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Abstract: Restless bandits are a class of sequential resource allocation problems concerned with al-
locating one or more resources among several alternative processes where the evolution of the process
depends on the resource allocated to them. Such models capture the fundamental trade-offs between
exploration and exploitation. In 1988, Whittle developed an index heuristic for restless bandit prob-
lems which has emerged as a popular solution approach due to its simplicity and strong empirical
performance. The Whittle index heuristic is applicable if the model satisfies a technical condition
known as indexability. In this paper, we present two general sufficient conditions for indexability and
identify simpler to verify refinements of these conditions. We then present a general algorithm to
compute Whittle index for indexable restless bandits. Finally, we present a detailed numerical study
which affirms the strong performance of the Whittle index heuristic.

Keywords: Multi-armed bandits, restless bandits, Whittle index, indexability, stochastic scheduling,
resource allocation
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1 Introduction

Restless bandits are a class of sequential resource allocation problems concerned with allocating one or

more resources among several alternative processes where the evolution of the process depends on the

resource allocated to them. Such models arise in various applications such as machine maintenance [18],

congestion control [7], healthcare [11, 9], finance [15], channel scheduling [20], smart grid [1], and others.

Restless bandits are a generalization of classical multi-armed bandits [12], where the processes

remain frozen when resources are not allocated to them. Gittins [13] showed that when a single

resource is allocated among multiple resources, the optimal policy has a simple structure: compute an

index for each process and allocate the resource to the process with the largest (or the lowest) index.

In contrast, the general restless bandit problem is pspace-hard [24]. Whittle [29] showed that index-

based policies are optimal for the Lagrangian relaxation of the restless bandit problem and argued

that the corresponding index, now called Whittle index, is a reasonable heuristic for restless bandit

problems. Subsequently, it has been found that the Whittle index heuristic is optimal under some

conditions [28] and performs well in practice [5, 14, 16].

The Whittle index heuristic is applicable if a technical condition known as indexability is satisfied.

The condition appears to be a natural condition which should be satisfied by all models, but that is

not the case [29]. Sufficient conditions for indexability have been investigated under specific modeling

assumptions (two state fully or partially observed restless bandits [20, 7]; monotone bandits [15, 5, 7];

models with right-skeip free transitions [18, 14]; models with monotone or convex cost/reward [14, 5,

7, 6, 30, 8]; models satisfying partial conservation laws [21, 22]). Indexability for models arising in

specific applications has been investigated in [16, 18, 14, 15, 6, 30, 8]. Our first main contribution is to

provide general sufficient conditions for indexability, which are presented in Section 3. These sufficient

conditions are based on an alternative characterization of passive set, which might be useful in general

as well. We also present refinements of these sufficient conditions that are simpler to verify.

Whittle index can be computed by conducting a binary search over penalty for active action (or

a subsidy for passive action) [4, 27] but such a binary search is computationally expensive because a

dynamic program needs to be solved at each step. Methods to compute a generalization of Whittle

index known as marginal productivity index are presented in [23, 22]. Our second main contribution

is to present a general algorithm to compute Whittle index for indexable restless bandits, which is

developed in Section 4. The key idea to compute the Whittle index is to iteratively sort the states in

increasing order of their Whittle index.

We generalize the results for monotone bandits [15, 5, 7] to what we call stochastic monotone

bandits (Section 5). We show that stochastic monotone bandits are indexable and the Whittle index

can be computed in closed form. We also investigate a special case of our sufficient conditions in detail:

restless bandits with controlled restarts (Section 5). Such models have been considered in [4, 27] and

may be viewed as generalizations of the restart models [18, 14]. We use ideas from renewal theory to

simplify the computation of the Whittle index for such models.

A detailed numerical study comparing the performance of the Whittle index policy with that of the

optimal policy (for small models) and the myopic policy (for larger models) is presented in Section 6. In

general, the performance of Whittle index policy is comparable to the optimal policy and considerably

better than the myopic policy.

Notation Uppercase letters (X, Y , etc.) denote random variables, lowercase letters (x, y, etc.) denote

their realization, and script letters (X , Y, etc.) denote their state spaces. Subscripts denote time: so,

Xt denotes a system variable at time t and X1:t is a short-hand for the system variables (X1, . . . , Xt).

P(·) denotes the probability of an event, E[·] denotes the expectation of a random variable. Z and R
denote the sets of integers and real numbers. Given a matrix P , Pij denotes its (i, j)-th element.

For the totally ordered sets, X≥k denotes the set of states greater than or equal to state k and X<k
denotes the set of states lower than state k.
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2 Restless bandits: problem formulation and solution concept

2.1 Restless Bandit Process

A discrete-time restless bandit process (RBP) is a controlled Markov process (X , {0, 1},
{P (a)}a∈{0,1}, c, x0) where X denotes the state space which is a finite or countable set. {0, 1} de-

notes the action space. The action 0 is called the passive action and the action 1 is the active action.

P (a), a ∈ {0, 1}, denotes the transition matrix when action a is chosen. c : X ×{0, 1} → R denotes the

cost function and x0 denotes the initial state. We use Xt and At to denote the action of the process at

time t. The process evolves in a controlled Markov manner, i.e., for any realization x0:t+1 of X0:t+1 and

a0:t+1 of A0:t+1, we have P(Xt+1 = xt+1|X0:t = x0:t, A0:t = a0:t) = P(Xt+1 = xt+1|Xt = xt, At = at),

which we denote by Pxtxt+1
(at).

2.2 Restless Multi-armed Bandit Problem

A restless multi-armed bandit problem is a collection of n independent RBPs (X i, {0, 1},
{P i(a)}a∈{0,1}, ci), i ∈ N := {1, . . . , n}. A decision maker observes the state of all RBPs, may choose

the active action for only m < n of them, and incurs a cost equal to the sum of the cost incurred by

each bandit process.

Let X :=
∏
i∈N X i and A(m) :=

{
a = (a1, . . . , an) ∈ An :

∑
i∈N a

i = m
}

to denote the joint state

space and the feasible action space, respectively. Let Xt := (X1
t , . . . X

n
t ) and At = (A1

t , . . . , A
n
t )

denote the joint state and actions at time t. As the RBPs are independent, for any realization

x0:t of X0:t and a0:t of A0:t, we have P (Xt+1 = xt+1|X0:t = x0:t,A0:t = a0:t) =
∏n
i=1

P
(
Xi
t+1 = xit+1|Xi

t = xit, A
i
t = ait

)
. When the system is in state xt = (x1t , . . . , x

n
t ) and the decision-

maker chooses action at = (a1t , . . . , a
n
t ), the system incurs a cost c̄(xt,at) :=

∑
i∈N c

i(xit, a
i
t). The

decision-maker chooses his actions using a time-homogeneous Markov policy g : X → A(m), i.e.,

chooses At = g(Xt). The performance of any Markov policy g is given by

J (g)(x0) := (1− β)E
[ ∞∑
t=0

βtc̄(Xt, g(Xt))

∣∣∣∣X0 = x0

]
,

where β ∈ (0, 1) is the discount factor, x0 is the initial system state and the expectation is taken with

respect to the joint distribution of all system variables induced by the policy.

We are interested in the following optimization problem.

Problem 1 Given the discount factor β ∈ (0, 1), the total number n of arms, the number m of active

arms, RBPs (X i, {0, 1}, {P i(a)}a∈{0,1}, ci, xi0), i ∈ N and initial state x0 ∈ X, choose a Markov policy

g : X → A(m) that minimizes J (g)(x0).

Problem 1 is a multi-stage stochastic control problem and one can obtain an optimal solution using

dynamic programming. However, the dynamic programming solution is intractable for large n since the

cardinality of the state space is
∏
i∈N |X i|, which grows exponentially with n. In the next section, we

describe a heuristic known as Whittle index to efficiently obtain a suboptimal solution of the problem.

2.3 Indexability and the Whittle index

Consider a RBP (X , {0, 1}, {P (a)}a∈{0,1}, c, x0). For any λ ∈ R, we consider a Markov decision pro-

cess {X , {0, 1}, {P (a)}a∈{0,1}, cλ, x0}, where

cλ(x, a) := c(x, a) + λa, ∀x ∈ X ,∀a ∈ {0, 1}. (1)

The parameter λ may be viewed as a penalty for taking active action. The performance of any time-

homogeneous policy g : X → {0, 1} is

J
(g)
λ (x0) := (1− β)E

[ ∞∑
t=0

βtcλ(Xt, g(Xt))

∣∣∣∣X0 = x0

]
. (2)
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Consider the following optimization problem.

Problem 2 Given the RBP (X , {0, 1}, {P (a)}a∈{0,1}, cλ, x0) and the discount factor β ∈ (0, 1), choose

a Markov policy g : X → {0, 1} to minimize J
(g)
λ (x0).

Problem 2 is also a Markov decision process and one can obtain an optimal solution using dynamic

programming. Let Vλ : X → R be the unique fixed point of the following:

Vλ(x) = min
{
Hλ(x, 0), Hλ(x, 1)

}
, ∀x ∈ X , (3)

where

Hλ(x, a) = (1− β)cλ(x, a) + β
∑
y∈X

Pxy(a)Vλ(y), a ∈ {0, 1}. (4)

Let gλ(x) denote the minimizer of the right hand side of (3) where we set gλ(x) = 1 if Hλ(x, 0) =

Hλ(x, 1). Then, from Markov decision theory [25], we know that the time-homogeneous policy gλ is

optimal for Problem 2.

Let Πλ denote the set of states where passive action is optimal, i.e.,

Πλ := {x ∈ X : gλ(x) = 0} . (5)

We call Πλ as the passive set.

Definition 1 (Indexability) An RBP is indexable if Πλ is increasing in λ, i.e., for any λ1, λ2 ∈ R,

λ1 ≤ λ2 implies Πλ1
⊆ Πλ2

.

Definition 2 (Whittle index) The Whittle index of state x of an indexable RBP is the smallest value

of λ for which x is part of the passive set Πλ, i.e., w(x) = inf {λ ∈ R : x ∈ Πλ} .

Alternatively, the Whittle index w(x) is a value of the penalty λ for which the optimal policy is

indifferent between taking active and passive action when the RBP is in state x.

2.4 Whittle index heuristic

A restless multi-armed bandit problem is said to be indexable if all RBPs are indexable. For indexable

problems, the Whittle index heuristic is as follows: Compute the Whittle indices of all arms offline.

Then, at each time, obtain the Whittle indices of the current state of all bandits and play bandits with

the m smallest Whittle indices.

As mentioned earlier, Whittle index policy is a popular approach for restless bandits because:

(i) its complexity is linear in the number of alternatives and (ii) it often performs close to optimal in

practice [5, 14, 16]. However, there are only a few general conditions to check indexability for general

models.

2.5 Alternative characterizations of passive set

We now present alternative characterizations of passive set, which is important for the sufficient con-

ditions of indexability that we provide later.

Let Σ denote the family of all stopping times with respect to the natural filtration associated

with {Xt}t≥0. Given an initial state x ∈ X and a stopping time τ ∈ Σ, let hτ denote the (history

dependent) policy that takes passive action up to time τ − 1, active action at time τ , and follows the

optimal policy gλ after that. Let

M(x, τ) := E[βτ |X0 = x], L(x, τ) := E
[ τ−1∑
t=0

βtc(Xt, 0) + βτ c(Xτ , 1)
∣∣∣ X0 = x

]
,
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and

Wλ(x) := (1− β)λ+ β
∑
y∈X

Pxy(1)Vλ(x). (6)

We now present different characterizations of the passive set.

Proposition 1 The following characterizations of the passive set are equivalent.

• Π
(a)
λ = {x ∈ X : gλ(x) = 0}

• Π
(b)
λ = {x ∈ X : Hλ(x, 0) < Hλ(x, 1)}

• Π
(c)
λ = {x ∈ X : ∃σ ∈ Σ, σ 6= 0, such that J

(hσ)
λ (x) < J

(h0)
λ (x)}

• Π
(d)
λ = {x ∈ X : ∃σ ∈ Σ, σ 6= 0, such that (1−β) (L(x, σ)− c(x, 1)) < Wλ(x)−E[βσWλ(Xσ)|X0 =

x]}

See Appendix A for proof.

3 Sufficient conditions for indexability

In this section, we identify sufficient conditions for a RBP to be indexable.

3.1 Preliminary results

Consider a RBP (X , {0, 1}, {P (a)}a∈{0,1}, c, x0). For any policy g : X → {0, 1} and λ ∈ R, we can

write

J
(g)
λ (x) = D(g)(x) + λN (g)(x), (7)

where

D(g)(x) := (1− β)E
[ ∞∑
t=0

βtc(Xt, g(Xt))
∣∣X0 = x

]
(8)

N (g)(x) := (1− β)E
[ ∞∑
t=0

βtg(Xt)
∣∣X0 = x

]
(9)

are the expected discounted total cost and the expected number of activations under policy g starting

at initial state x. D(g)(·) and N (g)(·) can be computed using policy evaluation formulas. In particular,

define P (g) : X × X → R and c(g) : X → R as follows: P
(g)
xy = Pxy(g(x)) and c

(g)
λ (x) = cλ(x, g(x)) =

c(g)(x, g(x)) + λg(x) for any x, y ∈ X . We also view g as an element in {0, 1}|X |. Then, using policy

evaluation formula for infinite horizon MDPs [25], we obtain

D(g)(x) = (1− β)
[
(I − βP (g))−1c(g)

]
(x) and N (g)(x) = (1− β)

[
(I − βP (g))−1g

]
(x). (10)

The following two results follow immediately from (7).

Lemma 1 For any x ∈ X , Vλ(x) is increasing and continuous in λ.

Proof. The result follows from observing that Vλ(x) = ming:X→{0,1} J
(g)
λ (x) and Equation (7) implies

that J
(g)
λ (x) is continuous and increasing in λ.

Lemma 2 For any λ1, λ2 ∈ R,

(λ2 − λ1)N (gλ2 )(x) ≤ Vλ2
(x)− Vλ1

(x) ≤ (λ2 − λ1)N (gλ1 )(x), ∀x ∈ X .

Consequently, N (gλ)(x) is (weakly) decreasing in λ.
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Proof. Recall that Vλ(x) = J
(gλ)
λ (x) ≤ J (gλ′ )

λ (x) for any λ′ 6= λ. Thus,

Vλ2(x)− Vλ1(x) = J
(gλ2 )

λ2
(x)− J (gλ1 )

λ1
(x) ≤ J (gλ1 )

λ2
(x)− J (gλ1 )

λ1
(x)

(a)
= (λ2 − λ1)N (gλ1 )(x), (11)

where (a) follows from (7). Similarly, we have

Vλ2(x)− Vλ1(x) = J
(gλ2 )

λ2
(x)− J (gλ1 )

λ1
(x) ≥ J (gλ2 )

λ2
(x)− J (gλ2 )

λ1
(x)

(a)
= (λ2 − λ1)N (gλ2 )(x), (12)

where (a) follows from (7). The result follows from combining the above inequalities.

3.2 Sufficient conditions for indexability

Theorem 1 Define H = {(g, h) : g, h : X → {0, 1} such that for all x ∈ X , N (g)(x) ≥ N (h)(x)}. Each

of the following is a sufficient condition for Whittle indexability:

a. For any g, h ∈ H, we have that for every x, z ∈ X ,∑
y∈X

{[
βPzy(1)− Pxy(1)

]+
N (g)(y)−

[
Pxy(1)− βPzy(1)

]+
N (h)(y)

}
≤ (1− β)2

β
. (13)

b. For any g, h ∈ H, we have that for every x ∈ X ,∑
y∈X

{[
Pxy(0)− Pxy(1)

]+
N (g)(y)−

[
Pxy(1)− Pxy(0)

]+
N (h)(y)

}
≤ 1− β

β
. (14)

See Appendix B for the proof. The sufficient conditions of Theorem 1 are difficult to verify. Simpler

sufficient conditions are stated below.

Proposition 2 Each of the following is a sufficient condition for (13).

a. maxx,z∈X
∑
y∈X

[
βPzy(1)− Pxy(1)

]+ ≤ (1− β)2/β.

b. Pxy(1) = Pzy(1), for any x, z ∈ X .

In addition, each of the following is a sufficient condition for (14).

c. maxx∈X
∑
y∈X [Pxy(0)− Pxy(1)]

+ ≤ (1− β)/β.

d. β ≤ 0.5.

See Appendix C for proof.

Some remarks

1. The sufficient conditions of Theorem 1 and Proposition 2 a, c, d may be viewed as bounds on

the discount factor β for which the RBP is indexable. Numerical experiments to explore such a

property are presented in [22].

2. We refer to models that satisfy the sufficient condition of Proposition 2.b as restless bandits with

controlled restarts. Such models arise in various scheduling problems (e.g., machine maintenance,

surveillance, etc.) where taking the active action resets the state according to known probability

distribution. Specific instances of such models are considered in [4, 27]. The special case when

the active action resets to a specific (pristine) state are considered in [18, 14]. Models where the

passive action resets the bandit have been considered in [19, 8, 7].
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4 Algorithm to compute Whittle index

Given an indexable RBP, a naive method to compute Whittle index at state x is to do a binary search

over the penalty λ to find the critical penalty w(x) such that for λ ∈ (−∞, w(x)), gλ(x) = 0 and for

λ ∈ [w(x),∞), gλ(x) = 1. Although such an approach has been used in the literature [26, 3], it is

not efficient as it requires a separate binary search for each state. In this section, we present a more

efficient algorithm to compute Whittle index.

Definition 3 For any policy g, let ones(g) denote the set of states where g(x) = 1. Given any state

y ∈ ones(g), let succ(g, y) denote a policy which chooses the passive action at y and chooses the same

action as g at all other states.

As an example, consider X = {1, 2, 3} and g = (0, 1, 1). Then, ones(g) = {2, 3}; succ(g, 2) =

(0, 0, 1) and succ(g, 3) = (0, 1, 0).

Suppose |X | = K. Define K = {1, . . . ,K} and K∗ = {0, 1, . . . ,K + 1}. Let (x1, . . . , xK) be a

permutation of states such that w(x1) ≤ w(x2) ≤ · · · ≤ w(xK). For ease of notation, we define

λk = w(xk) for k ∈ K and λ0 = −∞ and λK+1 = ∞. Thus, {λk}k∈K∗ is a (weakly) increasing

sequence.

Now for any k ∈ K∗, define a policy gk as follows: for any ` ∈ K, gk(x`) = 0 if ` ≤ k and 1 otherwise.

Note that g0 prescribes the active action at all states and gK+1 prescribes the passive action at all

states. By construction, xk+1 ∈ ones(gk) and gk+1 = succ(gk, xk+1).

Indexability implies that for any λ ∈ [λk, λk+1) the policy gk is optimal. Therefore, for any other

policy h and any state x ∈ X , J
(gk)
λ (x) ≤ J (h)

λ (x) or, equivalently, λ ≤ (D(h)(x)−D(gk)(x))/(N (gk)(x)−
N (h)(x)) with equality if h = gk+1. Thus,

λk+1 ≤
D(h)(x)−D(gk)(x)

N (gk)(x)−N (h)(x)
, (15)

with equality if h = gk+1. This implies the following.

Theorem 2 For any k ∈ K∗, let y ∈ ones(gk) and h = succ(gk, y). Define

λ◦gk,y(x) =
D(h)(x)−D(gk)(x)

N (gk)(x)−N (h)(x)
. (16)

Then, λ◦gk,xk+1
(x) = λk+1 and does not depend on x. Moreover, for any y ∈ ones(gk) and x ∈ X ,

λk+1 ≤ λ◦gk,y(x).

Proof. By construction, gk is the optimal policy for λ ∈ [λk, λk+1) and gk+1 is the optimal policy for

λ ∈ [λk+1, λk+2). Policies gk and gk+1 differ only at state xk+1. From Lemma 1, we know that Vλ(x)

is continuous in λ for all x ∈ X . Thus, for all x ∈ X ,

lim
λ↑λk+1

J
(gk)
λ (x) = lim

λ↓λk+1

J
(gk+1)
λ (x)

Thus, J
(gk)
λk+1

(x) = J
(gk+1)
λk+1

(x) and, therefore,

D(gk)(x) + λk+1N
(gk)(x) = D(gk+1)(x) + λk+1N

(gk+1)(x), ∀x ∈ X .

This implies that λ◦gk,xk+1
(x) = λk+1 and does not depend on x. The fact that λk+1 ≤ λ◦gk,y(x) follows

from (15).

Theorem 2 suggests a simple algorithm to identify the permutation (x1, . . . , xK) and the corre-

sponding Whittle indices. Recall that for any policy g, D(g) and N (g) can be computed using (10).

We first identify x1 as any arg miny∈ones(g0) λ
◦
g0,y(x). Then w(x1) = λ◦g0,x1

(x).
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Algorithm 1 Computing Whittle index of all states of an indexable RBP.
1: Input: RBP (X , {0, 1}, P (a)a∈{0,1}, c, x0), Discount factor β.

2: let k = 0 and g0(x) = 1 for all x ∈ X
3: while k < |X | do
4: let λ = miny∈ones(gk) minx∈X λ

◦
gk,y

(x).
5: let next(gk) = argminy∈ones(gk) minx∈X λ

◦
gk,y

(x).
6: for y ∈ next(gk) do
7: let w(y) = λ.
8: let gk+1 = succ(gk, y).
9: let k ← k + 1.
10: end for
11: end while

Now assume that (x1, . . . , xk) have been identified and we are interested in identifying

(xk+1, w(xk+1)). By Theorem 2, we have that xk+1 ∈ arg miny∈ones(gk) λ
◦
gk,y

(x) and w(xk+1) =

λ◦gk,xk+1
(x). Continuing this way, we can identify (x1, w(x1)), . . . , (xK , w(xK)). The detailed al-

gorithm, where we take care of multiplicity of arg min, is presented in Algorithm 1.

Some remarks

1. The idea of computing the index by iteratively sorting the states according to their index is

commonly used in the offline algorithms to compute Gittins index; for example, the largest-

remaining-index algorithm, the state-elimination algorithm, the triangularization algorithm, and

the fast-pivoting algorithm use variations of this idea. See [10] for details.

2. The term λ◦gk,y(x) is equal to the marginal productivity index for general resource allocation

problems [23]. The algorithm proposed above is similar in spirit to the adaptive greedy algorithm

of [21].

3. Suppose computing D(g) and N (g) requires d computations.1 Then, the worst case complexity

of Algorithm 1 is
∑K
k=1(K − k)d = K(K − 1)d/2.

An illustrative example Consider a RBP with X = {1, 2, 3, 4}, β = 0.75,

P (0) =


0.2 0.3 0.2 0.3
0.1 0.3 0.5 0.1
0.2 0.1 0.3 0.4
0.4 0.3 0.2 0.1

, P (1) =


0.3 0.2 0.0 0.5
0.2 0.5 0.2 0.1
0.0 0.0 0.5 0.5
0.5 0.0 0.2 0.3

, c0 =


1
2
5
4

, c1 =


5
1
4
8

.
It can be verified that the above model satisfies condition (c) of Proposition 2. Thus, the RBP is

indexable.

To compute the Whittle index, we start with policy g0 and compute λ◦g0,y for all y ∈ ones(g0) =

{1, 2, 3, 4}. The smallest value is −5.9815 at y = 4. Thus, x1 = 4 and w(4) = −5.9815.

Now, g1 = succ(g0, x1) = (1, 1, 1, 0). We compute λ◦g1,y for all y ∈ ones(g1) = {1, 2, 3}. The

smallest value is −4.8728 for y = 1. Thus, x2 = 1 and w(1) = −4.8728.

Next, g2 = succ(g1, x2) = (0, 1, 1, 0). We compute λ◦g2,y for all y ∈ ones(g2) = {2, 3}. The smallest

value is 0.0886 for y = 3. Thus, x3 = 3 and w(3) = 0.0886.

Finally, g3 = succ(g2, x3) = (0, 1, 0, 0). The set ones(g3) = {2} is a singleton. We compute λ◦g3,y
for y = 2 and it equals 1.7274. Thus, x4 = 2 and w(4) = 1.7274.

5 Some special cases

In this section, we show how the results developed in this paper can be refined for some special cases.

1The exact dependence of d on the size K of the state space depends on the structure of the transition matrix and the
method used to solve the linear system in (10). Typically d = O(K3) for dense matrices and O(K) for sparse matrices.
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5.1 Stochastic monotone bandits

Consider a RBP (X , {0, 1}, {P (a)}a∈{0,1}, c, x0) where the state space X is a totally ordered set. We

say that the RBP is stochastic monotone if it satisfies the following conditions.

(D1) For any a ∈ {0, 1}, P (a) is stochastically monotone, i.e., for any x, y ∈ X such that x < y, we

have
∑
w∈X≥z Pxw(a) ≤

∑
w∈X≥z Pyw(a) for any z ∈ X .

(D2) For any z ∈ X , Szx(a) :=
∑
w∈X≥z Pxw(a) in submodular2 in (x, a).

(D3) For any a ∈ {0, 1}, c(x, a) is (weakly) increasing in x.

(D4) c(x, a) is submodular in (x, a).

For ease of notation, we use X ∗ = X ∪{?}, where ? is an element which is smaller than all elements

of X . Under (D1)–(D4), we have the following.

Lemma 3 For a stochastic monotone RBP, the optimal policy gλ for any λ ∈ R is threshold based,

i.e., there exists a threshold `λ ∈ X ∗ such that the policy g(`λ)(x) = 0 if x ≤ `λ and 1 otherwise. If

there are multiple such thresholds, `λ denotes the largest threshold.

Proof. Conditions (D1)–(D4) are the same as the properties of [25, Theorem 4.7.4], which implies an

optimal policy exists and it is threshold based.

Proposition 3 Consider a stochastic monotone RBP which satisfies the following condition.

(D5) For any x ∈ X , N (g(`)) is (weakly) decreasing in `.

Then, `λ is increasing with λ. Therefore, a stochastic monotone RBP is indexable.

Proof. We first show that for any ` ∈ X ∗, J (g(`))
λ (x) is submodular in (`, λ) for all x ∈ X . In particular,

for any k < `, we have

J
(g(`))
λ (x)− J (g(k))

λ (x) = D
(g(`))
λ (x)−D(g(k))

λ (x) + λ(N
(g(`))
λ (x)−N (g(k))

λ (x)).

Now (D5) implies that the difference J
(g(`))
λ (x)− J (g(k))

λ (x) is decreasing in λ. Therefore, J
(g(`))
λ (x) is

submodular in (`, λ). Consequently, from [25, Theorem 2.8.2], `λ = max{`′ ∈ arg min`∈X∗ J
(g(`))
λ (x)}

is increasing in λ.

The fact that `λ is increasing in λ implies that the set Πλ = {x ∈ X : gλ(x) = 0} is increasing

in λ.

Combining Lemma 3 and Proposition 3, we get that under (D1)–(D5), the model satisfies the

following property:

(P) There exists a (weakly) increasing family of thresholds {`λ}λ∈R such that the threshold policy

g(`λ) is optimal for Problem 2.

For specific models, condition (P) may hold under weaker set of assumptions. In fact, several models

where (P) holds have been considered in the literature [5, 17, 7, 15, 27, 4].

Condition (P) implies that the Whittle index w(x) is (weakly) increasing in x. Therefore, we can

directly compute the Whittle index of state xk in closed form:

w(xk) =
D(g(xk+1))(x)−D(g(xk))(x)

N (g(xk))(x)−N (g(xk+1))(x)
.

2Given ordered sets X and Y, a function f : X × Y → R is called submodular if for any x1, x2 ∈ X and y1, y2 ∈ Y
such that x2 ≥ x1 and y2 ≥ y1, we have f(x1, y2)− f(x1, y1) ≥ f(x2, y2)− f(x2, y1).
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5.2 Restless bandits with controlled restarts

Consider restless bandits with controlled restarts (i.e., models where Pxy(1) does not depend on x). By

Proposition 2c, such models are indexable. In this section, we explain how to simplify the computation

of the Whittle index for such models. For ease of notation, we use Pxy to denote Pxy(0) and Qy to

denote Pxy(1).

Define

D(g) =
∑
x∈X

QxD
(g)(x) and N(g) =

∑
x∈X

QxN
(g)(x).

Now, following the discussion of Section 4, we can show that in addition to (15), we can establish that

λk+1 ≤
D(h) − D(gk)

N(gk) − N(h)
, (17)

with equality if h = gk+1. Therefore, the result of Theorem 2 continues to holds when λ◦gk,y(x)

replaced by

λ∗gk,y =
D(h) − D(gk)

N(gk) − N(h)
.

Therefore, we can replace λ◦gk,y(x) in Algorithm 1 by λ∗gk,y. Our key result for this section is D(g) and

N(g) (and therefore λ∗gk,y) can be computed efficiently for models with controlled restarts.

For that matter, given any policy g, let τg denote the hitting time of the set Π(g) ={x ∈ X :g(x)=1}.
Let

L(g) := E
[ τg∑
t=0

βtc(Xt, g(Xt))
∣∣∣ X0 ∼ Q

]
and M(g) := E

[ τg∑
t=0

βt
∣∣∣ X0 ∼ Q

]
denote the expected discounted cost and expected discounted time for hitting Π(g) starting with an

initial state distribution of Q. Then, using ideas from renewal theory, we can show the following.

Theorem 3 For any policy g,

D(g) =
L(g)

M(g)
and N(g) =

1

βM(g)
− 1− β

β
.

Proof. The proof follows from standard ideas in renewal theory. By strong Markov property, we have

D(g) = E
[
(1− β)

τk∑
t=0

βtc(Xt, g(Xt)) + βτk+1D(g)
∣∣∣ X0 ∼ Q

]
= (1− β)L(g) + E[βτk+1|X0 ∼ Q]D(g). (18)

Using M(g) definition, we have E[βτk+1|X0 ∼ Q] = 1 − (1 − β)M(g). Substituting this in (18) and

rearranging the terms we get D(g) = L(g)/M(g).

For N(g), by strong Markov property we have

N(g) = E
[
(1− β)βτk + βτk+1N(g)

∣∣∣ X0 ∼ Q
]

= E[βτk |X0 ∼ Q](1− β + βN(g)) =
1− (1− β)M(g)

β
(1− β + βN(g)).

Therefore, we get N(g) =
(
1− (1− β)M(g)

)
/βM(g).

Given any policy g, we can efficiently compute L(g) and M(g) using standard formulas for truncated

Markov chains. For any vector v, let v(g) denote the vector with components indexed by the set

{x ∈ X : g(x) = 0} and ṽ(g) denote the remaining components. For example, if X = {1, 2, 3, 4},
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g = (1, 0, 1, 0), and v = [1, 2, 3, 4], then v(g) = (2, 4) and ṽ(g) = (1, 3). Similarly, for any square matrix

Z, let Z [g] denote the square sub-matrix corresponding to elements {x ∈ X : g(x) = 0}, and Z̃ [g]

denote the sub-matrix with rows {x ∈ X : g(x) = 0} and columns {x ∈ X : g(x) = 1}. For example,

in the above example,

if Z =


1 2 3 4
5 6 8 8
9 10 11 12
13 14 15 16

 , then Z [g] =

[
6 8
14 16

]
and Z̃ [g] =

[
5 8
13 15

]
.

Then, from standard formulas for truncated Markov chains, we have

Proposition 4 For any policy g, let c0 and c1 denote column vectors corresponding to c(·, 0) and c(·, 1).

Then,

L(g) = Q(g)(I − βP [g])−1(c
(g)
0 + βP̃ [g]c̃

(g)
1 ) + Q̃(g)c̃

(g)
1 ,

M(g) = Q(g)(I − βP [g])−1(1(g) + βP̃ [g]1̃(g)) + Q̃(g)1̃(g).

This gives us an efficient method to compute L(g) and M(g), which can in turn be used to compute

D(g) and N(g) and used in a modified version of Algorithm 1 as explained above.

6 Numerical experiments

In this section, we evaluate how well the Whittle index policy (wip) performs compared to the optimal

policy (opt) as well as to a baseline policy known as the myopic policy (myp) (shown in Algorithm 2).

The code is available at [2].

Algorithm 2 Myopic Heuristic.
1: Input: Set N of arms; arms m to be activated, t = 1.
2: while t ≥ 1 do
3: let ` = 0,M = ∅, and Z = N .
4: while ` ≤ m do
5: Let i∗` ∈ argmini∈Z

∑
j∈Z\{i} c

j(Xj
t , 0) + ci(Xi

t , 1).

6: letM =M∪ {i∗`}, Z = Z \ {i∗`}.
7: ` = `+ 1.
8: end while
9: Activate arms in Z.
10: t = t+ 1.
11: end while

6.1 Experimental setup

In our experiments, we consider restart bandits with P (1) = [1,0, . . . ,0]. There are two other compo-

nents of the model: The transition matrix P (0) and the cost function c. We choose these components

as follows.

6.1.1 The choice of transition matrices.

We have three setups for choosing P (0). The first setup is a family of 4 types of structured stochastic

monotone matrices, which we denote by P`(p), ` ∈ {1, . . . , 4}, where p ∈ [0, 1] is a parameter of the

model. The second setup is a randomly generated stochastic monotone matrices which we denote by

R(d), where d ∈ [0, 1] is a parameter of the model. In the third setup, we generate random stochastic

matrices using Levy distribution. The details of these models are presented in the supplementary

material.
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6.1.2 The choice of the cost function.

For all our experiments we choose c(x, 0) = (x− 1)2 and c(x, 1) = 0.5(|X | − 1)2.

6.2 Experimental details and result

We conduct different experiments to compare the performance of Whittle index with the optimal policy

and the myopic policy for different setups (described in Section 6.1) and for different sizes |X | of the

state space, the number n of the arms, and the number m of active arms. For all experiments we

choose the discount factor β = 0.95.

We evaluate the performance of a policy via Monte Carlo simulations over S trajectories, where

each trajectory is of length T . In all our experiments, we choose S = 2500 and T = 250.

Experiment 1) Comparison of Whittle index with the optimal policy for structured models.

The optimal policy is computed by solving the MDP for Problem 1. The state for this MDP is |X |n.

So, we can obtain the optimal policy only for small values of |X | and n. We choose |X | = 5 and n = 5

and compare the two policies for model P`(·), ` ∈ {1, . . . , 4} and m ∈ {1, 2}.

For a given value of n and `, we generate the models for n arms as follows. Let (p1, . . . , pn) denote

n equispaced points in the interval [0.35, 1]. Then we choose P`(pi) as the transition matrix of arm i.

Let αopt = J(opt)/J(wip) denote the relative performance (in percentage) of wip compared to opt.

In our experiments, αopt was in the range of 99.95%–100% for all choices of the problem parameters.

Experiment 2) Comparison of Whittle index with the optimal policy for randomly sampled models.

As before, we pick |X | = 5 and n = 5 so that it is feasible to calculate the optimal policy. For each arm,

we sample the transition matrix from R(5/|X |). We repeat the experiment 250 times. The histogram

of αopt over experiments for m ∈ {1, 2} is plotted in Figure 1. Similar to the result of Experiment 1,

wip has a reasonable relative performance with respect to opt.
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(b) m = 2.

Figure 1: Relative performance αopt of wip versus opt for Experiment 2.

Experiment 3) Comparison of Whittle index with the myopic policy for structured models.

We generate the structured models as in Experiment 1 but for |X | = 25, n ∈ {25, 50, 75}, and m ∈
{1, 2, 5}. In this case, let εmyp = (J(myp)− J(wip))/J(myp) denote the relative improvement of wip

compared to myp. The results of εmyp for different choice of the parameters are shown in Figure 2.

In Figure 2, we observe that wip performs considerably better than myp. In addition to that,

performance of wip is better with respect to myp when ` = 4 which is more complicated than models

where ` ∈ {1, 2, 3}. However, increasing m doesn’t necessarily contribute to better εmyp as overlap

between the choices of the two policies may increase. Note that as P4(·) is very different from the rest

of the models, the trend of bars in Figure 2d with respect to n varies differently from the rest of the

models.
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Figure 2: Relative improvement εmyp of wip vs. myp for |X | = 25 when ` ∈ {1, . . . , 4}, n ∈ {25, 50, 75}, and m ∈ {1, 2}
for Experiment 3.

Experiment 4) Comparison of Whittle index with the myopic policy for randomly sampled models.

We generate 250 random models as described in Experiment 2 but for |X | = 25 and larger values of n.

For each case, εmyp is computed. The histogram of εmyp for different choices of the parameters are

shown in Figure 3.
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Figure 3: Relative improvement εmyp of wip vs. myp for |X | = 25 when n ∈ {25, 50, 75}, and m ∈ {1, 2} for Experiment 4.

The result shows that on average, wip performs considerably better than myp and this improvement

is guaranteed as the concentration of data for the sampled models is mostly on positive values of εmyp.

Experiment 5) Comparison of Whittle index with the myopic policy for restart models.

We generate 250 random stochastic matrices for P (0).3 We set |X | = 25 and n ∈ {25, 50, 75} and

m ∈ {1, 2}. For each case, εmyp is computed and the histogram of εmyp for different choices of the

parameters is shown in Figure 4.

7 Conclusion

We present two general sufficient conditions for restless bandit processes to be indexable. The first

condition depends only on the transition matrix P (1) while the second condition depends on both

P (0) and P (1). These sufficient conditions are based on alternative characterizations of the passive

set, which might be useful in general as well. We also present refinements of these sufficient conditions

that are simpler to verify. Two of these simpler conditions are worth highlighting: models where the

3Each row of the matrix is generate according to Section 1.3 of the supplementary material.
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Figure 4: Relative improvement εmyp of wip vs. myp for |X | = 25 when n ∈ {25, 50, 75}, and m ∈ {1, 2} for Experiment 5.

active action resets the state according to a known distribution and models where the discount factor

is less than 0.5.

We present a general algorithm to compute Whittle index for indexable RBP. The main idea of

the algorithm is to identify a permutation (x1, . . . , xK) of the states such that {w(xk)}k∈K forms a

(weakly) increasing sequence.

Finally, we show how to refine the results for two classes for restless bandits: stochastic monotone

bandits and restless bandits with controlled restarts. We also present a detailed numerical study which

shows that Whittle index policy performs close to the optimal policy and considerably better than a

myopic policy.

A Proof of Proposition 1

We first present a preliminary result.

Lemma 4 For τ = 0, the policy h0 satisfies J
(h0)
λ (x) = Hλ(x, 1) = (1− β)c(x, 1) +Wλ.

Proof. Consider the stopping time τ = 0. The policy h0, takes the active action at time 0 and

follows the optimal policy afterwards. Thus, for any x ∈ X , J (h0)(x) = (1 − β)(c(x, 1) + λ) +

β
∑
y∈X Pxy(1)Vλ(y) = Hλ(x, 1). By (4) and (6) we have Hλ(x, 1) = (1− β)c(x, 1) +Wλ(x).

We now proceed with the proof of Proposition 1. By definition, Π(a) = Πλ. We establish the

equality of other characterizations.

(i) Π
(a)
λ = Π

(b)
λ . We have x ∈ Πλ

(a)⇐⇒ gλ(x) = 0
(b)⇐⇒ Hλ(x, 0) < Hλ(x, 1) where (a) follows

from (5) and (b) follows from the dynamic program (3).

(ii) Π
(b)
λ ⊆ Π

(c)
λ . Let σ denote the hitting time of X \ Πλ. If we start in state x ∈ Π

(b)
λ = Πλ,

then the policy hσ is same as the optimal policy. Hence, J
(hσ)
λ (x) = Hλ(x, 0). Thus, for any

x ∈ Π
(b)
λ = Πλ, J

(hσ)
λ (x) = Hλ(x, 0)

(a)
< Hλ(x, 1)

(b)
= J

(h0)
λ (x) where (a) follows from fact that

x ∈ Π(b) and (b) from Lemma 4.

(iii) Π
(c)
λ ⊆ Π

(b)
λ . Let x ∈ Π

(c)
λ and σ ∈ Σ denote a stopping time such that J

(hσ)
λ (x) < J

(h0)
λ (x). Now,

the optimal policy performs at least as well as policy hσ. Therefore, Vλ(x) ≤ J (hσ)
λ (x). Combining

this result with Lemma 4 we have Vλ(x) < Hλ(x, 1). Thus, we must have Vλ(x) = Hλ(x, 0) which

results in Hλ(x, 0) < Hλ(x, 1) which implies x ∈ Π
(b)
λ .
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(iv) Π
(c)
λ = Π

(d)
λ . According to the definitions of L(x, τ) and Wλ(x) we have

J
(hτ )
λ (x) = (1− β)L(x, τ) + E[βτWλ(Xτ )|X0 = x]. (19)

Thus, J
(hσ)
λ (x) < J

(h0)
λ (x) if and only if

(1− β)L(x, σ) + E[βσWλ(Xσ)|X0 = x] < (1− β)c(x, 1) +Wλ(x) (20)

where we have used (19) for J
(hτ )
λ (x) and Lemma 4 for J

(h0)
λ (x). Rearranging the terms of (20)

we get the expression in Π
(d)
λ . Hence, Π

(c)
λ = Π

(d)
λ .

B Proof of Theorem 1

B.1 Proof of Theorem 1.a

We first present a preliminary result.

Lemma 5 Under (13), for any λ1 < λ2 and σ ∈ Σ, σ 6= 0, we have that for any x ∈ X ,

Wλ1
(x)− E[βσWλ1

(Xσ)|X0 = x] ≤Wλ2
(x)− E[βσWλ2

(Xσ)|X0 = x],

Proof. By (6), we have for any x ∈ X ,

(Wλ2
(x)− E[βσWλ2

(Xσ)|X0 = x])− (Wλ1
(x)− E[βσWλ1

(Xσ)|X0 = x])

= (1− β)∆λ

(
1−M(x, σ)

)
+ βE

[∑
y∈X

(
Pxy(1)− βσPXσy(1)

)(
Vλ2(y)− Vλ1(y)

) ∣∣∣∣ X0 = x

]
(21)

Now since σ ≥ 1, M(x, σ) ≤ β and,

(1− β)∆λ(1−M(x, σ)) ≥ ∆λ(1− β)2 (22)

Now consider,

βE
[∑
y∈X

(
Pxy(1)− βσPXσy(1)

)(
Vλ2

(y)− Vλ1
(y)
) ∣∣∣∣ X0 = x

]
(a)

≥ βE
[∑
y∈X

(
Pxy(1)− βPXσy(1)

)(
Vλ2(y)− Vλ1(y)

) ∣∣∣∣ X0 = x

]
(b)

≥ β∆λE
[∑
y∈X

{[
Pxy(1)− βPXσy(1)

]+
N (gλ2 )(y)

+
[
Pxy(1)− βPXσy(1)

]−
N (gλ1 )(y)

}∣∣∣∣X0 = x

]
(c)

≥ −∆λ(1− β)2, (23)

where (a) holds due to σ ≥ 1 and (b) holds by Lemma 2 and (c) follows from (13). Substituting (22)

and (23) in (21), we get the result of the Lemma.

We now proceed with the proof of Theorem 1a. Consider λ1 < λ2. Suppose x ∈ Πλ1
. By Proposi-

tion 1.d, there exists a σ 6= 0 such that (1− β) (L(x, σ)− c(x, 1)) < Wλ1(x)− E[βσWλ1(Xσ)|X0 = x].

Combining this result with the result of Lemma 5, we infer

(1− β) (L(x, σ)− c(x, 1)) < Wλ2
(x)− E[βσWλ2

(Xσ)|X0 = x].

Thus, x ∈ Πλ2
. Hence, Πλ1

⊆ Πλ2
and the RBP is indexable.
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B.2 Proof of Theorem 1.b

Consider λ1 < λ2. A RBP is indexable if Πλ1
⊆ Πλ2

or equivalently, for any x such that Hλ1
(x, 0) <

Hλ1
(x, 1) then Hλ2

(x, 0) < Hλ2
(x, 1). A sufficient condition for that is to show that Hλ1

(x, 1) −
Hλ1(x, 0) ≤ Hλ2(x, 1) − Hλ2(x, 0), or equivalently, show that Hλ2(x, 0) − Hλ1(x, 0) ≤ Hλ2(x, 1) −
Hλ1

(x, 1). We prove this inequality as follows.

Let ∆λ = λ2 − λ1. By (4), we have for any x ∈ X ,

(Hλ2
(x, 1)−Hλ1

(x, 1))− (Hλ2
(x, 0)−Hλ1

(x, 0))

= ∆λ(1− β) + β
∑
y∈X

(Pxy(1)− Pxy(0))(Vλ2(y)− Vλ1(y))

(a)

≥ ∆λ

(
1− β + β

∑
y∈X

[Pxy(1)− Pxy(0)]
+
N (gλ2 )(y) + [Pxy(1)− Pxy(0)]

−
N (gλ1 )(y)

) (b)

≥ 0

where (a) follows from Lemma 2 and (b) holds by (14). Therefore the RBP is indexable.

C Proof of Proposition 2

We prove the result of each part separately.

a. This follows from observing that∑
y∈X

{[
βPzy(1)− Pxy(1)

]+
N (g)(y)−

[
Pxy(1)− βPzy(1)

]+
N (h)(y)

}
(a)

≤
∑
y∈X

[
βPzy(1)− Pxy(1)

]+
N (g)(y)

(b)

≤
∑
y∈X

[
βPzy(1)− Pxy(1)

]+ ≤ max
x,z∈X

∑
y∈X

[
βPzy(1)− Pxy(1)

]+
where we are ignoring negative terms in (a) and using N (g)(x) ≤ 1 in (b).

b. For any x, y, z ∈ X , Pxy(1)− βPzy(1) = (1− β)Pxy(1). Thus,∑
y∈X

{[
βPzy(1)− Pxy(1)

]+
N (g)(y)−

[
Pxy(1)− βPzy(1)

]+
N (h)(y)

}
= −

∑
y∈X

(1− β)Pxy(1)N (h)(y) ≤ 0 <
(1− β)2

β
.

c. This follows from observing that∑
y∈X

{[
Pxy(0)− Pxy(1)

]+
N (g)(y)−

[
Pxy(1)− Pxy(0)

]+
N (h)(y)

}
(a)

≤
∑
y∈X

[
Pxy(0)− Pxy(1)

]+
N (g)(y)

(b)

≤
∑
y∈X

[
Pxy(0)− Pxy(1)

]+ ≤ max
x∈X

∑
y∈X

[
Pxy(0)− Pxy(1)

]+
where we are ignoring negative terms in (a) and using N (g)(x) ≤ 1 in (b).

d. β ≤ 0.5 implies that
1− β
β
≥ 1 ≥ max

x∈X

[
Pxy(0)− Pxy(1)

]+
which is the same as sufficient condition (c) established above.
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[22] José Niño-Mora. Dynamic priority allocation via restless bandit marginal productivity indices. TOP,
15(2):161–198, 2007.
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