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– Library and Archives Canada, 2020

GERAD HEC Montréal
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Abstract: We provide eigenvalues bounds for a new formulation of the step equations in interior
methods for convex quadratic optimization. The matrix of our formulation, named K2.5, has bounded
condition number, converges to a well-defined limit under strict complementarity, and has the same
size as the traditional, ill-conditioned, saddle-point formulation. We evaluate the performance in the
context of a Matlab object-oriented implementation of PDCO, an interior-point solver for minimizing a
smooth convex function subject to linear constraints. The main benefit of our implementation, named
PDCOO, is to separate the logic of the interior-point method from the formulation of the system used
to compute a step at each iteration and the method used to solve the system. Thus, PDCOO allows
easy addition of a new system formulation and/or solution method for experimentation. Our numerical
experiments indicate that the K2.5 formulation has the same storage requirements as the traditional
ill-conditioned saddle-point formulation, and its condition is substantially more favorable than the
unsymmetric block 3× 3 formulation.

Keywords: Convex optimization, primal-dual interior methods, indefinite linear systems, eigenvalues,
condition number, inertia, eigenvalue bounds, regularization

Résumé : Nous développons des bornes sur les valeurs propres d’une nouvelle formulation des équations
de Newton dans les méthodes de points intérieurs pour l’optimisation convexe. La matrice de notre
formulation, nommée K2.5, a un nombre de conditionnement borné, converge vers une limite bien
définie sous l’hypothèse de complémentarité stricte, et est de la même taille que la formulation de point
de selle mal conditionnée traditionnelle. Nous évaluons sa performance dans le contexte d’une nouvelle
implémentation Matlab orientée objet de PDCO, un logiciel de points intérieurs pour la minimisation
de fonctions convexes lisses sous contraintes linéaires. L’avantage principal de notre implémentation,
nommée PDCOO, est de séparer la logique de la méthode de points intérieurs de la formulation du
système utilisé pour calculer un pas à chaque itération et de la méthode utilisée pour résoudre ce
système. Ainsi, PDCOO permet d’ajouter facilement une nouvelle formulation et/ou une nouvelle
méthode de résolution pour effectuer des essais. Nos résultats numériques indiquent que la formulation
K2.5 requiert la même quantité de mémoire que la formulation mal conditionnée traditionnelle et
que son nombre de conditionnement est significativement meilleur que celui de la formulation non
symétrique 3× 3.

Acknowledgments: The authors acknowledge Hadrien Godard’s contribution to Section 4 during his
undergraduate internship at GERAD. Research of the second author was partially supported by an
NSERC Discovery Grant.
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1 Introduction

We consider the problem
minimize

x, r
φ(x) + 1

2‖D1x‖
2 + 1

2‖r‖
2

subject to Ax+D2r = b, x ≥ 0,
(1)

where φ : Rn → R is C2 and convex, D1 and D2 (if present) are diagonal and positive definite,

A ∈ Rm×n, b ∈ Rm, and inequalities are understood elementwise. We state (1) with nonnegative x, but

all our results can be adapted to general bounds ` ≤ x ≤ u.

Nonzero D1 and D2 help regularize the problem when φ is not strictly convex or the equality

constraints are (nearly) dependent. Least-squares problems with bounded variables are accommodated

by D2 = I. Otherwise, if D1 and D2 are small, (1) may be thought of as a regularized form of

minimize
x

φ(x) subject to Ax = b, x ≥ 0.

A primal-dual interior-point method applied to (1) requires the solution of a large structured linear

system at each iteration to compute a step (a search direction for the primal and dual variables).

Several formulations of the linear system are used and analyzed in the literature. Recent research

includes (Greif, Moulding, and Orban, 2014; Morini, Simoncini, and Tani, 2016) and references therein.

A prime computational concern is that the system becomes increasingly ill-conditioned as the iterations

proceed. The so-called K3 formulation yields a large unsymmetric system with 3× 3 block structure,

and although its condition number typically becomes large in practice, it is provably bounded if

strict complementarity is satisfied at the solution. Several attempts have been made in the literature

to symmetrize K3 in order to save computation. We enumerate those attempts in Section 2. One

formulation has the same size as K3 but unbounded condition number (we name it K3S), one has

2× 2 block structure and thus saves storage and factorization time but again has unbounded condition

number (we name it K2), and one has the same size as K3 and provably bounded condition number—we

name it K3.5.1

An efficient sparse symmetric indefinite factorization is required to work with K3S , K3.5 or K2. An

efficient sparse LU factorization is required for K3. Before the advent of such libraries, it was customary

to perform further block eliminations and reduce the system to one with matrix K1 := ADAT +D2
2,

where D is diagonal and positive-definite. The advantage of K1 is that it is positive definite and

therefore possesses a Cholesky factorization. Unfortunately, its condition number is unbounded, and it

becomes dense if A contains even one dense column—a common occurrence. Specialized variants of the

Cholesky factorization (e.g., Ng and Peyton (1993)) were developed to manage dense columns efficiently.

The software PCx of Czyzyk, Mehrotra, Wagner, and Wright (1999) employs K1 in its interior method

for linear optimization, i.e., φ(x) = cTx, but it does not allow for regularization.

With the advent of efficient sparse symmetric indefinite factorizations such as MA27 (Duff and

Reid, 1982) and MA57 (Duff, 2004), the K2 formulation became a popular alternative to K1 because
its condition, though unbounded, is somewhat more favorable. Matlab’s sparse symmetric indefinite

factorization ldl(K) calls MA57. The software OOQP of Gertz and Wright (2003) implements an

approach similar to that of PCx for convex quadratic optimization, i.e., φ(x) = cTx+ 1
2x

THx with H

symmetric positive semi-definite, based on K2 and MA27 or MA57. In the presence of regularization,

K2 acquires special powers: it becomes symmetric quasidefinite (SQD). Vanderbei (1995) establishes

that SQD matrices are strongly factorizable, i.e., any symmetric permutation possesses an LDLT

factorization with L unit lower triangular and D diagonal but indefinite. Such factorization, sometimes

called signed Cholesky factorization, is computed by MA27 and MA57 when their pivot tolerance is set

to u = 0, and is cheaper than the more general factorization computed with u ∈ (0, 0.5]. Vanderbei

(1999) employs SQD LDLT factorization in his solver LOQO.

1
The fraction indicates that square roots of certain diagonal matrices appear in the formulation.
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Our contributions here are: (i) to introduce a new formulation named K2.5 that has the same

memory requirements as K2, is SQD in the presence of regularization, and has provably bounded

condition number under strict complementarity; (ii) to provide bounds on the eigenvalues of K2.5 during

the interior-point iterations and in the limit; (iii) to illustrate those bounds numerically on several

examples and show that they are remarkably tight; (iv) to show by experiment that K2.5 performs

favorably compared to K2, K3 and K3.5; and (v) to introduce PDCOO, an object-oriented Matlab

implementation of the PDCO solver (PDCO; Saunders, 2019) (designed to solve (1)) that lets users

define new formulations of the linear system and new solution methods by way of multiple inheritance

for fast experimentation.2

The rest of this paper is organized as follows. Section 2 provides background on interior-point
methods for convex optimization, the most popular linear system formulations used in practice, and

a few definitions. In Section 3, we state basic results on the inertia and eigenvalues of symmetric

saddle-point matrices that are used in the derivation of novel results. Section 4 presents the new K2.5

formulation of the linear system together with results on its inertia and bounds on its eigenvalues, both

during the interior-point iterations and in the limit, in the spirit of Greif et al. (2014). In Section 5, we

describe our object-oriented implementation of PDCO. Section 6 reports numerical experiments and

contrasts K2.5 with the most popular saddle-point formulations. Section 7 summarizes and provides

perspectives for future research.

Notation

Lowercase letters x, y denote vectors, and e denotes the vector of ones whose size is given by the
context. Uppercase letters A, H denote matrices. Greek letters λ, µ denote scalars. Cursive letters A,

I denote index sets, and |A| denotes the set cardinality. The identity matrix of size n is denoted by In,

or just I when there is no ambiguity.

For a vector x ∈ Rn, xmax and xmin denote the largest and smallest components of x, X := diag(x),

and ‖x‖ denotes the Euclidean norm. For a matrix A of any shape, σmax(A) and σmin(A) are the

largest and smallest singular values of A, while λmax(H) and λmin(H) are the largest and smallest
eigenvalues of a symmetric matrix H.

For a symmetric matrix M , the inertia of M is defined as the triple of integers inertia(M) =

(n+, n−, n0) representing the number of positive, negative, and zero eigenvalues of M , respectively.

If {αk} and {βk} are two positive sequences, we write αk = Θ(βk) to indicate that there exist

constants γ1 > γ2 > 0 such that γ2βk ≤ αk ≤ γ1βk for all sufficiently large k. In particular, αk = Θ(1)

means that {αk} is bounded and bounded away from zero.

2 Interior methods

To solve (1), an interior method such as PDCO solves approximately a sequence of barrier subproblems

of the form
minimize

x, r
φ(x) + 1

2‖D1x‖
2 + 1

2‖r‖
2 − µ

∑
j

log xj

subject to Ax+D2r = b,

(2)

where µ > 0 is a barrier parameter that is initially of order 1 and is reduced steadily toward zero, and

x is strictly positive.

Let y, z be Lagrange multipliers associated with the equality constraints and bounds in (1), and let

X := diag(x), Z := diag(z), with z strictly positive. For the current value of µ > 0, interior methods

2
github.com/optimizers/PDCOO

https://github.com/optimizers/PDCOO
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compute an approximate solution to the optimality conditions for (2), which are perturbed optimality

conditions for (1):

∇φ(x) +D2
1x−A

Ty − z = 0 (3a)

Ax+D2
2y = b (3b)

Xz = µe (3c)

(x, z) > 0, (3d)

from which we eliminated r = D2y. Linesearch-based interior methods for (1) apply Newton’s method

for nonlinear equations to (3). At an approximate solution (x, y, z) with (x, z) > 0, they compute

search directions ∆x,∆y,∆z from systems of the form−(H +D2
1) AT I

A D2
2

Z X

∆x
∆y
∆z

 =

rdrp
rc

 , (K3)

with H = ∇2φ(x), rp := b−Ax−D2
2y, rd := ∇φ(x) +D2

1x−A
Ty − z, and rc := µe−Xz. The matrix

K3 in (K3) is unsymmetric but structurally symmetric. Its eigenvalues are real because it is similar to

K3.5 := DK3D
−1 =

−(H +D2
1) AT Z

1
2

A D2
2

Z
1
2 X

 , D =

I I

Z−
1
2

 , (K3.5)

which is symmetric. Both K3 and K3.5 have size (2n+m)× (2n+m). Forsgren (2002) credits a private

communication with Michael Saunders for the formulation (K3.5).

It is customary in the literature to symmetrize (K3) as−(H +D2
1) AT I

A D2
2

I Z−1X

∆x
∆y
∆z

 =

 rd
rp

Z−1rc

 , (K3S)

or to perform one step of block elimination and obtain[
−(H +D2

1 −X
−1Z) AT

A D2
2

] [
∆x
∆y

]
=

[
rd −X

−1rc
rp

]
, ∆z = X−1(rc − Z∆x). (K2)

A computational advantage of (K3.5), (K3S) and (K2) is that when D2
2 and H+D2

1 are positive definite,

the block matrix is symmetric quasi-definite (SQD) (Vanderbei, 1995), permitting efficient solution by

sparse signed-Cholesky factorization PKPT = LDLT with D diagonal indefinite, and permutation P

chosen to promote sparsity in L.

If x is feasible for (1), we denote the sets of active and inactive bounds by

A(x) :=
{
j = 1, . . . , n | xj = 0

}
and I(x) :=

{
j = 1, . . . , n | xj > 0

}
. (4)

Definition 1 (LICQ) If x is feasible for (1), we say that the linear independence constraint qualification

is satisfied at x if
[
AT E

]
has full column rank, where E contains the columns of In corresponding to

indices in A(x).

Definition 2 (Strict complementarity) If x is feasible for (1) and (x, z) ≥ 0 satisfies xjzj = 0 for all

j = 1, . . . , n, we say that x and z are strictly complementary if xj + zj > 0 for each j, i.e., if xj and zj
do not vanish simultaneously.

In a typical interior-point method, the iterates roughly follow a central path—a smooth parametrized

curve C = {(x(µ), y(µ), z(µ)) | µ ≥ 0} such that
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1. at µ = 0, (x(0), y(0), z(0)) is a solution of (1) under standard assumptions;

2. the following estimates hold as µ↘ 0:

xi = Θ(µ) (i ∈ A), xi = Θ(1) (i ∈ I), (5a)

zi = Θ(1) (i ∈ A), zi = Θ(µ) (i ∈ I). (5b)

If we assume without loss of generality that the variables are ordered as x = (xA, xI) and that

z = (zA, zI) is ordered similarly, we have in the limit x = (0, xI), z = (zA, 0). Accordingly, we

decompose

X =

[
XA

XI

]
, Z =

[
ZA

ZI

]
, A =

[
AA AI

]
, H =

[
HAA HAI
HT
AI HII

]
,

and by complementarity, (K3) approaches the well-defined limit
−(H +D2

1)AA −(H +D2
1)AI AT

A I

−(H +D2
1)IA −(H +D2

1)II AT
I I

AA AI D2
2

ZA 0
0 XI

 .

If strict complementarity is satisfied in the limit, the above matrix is nonsingular and the condition

number of K3 remains uniformly bounded.

By the same logic, we conclude that (K3S) and (K2) have unbounded condition number,

whereas (K3.5) also approaches a well-defined limit. Thus, employing (K3S) does not appear to

have any advantage and we no longer consider it. Although its condition is unbounded, (K2) has the

advantage of being (n + m) × (n + m), and it has been used extensively in the literature—see, e.g.,

(Friedlander and Orban, 2012; Fourer and Mehrotra, 1993; Gertz and Wright, 2003).

We refer to (Greif et al., 2014) for a complete description of (K3.5) and a comparison with (K3)

and (K2).

The question arises whether there is a formulation of size (n + m) × (n + m) that remains well

conditioned. The derivation and eigenvalue analysis of such a formulation are our main contributions.

3 Preliminary results

We first state a general result on the inertia of a saddle-point matrix.

Lemma 1 (Forsgren, 2002, Proposition 2) Let A = AT ∈ Rq×q, B ∈ Rt×q, C = CT ∈ Rt×t positive

semidefinite,

K :=

[
−A BT

B C

]
,

and r := rank(
[
B C

]
). Let the columns of U form a basis for Null(C), the columns of N form a basis

for Null(UTB), and p be the dimension of Null(C). Finally, let C† denote the pseudo-inverse of C.

Then

inertia(K) = inertia
(
−NT (A+BTC†B)N

)
+ (r, p− t+ r, t− r).

In addition, rank(UTB) = p− t+ r.

When C = 0, Lemma 1 reduces to Lemma 2, which we cite for completeness.
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Lemma 2 (Gould, 1985, Lemma 3.4) Let A = AT ∈ Rq×q, B ∈ Rt×q and

K :=

[
−A BT

B O

]
.

Let r := rank(B) and the columns of N form a basis for Null(B). Then

inertia(K) = inertia(−NTAN) + (r, r, t− r).

The following result can be used to derive eigenvalue bounds of regularized saddle-point matrices. It is

inspired from earlier results by Rusten and Winther (1992) and Silvester and Wathen (1994).

Proposition 1 (Friedlander and Orban, 2012, Theorem 5.1) Let H = HT ∈ Rn×n positive definite,

A ∈ Rm×n, I ∈ Rm×m the identity matrix, δ > 0, λmax and λmin respectively the largest and smallest

eigenvalues of H, σmax and σmin respectively the largest and smallest singular values of A. Let

K :=

[
−H AT

A δI

]
. (6)

The eigenvalues of K are contained in the intervals [γ−min, γ
−
max] and [γ+min, γ

+
max], where γ−min ≤ γ

−
max <

0 < γ+min ≤ γ
+
max and

γ−min = 1
2

[
δ − λmax −

√
[λmax + δ]2 + 4σ2

max

]
γ−max = −λmin

γ+min = 1
2

[
δ − λmax +

√
[λmax + δ]2 + 4σ2

min

]
γ+max = 1

2

[
δ − λmin +

√
[λmin + δ]2 + 4σ2

max

]
.

In addition, δ is the smallest positive eigenvalue of K if and only if A does not have full row rank. Its
associated eigenspace is {0} ×Null(AT) and its geometric multiplicity is m− rank(A).

4 A new system formulation

We multiply the first block equation of (K3) by X and subtract the third block equation to obtain[
−(X(H +D2

1) + Z) XAT

A D2
2

] [
∆x
∆y

]
=

[
Xrd − rc

rp

]
. (7)

This is a stable transformation if the original problem is sensibly scaled to make ‖x‖ = O(1), ‖y‖ = O(1),

‖z‖ = O(1). Now consider the similarity transform[
X−

1
2

I

] [
−(X(H +D2

1) + Z) XAT

A D2
2

] [
X

1
2

I

] [
∆x̄
∆y

]
=

[
X−

1
2 (Xrd − rc)

rp

]
,

which becomes [
−(X

1
2 (H +D2

1)X
1
2 + Z) X

1
2AT

AX
1
2 D2

2

] [
∆x̄
∆y

]
=

[
X

1
2 rd −X

− 1
2 rc

rp

]
, (K2.5)

where ∆x = X
1
2 ∆x̄. As components of x approach zero, the similarity transform zeros out columns of

A, but if the LICQ is satisfied as a solution is approached, AX
1
2 remains of full row rank. As a bonus,

we learn that the matrix of (7), though unsymmetric, has real eigenvalues.

Saunders (2019) suggests (K2.5) as an alternative to (K3) that is symmetric, smaller and reasonably

well-conditioned. A further benefit is that the matrix K2.5 in (K2.5) is SQD.

Korzak (1999) states a related matrix for the special case of linear optimization.



6 G–2020–37 Les Cahiers du GERAD

4.1 Eigenvalues of K2.5

We study the inertia of K2.5 and bounds on its eigenvalues during the interior-point iterations and in

the limit.

Proposition 2 (Inertia during the iterations) Assume that (x, z) > 0 and that
[
AX

1
2 D2

2

]
has full

row rank. The inertia of K2.5 in (K2.5) is (m,n, 0).

Proof. Set q = m, t = n, and r = t in Lemma 1.

The rank assumption of Proposition 2 is satisfied if A has full row rank or D2 is nonsingular. In the

following, we assume D1 = δ1In and D2 = δ2Im, where δ1 ≥ 0 and δ2 > 0. The results below are easily

generalized to arbitrary positive definite diagonal matrices D1 and D2.

Let λmax ≥ λmin ≥ 0 be the extreme eigenvalues of H, and σmax ≥ σmin > 0 be the extreme singular

values of A.

Theorem 1 (Eigenvalues during the iterations) The eigenvalues of K2.5 in (K2.5) are in the intervals

[ρ−min, ρ
−
max] and [ρ+min, ρ

+
max], where ρ−min ≤ ρ

−
max < 0 < ρ+min ≤ ρ

+
max, and

ρ−min = 1
2

[
δ22 − ηmax −

√
[ηmax + δ22 ]2 + 4σ2

maxxmax

]
ρ−max = −max((λmin(H) + δ21)xmin, min

j
(δ21xj + zj))

ρ+min = 1
2

[
δ22 − ηmax +

√
[ηmax + δ22 ]2 + 4σ2

minxmin

]
ρ+max = 1

2

[
δ22 − ηmin +

√
[ηmin + δ22 ]2 + 4σ2

maxxmax

]
,

with ηmin := (λmin(H) + δ21)xmin + zmin and ηmax := (λmax(H) + δ21)xmax + zmax.

If σmin = 0, then ρ+min = δ22. Also, AX
1
2 is row-rank-deficient if and only if δ22 is the smallest

positive eigenvalue of (K2.5) with geometric multiplicity m− rank(AX
1
2 ).

Proof. Let W := X
1
2 (H +D2

1)X
1
2 + Z. Then,

λmax(W ) = max
‖u‖=1

uTX
1
2 (H +D2

1)X
1
2u+ uTZu

≤ λmax(H +D2
1)‖X

1
2 ‖2 + zmax

≤ λmax(H +D2
1)xmax + zmax

= ηmax.

By definition,

σmax(AX
1
2 ) = max

‖u‖=1
‖AX

1
2u‖ ≤ σmax(A) max

‖u‖=1
‖X

1
2u‖ = σmax(A)

√
xmax.

We now apply Proposition 1 to (K2.5) and obtain

γ−min = 1
2

[
δ22 − λmax(W )−

√
(δ22 + λmax(W ))2 + 4σmax(AX

1
2 )2
]

≥ 1
2

[
δ22 − ηmax −

√
(δ22 + ηmax)2 + 4σmax(A)2 xmax

]
= ρ−min.
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Regarding the upper bound on the negative eigenvalues, observe that because H is positive semidefinite

and x > 0, we have both

λmin(W ) ≥ λmin(X
1
2D2

1X
1
2 + Z) = min

j
δ21xj + zj ,

λmin(W ) ≥ λmin(X
1
2 (H +D2

1)X
1
2 ) ≥ (λmin(H) + δ21)xmin,

so that

γ−max = −λmin(W ) ≤ −max
(
min
j

((λmin(H) + δ21)xj), min
j

(δ21xj + zj)
)

= ρ−max.

Similarly,

σmin(AX
1
2 ) = min

‖u‖=1
‖AX

1
2u‖ ≥ σmin(A) min

‖u‖=1
‖X

1
2u‖ = σmin(A)

√
xmin.

The remaining bounds are obtained as in the proof of (Friedlander and Orban, 2012, Theorem 5.1),

where each occurrence of λmax(W ) and λmin(W ) is replaced by ηmax and ηmin respectively.

Note that in Theorem 1, we do not use −ηmin as the upper bound on the negative eigenvalues.

Indeed, if there exist i and j such that xi = 0 and xj > 0 in the limit, as is typical, complementarity

ensures that zj = 0. Thus in the limit, xmin = zmin = ηmin = 0. As the next results show, K2.5

approaches a nonsingular matrix in the limit, so that the negative eigenvalues are bounded away from

zero and −ηmin is not a useful bound. If strict complementarity is satisfied in the limit, then xj + zj > 0

for all components j and, consequently, ρ−max < 0. The bound (λmin(H) + δ21)xmin, though it appears

to vanish in the limit, becomes useful when we bound the negative eigenvalues of the limit of K2.5

below.

By complementarity, the limiting value of K2.5 is−ZA −GII X
1
2

I A
T
I

AIX
1
2

I D2
2

 , GII := X
1
2

I (HII +D2
1,I)X

1
2

I . (8)

Proposition 3 (Limiting inertia) Assume
[
AIX

1
2

I D2
2

]
has full row rank, strict complementarity is

satisfied, and GII is positive definite. Then the inertia of (8) is (m,n, 0) and the inertia of the bottom

block 2× 2 submatrix of (8) is (m, |I|, 0).

Proof. The result follows from Proposition 2, the fact that
[
0 AIX

1
2

I D2
2

]
has full row rank, and

the facts that zA > 0 and the leading block 2× 2 submatrix of (8) is nonsingular.

We now turn our attention to eigenvalues in the limit.

Theorem 2 (Limiting eigenvalues) Assume strict complementarity is satisfied and GII is positive

definite. If
[
AIX

1
2

I D2
2

]
has full row rank, (8) has |A| negative eigenvalues equal to the components of

−zA. The remaining eigenvalues are in the intervals [ν−min, ν
−
max] and [ν+min, ν

+
max], where ν−min ≤ ν

−
max <

0 < ν+min ≤ ν
+
max and

ν−min = 1
2

[
δ22 − ηmax,I −

√
[ηmax,I + δ22 ]2 + 4σ2

maxxmax,I

]
ν−max = −(λmin(H) + δ21)xmin,I

ν+min = 1
2

[
δ22 − ηmax,I +

√
[ηmax,I + δ22 ]2 + 4σ2

minxmin,I

]
ν+max = 1

2

[
δ22 − ηmin,I +

√
[ηmin,I + δ22 ]2 + 4σ2

maxxmax,I

]
,
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where σmin = 0⇒ ν+min = δ22;

xmin,I := min
j∈I

xj , ηmin,I := (λmin(H) + δ21)xmin,I ,

xmax,I := max
j∈I

xj , ηmax,I := (λmax(H) + δ21)xmax,I .

Further, AIX
1
2

I is row-rank deficient iff δ22 is the smallest positive eigenvalue of (8) with geometric

multiplicity |I| − rank(AIX
1
2

I ).

Proof. The result follows from Theorem 1, the block-diagonal structure of (8), and complementarity.

We close this section by examining special cases. The proofs are straightforward and follow from

the continuity of eigenvalues by setting δ1 = δ2 = 0.

Corollary 1 (Eigenvalues during the iterations without regularization) When δ1 = δ2 = 0, the eigen-

values of K2.5 in (K2.5) are in the intervals [ρ−min,0, ρ
−
max,0] and [ρ+min,0, ρ

+
max,0], where ρ−min,0 ≤ ρ

−
max,0 <

0 ≤ ρ+min,0 ≤ ρ
+
max,0, and

ρ−min,0 = − 1
2

[
ηmax,0 +

√
η2max,0 + 4σ2

maxxmax

]
ρ−max,0 = −max(λmin(H)xmin, zmin)

ρ+min,0 = 1
2

[
−ηmax,0 +

√
η2max,0 + 4σ2

minxmin

]
ρ+max,0 = 1

2

[
−ηmin,0 +

√
η2min,0 + 4σ2

maxxmax

]
,

with ηmin,0 := λmin(H)xmin + zmin, ηmax,0 := λmax(H)xmax + zmax, and σmin = 0 ⇒ ρ+min,0 = 0. In

the case of linear optimization, λmin(H) = λmax(H) = 0, so that ηmin,0 = zmin, ηmax,0 = zmax, and

ρ−max,0 = −zmin.

Corollary 2 (Limiting eigenvalues without regularization) Under the assumptions of Theorem 2, when

δ1 = δ2 = 0, (8) has |A| negative eigenvalues equal to the components of −zA. The remaining eigenval-

ues are in the intervals [ν−min,0, ν
−
max,0] and [ν+min,0, ν

+
max,0], where ν−min,0 ≤ ν

−
max,0 ≤ 0 ≤ ν+min,0 ≤ ν

+
max,0

and

ν−min,0 = − 1
2

[
ηmax,I,0 +

√
η2max,I,0 + 4σ2

maxxmax,I

]
ν−max,0 = −λmin(H)xmin,I

ν+min,0 = 1
2

[
−ηmax,I,0 +

√
η2max,I,0 + 4σ2

minxmin,I

]
ν+max,0 = 1

2

[
−ηmin,I,0 +

√
η2min,I,0 + 4σ2

maxxmax,I

]
,

with xmin,I := minj∈I xj, xmax,I := maxj∈I xj, ηmin,I,0 := λmin(H)xmin,I and ηmax,I,0 :=

λmax(H)xmax,I . In addition, AIX
1
2

I is row-rank deficient iff zero is an eigenvalue of (8) with geometric

multiplicity |I| − rank(AIX
1
2

I ).

In the case of linear optimization, λmin(H) = λmax(H) = 0, so that ηmin,I,0 = ηmax,I,0 = 0, and

ν−min,0 = −σmax
√
xmax,I , ν−max,0 = 0,

ν+min,0 = σmin
√
xmin,I , ν+max,0 = σmax

√
xmax,I ,

where σmin = 0⇒ ν+min,0 = 0.
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5 An interior solver for convex optimization

In PDCO, µ is regarded as an extra variable and updated according to µ← (1− α)µ, where α is the

steplength for the current iteration (0 < α ≤ 1). PDCO and PDCOO work with the problem

min
x, r

φ(x) + 1
2‖D1x‖

2 + 1
2‖r‖

2

s.t. Ax+D2r = b, ` ≤ x ≤ u
(9)

with general bounds `, u ∈ Rn. The bounds are equivalent to constraints x − x1 = `, x + x2 = u,

x1 ≥ 0, x2 ≥ 0. The K3 system now reads
−(H +D2

1) AT I −I
A D2

2

Z1 X1

−Z2 X2




∆x
∆y
∆z1
∆z2

 =


rd
rp
rc,1
rc,2

 ,
where rows and columns are zero in the diagonal matrices X1, Z1 or X2, Z2 if the corresponding

elements of ` or u are infinite. The resulting K2.5 system is[
−(X

1
2
1 X

1
2
2 (H +D2

1)X
1
2
1 X

1
2
2 +X2Z1 +X1Z2) X

1
2
1 X

1
2
2 A

T

AX
1
2
1 X

1
2
2 D2

2

] [
∆x̄
∆y

]
=[

X
1
2
1 X

1
2
2 rd −X

− 1
2

1 X
1
2
2 rc,1 +X

1
2
1 X

− 1
2

2 rc,2
rp

]
, (10)

where ∆x = X
1
2
1 X

1
2
2 ∆x̄.

If a problem has linear inequality constraints b` ≤ Ax ≤ bu, we add slack variables to reformulate

those constraints as Ax− s = 0, and b` ≤ s ≤ bu.

We now describe our object-oriented implementation of PDCO, named PDCOO and available from

github.com/optimizers/PDCOO. Below, we refer to the combination of a transformation of (K3) and

of a method to solve those linear equations as a variant. In the original PDCO, the user indicates

by an integer which variant should be used during the iterations. While functional, this approach

makes the process of adding a new variant fragile as multiple parts of the code must be changed.

PDCOO restructures the entire method by separating variants from the main interior-point loop, and

by separating each variant into a transformation of (K3) and a method to solve the linear system.

A variant of the user’s choosing and the main loop are subsequently assembled by way of multiple

inheritance. The top-level source repository contains the main interior-point loop in pdcoO.m and the

folders Formulations, Solvers, and Variants. Initially, Variants is empty. Formulations contains

several files, each of which contains a small amount of code to implement a transformation of (K3).

Among them, we find K2.m, K25.m, K3.m, and K35.m. The implementation of a formulation consists of

the definition of a Matlab class that implements the Solve Newton() method, and, in essence, looks as
in Listing 1.

The K25 class features an abstract method named Solver(). An abstract method is a method

that is declared as belonging to the K25 class but that is expected to be implemented by a subclass or

by another class that will be combined with K25 by way of multiple inheritance. The main interior-

point loop itself is implemented inside the pdcoO class, and the latter defines the abstract method

Solve Newton().

The constructor of K25 simply initializes a boolean variable to indicate that, unlike other variants,

it is not specifically designed for cases where H is diagonal.

The important method is Solve Newton(). Its role is to assemble the matrix of the formulation

of (K3) of interest, store it in the attribute M, assemble the corresponding right-hand side, store it in

https://github.com/optimizers/PDCOO
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1 classdef K25 < handle

2 properties

3 M % a matrix that represents K2.5

4 rhs % the right -hand side corresponding to K2.5

5 sol % a vector to contain the solution of the system

6 end

7

8 methods (Abstract)

9 Solver(o) % an abstract method to be implemented by the solver

10 end

11

12 methods

13 function o = K25(options) % constructor

14 o.diagHess = false; % K2.5 is not specifically for diagonal H

15 end

16

17 function Solve_Newton(o)

18 % ... construct K2.5 and store it in o.M

19 % ... construct the right -hand side of (K25) and store it in o.rhs

20 Solver(o); % call solver , which stores the solution in o.sol

21 % ... recover solution of (K3) from o.sol

22 end

23 end

24 end

Listing 1: The K25 formulation.

the attribute rhs, call the linear system solver, which has not yet been defined at this point, but which

will store the solution in the attribute sol, and finally to extract the solution of (K3) from sol.

The formulation’s abstract method Solver() is implemented by one of the classes stored under the

Solvers folder, which provide a solution method for the linear system. Listing 2 shows the essential

parts of one such class designed for SQD systems such as (K2.5) in which the system is solved by way

of a signed Cholesky factorization. The latter is computed via Matlab’s ldl() function with the pivot

threshold parameter set to zero to prevent the factorization from pivoting for stability.

1 classdef LDL < handle

2 properties

3 L

4 end

5

6 methods

7 function o = LDL(options)

8 o.need_precon = false; % this method requires no preconditioner

9 end

10

11 function Solver(o)

12 thresh = 0; % tells MA57 to keep its sparsity -preserving order

13 [o.L, D, P, S] = ldl(o.M, thresh ); % o.M was set in the K25 class

14 o.sol = S * (P * (o.L’ \ (D \ (o.L \ (P’ * (S * o.rhs ))))));

15 end

16 end

17 end

Listing 2: The LDL solver.

The above definitions allow the user to assemble a complete solver by putting together the pdcoO,

K25 and LDL classes using multiple inheritance. That is achieved either by writing a class by hand that

inherits from the previous three, or by calling the build variant() function. The latter takes three

arguments: the location of the top PDCOO folder, a string to specify the formulation class, and a

string to specify the solver class. If we assume that /home/user/pdcoo is the path to the top PDCOO
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folder, the call build variant(’/home/user/pdcoo’, ’K25’, ’LDL’) assembles a complete solver by

creating a new file under the Variants folder named pdco K25 LDL.m that contains the declaration of

the pdco K25 LDL class shown in Listing 3.

1 classdef pdco_K25_LDL < pdcoO & K25 & LDL % inherit from three classes

2 properties

3 end

4

5 methods

6 function o = pdco_K25_LDL(slack , opts_pdco , opts_form , opts_solv)

7 o = o@pdcoO(slack , opts_pdco );

8 o = o@K25(opts_form );

9 o = o@LDL(opts_solv );

10 end

11 end

12 end

Listing 3: The assembled solver.

The constructor of the assembled solver takes as arguments a model in which linear inequalities were

converted to equalities and bounds by way of slack variables, as explained above, along with options to
pass to the interior-point solver class, the formulation class and the linear system solver class.

PDCOO expects optimization problems to adhere to a specific format defined in the model package,

available from github.com/optimizers/model. The model package defines a base class nlpmodel

and a number of subclasses specialized either by problem type or provenance. Most relevant to the

present paper, the lpmodel and qpmodel classes are used to represent linear and quadratic optimization

models, respectively. The latter can be read from files in MPS or QPS format by a reader included with

PDCOO. The additional class slackmodel takes as input a model and adds slack variables as specified

above. The user should pass an instance of slackmodel to PDCOO so the problem has the form (9).

Finally, a complete session might look as in Listing 4. The numerical experiments of Section 6 are

carried out using commands similar to those of Listing 4. The commands first import the relevant

classes from the model package, build the variant of interest, read a problem from an MPS file and add

slack variables, set a number of PDCO options, instantiate the variant, and finally solve the problem.

The PDCO options are the same as those described by Orban (2015) and set regularization parameters,

an initial guess, scaling factors xsize and zsize, and an initial barrier parameter.

6 Numerical experiments

We illustrate the eigenvalue bounds of the previous sections on a selection of problems from the

TOMLAB collection.3 Our test set consists of the linear optimization collection4 and the quadratic

optimization collection5 (90 and 130 problems respectively). We exclude cre-c and qforplan, which
take substantially more time to solve than the rest, for a total of 218 problems.

In a first set of experiments, we compute all eigenvalues of K2.5 at each iteration of PDCO on

the linear problems small009 and nsic2, which both satisfy the LICQ and strict complementarity

at the solution. The results on those two problems are representative of what we have observed on

problems satisfying the LICQ and strict complementarity. The original formulation of small009 has

1, 135 variables and 710 constraints, and we add 298 slack variables. Problem nsic2 has 463 variables

and 465 constraints, and we add 434 slack variables.

3
tomopt.com/tomlab

4
tomopt.com/docs/models/tomlab models034.php

5
tomopt.com/docs/models/tomlab models036.php

https://github.com/optimizers/model
http://tomopt.com/tomlab
https://tomopt.com/docs/models/tomlab_models034.php
https://tomopt.com/docs/models/tomlab_models036.php
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1 import model.lpmodel;

2 import model.slackmodel;

3

4 classname = build_variant(pdcoo_home , ’K25’, ’LDL’);

5

6 % read .mps file and add slack variables

7 mps_data = readmps(’afiro.mps’);

8 lp = mpstolp(mps_data );

9 slack = slackmodel(lp);

10

11 % define PDCOO options

12 Anorm = normest(slack.gcon(slack.x0), 1.0e-3);

13 options_pdco.d1 = 1.0e-2;

14 options_pdco.d2 = 1.0e-2;

15 options_pdco.x0 = slack.x0;

16 options_pdco.x0(slack.jLow) = slack.bL(slack.jLow) + 1;

17 options_pdco.x0(slack.jUpp) = slack.bU(slack.jUpp) - 1;

18 options_pdco.x0(slack.jTwo) = (slack.bL(slack.jTwo) + ...

19 slack.bU(slack.jTwo)) / 2;

20 options_pdco.xsize = max(norm(options_pdco.x0, inf), 1);

21 options_pdco.zsize = max(norm(slack.gobj(slack.x0), inf) + ...

22 sqrt(slack.n) * Anorm , 1);

23 options_pdco.z0 = options_pdco.zsize * ones(slack.n, 1);

24 options_pdco.y0 = zeros(slack.m, 1);

25 options_pdco.mu0 = options_pdco.zsize;

26 options_pdco.Maxiter = min(max(30, slack.n), 100);

27 options_form = struct (); % no particular options for the formulation

28 options_solv = struct (); % no particular options for the solver

29

30 Problem = eval([classname ,

31 ’(slack , options_pdco , options_form , options_solv)’]);

32 Problem.solve;

Listing 4: An example session with PDCOO.

Eigenvalues are computed using Matlab’s eigs() function, from which we request the entire

spectrum. We plot eigenvalues on a symmetric logarithmic scale using dots, and superpose curves
representing the inner and outer bounds of Theorem 1. Evaluation of the bounds requires computing

σmin(A) and σmax(A) using Matlab’s svds() function, from which we request the extreme singular

values only.

Figures 1 and 2 illustrate the results for problem small009, where K2.5 has size 2, 143. We note

that the inner bounds are especially tight throughout the iterations, while the outer bounds are tight in

the early stages and looser later. The positive eigenvalues are safely bounded away from zero, essentially

by δ22 . The negative eigenvalues, though small in magnitude, are also bounded away from zero. The

upper bound on negative eigenvalues only depends on δ1. In the case of linear optimization, it becomes

ρ−max = −max(δ21xmin, min
j

(δ21xj + zj))

during the iterations and

ν−max = −δ21xmin,I

in the limit. Thus, some negative eigenvalues can be perilously close to zero unless the problem is

scaled so that xmin,I is not too small at the solution. Fortunately, that behavior occurs only in the last

few iterations.

Figures 3 and 4 illustrate the eigenvalues and bounds for problem nsic2, where K2.5 has size 1, 362.

If A does not have full row rank, σmin(A) = 0 and the lower bound on positive eigenvalues of

Theorem 1 and Theorem 2 becomes ρ+min = ν+min = δ22 . Figures 5 and 6 illustrate that bound for several

values of δ2 on quadratic problem qbrandy, where the number of variables is 249, the number of original
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Figure 1: Eigenvalues and bounds of Theorem 1 for linear problem small009.
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Figure 2: Eigenvalues and bounds of Theorem 1 for linear problem small009 (continued).
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Figure 3: Eigenvalues and bounds of Theorem 1 for linear problem nsic2.
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Figure 4: Eigenvalues and bounds of Theorem 1 for linear problem nsic2 (continued).
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constraints is 220, and we add 83 slack variables. The resulting Jacobian A, including the contributions

of the slack variables, has size 220× 303 and rank 193. In the figure, note that the lower bound on

the positive eigenvalues is constant, tight, and decreases with δ2. The reason why the bound visibly

differs from δ22 is that each problem is scaled prior to solution, and the scaling affects the value of δ2
effectively used during the iterations.

When δ2 reaches 10−6, several negative eigenvalues appear to lie outside their bounds for iterations

19 to 24. When δ2 = 10−8, the effect is more dramatic and numerous positive and negative eigenvalues

appear to lie outside their bounds. However, this misleading effect is due to accumulated rounding

errors in the eigs() function. In order to verify our claim, we ran the eigenvalue computation in

extended precision using the Matlab Symbolic Math toolbox with the variable precision arithmetic
(vpa) set to 64 digits.6 Because eigs() does not accept vpa input, we computed eigenvalues using

eig(). The resulting eigenvalues and bounds are shown in the bottom plot of Figure 6.

Figure 5: Eigenvalues and bounds of Theorem 1 for quadratic problem qbrandy, where σmin(A) = 0. The value of δ1 is

fixed to 10
−2

and a range of values for δ2 is selected.

6
By default, Matlab uses 16 digits in double precision; 64 digits corresponds to octuple precision.
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Figure 6: Eigenvalues and bounds of Theorem 1 for quadratic problem qbrandy, where σmin(A) = 0 (continued). We

use δ1 = 10
−2

and a range of values for δ2. In the bottom plot, the eigenvalues are computed using extended precision.
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6.1 Comparison with K3, K3.5 and K2

Greif et al. (2014) provide eigenvalue bounds and condition number estimates for (K3.5). If strict

complementarity is satisfied in the limit, K3.5 remains well-conditioned like K2.5, but it is substantially

larger without being usefully more sparse. In this section, we compare the eigenvalue distribution and

condition number of the formulations (K3), (K3.5), (K2) and (K2.5).

Figure 7 compares the evolution of the condition number of each formulation on problems small009,

nsic2 and qbrandy. The top three plots show the condition number at each iteration. The solid curve

is an ad hoc upper bound on cond(K2.5) obtained from the bounds of Theorem 1 by computing the

ratio of the largest to the smallest bound in absolute value, i.e., max(ρ+max, |ρ
−
min|)/min(ρ+min, |ρ

−
max|).
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Figure 7: Top three plots: evolution of the condition number of (K3), (K3.5), (K2) and (K2.5) on problems small009,
nsic2 and qbrandy. The solid blue curve is an upper bound on cond(K2.5) obtained from the bounds of Theorem 1. All

plots use δ1 = δ2 = 10
−2

.
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In all three cases, we see that the bound is quite loose and the condition number of K2.5, though it

may be large, is more favorable than that of the other formulations.

Figure 8 compares PDCOO performance on the entire test set with the formulations (K3), (K3.5),

(K2) and (K2.5). The top plot shows a Dolan and Moré (2002) performance profile where the metric is

the condition number computed at the final iteration on the entire test set. Although all solvers solved

the entire test set successfully, the profiles do not attain 100% because eigs() failed to converge and

return the extreme eigenvalues on a small proportion of problems. Nevertheless, the profile indicates

that cond(K2.5) is substantially more favorable than for the other formulations, including K3, on our

test set. The bottom plot shows a time performance profile. The plot suggests that the run time of all

formulations is roughly comparable, with a slight advantage in favor of K2 and K3. The horizontal
log2 scale indicates that the run times do not differ by more than a factor of about two. Assembling

K2.5 at each iteration contributes to the cost, as it requires scaling the columns of A by X1/2. A

factorization-free implementation combined with an iterative method to compute an inexact step might

overcome this expense.
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Figure 8: Top: performance profile where the metric is the condition number of the system at the final iteration. Bottom:

time performance profile. Both plots use δ1 = δ2 = 10
−2

.

7 Discussion

An advantage of the formulation (K2.5) is that it has the same size and storage requirements as (K2).

According to the bounds of Theorems 1 and 2 and the numerical experiments of Section 6, its other

advantage is that its condition number is similar to, and often substantially more favorable than, that

of (K3). Moreover, the expense of forming (K2.5), and in particular of scaling A, does not have a

significant effect on the solution time. We experimented here with a factorization-based implementation

of PDCOO. However, it would be instructive to study (K2.5) in the context of inexact steps computed

by an iterative solver such as MINRES (Paige and Saunders, 1975; Regev and Saunders, 2020).
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Preconditioners will be crucial. For example, Orban (2015) and Greif, He, and Liu (2017) include an

incomplete LDLT preconditioner, while di Serafino and Orban (2019) employ constraint preconditioners.

We expect that Theorem 2 will provide guidelines to design further preconditioners based on estimates

of the active set.
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