U, A%)

3. For all n, the solutions obtained with Algorithm 1 verify, within the limit of the numerical
computations, Theorem 2 and Conjecture 1, i.e.,

Tns2 =0, Ynj2 =1,
[Vnj2—1ll = 1, [Vns241ll =1,
IVigns2 — vill = 1, IVignjo41 —vill =1 Vi=1,2,...,n/2 -2,
Vo1 = Vpjo—ill = 1,
Tp—i = —Xs, Yn—i=yi Vi=1,2,...,n/2—1.

We illustrate the largest small 16-, 32- and 64-gons in Figure 5. Furthermore, we remark that
Theorem 2 and Conjecture 1 are verified by each polygon of the sequence generated by Algo-

rithm 1. All 6-gons generated by the algorithm are represented in Figure 6 and the coordinates
of their vertices are given in Table 2.

(d) (P3,0.674981) (e) (P3,0.674981) (f) (P5,0.674981)

Figure 6: All 6-gons (PX, A(PE)) generated by Algorithm 1



Les Cahiers du GERAD

G-2020-50 — Revised

Table 1: Maximal area problem

ARS )

A

=n

An

A

0.6722882584
0.7253199909
0.7482573378
0.7601970055
0.7671877750
0.7716285345
0.7746235089
0.7767382147
0.7782865351
0.7794540033
0.7803559816
0.7810672517
0.7816380102
0.7821029651
0.7824867354
0.7828071755
0.7830774889
0.7833076096
0.7835051276
0.7836759223
0.7838246055
0.7839548353
0.7840695435
0.7841711020
0.7842614465
0.7843421691
0.7844145892
0.7844798073
0.7845387477
0.7845921910
0.7846408000
0.7846851407
0.7847256986
0.7847628920
0.7847970830
0.7848285863
0.7848576763
0.7848845934
0.7849095487
0.7849327284
0.7849542969
0.7849744002
0.7849931681
0.7850107163
0.7850271482
0.7850425565
0.7850570245
0.7850706272
0.7850834323
0.7850955008
0.7851068883
0.7851176450
0.7851278167
0.7851374450
0.7851465680
0.7851552203
0.7851634339
0.7851712379
0.7851786591
0.7851857221
0.7851924497
0.7851988626

0.6749814429 [2, 3, 9]

0.7268684828 [4, 9]
0.7491373459 [5, 9]
0.7607298734 [5, 9]
0.7675310111 [9]
0.7718613220 [9]
0.7747881651 [9]
0.7768587560 [9]
0.7783773308 [10]
0.7795240461 [10]
0.7804111201 [10]
0.7811114192 [10]
0.7816739255 [10]
0.7818946320 [10]
0.7823103007 [10]
0.7826513767 [10]
0.7829526627 [10]
0.7832011589 [10]
0.7834135187 [10]
0.7835966860 [10]
0.7837554636 [10]
0.7838942710 [10]
0.7840161496 [10]
0.7841233641 [10]
0.7842192995 [10]
0.7843044654 [10]
0.7843807534 [10]
0.7844492943 [10]
0.7845111362 [10]
0.7834620877 [10]
0.7845910589 [10]
0.7846139029 [10]
0.7846403575 [10]
0.7847454020 [10]
0.7845564840 [10]
0.7847585719 [10]
0.7845160579 [10]
0.7848252941 [10]

0.6961524227
0.7350842599
0.7531627703
0.7629992851
0.7689359584
0.7727913493
0.7754356273
0.7773275822
0.7787276939
0.7797927529
0.7806217145
0.7812795297
0.7818102598
0.7822446490
0.7826046775
0.7829063971
0.7831617511
0.7833797744
0.7835674041
0.7837300377
0.7838719255
0.7839964516
0.7841063371
0.7842037903
0.7842906181
0.7843683109
0.7844381066
0.7845010402
0.7845579827
0.7846096710
0.7846567322
0.7846997026
0.7847390429
0.7847751508
0.7848083708
0.7848390031
0.7848673094
0.7848935195
0.7849178354
0.7849404352
0.7849614768
0.7849811001
0.7849994298
0.7850165772
0.7850326419
0.7850477130
0.7850618708
0.7850751877
0.7850877290
0.7850995538
0.7851107156
0.7851212630
0.7851312404
0.7851406881
0.7851496430
0.7851581386
0.7851662060
0.7851738734
0.7851811668
0.7851881101
0.7851947255
0.7852010332

0.6749814387
0.7268684802
0.7491373454
0.7607298710
0.7675310093
0.7718613187
0.7747881619
0.7768587517
0.7783773228
0.7795240330
0.7804111058
0.7811114002
0.7816739044
0.7821325276
0.7825113660
0.7828279054
0.7830950955
0.7833226804
0.7835181187
0.7836871900
0.7838344336
0.7839634510
0.7840771278
0.7841778072
0.7842674010
0.7843474779
0.7844193386
0.7844840717
0.7845425886
0.7845956631
0.7846439473
0.7846880001
0.7847283036
0.7847652718
0.7847992622
0.7848305850
0.7848595143
0.7848862871
0.7849111119
0.7849341725
0.7849556352
0.7849756425
0.7849943223
0.7850117894
0.7850281477
0.7850434878
0.7850578951
0.7850714422
0.7850841941
0.7850962152
0.7851075587
0.7851182747
0.7851284086
0.7851380017
0.7851470916
0.7851557129
0.7851639010
0.7851716781
0.7851790741
0.7851861129
0.7851928211
0.7851992126
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Table 2: Vertices of 6-gons generated by Algorithm 1
6-gon Coordinates (z;,y;) Area
(z1,91) (72,y2) (73,3) (z4,94) (5, 95)

Rgr (0.500000, 0.363271)  (0.309017,0.951057)  (0.000000,1.000000) (—0.309017,0.951057) (—0.500000, 0.363271)  0.6722882584
Pl (0.500000,0.397460)  (0.339680,0.940541) ~ (0.000000, 1.000000)  (—0.339680,0.940541) ~ (—0.500000,0.397460) ~ 0.6749414624
p2 (0.500000,0.401764)  (0.343285,0.939231)  (0.000000, 1.000000)  (—0.343285,0.939231)  (—0.500000,0.401764)  0.6749808685
p3 (0.500000,0.402283)  (0.343715,0.939074)  (0.000000, 1.000000)  (—0.343715,0.939074)  (—0.500000,0.402283) 0.6749814310
Pg (0.500000, 0.402345)  (0.343766,0.939055)  (0.000000,1.000000)  (—0.343766,0.939055)  (—0.500000, 0.402345)  0.6749814386
P2 (0.500000, 0.402352)  (0.343773,0.939053)  (0.000000,1.000000)  (—0.343773,0.939053)  (—0.500000, 0.402352)  0.6749814387

5

Conclusion

We proposed a sequential convex optimization approach to find the largest small n-gon for a given even
number n > 6, which is formulated as a nonconvex quadratically constrained quadratic optimization
problem. The algorithm, also known as the concave-convex procedure, guarantees convergence to a

locally optimal solution.

Without assuming Graham’s conjecture nor the existence of an axis of symmetry in our quadratic
formulation, numerical experiments on polygons with up to n = 128 sides showed that each optimal
n-gon obtained with the algorithm proposed verifies both conditions within the limitation of the
numerical computations. Futhermore, for even 6 < n < 12, the n-gons obtained correspond to the
known largest small n-gons.
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