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Montréal, Montréal (Québec), Canada, H3T 2A7

francois-xavier.devailly@hec.ca

xinyue.tan@hec.ca

gilles.caporossi@hec.ca

August 2020
Les Cahiers du GERAD
G–2020–45
Copyright c© 2020 GERAD, Devailly, Tan, Caporossi
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1 Introduction

Given a machine learning task on a given relational dataset, the Aggregator package represents observa-

tions as networks and leverages the flexibility and inductive capabilities of Graph Convolutional Networks

(GCNs) [4] to automate the learning of expressive aggregation functions.

The learnt aggregation functions are expressive non-linear transformations.

The automated learning of expressive aggregations functions has the following advantages:

• It may help save considerable time for a Data Scientist, as trying to identify relevant aggregations,

especially when dealing with hierarchical aggregations, is a notoriously challenging and time consuming

part of feature engineering.

• It may increase performance by enabling full granularity exploitation, as handcrafted aggregations are

typically not sophisticated enough to isolate the signal from a subset of elements or even a single element

which can be lost in a sum, average, minimum, maximum, and many more operations.

• It may significantly reduce the need for domain knowledge when addressing a given problem, as knowing

which handcrafted aggregations loose the least signal given a task and a dataset remains critical in many

cases to this day.

2 Background

Enabling machine learning algorithms to study complex relationships between objects in graphs has been

a challenge. Graph representation learning, which aims to learn low-dimensional representations preserving

both structural information of a network and the features of its nodes and edges, has recently received a

lot of attention. Graph Convolutional Networks (GCNs) are one of the most recent and fruitful attempts to

leverage neural networks and backpropagation to address the complexity of exploiting graph data.

2.1 Graph Convolutional Networks

In order to learn richer information in propagation of graphs, [5] proposed a stacked k convolutional layers

as a neighborhood information aggregation framework. The framework exploits the graph structure and the

node features by accumulating inputs from its kth order neighborhood. At each layer of a GCN, model learns

a representation for every node by aggregating communications sent to it by both its neighbors and itself

following the equation:

nli = f

( ∑
jεN(i)∪i

Ci,j · (Wl · nl−1
j )

)
(1)

where nli is the node embedding of node i at layer l, N(i) is the 1st order neighborhood of node i, Ci,j is

a normalization constant, Wl is the lth layer’s weight matrix and f is a non-linear differentiable function.

In the version proposed by [5], weights are shared for both self and neighbor communications, and pairwise

normalization constants are used. The model is trained end-to-end by backpropagation using a loss function

based on embeddings and supervised, semi-supervised or unsupervised targets.

2.1.1 Relational Graph Convolutional Networks

Tasks on more general (heterogeneous) graphic structures can be addressed using different parameters (W )

and normalization constraints (C) for different types of edges [8]. Adding self-loops as a relation type, the

R-GCN propagation rule becomes:

n
(l)
i = f

( ∑
rεR,jεNr(i)

Ci,j,r · (Wlr · n
(l−1)
j )

)
(2)

where R is the set of all relation types, Nr(i) is the 1st order neighborhood of node i in the graph of relation

type r, Ci,j,r is a relation-specific normalization constant, and Wlr is the lth layer’s weight matrix for message

propagation corresponding to a relation of type r.
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2.1.2 Expressiveness through attention

Attention mechanisms [1] were popularized in natural language processing (NLP). They are now part of most

of the state of the art deep learning architectures used in this field [9, 7, 11, 2]. [10] introduced the use of

attention mechanisms on GCNs. For each layer, the nature of the information broadcast (features of the

sending node) and the context in which it is received (features of the receiving node) are used to compute the

importance/weighting assigned to a message by its receiving node with respect to the rest of this receiving

node’s incoming messages. Equation (1) can be slightly modified to obtain the new propagation rule. In fact,

we simply need to replace Ci,j with the following attention weight:

αi,j =

exp

(
f(al · [Wl · n(l−1)

i ||Wl · n(l−1)
j ])

)
∑
kεN(i) exp

(
f(al · [Wl · n(l−1)

i ||Wl · n(l−1)
k ])

) (3)

where al is the lth layer’s attention weight vector and || represents concatenation. For every layer, multiple

attention heads can be used concomitantly, and their results can be concatenated or aggregated, to enable

more expressiveness.

3 Model

3.1 Relational datasets as graphs

Before introducing the model, some terms must be defined:

main table: In relational datasets, the main table represents the final level at which we would like the

aggregation to occur. If each table is represented by a node in a tree structure, the main table is

denoted as the root node.

ID columns: ID columns refer to the keys used to identify observations and link tables in a relational

dataset.

parent id: The key used to identify observations (i.e. rows in the main table) is called the parent ID.

Aggregator treats all observations in a dataset as independent graphs. Every graph is defined by:

• its nodes, their types and their respective initial representations (i.e. embeddings).

• its edges and their types.

Node and node types: Each observation (corresponding to a row from the main table) is represented as

an individual graph, in which every node corresponds to a row, in a table, which is related to the given

observation. Each table is assigned a unique type, which dictates its corresponding node type in each graph.

A node’s initial representation (i.e. embedding) is a vector composed of its corresponding row’s features.

Edges and relation types: An edge is defined by its source node and destination node. The type of an edge

is based on the types of both its source and destination nodes. Edges which are starting from a node of the

same type and ending to a node of the same type are of the same type. Edges follow the structure of the

relational dataset. For every layer of the GCN, every type of edge corresponds to a given set of parameters

that is to be used for message propagation.

Bidirectional links and self connections: The user can choose to include bidirectional links during the

creation of the graphs. In this case, new edges are simply added inverting source and destination nodes of

existing edges. One can also choose to include self-connections. In this case edges are added to link all nodes

to themselves.



Les Cahiers du GERAD G–2020–45 3

3.1.1 Example: Converting a relational dataset to a set of graphs

In this section, a social network is used as an example to illustrate the graphs creation process. Let us

consider three tables: user, group and event. The user table contains some information about the users.

The event table contains events users took part in. Finally the group table indicates which group users have

joined. The task is to predict whether a user will take part in a new event.

In this example, bidirectional edges and self-connections are included.

Figure 1: Step 1: Gathering user 8426’s features. Different colors indicate different tables (node types) and different edge types. ID
columns link all rows (feature vectors) related to a given observation across the dataset in order to gather them.

Figure 2: Step 2: Creating user 8426’s graph. Different colors indicate different tables (node types) and different edge types. Nodes
and edges are marked with their types. In this example, the 3 node types are: user: type 1; event: type 2; groups: type 3. The 7 edge
types are: user to event: type 1, event to user: type 2, user to groups: type 3, group to user: type 4, user self linkage: type 5,
event self linkage: type 6; groups self linkage: type 7. Each vector gathered in the previous step becomes the initial embedding of
its corresponding node in the graph. To enable full parallelization, embeddings are padded with 0s to ensure they all have the same
dimensionality.

The tree structure implied by the relational dataset is followed to create all graphs. Starting from the

main table (user table), for each observation, all the related rows in all the linked tables (event and groups)

are identified and written to the graph as described in Figure 1 and 2. Had there been additional tables

related to event or groups, the previous process would be repeated iteratively to complete the graph.
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Aggregator automatically saves all the graphs as pickle objects. Each file contains multiple graphs and

is either saved in a train or test folder.

3.2 Graph sampling

As graphs scale up to hundreds of thousands (or more) of nodes and/or edges, dealing with full graphs might

no longer be efficient or even feasible. Aggregator enables graph sampling to replace full graphs by sampled

subgraphs for all included applications (e.g. training, scoring, embedding).

The graph sampling method used by Aggregator is based on neighbors sampling. Starting from the

source node, a maximum number of ’children’ nodes (neighbors belonging to the next layer and linked to

the selected node) can be sampled. This process is repeated for every sampled node until sampling has been

performed for all layers (i.e. leaf nodes are reached).

The expand factor hyperparameter defines the maximum number of nodes which are sampled at every

layer (see § 4.6.1).

Figure 3: Graph Sampling. This figure illustrates the neighbor sampling process, when the expand factor is 3 for all layers.

The sampling rules can also vary among layers. In Aggregator package, we use a list to define the rule

where each element in the list represents the maximum number of sampled nodes in each layer.

3.3 Architecture

Our framework consists in two blocks: a GCN message passing block and a MLP (Multi-layer Perceptron)

prediction block.

3.3.1 Leveraging the aggregation block

Our model can be used in two ways after being trained. One could directly use the entire architecture

for prediction. One could also decide to discard the MLP and use only the GCN part to get aggregated

representations of all observations. The extracted node embedding for the source nodes allow to replace the

relational dataset by a single table which summarizes the original dataset with respect to the prediction task.

3.3.2 Parameter and architecture tuning

The Aggregator package enables flexibility in the creation of both the GCN block and the MLP block(s).

This section covers some of the critical options and hyperparameters the user can experiment with when

trying to identify a desired formulation for a given task.
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Figure 4: Model architecture. The GCN and the MLP are trained jointly (in a supervised fashion) via end to end back-propagation of
the prediction error.

Attention type : Attentions mechanisms enable nodes to assign different importances/weightings to different

incoming messages. Two types of attention are available: the default/normal attention which is explained

in § 2.1.2 and the scaled dot product attention. The scaled dot product attention is proposed by Noam in [9]1.

Number of attention heads : Using a single attention mechanism leads to the use of a single weighting

of messages. Alternatively, multiple attention mechanisms and their corresponding weightings can be used

concomitantly. In this case, Messages are weighted and combined independently following each attention

mechanism and all results are then concatenated. A final mapping links the concatenated vectors, which can

be high dimensional, back into typically ’smaller’ vectors which are to be used to update node embeddings.

GRU (Gated Recurrent Units) (optional): In order for a “vanilla” GCN to be able to aggregate information

from nodes at a distance d, it requires at least d layers having different parameters. When d is large, this

increase in the number of layers is likely to both require a long time to train, and result in vanishing or ex-

ploding gradients during backpropagation. One might decide to use the same parameters/layers for multiple,

if not all propagations, using a recurrent neural network (RNN) architecture, but the vanishing/exploding

gradients problem remains. Fortunately, Long-short term memory networks (LSTMs) and gated recurrent

units networks (GRUs) both prevent gradients from degenerating through the use of gating mechanisms.

[6, 3] showed that using GRUs as vertex update functions of the message-passing framework could improve

the learning of long-distance dependencies. A gated graph convolutional networks can be used for an arbi-

trary number of layers/propagations and can even be used to deal with dynamic graphs and network time

series (updating node embeddings with an arbitrary number of propagations at every time-step).

Residual (connections) (optional): When GRUs are used as vertex update function, a residual connection

can be added as a shortcut to the node update. In other words, an “identity connection” ensures that the

GRU component fits only a residual mapping(i.e. the difference between the new embedding and the previous

one) rather than the desired under-laying mapping(i.e. the new embedding) directly.

1Please refer to the corresponding article for a detailed explanation
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Attention standardization (optional): A softmax operation helps ensure that messages remain within a

reasonable range. If this operation is included, the attention weightings of all messages leading to the same

destination node always sum up to 1.

Message normalization (optional): With or without applying attention mechanism, if message normalization

is used, a message is divided by the number of messages of the same type leading to the same node (in-degree

corresponding to a specific edge type).

Figure 5: Flow chart of message-passing and vertex updating with corresponding options. This chart illustrates the process of
computing messages and updating node embeddings in each message propagation of the GCN architecture. The steps in the doted
square boxes are optional. Green boxes indicate that the user needs to select at least one of the included elements. Yellow ovals include
essential parameters that cannot be omitted.The message on an edge are based on source and/or destination node(s)’ embeddings, or
both. Messages can then be normalized. The bottom part of the chart illustrates the attention mechanism. It is based on source and/or
destination node(s)’ embeddings. The user needs to select a type of attention: normal(default) or dot-product and a number of heads.
Attention weightings can then be standardized. Messages are finally aggregated (optionally using attention weightings). Finally the
destination node embedding is updated using the aggregated message. A GRU, which can include a residual operation, can be used as
a vertex update function.

Detailing submodules architectures (optionnal): Both message and attention computations involve differ-

entiable parameterized transformations. Each transformation can be seen as fully connected neural network.

By default each of these neural networks consist in a unique transformation (i.e. a single layer). However,

the user can decide to add hidden layers to these architectures using lists of layers’ sizes when defining the

model (see § 4.5 for more details). For instance, a user might choose to use a MLP including 3 hidden layers

of 64 neurons to compute messages (i.e. message hidden layers = [64,64,64]) and a a MLP including 2 hidden

layers of 32 neurons to compute ’default’ attention (i.e. message hidden layers = [32,32]).

Defining final MLP(s) architecture(s) Aggregator can be trained using multiple targets. While the aggre-

gation framework (GCN) is shared between all targets, every target will require its own final MLP. Every

MLP can have its own architecture which should be represented as a list including:

• 1st element: The name of the corresponding output/prediction (string)

• 2nd element: The architecture of the corresponding fully connected neural network (as a list of hidden

layers’ sizes)

• 3rd element: The dimensionality of the output for regression; the number of classes for classification.

Please note that the current version of Aggregator only supports binary classification.

Aggregator In the current example, we use a single MLP as the prediction is simply a score, which is a

scalar, and we do not use any hidden layer. The corresponding framework can be defined as follows:
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The MLP of 3 hidden layers with 4, 3 neurons in each layer can be defined and visualized as:

prediction modules = []

prediction modules.append([’target’, [4, 3], 1])

Figure 6: Framework of the prediction modules (MLP). The output of the GCN model (i.e. the final embedding of the source node)
is fed to the prediction modules. The defined list of [4, 3] is the dimension size of each hidden layers of the MLP (in red dotted box).

4 Tutorial

The python package aims to ease the use of the Aggregator framework by abstracting away:

• The creation of the graphs from a given relational dataset

• The creation of the Aggregator architecture

• The training of an Aggregator instance based on a graphs dataset

• The optional writing of learnt aggregations, for all observations in the dataset, to a new file.

4.1 Get ready: Prerequisites

Aggregator is built with python version 3.6.8. Other versions have not been tested. Several libraries are

required to use Aggregator. Versions of these packages which were used to build Aggregator are listed

below. Please refer to the official documentations to install these libraries based on your own requirements:

• PyTorch (version 1.4.0)

• Deep Graph Library (DGL) (version 0.2)

• NetworkX (usually included with DGL) (version 2.3)

4.2 Get started

4.2.1 Example: Problem description

In this tutorial, we use a public transactional dataset as an example to illustrate the options provided by

Aggregator. The task consists in predicting a loyalty score for a set of customers. The data comes from

Kaggle, where a description is available:

https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data

https://pytorch.org/get-started/locally/#mac-installation
https://docs.dgl.ai/install/index.html
https://networkx.github.io/documentation/stable/install.html#testing
https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data
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4.2.2 Find linkage and link ID between tables

Before dealing with the raw data, the user first needs to understand how tables belonging to a dataset of

interest are linked together. In this example, there are 3 tables:

train.csv, transactions.csv, offers.csv.

The links between them are:

train.csv and transactions.csv are linked by id; train.csv and offers.csv are linked by offer.

The structure of the corresponding dataset is as follows:

Figure 7: linkage between pairs of the tables. The logical structure followed to transform all observations into a set of graphs is a tree.

4.2.3 Pre-processing

Aggregator does not automate pre-processing of the raw dataset. The user should process the data from

every table so as to be fed into a typical neural network architecture.

Pre-processing steps might include:

1. Dealing with missing values and outliers

2. Converting categorical variables into one-hot encodings

3. Normalizing/Standardizing data

4. Performing feature selection at the table level

5. Ensuring that all covariates are numerical except for the ID columns which define linkages between

tables.

In our particular example, missing values are imputed, extreme values are replaced, categorical variables

are represented as dummy variables, date features are transformed into a difference between dates. Except

for the ID columns, all values should be converted to valid numerical value.

The fact that two tables are related does not mean every observation in one table has corresponding rows

in the related table. This would result in, for instance, missing values in ID columns. In this case, the user

needs to fill these missing values with a special indicator (such as ’0’or ’N/A’) to enable the package not to

look for a non-existent relation.

4.3 Instantiating the Aggregator

After importing the Aggregator class, we can instantiate it. The instance holds the relational information

between tables of a given dataset in the form of a tree structure which guides the creation of graphs. The

table on which the prediction task is to be performed is the ’main’ table. Every row belonging to this ’main’

table becomes the root node of its own graph and observation.
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4.3.1 Init method

Class: Aggregator (main table, links, parent id, target variable = None, no link symbol = ’N/A’)

Parameters

• main table(str):
The name of the table that has been identified as the ’main’ table.

• links(list of tuples):
Each tuple represents an existing relationship between two tables and takes the
form: (parent table, child table, linkage key) where parent and child are
the names of the tables involved in the relationship. The parent table is always the
one which is the closer to the main table in the relational tree. The ID is the name
of the key which is used to link both tables.

• parent id(str):
The index or ID columns which indicate the observations in main ’table’.

• target variables(str): default: None
The name of the target variable in the main ’table’.

• no link symbol(int/str): default ’N/A’
Indicator to be used for missing ID values (see § 4.2.3)

• bidirectional(bool): default False
Bidirectional graphs allow messages to be sent bidirectionally between any pairs of
related nodes at the cost of computational complexity. In non-bidirectional graph,
messages are simply sent from child node to parent node.

• self loop(bool): default False
If True, the graph allows messages to be sent from each node to itself at the cost
of computational complexity.

Returns

• Aggregator object
Aggregator is the main class of the package. Its initialization method automatically
defines a tree structure, node types, relation types, initial dimensions, etc., which
will guide the transformation of all observations in the relational dataset into a set
of graphs.

Code to create instance of the Aggregator class:

Note: At this point, no complete table has been read yet. Initializing the class is only meant to create

the tree structure and create required nodes and edge types.
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Figure 8: Graph defined based on tree.

Some useful attributes of aggregator instance can be printed to verify that the tree structure is correct:

The graph is well defined in terms of nodes, edges, dimensions.

4.4 Creating the graphs

4.4.1 create graphs method

This method of the Aggregator class enables the creation of the graphs from the relational dataset and can

be accelerated using parallelization.

During this step:

• Feature vectors related to all observations will be found and used to create graphs as illustrated in

Figure 1 and 2.

• Every observation will be saved as a graph according to attributes of the Aggregator class.
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Parameters

• folder: default = os.getcwd()
This defines a path to set up folders in which graphs are to be saved. It will automatically create
a folder named “graph” and two sub-folders “train” and “test” under it, if they do not already
exist. When graphs are created, they are be automatically stored in ’train’ and ’test’ according
to the argument train percentage.

• n workers (int): default = 1
Number of processes running in parallel to create and save graphs.

• nb graphs per file (int): default = 10
Number of graphs/observations one wants to save in every train and test file. Large values may
lead to extreme memory requirements during both graphs creation and graph sampling during
the training of the Aggregator model.

• train percentage(float): default = 0.8
Defines the percentage of observations to be included in the train folder. The rest is included in
the test folder.

• predict(bool): default = False
Set to True if the model is already trained and observations are to be transformed into graphs for
scoring.

Code to create the graphs:

To make predictions on the unseen data with a trained model, the user also needs to create graphs for

observations in order to score them. In this case ’predict’ should be set to ’True’:

Notes:

• If the relational dataset involves a large number of observations, it may take a while to build all graphs.

Given this example and the machine used to run it, 20 processes require 2 hours to build graphs for all

160,057 observations.

• The folder() argument calls an inner setup folders() method, which may format previous records.

If the creation of graphs is repeated, one might want to relocate a copy of the previously created

instance(s).
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It is also possible to verify the graph structure using visualization. The use can randomly choose one

graph from a train or test file, then put the graph as the argument of the method print graph( ) to

visualize it:

The selected graph(s) can then be drawn:

Figure 9: Visualizing a graph. The purple node in the center is the train node (source node). It is surrounded by and linked to yellow
’transactions’ nodes and green ’offers’ nodes.

4.5 Creating the model

The user is able to experiment with many options and hyperparameters in order to find a formulation of the

aggregation framework which is relevant for a given task.

4.5.1 create model method

The user can use this method to define the architecture of the entire model framework (GCN + MLP). See

§ 3.3.2 for more details about some of these options.
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Parameters

• prediction modules(list): default = [ ]
Predictions frameworks defined in § 3.3.2.

• use attention(bool): default = True
Whether to include attention mechanism(s) in the GCN or not.

• attention type(str, optional): default = ’normal’
Two types of attention mechanism are provided: ’normal’ and ’scaled dot product’. The
user can also specify if source nodes embeddings ’src’, destination nodes embeddings’dst’ or
both ’src dst’ are used when computing messages and attention. For instance, if the user
wishes to choose scaled dot-product attention and only use source nodes embeddings to compute
messages and attention, the attention type could be: attention type = "dot product src". or
attention type = "src dot product".

• use gating(bool): default = False
If True, GRU(s) are used as a vertex update functions.

• std attention(bool): default = True
If True, weights outputted by each attention mechanisms are standardized (i.e. a softmax operator
is applied). If False, each message is simply multiplied by its unstandardized attention weights.

• node embedding size(int): default = 32
The size of the embeddings used for all nodes in the network (including the root node), at every
layer. This size is the same for all nodes to enable full parallelization.

• attention heads(int, optional): default = 5
Number of concomitant attention mechanisms to be used. More attention mechanisms might lead
to more expressiveness at an increased computational cost.

• norm(bool): default = True
If True, messages are divided by the in-degrees (only including edges of the same type) of their
respective destination nodes.

• message hidden layers(list): default = [ ]
Architecture of the neural network computing the message from source node’s embedding.

• request hidden layers(list): default = [ ]
Architecture of the neural network used on the receiver/destination node’s embedding to give
context to the attention mechanism.

• query hidden layers(list, optional): default = [ ]
Size of the query and key vectors. This is only used when the chosen attention type is ’scaled
dot-product’.

Parameters

• key hidden layers(list, optional): default = [ ]
Architecture of the neural network used to create the key vector of the attention mechanism. This
is only used when the chosen attention type is ’scaled dot-product’.

• q size(int, optional): default = 12
The size of the query vector. This is only used when the chosen attention type is ’scaled dot-
product’.

• bidir(bool): default = False
If True and bidirectional edges were included during the creation of the graphs, each linked pair
of nodes will send messages to each other. If False message will only be sent from parent nodes
to the child nodes.

• self loop(bool): default = False
If True and self-connection edges were included during the creation of the graphs, nodes will send
messages to themselves during message propagation.

• full graph computation(bool): default = False
If False, messages are propagated layer by layer from leaf nodes until root nodes are reached. If
True, for each layer, messages are sent along all edges and all nodes are updated.

• residual(bool, optional): default = False
If True and if a GRU is used to update node embeddings, a residual connection is added. In
other words, an “identity shortcut connection” ensures that the GRU component fits a residual
mapping(i.e. the difference between the new embedding and the previous one) rather than the
desired under-laying mapping(i.e. the new embedding) directly.

• created bidir(bool): default = True
Indicates whether bidirectional edges were added to the graphs during their creation.

• created self loop(bool): default = False
Indicates whether self-connection edges were added to the graphs during their creation.
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Note:

The number of convolutional layers to include in the GCN is automatically defined based on the number

of levels of the tree structure (defined based on the relational dataset as illustrated in Figure 8. It determines

the number of message-passing rounds. That number is equals to the maximum relational distance separating

the main table from any other table. This ensures that all relevant features can reach the root node.

Graph creation and Model creation both involve parameters regarding self-connections and bidirectional

connections. This is done so that the user can decide not to use bidirectional and/or self connections, even

if they were included in the graphs during their creation.

Figure 10: Create your Aggregator model.

4.6 Training the model

4.6.1 train model method

This method is used to initiate the training of a model (whichever model the attribute ’model’ of the

aggregator instance refers to). Training and evaluation metrics are automatically saved to result folder

and visualized with Tensorboard.

Parameters

• predicted variables(list):
List of list. The aggregation framework can be trained using multiple tasks simultane-
ously. Every list refers to a target variable and should have the following structure: [tar-
get variable,prediction type, dimension]. Prediction type should either be ’classification’ (binary)
or ’regression’. Multiple classification is not supported by the current version.

• epochs(int):
Number of iterations. Here, an iteration consists in the computation of gradients using one batch
of observations (i.e. graphs)

• graphs folder(str):
Folders where the saved graphs are stored There should be two sub-folders: train and test.

• results folder(str):
General folder used to save both training/evaluation results and the model itself(architecture and
parameters). Two sub-folders results and saved model are created.

• alias(str):
Alias used to identify a particular run.

• lr(float): default = 1e-3
Learning rate to be used by Adam optimizer during gradient descent.

• weighted(float): default = None
For classification task only. Percentage of positive examples. If not None, the loss will be computed
as weighted loss with an adjustment based on the number of the examples in each class.

• batch size(int): default = 32
Size of the batches from which gradients are computed.
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Parameters

• expand factor(int, list, or None): If None, no graph sampling is performed. An integer will
determine the number of neighbours to sample at every layer. Alternatively a list of integers can
be used to define a number of neighbors to sample per layer. See § 3.2

• accumulation steps(int): default = 1
Number of batches from which to average gradients before performing gradient descent. For
instance, if gradient descent is to be performed on a batch of 32 but computational resources
do not enable dealing with a batch larger than 16, the batch size could be set to 16 and the
accumulation steps to 2.

• save frequency(int): default = 100
The frequency at which the model and the parameters are saved.

• test frequency(int): default = 10
Every test frequency iterations, the model is evaluated on a ’test’ batch composed of graphs
coming from the ’test’ folder. Gradients are not computed during these steps.

• nb batch test(int): default = 1
The number of batches used to gather a representative average test evaluation metric.

• device(str): default = ’cuda’ if torch.cuda.is available(), else ’cpu’
Defines on which device GCN computations are to be performed. The use of GPU(s) typically
leads to substantial speedups.

• tensorboard port: default = 6006
The port to which Tensorboard ’broadcast’ the training/evaluation results . The results (Root
Mean Squared Error for regression and Are Under the Curve for classification) are logged and
broadcast to the corresponding port automatically.

To illustrate hyperparameter tuning, we will experiment with several architectures:

Figure 11: Train your Aggregator model 1. In this formulation, we add a hidden layer for the MLP, use “normal” attention and use
both source and destination nodes to compute messages and attention. Messages are standardized. The node embedding size is 64, and
we use a weighted loss. to deal with class imbalance.
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Figure 12: Train your Aggregator model 2. The second formulation is applied with ’scaled dot-product’ attention, and includes hidden
layers for computing the messages and the attention coefficients. The embedding size is set to 32. The learning rate is 1e-3. The batch
size is 16 and 2 accumulation steps are performed before every gradient descent.

4.7 Visualizing the result and selecting your model

4.7.1 Results visualization

Tensorboard is used to monitor training and evaluation metrics. You can typically access the required port
for Tensorboard from your browser: localhost:6006 .

Replace ’6006’ by your chosen port if applicable. The user can select multiple results to compare perfor-

mances and select an appropriate model. See § 4.6.1.

Figure 13: Visualization of the results. The AUC on test suggests that model 1 provides a more efficient modeling with a better
validation AUC. model 2 has a slightly lower performance than model 1.
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4.7.2 Using a pre-trained model

This method allows the user to load a pre-trained model in order to make continue training it or to score

new observations.

• load model method:

Parameters
• path(str):

Path of the saved model which is to be loaded.

• score method:

Parameters

• input folders(str):
Folder path where the graphs of the observations to be scored are saved.

• predicted variables(list):
List of list. Each list should have the following structure: [target variable, prediction type]

• write path(list):
path to save the predictions to a new csv file.

• batch size(list):
Number of predictions computed simultaneously (in parallel).

• expand factor(int, list, or None): If None, no graph sampling is performed. An integer will
determine the number of neighbours to sample at every layer. Alternatively a list of integers can
be used to define a number of neighbors to sample per layer. See § 3.2

• device(str): default = ’cuda’ if torch.cuda.is available(), else ’cpu’. Device used to compute
predictions. Using a GPU typically leads to substantial speedups.

Here, the previously trained model is used to perform scoring. Predictions are automatically exported to

the write path. In this example, predictions will be saved as "model 1.csv", "model 2.csv".

Figure 14: Load your pre-trained model and make predictions.

The results can then be inspected by computing the AUC for the whole validation set using the predictions

saved in the last step:
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Figure 15: Computing test AUC for these two models. AUC for model 1 and model 2 are: 64.26% and 61.76% respectively. model 1
still seems to be the preferable option based on this criterion.

4.8 Extracting learnt aggregations for later use

This section is completely optional. We show how to leverage the GCN block and combine it with traditional

supervised learning approaches. The create embeddings method exports, for each observation, the final

embedding of its source node obtained using the selected model (whichever model the ’model’ attribute refers

to). Compared with the framework of the default model in Figure 4, here, the MLP block is discarded and

replaced with a traditional machine learning algorithm such as gradient boosting, support vector machine, etc.

4.8.1 create embeddings method

Parameters

• input folders(list or str):
List of folders containing the graphs of the observations from which embeddings are to be gathered.

• write path(str):
Path to the .csv file on which the embeddings are to be written.

• batch size(int):
Number of embeddings written simultaneously (in parallel).

• device(str): default = ’cuda’ if torch.cuda.is available(), else ’cpu’. Device used to compute the
embeddings. Using a GPU typically leads to substantial speedups.
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Figure 16: Writing aggregations using a trained Aggregator model.

4.8.2 Feeding the aggregated observations to a traditional machine learning algorithm: Gradient boost-
ing

Loading data...

Starting training...

Training until validation scores don’t improve for 5 rounds

Starting predicting...

The AUC of prediction is: 0.642484141472248

The AUC on validation obtained on the test set is 64.24%, which is comparable to the performance

obtained by the complete architecture (GCN+MLP).
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