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Canada.

Before citing this technical report, please visit our website (https:
//www.gerad.ca/en/papers/G-2020-24) to update your reference
data, if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grâce
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Abstract: Cities worldwide struggle with overloaded transportation systems and their externalities,
such as traffic congestion and emissions. The emerging technology of autonomous transportation
systems bears a high potential to alleviate these issues. At the same time, this technology might
also introduce negative effects, in particular by disproportionately cannibalizing public transportation.
A careful analysis of this trade-off requires modeling both modes of transportation within a unified
framework. In this paper, we propose such a framework, which allows us to study the interplay among
mobility service providers, public transport authorities, and customers, and in particular to analyze the
effect of autonomous ride-hailing services on the demand for public transportation. This framework
combines a graph-theoretic network model for the transportation system with a game-theoretic model
whereby mobility service providers are profit-maximizers and customers select individually-optimal
transportation options. We apply our modeling approach to data for the city of Berlin, Germany and
present sensitivity analyses to study factors that mobility service providers or municipalities can act
upon to strategically steer the overall system. We show that depending on market conditions and policy
restrictions, autonomous ride-hailing systems may complement or cannibalize a public transportation
system, and discuss the main factors behind such different outcomes as well as strategic design options
available to policymakers.

Keywords: Autonomous mobility-on-demand, ride hailing, game theory, multimodal transport

Acknowledgments: Michael Ostrovsky thanks the National Science Foundation for financial support
(grant SES–1824317)



Les Cahiers du GERAD G–2020–24 1

1 Introduction

All around the world, cities struggle with overstrained transportation systems whose externalities

cause economic and environmental harm such as working hours lost in congestion or health dangers

caused by particulate matters, NOx, and stress (Frakt 2019). For example, in 2017, traffic-related

externalities cost U.S. citizens 305 billion USD (INRIX 2019). Municipalities try to resolve these

problems by improving existing transportation systems, but face several obstacles (Hu and Wang

2018, Hu 2019). Public transport not based on surface roads, e.g., subway lines, are often hindered by

spatial limitations in urban areas, as well as long lead times of major infrastructure projects. Improving

the road infrastructure often faces similar obstacles. Accordingly, a better utilization of current urban

infrastructure by means of new technologies and mobility concepts is necessary to resolve the root

cause of problems in today’s transportation systems.

In recent years, various new mobility concepts emerged. However, all of them struggle with specific

obstacles.

Car-sharing systems such as Zipcar offer the opportunity to reduce the number of individually

owned cars in cities. However, given the small fleet sizes, customers are reluctant to use such ve-

hicles due to inconvenient accessibility; vice versa, these concepts are often still not economically

viable for mobility service providers (MSPs).

Ride-hailing services such as Uber or Lyft appear as an affordable alternative to conventional taxi

services and decrease the need for individually owned cars in cities. However, the uncontrolled

growth of such services often worsens congestion. For example, in Manhattan, an increase of

68,000 for-hire vehicles from 2013 to 2018 correlated with a decrease in average travel speed from

6.2 mph to 4.7 mph (Hu 2019).

Ride-pooling services can potentially reduce traffic in cities by pairing passengers with similar trips

into a vehicle (see, e.g., Alonso-Mora et al. 2017, Ostrovsky and Schwarz 2019). However, such

systems can only work efficiently when the underlying ride-hailing system operates efficiently. So

far, customers appear to be reluctant to use ride-pooling due to unsatisfactory user experiences

(Heid et al. 2017).

An emerging mobility concept, namely autonomous mobility-on-demand (AMoD), has the potential

to help address the challenges outlined above. An AMoD system consists of a fleet of robotic self-

driving cars, which transport passengers from their origins to their destinations. An operator controls

the fleet by dispatching passenger trips to vehicles while simultaneously deciding on their routes.

Such a system overcomes the limitations of free-floating car-sharing systems by remedying the limited

accessibility of cars. Further, it overcomes the inherent inefficiencies of current ride-hailing systems

as a single operator centrally decides on the fleets size and all operational actions. It also eliminates

the largest cost component of ride-hailing systems: driver’s time. This central coordination and

information transparency also allows for more efficient ride-pooling with fair compensation schemes

among customers.

While AMoD clearly has the potential of addressing the many challenges of urban transportation,

it also introduces a major risk: it may excessively cannibalize large-scale public transportation: buses,

trams, subways, and other similar modes of travel. The net effect on cities is largely an empirical ques-

tion, whose answer depends on many specifics of various cities. A principled approach to answer this

question entails developing a unifying framework that incorporates various modes of transportation, to

study customers’ travel behavior and choices. In this paper, we provide such a framework, which makes

it possible to analyze the interactions among MSPs, public transport authoritys (PTAs) controlled by

municipalities, and customers in today’s and future transportation systems. In particular, we tailor

this framework to the specific case of AMoD systems.
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1.1 Related literature

Our work lies at the interface between economics, especially game theory, and transportation science.

To keep our literature review concise, we will focus on the most recent and related works, with a special

emphasis on game-theoretic approaches in mobility systems and transportation network modeling

related to AMoD.

Two categories of game-theoretic approaches related to our problem exist.

Network pricing problems arise in the field of traffic management and congestion avoidance (Brot-

corne et al. 2001, Bianco et al. 2016, Kuiteing et al. 2017). These problems are typically modeled

as Stackelberg games and formalized as mathematical programs with equilibrium constraints

(Patriksson and Rockafellar 2002) or as bilevel optimization problems (Colson et al. 2005, Labbé

and Violin 2016). In these games, an upper-level player (e.g., a central authority) sets prices or

tolls on some arcs in a network to maximize a given objective and the lower-level players (e.g.,

drivers) react accordingly. Compared with our problem setting, such games do not accommo-

date the non-cooperative interaction among multiple MSPs. Moreover, they focus on arc or path

prices and do not directly allow for more general pricing schemes.

Mobility-on-demand related games have recently been extensively discussed. Banerjee et al.

(2015), Bai et al. (2019), and Guda and Subramanian (2019) focused on the coordination of

customer demand and driver supply. Bimpikis et al. (2019) and Wang et al. (2018) studied

ride-sharing platforms, highlighting the impact of the demand pattern on the platforms’ profits

and consumers’ surplus, while studying cost-sharing strategies between customers and drivers.

Further works have focused on the societal costs of ride-hailing companies (Rogers 2015) and on

the impact of mobility-on-demand systems on the taxi market (Wallsten 2015). Overall, these

approaches do not sufficiently capture our problem characteristics as (i) they focus on a two-sided

market with drivers and customers, not accounting for centrally-controlled autonomous vehicles,

(ii) they do not consider multimodal or intermodal routes, and (iii) they do not provide a general

and flexible game-theoretic framework that captures both the interactions among MSPs as well

as among MSPs and customers.

As for transportation models for AMoD systems, previous papers have investigated queuing-

theoretic models (Zhang and Pavone 2016), simulation-based models (Levin et al. 2017), and multi-

commodity network flow models (Rossi et al. 2018). Microscopic studies expect autonomous vehicles

to ease traffic management, e.g., via improved intersection clearing (Lee and Park 2012, Guler et al.

2014) and freeway merging (Zhou et al. 2017). Macroscopic studies have shown that AMoD systems

contribute to more accessible, efficient, and sustainable transportation systems (Pavone 2015, Fagnant

and Kockelman 2015). Mahmassani (2016) showed that autonomous vehicles increase the throughput

of highway facilities and improve traffic stream stability. Salazar et al. (2019) analyzed the operation

of an AMoD system in cooperation with public transport. Ostrovsky and Schwarz (2019) were the

first to discuss the economics of AMoD systems, focusing on the effects of carpooling. Compared

to our problem setting, all approaches but Ostrovsky and Schwarz (2019) imposed a central decision

maker and neglected game-theoretic dynamics. Further, Ostrovsky and Schwarz (2019) neglected MSP

behavior, essentially replacing MSPs with a perfectly competitive, zero-profit market. In contrast, one

of the key ingredients in our work is the analysis of MSPs’ behavior.

Concluding, to the best of the authors’ knowledge, there exists no methodological framework capa-

ble of analyzing the dynamics among customers and multiple MSPs offering different mobility services,

while considering the operational constraints of the system.

1.2 Contribution

To fill this research gap, we provide the first game-theoretic framework that captures the dynamics

among multiple MSPs and customers while accounting for the operational constraints within the
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system and for single MSPs. Specifically, our scientific contribution is fivefold. First, we develop

a generic mathematical framework that allows analyzing the dynamics of complex transportation

problems by combining graph-theoretic network models with game-theoretic approaches that consider

the interconnections between a transportation network and its corresponding market place. Second,

we tailor this framework to the specific case of an AMoD system interacting with public transport.

Third, we develop a computationally tractable quadratic program which yields the equilibrium prices

for this specific game. Fourth, we provide a real-world case study for the city of Berlin. Fifth, we

present extensive numerical results and sensitivity analyses which yield managerial findings on the

interaction between an AMoD system and public transport.

1.3 Organization

The remainder of this paper is structured as follows. We specify our problem setting in Section 2 and

develop our methodology in Section 3. In Section 4, we tailor our methodology to study the interplay

between an AMoD operator and a public transportation system. Section 5 details our experimental

design, focusing on a real-world case study. We present results in Section 6. Section 7 concludes this

paper by summarizing its main findings. In the appendices of this paper, we provide basic notation

conventions and an overview of the used nomenclature (Appendix A), fundamentals of graph theory

(Appendix B), and proofs for all propositions stated throughout the paper (Appendix C). When

introducing a term defined in the appendix for the first time, we mark it with a dagger†.

2 Problem setting

In this work, we focus on intra-city passenger transportation, where an AMoD fleet substitutes the

service of current taxi or ride-hailing fleets. In such a system, different MSPs interact with each other

and with customers. We distinguish MSPs between commercial MSPs and municipalities and we focus

on three stakeholder groups.

Mobility service providers offer transportation services to customers and aim at maximizing their

profit and market share. To remain competitive, MSPs require cost-effective operations, ignoring

the resulting externalities and their effect on the overall system or on other players.

Municipalities offer transportation services via a PTA to customers while aiming to sustain in-

frastructure services, accessibility, and quality of life in cities. While MSPs complement the

transportation services offered by municipalities, they also cause externalities and dissatisfac-

tion. Accordingly, municipalities try to influence MSPs, e.g., through subsidies or taxes.

Customers represent the demand side and request for transportation services. Customers can choose

between different transportation modes or combine them to complete their ride. Each customer

selects a trip in line with her preferences, e.g., minimizing her cost, travel time, or a combination

of both.

To adequately capture the dynamics of such a system and the interactions between stakeholders,

we model the city’s transportation system on two different levels: a transportation network and its

market place (see Figure 1).

Transportation market place: The interaction between the different stakeholders takes place in the

system’s market place, e.g., via a smartphone app. Here, MSPs and municipalities offer several

types of transportation services to customers. Customers have different transportation demands

and respond to these offers depending on their individual rationale. These interactions happen at

the operational level in a short time horizon. At the strategic level, MSPs interact and therefore

influence each other as their business models may interfere, i.e., a customer may substitute the

service of one provider with that of another provider, depending on quality and price.
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Customers

PTAMSP

Figure 1: Schematic model of a transportation system with one commercial MSP and a PTA. The upper level is the
transportation market place, where the different stakeholders interact. The lower level is the transportation network,
where the realization of a demand and supply match takes place.

Transportation network: The realization of a demand and supply match between customers and

mobility service providers takes place in the transportation network which consists of the city’s

road and public transportation networks. Accordingly, the transportation network imposes

boundaries on offers in the transportation market place as it determines the available infras-

tructure and comprises externalities such as congestion and travel times.

In this paper, we focus specifically on the interaction between an AMoD operator and a municipality

offering transportation service through a PTA. Here, we focus on a short-term perspective, i.e., the

equilibrium for a snapshot of a day. Given this time horizon, the PTA does not change her prices at

such an operational level, because the decision on public transport tariffs is taken strategically for a

significantly longer time horizon. Conversely, the AMoD operator changes her prices at the operational

level to maximize her profit. We consider the pricing decisions for the AMoD operator for a snapshot

of the current system. When taking the pricing decision, the AMoD operator does not only consider

potential profits from serving customers, but also additional costs which result from relocating vehicles

after finished trips. To this end, rebalancing empty vehicles can be interpreted as a reorganization of

vehicle positions to match anticipated demand.

3 Methodology

We now develop the methodology to analyze the problem setting introduced in Section 2. We first

show in Section 3.1 how the transportation network can be formalized through a graph-theoretic

approach. We then introduce a fundamental game-theoretic model for a transportation market place

in Section 3.2.

3.1 Graph representation of a multi-stakeholder transportation system

We represent a transportation network on a multigraph† G = (V,A, so, sd) with a vertex set V, an

arc set A, and identifiers so : A → V and sd : A → V assigning each arc to its source and sink (see

Figure 2). Each vertex v ∈ V denotes a location where a customer can start or end her trip. Each

arc a ∈ A represents a certain transportation mode for a trip, e.g., a self-driving car or a subway line.

Accordingly, multiple arcs may exist between any two vertices v1, v2 to model the available modes of

transportation.

We define arc subsets Aj ⊂ A, each defining a subgraph Gj = (Vj ,Aj , so,j , sd,j) with Vj :=⋃
a∈Aj{so(a), sd(a)}, so,j := so|Aj , and sd,j := sd|Aj (i.e., the restrictions of so and sd to Aj). Each

subgraph denotes a homogeneous mode of transportation, e.g., the subway network or the service
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(a) Road map and railway transportation network
(U-Bahn and S-Bahn) of the central urban area of
the city of Berlin, Germany.

(b) Schematic abstraction of the city map as a multi-
graph. Blue arcs are roads, yellow arcs are walking
arcs, and red arcs are public transport lines.

Figure 2: Road and part of the public transport networks for the central urban area of the city of Berlin, Germany, (left)
and their schematic abstraction as a multigraph (right).

region of an AMoD system. Additionally, each subgraph Gj is controlled by an MSP (e.g., through

price setting), from here on referred to as its operator. The subgraph G0 = (V0,A0, so,0, sd,0) denotes

a part of the overall network where customers can move free of (monetary) charge, e.g., by walking.

Accordingly, for the subgraph G0 neither an operator nor prices exist.

To reflect customers choice options in a real transportation system, we assume G0 to be non-

trivial (i.e., V0 6= ∅) and strongly connected†. Further, the subgraphs’ arc sets are disjoint: formally

Aj∩Al = ∅, ∀j ∈ {0, 1, . . . , N}, l ∈ {0, 1, . . . , N}\{j}, where N denotes the number of operators in the

system. While these properties allow customers to choose between all available transportation modes,

they do not prevent various operators from providing service on the same road, as the multigraph

setting allows multiple arcs for each origin-destination pair.

We use a time-invariant network flow representation for customer movements and differentiate

between transportation requests and transportation demands. A request refers to a single customer k

and is well-defined by a pair rk = (ok, dk) ∈ V×V, which states her origin† ok and her destination† dk.

Conversely, a demand aggregates identical requests from different customers and therefore refers to a

customer flow.

Definition 1 (Demand) A demand qi is a triple (oi, di, αi) ∈ V × V × R>0 uniquely defined by its

origin oi, its destination di, and a demand rate αi, which results from all requests coinciding in oi
and di. For an arbitrary set of M demands with label set {1, . . . ,M}, we define Q := {q1, . . . , qM} as

the set of all demands.

To ensure that a customer is not forced to use a given transportation mode, each demand starts and

ends on the subgraph G0. Formally, for all qi = (oi, di, αi) ∈ Q we have oi, di ∈ V0. In general, a given

demand may be satisfied by multiple paths†. With P(A) being the set of all paths in G = (V,A, so, sd),

we can define the demand satisfying paths.

Definition 2 (Demand satisfying paths) A set of L paths {p1, . . . , pL} ⊆ P(A) satisfies a demand

qi = (oi, di, αi) if the origins χo(pj) and destinations χd(pj) of the paths and of the demand coincide,

i.e., if χo(pj) = oi and χd(pj) = di for all j ∈ {1, . . . , L}. We denote by S(qi) ⊆ P(A) the set of all

paths satisfying demand qi.

Then, according to the customers’ choices, the demand induces flows along these paths.
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Definition 3 (Flow) A flow f is a pair f = (p, β) ∈ P(A) × R>0, denoting the customer rate β that

uses a path p. We introduce F(G) as the set of all flows on G and the projection operators χp(f) = p

and χr(f) = β mapping a flow to its path p and its flow rate β, respectively.

The flows on an AMoD operator’s subgraph depict her fleet operations. We recall from Section 2

that the operator relocates empty vehicles to offer services in consecutive time steps and is thus

interested in balanced flows.

Definition 4 (Balanced set of flows) A family of L sets of flows (F1, . . . ,FL) on a multigraph Gj =

(Vj ,Aj , so,j , sd,j) is balanced if the in-degree (degin) and out-degree (degout) of each vertex coincide.

Formally,

degin(v) :=
∑

i∈{1,...,L},f∈Fi,a∈χp(f)

χr(f) · 1v(sd,j(a)) =
∑

i∈{1,...,L},f∈Fi,a∈χp(f)

χr(f) · 1v(so,j(a)) =: degout(v), ∀v ∈ Vj ,

with 1v(v̄) = 1 for v̄ = v and 1v(v̄) = 0 for v̄ 6= v.

3.2 Game-theoretic setting

We focus on the interplay among (different) MSPs and customers: first, customers set requests in G0.

Second, the MSPs decide on prices for their offered services on their subgraphs Gj . Third, customers

respond by choosing a transportation service which then results in transport flows on G. We illustrate

the game for the case of an AMoD MSP and a PTA controlled by a municipality in Figure 3. In the

following, we formalize the customer and operator decisions, define the game equilibrium, and provide

sufficient conditions for its existence.

3.2.1 Customers’ reactions and operators’ decisions

Formally, we focus on a simultaneous game between a finite set of operators N = {o1, . . . , oN} with

N := |N| < +∞. Herein, customers act as non-strategic reactive players.

Customer reaction: Customers may travel free of charge by using arcs in the subgraph G0 (i.e., they

walk) or may request an MSP’s service. If they request such a service, they cannot influence the MSP’s

operations. Instead, they only ask for a mobility service between an origin and a destination. Formally,

2

4

1

(a) Prices for a subset of the
origin-destination pairs for the
AMoD MSP, operating on the
road subgraph (blue subgraph).

(b) Possible paths serving the
demand between the black ori-
gin vertex and the grey destina-
tion vertex.

(c) Possible AMoD vehicle flows
serving demand and rebalancing
the system. The AMoD MSP
only serves arcs on her subgraph.

Figure 3: Schematic example of the different game stages: (a) the AMoD MSP sets the prices for all origin-destination
pairs in her graph. (b) each demand splits over available paths. (c) the AMoD MSP operator serves her demand share
and rebalances the system.
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customers select arcs in the fully-connected† operators’ subgraph denoted by Ḡj = (V̄j , Āj , s̄o,j , s̄d,j).

More specifically, customers select paths in the graphs’ arc sets A0∪
⋃N
j=1 Āj . As customers may choose

different services, each demand qi splits over its demand satisfying paths S(qi) ⊆ P(A0 ∪
⋃N
j=1 Āj).

To model this customer behavior, we use a reaction curve φi : S(qi)→ [0, αi] for each demand qi =

(oi, di, αi) which assigns a share of the total demand to each demand satisfying path. We require a

reaction curve to be valid, i.e., to preserve the demand rate.

Definition 5 (Valid reaction curve) Consider a demand qi = (oi, di, αi). We say a reaction curve

φi : S(qi)→ [0, αi] is valid if it preserves its demand qi, i.e.,∑
p∈S(qi)

φi(p) = αi.

Let Φ(qi) ⊂ RS(qi)
≥0 be the set of valid reaction curves for the demand qi. We further constrain the

reaction curve to be in the customers’ action space Bc,i ⊆ RS(qi)
≥0 and assume that each customer has

at least one available action, i.e., Bc,i ∩ Φ(qi) 6= ∅. For instance, if demand qi is not allowed to travel

through the path p̄ ∈ S(qi), then the corresponding action space reads Bc,i = {φ ∈ RS(qi)
≥0 |φ(p̄) = 0}.

Finally, each reaction curve is associated with a non-negative cost Ji : Φ(qi)× Ξ1 × . . .× ΞN → R≥0,

with Ξj denoting the set of pricing strategies available to operator oj as elaborated below. This cost,

for instance, could represent the sum of the fares paid throughout the trip or the total cost, consisting

of the fares paid and a customer’s monetary value of time.

Operator decision: Each operator oj serves customer demands, herein operating her fleet in order to

maximize profit. Her profit depends on the customer fares and the operational costs, resulting from

both customer transporting vehicles and operating empty vehicles which the operator relocates in the

system to balance her flows.

Recall that customers move on the fully-connected version of the operators’ subgraph and on the

non-controlled graph G0. To satisfy the request for mobility service induced by the demand qi on an

operator’s subgraph, each operator oj selects a set of potentially active flows, in line with Definition 6.

Definition 6 (Potentially active set of flows) Consider a demand qi with reaction curve φi. A set

of flows Fi on the operator oj’s subgraph Gj is potentially active if for each demand-satisfying path

p ∈ S(qi) with φi(p) > 0, and for each arc a ∈ p ∩ Āj there exist some flows Fa,pi ⊆ Fi which satisfy

the mobility service induced by demand qi such that

(i) their origins and destinations coincide with s̄o,j(a) and s̄d,j(a),

(ii) the sum of their rates matches the demand share on path p, i.e.,
∑
f∈Fa,pi

χr(f) = φi(p).

To prevent a flow from serving multiple rides, we require the flow sets {Fa,pi }a,p to be mutually disjoint

and denote the set of potentially active flow sets by Hi(φi).

The operator may additionally select a set of flows of rebalancing vehicles F0. To ensure that

flows are balanced and that additional constraints (e.g., limited vehicles availability) are fulfilled, we

introduce the non-empty and closed operator’s action set Bo,j ⊆ 2F(Gj) × . . . × 2F(Gj) and impose

(F1, . . . ,FM ,F0) ∈ Bo,j . In this setting, the revenue of an operator reads∑
i∈{1,...,M},p∈S(qi),a∈p∩Āj

φi(p) · ξj(s̄o,j(a), s̄d,j(a)),

depending on the prices set by the operator, where we refer to a representation of all prices set by the

operator as a pricing strategy ξ.
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Definition 7 (Pricing strategy) Consider a multigraph Gj = (Vj ,Aj , so,j , sd,j). A pricing strategy ξ

on Gj assigns a price c ∈ R̄≥0 := R≥0 ∪ {+∞} to each origin-destination pair (o, d) ∈ Vj × Vj:

ξ : Vj × Vj → R̄≥0

(o, d) 7→ c.

As multiple pricing strategies can exist, we collect the feasible pricing strategies on a graph Gj =

(Vj ,Aj , so,j , sd,j) in the set Ξj ⊆ R̄Vj×Vj≥0 . In line with realistic constraints on pricing strategies, we

assume Ξj to be closed, convex, and decoupled such that it is of the form

Ξj =
{
ξ ∈ R̄Vj×Vj≥0

∣∣∣ gj(ξ(o, d), o, d) ≤ 0 for all (o, d) ∈ Vj × Vj
}

for some gj : R̄≥0 × Vj × Vj → Rl, with l ∈ N, expressing the constraints on the price ξ(o, d). For

instance, if prices are regulated by an upper bound B ∈ R≥0, the function gj reads gj(ξj(o, d), o, d) =

ξj(o, d)−B.

To model the operator’s costs (e.g., energy consumption, maintenance, and depreciation of the

vehicles) we suppose that the cost corresponding to a set of flows F is cj(F) ∈ R≥0. Accordingly, the

total cost is

min
Fi∈Hi(φi),F0∈2F(Gj),

({Fi}Mi=1,F0)∈Bo,j

M∑
i=1

cj(Fi) + cj(F0).

Consequently, the operator’s profit reads

Uj(ξj , {φi}Mi=1) :=
∑

i∈{1,...,M},p∈S(qi),a∈p∩Āj

φi(p) · ξj(s̄o,j(a), s̄d,j(a))− min
Fi∈Hi(φi),F0∈2F(Gj),

({Fi}Mi=1,F0)∈Bo,j

M∑
i=1

cj(Fi) + cj(F0).

A few comments on this general setting are in order. First, we do not include direct interactions

among customers, but our model can be extended to accommodate them. In particular, one can define

customers as strategic players, interacting simultaneously with themselves and sequentially with MSPs.

In line with this, we leave effects such as ride pooling to future research. Second, we assume without

loss of generality that an operator serves all customer requests. However, an operator can technically

drop a customer by imposing an artificially high transportation fare, which causes the customer to

refuse to choose a ride. Third, we neglect the operator’s fixed costs because they do not affect the

operational decisions. Fourth, we consider a time-invariant transportation system. This assumption

reflects the mesoscopic nature of our study, and holds true if transportation demands change slowly

compared to the average trip travel time, as typically observed in densely populated urban areas (see

Neuburger 1971).

3.2.2 Game equilibrium

As a basis for the definition of game equilibria, we first introduce a customer demand’s optimal reaction:

A demand reacts optimally if its reaction curve minimizes its cost for given operators’ pricing strategies.

Definition 8 (Optimal reaction) Given the operators’ pricing strategies ({ξj}Nj=1) ∈
∏N
j=1 Ξj, the re-

action curve φ?i ∈ Φ(qi) ∩ Bc,i is optimal for demand qi if

Ji(φ
?
i , {ξj}

N
j=1) ≤ Ji(φi, {ξj}Nj=1), ∀φi ∈ Φ(qi) ∩ Bc,i.

Let Ei({ξj}Nj=1) be the set of all optimal reactions.
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Since operators interact simultaneously, we say that the game is at equilibrium if none of the opera-

tors can increase her profit by unilaterally changing her pricing strategy, given that customers react

optimally. To keep the definition of such an equilibrium concise, we assume without loss of gener-

ality that for all operators’ pricing strategies ({ξj}Nj=1) ∈
∏N
j=1 Ξj and all demands i ∈ {1, . . . ,M},

the set Ei({ξj}Nj=1) is a singleton which ensures profit uniqueness for a pricing strategy. A relaxation

of this assumption is however straightforward, e.g., by introducing a selection function for the sets

Ei({ξj}Nj=1).

Denoting the operator’s profit as Uj(ξj , {Ei({ξj}Nj=1)}Mi=1) we state the game equilibrium.

Definition 9 (Game equilibrium) The pricing strategies ({ξ?j }
N
j=1) ∈

∏N
j=1 Ξj are an equilibrium of

the game if no operator can increase her profit by unilaterally deviating from her pricing strategy.

Formally, ({ξ?j }
N
j=1) is an equilibrium if for all j ∈ {1, . . . , N}

Uj(ξ
?
j , {Ei(ξ?1 , . . . , ξ?j , . . . , ξ?N)}Mi=1) ≥ Uj(ξj , {Ei(ξ?1 , . . . , ξj , . . . , ξ?N)}Mi=1), ∀ ξj ∈ Ξj .

Definition 9 provides a general definition of equilibrium for our game. In the special case of a single

operator, the equilibrium condition reduces to ξ?1 ∈ arg max
ξ1∈Ξ1

U1(ξ1, {Ei(ξ1)}Mi=1). To conclude the

analysis of the general setting, we provide sufficient conditions for the existence of an equilibrium.

Proposition 1 (Existence of equilibria) Consider the set of pricing strategies Ξ̄j({ξk}k 6=j) := {ξj ∈
Ξj |Uj(ξj , {Ei({ξj}Nj=1)}Mi=1) > −∞} and assume that:

1. The set of pricing strategies Ξ̄j is closed, convex, upper and lower semicontinuous in all prices

ξk(v1, v2), v1, v2 ∈ Vk and ξk ∈ Ξk, and contained in a bounded set, i.e., there exists a bounded

(w.r.t. some norm) set of pricing strategies Ξ̃j such that Ξ̄j({ξk}k 6=j) ⊆ Ξ̃j for all ξk ∈ Ξk.

2. The profit of each operator Uj is (i) jointly continuous in all prices ξk(v1, v2), with v1, v2 ∈ Vk
and ξk ∈ Ξk, and (ii) concave in the pricing strategy ξj in the sense that for all j ∈ {1, . . . , No}
and all λ ∈ [0, 1]

Uj(λξ
1
j + (1− λ)ξ2

j , {Ei(ξ1, . . . , λξ1
j + (1− λ)ξ2

j , . . . , ξN)}Mi=1)

≥ λUj(ξ1
j , {Ei(ξ1, . . . , ξ1

j , . . . , ξN)}Mi=1) + (1− λ)Uj(ξ
2
j , {Ei(ξ1, . . . , ξ2

j , . . . , ξN)}Mi=1).

Then, the game admits an equilibrium.

In other words, Proposition 1 ensures that regularity and convexity of the set of pricing strategies

together with continuity and concavity of the operators’ profit are sufficient to ensure the existence of

an equilibrium. Indeed, we show in Section 4 that these assumptions are satisfied for the special case

of the interplay among an AMoD operator and a public transportation system.

3.2.3 Basic example

To illustrate the basic concept of our methodology, we consider a simplified transportation network

with a transportation demand of α1 ∈ R>0 customers per unit time from vertex v1 to vertex v2 (see

Figure 4). Formally, q1 = (v1, v2, α1) and M = 1. Two operators o1 and o2 offer mobility services on

their corresponding subgraph, and a pedestrian layer allows customers to walk free of charge between

the two vertices. In line with our problem setting, the two operators have full information on the

demand and simultaneously decide on their pricing strategies. Then, customers react accordingly.

Specifically, the following implications result for customers and operators.

Customers: Customers can reach their destination either using the service provided by the operators

(paths p1 := {a1} and p2 := {a2}) or by walking (path p3 := {a3}). Formally, the set of

demand satifying paths is S(q1) = {p1, p2, p3}. Customers minimize the sum of the fares paid
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v1 v2a1

a2

a3

a4

a5

a6

Figure 4: Multigraph representation of a simplified transportation network, consisting of two vertices with three different
modes of transportation (two operators and a pedestrian layer, depicted in blue, red, and yellow).

throughout the trip and the monetary value of time. The cost associated with a valid reaction

curve φ1 : S(q1)→ [0, α1] (i.e.,
∑3
j=1 φ1(pj) = α1) reads

Ji(φ1, ξ1, ξ2) = φ1(p1) · (ξ1(v1, v2) + VT · t1) + φ1(p2) · (ξ2(v1, v2) + VT · t2) + φ1(p3) · VT · t3,

where VT ∈ R>0 is the customers’ monetary value of time, tj ∈ R>0 is the time required to

reach the destination with operator oj , j ∈ {1, 2}, and t3 is the time required to walk to the

destination. We stipulate that whenever the services of operators o1 and o2 are equally attractive

(i.e., ξ1(v1, v2) +VT · t1 = ξ2(v1, v2) +VT · t2) customers always travel with operator o1; similarly,

whenever operator oj ’s service and walking are equally attractive (i.e., ξj(v1, v2)+VT ·tj = VT ·t3)

customers always opt for the operator’s service.

Operators: Each operator oj selects an arbitrary pricing strategy ξj ∈ Ξj := R̄Vj×Vj≥0 , which results

in the revenue ξj(v1, v2) · φ1(pj). We posit that operators keep the vehicles flows balanced and

that the cost related to a flow f = (p, β) is c̄j · β ≥ 0; i.e., cj(F) =
∑
f∈F c̄j · χr(f). To match

the travel request induced by the demand q1, operator oj selects a flows set from the set of

potentially active flows

H1(φ1) =

{
{{(pj , φ1(pj)}} if φ1(pj) > 0,

∅ if φ1(pj) = 0.

To ensure (F0,F1) is balanced, the operator finally rebalances her fleet with the set of flows of

empty vehicles F0 = {({aj+3}, φ1(pj))}. Overall, operator oj ’s profit reads

Uj(ξj , φ1) =

{
ξj(v1, v2) · φ1(pj)− 2c̄j · φ1(pj) if φ1(pj) > 0,

0 if φ1(pj) = 0.

To ease the presentation, we suppose that operator o1 serves customers faster than operator o2 and

that walking takes longer than the service of the operators (i.e., t1 < t2 < t3) and we assume that

c̄1 < VT(t2−t1)/2. Then, the definition of equilibrium (Definition 9) leads to the following proposition.

Proposition 2 (Game equilibria) At equilibrium, all customers use the mobility services offered by

operator o1, which generates positive profit. Formally, (ξ?1 , ξ
?
2) ∈ Ξ1×Ξ2 is an equilibrium of the game

if and only if

ξ?1(v1, v2) = min{VT(t2 − t1) + ε2, VT(t3 − t1)}, ξ?1(v2, v1) = ε1,

ξ?2(v1, v2) = ε2, ξ?2(v2, v1) = ε3,

for some ε1, ε2, ε3 ∈ R≥0. The equilibrium results in the optimal reaction curve φ?1(p) = α1 for p = p1

and φ?1(p) = 0 for p ∈ {p2, p3} and in the operators’ profits U1 = α1(ξ?1(1, 2)− 2c̄1) > 0 and U2 = 0.

4 The Interplay between an AMoD system and public transport

In the following, we tailor our general framework to the specific case where a single AMoD operator

interacts with a public transport system, which we will then use for our managerial studies. While
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this case neglects the existence of multiple self-driving car operators, we see it as a natural starting

point to study practical situations. We expect this case to be realistic for many geographical areas

once self-driving technology matures to the point of practical implementation, in particular due to

technological and licensing constraints faced by the firms, and due to natural economies of scale.

Methodologically, this specific case allows us to highlight the tradeoffs faced by the PTA and

the effects of its various policies in a particularly transparent manner. Moreover, the single-operator

case is also informative about the more general multi-operator case: first, the presence of the public

transport option itself disciplines the pricing behavior of the single operator, and brings it closer to the

competitive world. Second, one may view the single-operator case as an upper bound on an AMoD

operator’s impact compared to the outcome of its competitive version with multiple AMoD operators.

For these reasons, we focus our analysis on the above mentioned setting and leave the step of

formally investigating a multi-operator case as a naturally subsequent analysis for future research.

4.1 General setting

Formally, we focus on a game with two operators both providing service to customers, but with

different pricing strategies. The municipality (Operator 2) operates a public transport system through

the PTA. Here, prices are fixed for a medium-term time horizon. Hence, we treat the municipality’s

pricing strategy as fixed, i.e., Ξ2 = {ξ2}. This assumption, in essence, simplifies the game to an

optimization problem faced by the single AMoD operator (Operator 1), offering mobility services on

the road network. The operator takes customer requests and the PTA’s prices (and potentially other

policies) as given, and can also compute customers’ optimal reaction curves for its own possible pricing

strategies. Given this information, the AMoD operator picks the pricing strategy that will maximize

her profit.

The AMoD operator’s problem is as follows. The operator selects a short-term pricing strategy

ξ1 ∈ Ξ1 := R̄V1×V1≥0 to maximize her profit. She faces a transportation system in steady state and

operates a fleet of Nveh vehicles to serve the transportation requests of the customers while conserving

the vehicle flow at each vertex to account for future demand. Hence, the AMoD operator’s action set

comprises a set of balanced flows (F1, . . . ,FM ,F0) and results to

Bo,1 =

(F1, . . . ,FM ,F0) |
∑

i∈{1,...,M},f∈Fi

χr(f) · tAMoD,i +
∑
f∈F0

χr(f) · t(χp(f)) ≤ Nveh

 ,

where the number of vehicles corresponding to a flow results from the multiplication of its rate and

travel time. Here, tAMoD,i is the time required to serve the demand qi, assumed to be known a priori,

and t : P(Ā)→ R≥0 is a function mapping each path to its corresponding travel time.

In the remainder of this section, we first specify the customer reaction (i.e., the route selection)

and the AMoD operator decision (i.e., the pricing strategy selection) for our specific setting. We then

prove the existence of equilibria and show that the game can be efficiently solved as a convex quadratic

program. We note that we will show the existence of equilibrium based on Proposition 1, although we

could also have demonstrated the existence of equilibrium in this game by showing that the reduction

to the AMoD operator’s optimization problem is well-behaved and satisfies the conditions for the

existence of an optimal policy. We chose instead to base our proof on Proposition 1, both because the

implication is very direct, and to illustrate how the assumptions of Proposition 1 manifest themselves

in specific cases.

4.2 Customers’ reactions and operators’ decisions

Customer route selection: Customers select their preferred trip through a navigation app and can

choose between an AMoD ride (pAMoD,i) and a public transport ride combined with walking (pPT,i):

pAMoD,i := (a), a ∈ Ā1, s̄o,1(a) = oi, s̄d,1(a) = di, pPT,i ∈ P∗(oi, di),
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where oi and di are the origin and the destination of the ith demand qi = (oi, di, αi), respectively.

The public transport path pPT,i results from the shortest path† on the union of the fully-connected

public transport subgraph Ḡ2 = (V̄2, Ā2, s̄o,2, s̄d,2) and the non-controlled subgraph G0, computed by

weighing each arc with the sum of the monetary value of time (VT) and its fare. Accordingly, the

navigation app weighs each arc a ∈ A0 ∪ Ā2 with VT · t(a) if a ∈ A0 and ξ2(s̄o,2(a), s̄d,2(a)) +VT · t(a)

if a ∈ Ā2. The AMoD path pAMoD,i results from the arc in the fully-connected AMoD operator

subgraph Ḡ1 = (V̄1, Ā1, s̄o,1, s̄d,1) having the origin and the destination of the demand as the source

and sink vertex, respectively. This definition holds without loss of generality as each vertex in the non-

controlled subgraph, where demands are placed, can be associated to a vertex in the AMoD operator

subgraph. Accordingly, the action space of the customers’ reads

Bc,i =
{
φ ∈ RS(qi)

≥0

∣∣∣ φ(p) = 0 ∀ p ∈ S(qi) \ {pAMoD,i, pPT,i}
}
.

We consider rational customers who minimize their total cost, given by the sum of fares paid and their

monetary value of time (VT), so that the cost associated with a reaction curve φ ∈ Φ(qi) ∩ Bc,i, given

the pricing strategies of the AMoD operator and of the municipality, reads

Ji(φ,ξ1, ξ2) = (ξ1(oi, di) + VT · tAMoD,i) · φ(pAMoD,i) + (ξPT,i + VT · tPT,i) · φ(pPT,i),

with tAMoD,i and tPT,i being the travel times for the demand qi when choosing either an AMoD or a

public transport ride, and ξPT,i :=
∑
a∈pPT,i∩Ā2

ξ2(s̄o,2(a), s̄d,2(a)) being the price related to the path

pPT,i. We assume tAMoD,i and tPT,i to be distinct, but allow them to be arbitrarily close. Then, with

Definition 8, the reaction curve φi of a homogeneous demand is optimal if

φi = arg min
φ∈Φ(qi)∩Bc,i

(ξ1(oi, di) + VT · tAMoD,i) · φ(pAMoD,i) + (ξPT,i + VT · tPT,i) · φ(pPT,i). (1)

In reality, individual customers have different values of time such that demands become hetero-

geneous. We consider such heterogeneity by defining VT ∼ P to be dependent on some probability

distribution P and modify Equation (1) to

φi = EVT

[
arg min

φ∈Φ(qi)∩Bc,i

(ξ1(oi, di) + VT · tAMoD,i) · φ(pAMoD,i) + (ξPT,i + VT · tPT,i) · φ(pPT,i)

]
.

In this work, we proceed with uniformly distributed values of time (Figure 5a), such that the cor-

responding reaction curves (Figure 5b) are in line with the current literature on discrete choice models

(see, e.g., Train 2009). Lemma 1 formalizes these reaction curves for a uniformly distributed value of

time between VT,min ∈ R≥0 and VT,max ∈ R≥0, using the partition sets I> := {i ∈ {1, . . . ,M} | tPT,i >

tAMoD,i} and I< := {i ∈ {1, . . . ,M} | tPT,i < tAMoD,i}.

VT,min VT,max

VT

fVT

(a) Distribution of the value of time.

ξPT,i + VT,min∆ti ξPT,i + VT,max∆ti

αi

ξ1(oi, di)

xAMoD,i

(b) Flow on the AMoD path pAMoD,i for tPT,i >
tAMoD,i. For brevity, we use ∆ti := tPT,i−tAMoD,i > 0.

Figure 5: Distribution of the value of time and corresponding reaction curve, depicted in term of the flow on the AMoD
path.
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Lemma 1 (Optimal reaction curve) If VT ∼ Unif(VT,min, VT,max) with VT,max > VT,min, the optimal

reaction curve φi ∈ Ei(ξ1, ξ2) of the demand qi = (oi, di, αi) reads

φi(pAMoD,i) = xAMoD,i and φi(pPT,i) = αi − xAMoD,i,

where for i ∈ I>

xAMoD,i =


0 if ξ1(oi, di) > ξPT,i + VT,max(tPT,i − tAMoD,i),
αi(VT,max(tPT,i−tAMoD,i)+ξPT,i−ξ1(oi,di))

(VT,max−VT,min)(tPT,i−tAMoD,i)
if ξ1(oi, di) ∈ ξPT,i + [VT,min, VT,max](tPT,i − tAMoD,i),

αi if ξ1(oi, di) < ξPT,i + VT,min(tPT,i − tAMoD,i),

and for i ∈ I<

xAMoD,i =


0 if ξ1(oi, di) > ξPT,i − VT,min(tAMoD,i − tPT,i),
αi(−VT,min(tAMoD,i−tPT,i)+ξPT,i−ξ1(oi,di))

(VT,max−VT,min)(tAMoD,i−tPT,i)
if ξ1(oi, di) ∈ ξPT,i − [VT,min, VT,max](tAMoD,i − tPT,i),

αi if ξ1(oi, di) < ξPT,i − VT,max(tAMoD,i − tPT,i).

AMoD operator profit maximization: The AMoD operator aims to maximize her profit, given by the

excess of revenue over costs. With the cost co,1(a) for traversing arc a ∈ A1, the profit of the AMoD

operator becomes

U1(ξ1, {Ei(ξ1, ξ2)}Mi=1) :=

M∑
i=1

φi(pAMoD,i) · ξ1(χo(pAMoD,i), χd(pAMoD,i))

− min
Fi∈Hi(φi),F0∈2F(G1),

({Fi}Mi=1,F0)∈Bo,1

∑
i∈{1,...,M},f∈Fi

χr(f)
∑

a∈χp(f)

co,1(a) +
∑
f∈F0

χr(f)
∑

a∈χp(f)

co,1(a).

Accordingly, solving Problem 1 yields an equilibrium.

Problem 1 Since the municipality has only one available action, (ξ?1 , ξ
?
2) ∈ Ξ1 × Ξ2 is an equilibrium

if and only if

(i) ξ?2 = ξ2 and

(ii) the profit of the AMoD operator is maximized; i.e.,

ξ?1 ∈ arg max
ξ1∈Ξ1

U1(ξ1, {Ei(ξ1, ξ?2)}Mi=1).

4.3 Problem decomposition

We now introduce an alternative problem formulation, where the optimal paths to serve customers

and the optimal paths to rebalance empty vehicles remain decoupled.

Problem 2 Define the modified profit Ũ1 as

Ũ1(ξ1, {Ei(ξ1, ξ2)}Mi=1) :=

M∑
i=1

φi(pAMoD,i) · ξ1(χo(pAMoD,i), χd(pAMoD,i))

− min
F0∈2F(G1),

({F?i }
M
i=1,F0)∈Bo,1

M∑
i=1

χr(f
?
i )

∑
a∈χp(f?i )

co,1(a) +
∑
f∈F0

χr(f)
∑

a∈χp(f)

co,1(a),

where

F?i := {f?i } =

{
∅ if φi(pAMoD,i) = 0,

{(P∗(χo(pAMoD,i), χd(pAMoD,i)), φi(pAMoD,i))} if φi(pAMoD,i) > 0,

where the shortest path computation bases on the weights co,1(a) for each arc a ∈ A1. Then, (ξ?1 , ξ
?
2) ∈

Ξ1 × Ξ2 is an equilibrium if and only if

(i) ξ?2 = ξ2 and
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(ii) the profit of the AMoD operator is maximized; i.e.,

ξ?1 ∈ arg max
ξ1∈Ξ1

Ũ1(ξ1, {Ei(ξ1, ξ?2)}Mi=1).

With Proposition 3, we show that this decoupled problem formulation is equivalent to Problem 1.

Proposition 3 (Problem equivalence) Problem 1 and Problem 2 are equivalent.

Given the generally non-linear shape of φi ∈ Ei(ξ1, ξ2), Problem 2 remains non-convex. Nevertheless,

we can exploit the properties of the optimal reaction curve to ease its analysis. Specifically, for

tAMoD,i < tPT,i, we observe that prices below ξPT,i+VT,min(tPT,i−tAMoD,i) cannot be equilibrium prices

as there exists εi > 0 such that the price ξPT,i +VT,min(tPT,i− tAMoD,i) + εi leads to a higher revenue,

but to the same costs (see Figure 5b). Furthermore, prices above ξPT,i+VT,max(tPT,i−tAMoD,i) cannot

increase the profit, as revenues and costs remain constant. Proceeding analogously for tAMoD,i > tPT,i,

we can state Lemmas 2 and 3.

Lemma 2 (Restricted set of pricing strategies) The restricted set of pricing strategies

Ξres,1 :=

{
ξ ∈ Ξ1

∣∣∣∣∣ If (o, d, α) /∈ Q for all α ∈ R≥0, then ξ(o, d) = 0, else for qi = (o, d, α)

ξ(o, d) ∈

{
[ξPT,i + VT,min(tPT,i − tAMoD,i), ξPT,i + VT,max(tPT,i − tAMoD,i)] if i ∈ I>,
[ξPT,i − VT,max(tAMoD,i − tPT,i),max{0, ξPT,i − VT,min(tAMoD,i − tPT,i)}] if i ∈ I<,

}

is non-empty, compact, and convex, and for all ξ1 ∈ Ξres,1 the map ξ1 7→ φi(pAMoD,i), with φi ∈
Ei(ξ1, ξ2), is affine.

Lemma 3 (Equilibrium characterization) Let (ξ?1 , ξ
?
2) be an equilibrium of the game with the restricted

set of the pricing strategies, i.e., with (ξ1, ξ2) ∈ Ξres,1 × Ξ2. Then, it is an equilibrium in the game

with the full set of pricing strategies, i.e., with (ξ1, ξ2) ∈ Ξ1 × Ξ2.

Based on Lemmas 2 and 3 and leveraging Theorem 1, we can find an equilibrium for the game with

the restricted set of pricing strategies in which the reaction curve changes linearly with the price by

solving the following quadratic problem

maximize
ρ,f̄0

− ρ>Qρ+ b>ρ− c>(−Qρ+ b)− c>0 f̄0 (2a)

subject to [ρ]i ≥ ξPT,i + VT,min(tPT,i − tAMoD,i) i ∈ I> (2b)

[ρ]i ≤ ξPT,i + VT,max(tPT,i − tAMoD,i) i ∈ I> (2c)

[ρ]i ≥ ξPT,i − VT,max(tAMoD,i − tPT,i) i ∈ I< (2d)

[ρ]i ≤ max{0, ξPT,i − VT,min(tAMoD,i − tPT,i)}] i ∈ I< (2e)

B>
(∑M

i=1(−Qρ+ b)f̄?i + f̄0

)
= 0|V1| (2f)

M∑
i=1

tAMoD,i[−Qρ+ b]i +
∑
a∈A1

t(a)f̄0,a ≤ Nveh, (2g)

ρ ∈ RM≥0, f̄0 ∈ R|A1|
≥0 , (2h)

with prices ρ and rebalancing flows f̄0. Here, the rationale bases on two findings. First, Lemma 3

implies that it is sufficient to seek equilibria in the restricted set of pricing strategies, which is re-

flected in constraints (2b)–(2e). Second, Lemma 2 shows that in the restricted set of pricing strate-

gies reaction curves are affine in the AMoD operator’s prices. With B ∈ {0,±1}|V1|×|A1| being

the incidence matrix of the AMoD operator’s subgraph G1, constraint (2f) guarantees that vehicle

flows are balanced. Constraint (2g) limits the number of vehicles. Finally, constraint (2h) ensures

that prices and rebalancing flows are non-negative. Here, Q := diag({αi(VT,max − VT,min)−1|tPT,i −
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tAMoD,i|−1}i), [b]i∈I> :=
αi(VT,max(tPT,i−tAMoD,i)+ξPT,i)
(VT,max−VT,min)(tPT,i−tAMoD,i)

, [b]i∈I< :=
αi(−VT,min(tAMoD,i−tPT,i)+ξPT,i)
(VT,max−VT,min)(tAMoD,i−tPT,i)

, [c]i :=∑
a∈χp(f?i ) co,1(a), f̄?i,a = 1 if a ∈ χp(f?i ) and f̄?i,a = 0 else, and c0,a := co,1(a) for some ordering of

the arcs A1. The objective (2a) reflects the profit of the AMoD operator, considering the operator’s

revenue (ρ>(−Qρ+ b)), cost for providing service to the customers (c>(−Qρ+ b)), and cost for rebal-

ancing the fleet (c>0 f̄0). With Q being positive semidefinite, the optimization problem (2) is convex

and can be solved by off-the-shelf optimization algorithms.

Theorem 1 (Game equilibrium) The game admits an equilibrium. Further, consider (ξ?1 , ξ
?
2) ∈ Ξ1×Ξ2

with

(i) ξ?1(o, d) = 0 if there is no demand from o to d, i.e., (o, d, α) /∈ Q for all α ∈ R≥0,

(ii) ξ?1(o, d) = [ρ?]i if there is a demand from o to d, i.e., qi = (o, d, α) for some α ∈ R≥0, whereby

ρ? ∈ RM≥0 results from solving (2),

(iii) ξ?2 = ξ2.

Then, (ξ?1 , ξ
?
2) is an equilibrium.

While Theorem 1 provides a systematic way to find an equilibrium through a convex optimization

problem, it does neither establish uniqueness nor characterize all the potential equilibria of the game.

However, Proposition 4 ensures that all equilibria are equivalent such that the equilibrium found in

Theorem 1 fully characterizes the system.

Proposition 4 (Equivalent equilibria) The game with the restricted set of pricing strategies (ξ1, ξ2) ∈
Ξres,1 × Ξ2 (see Lemma 2) possesses a unique equilibrium. The game with the full set of pricing

strategies (ξ1, ξ2) ∈ Ξ1 × Ξ2 can possess multiple equilibria. These equilibria are equivalent in the

AMoD operator’s and the municipality’s profit as well as in the demands’ optimal reaction curves.

5 Case study: Berlin, Germany

We base our case study on a real-world setting for the city center of Berlin, Germany. We derive the

road network (Figure 6a) from OpenStreetMap data (Haklay and Weber 2008) and infer the public

transport network, consisting of U-Bahn, S-Bahn, trams, and bus lines (Figure 6b), together with its

schedules from the GTFS data (VBB 2019).

We use demand data from an existing case study (Horni et al. 2016, Ziemke et al. 2019). Since

the authors considered only a representative ten percent sample of the population, we scale the rate of

each demand by a factor of 10 such that our dataset consists of 129,560 travel requests, which equals

a total demand rate of 18.0 customers per second for a two-hour time horizon. The average graph

distance between origin and destination of a trip is 4.9 km.

We compute the AMoD service travel time tAMoD,i for the demand qi as

tAMoD,i = twait +
∑

a∈χp(f?i )

t(a),

with an average waiting time twait of 3 min, according to today’s waiting time for ride-hailing companies

(Mosendz and Sender 2014). To account for congestion effects we increase the nominal travel time

of each arc, given by the length over the free-flow velocity, by 56%, corresponding to the workdays

evening peak congestion level in Berlin (TomTom 2019).

We consider an average walking velocity of 1.4 m/s. We compute public transport travel times

based on the public transport schedules, whereby we consider a waiting time at a station of half the

average time interval between two trips (5 min for U-Bahn and S-Bahn, 7 min for trams, and 10 min

for buses) and 60 s walking-to-station and station-to-walking time for the U-Bahn and S-Bahn.
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(a) Road network. (b) Public transportation network.

Figure 6: Road and public transportation network of the central urban area of Berlin, Germany. Different colors denote
different public transportation lines.

To calculate costs for the AMoD operator, we consider autonomous electrified taxis with distance-

based operation cost of cd,1 = 0.34 USD/km (Bösch et al. 2018). This cost accounts for both variable

costs, in terms of electrical energy, depreciation, and maintenance, and fixed costs, in terms of acqui-

sition and insurance. We impose a maximum fleet size of 8,373 autonomous vehicles, reflecting the

8,373 taxi concessions released by the Berlin municipality in 2018 (Neumann 2019). Consistently with

the fares in Berlin (BVG 2019), we set the price of a public transport ride to 2.80AC, corresponding to

3.12 USD (using the exchange rate of August 3rd 2019). In line with U.S. Department of Transporta-

tion (2016) and Wadud (2017), we assume the customers’ value of time to be uniformly distributed

between 10 USD/h and 17 USD/h.

Based on this case study, we study different settings in order to investigate the interplay between an

AMoD system and the municipality as well as the impact of different interventions. Besides our basic

setting (S1), we analyze potential AMoD operator strategies (S2–S4) to influence the equilibrium of the

system. Settings (S5–S7) analyze how a municipality may counteract the AMoD operator. Specifically,

the settings are as follows:

S1 - Basic setting: We analyze the basic setting of our case study.

S2 - Fleet size: We investigate the impact of the AMoD fleet size. To this end, we perform a para-

metric study, varying the allowed fleet size Nveh from 1,000 to 23,000 in intervals of 2,000 vehicles.

S3 - Vehicle characteristics: We evaluate the impact of vehicle autonomy by varying the opera-

tional costs according to Bösch et al. (2018). We consider non-autonomous vehicles with high-

wage drivers (cd,1 = 3.26 USD/km) and with low-wage drivers (cd,1 = 1.83 USD/km).

S4 - Customers heterogeneity: We investigate the impact of price discrimination through group

pricing. Specifically, we assume that the AMoD operator may set different prices for different

customer groups (cf. Shapiro and Varian 1998). We distinguish three groups of customers:

regular, young/students, and elderly. Table 1 shows the share of each group related to the total

number of customers, and the range of its value of time. We determine the shares based on real

demographic data (ASBB 2017) and assume the value of time of students and elderly to be 30%

respectively 20% lower than that of regular customers. We impose that the price charged to

students and elderly may not exceed the regular price.

S5 - Public transport price: We perform a parametric study to quantify the impact of the public

transport price. Specifically, we vary the fares of the public transportation between 0 USD to

6 USD per ride, with an interval of 0.5 USD.
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Table 1: Classes of customers with their corresponding parameters. Consistently with the demand data, we ignore
customers younger than 18 years.

Customer Class Percentage
Distribution Parameters

VT,min [USD/h] VT,max [USD/h]

Young/Students 11% 7.0 11.9
Elderly 22% 8.0 13.6
Regular 67% 11.1 19.0

S6 - Public transportation infrastructure: We analyze the impact of public transport availabil-

ity. To this end, we scale the service frequency of the public transportation by factors ranging

from 1 (nominal service) to 3 (three times as frequent service), with a step size of 0.25.

S7 - AMoD service tax: In line with recent discussions regarding taxes on ride-hailing services, we

analyze the impact of an additional, yet simple, percentage tax on the revenue of each trip served

by the AMoD operator (Welle et al. 2018, Thadani 2019). This tax does not differ between trips

that cover highly or low utilized roads. We consider taxes ranging from 0% to 100%, with a step

size of 10%.

6 Results

Base case equilibrium
Figure 7 shows results for the base case equilibrium, detailing the modal split over all trips (Figure 7a)

and the profitable split of the revenue of the individual trips served by the AMoD operator (Figure 7b).

As can be seen, the usage of different transportation modes splits nearly equally between AMoD and

public transport, while only a small share of customers opts to complete a trip solely by walking.

The AMoD operator is able to operate the system very profitably on average: 73.9% of the revenue

remain as profit, while 26.1% are used to cover the costs. Focusing on trips served by the AMoD

operator, Figure 7b shows a similar trend: For 83% of the trips more than 65% of the fare paid

by the customers remains as profit, and for 19% more than 85% of the fare remains profit. While

Figure 7a shows that trips split nearly equally between public transport and AMoD services from a

macroscopic perspective, Figure 8 shows that the opposite is the case when analyzing the solution

from a microscopic perspective. The figure shows the modal split and the distribution of the resulting
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Figure 7: Modal share (a) and statistics of the percent-
age of revenue of each trip which remains as profit for
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customer trip cost for a representative sample of origin-destination pairs. Often, either the AMoD

service or the public transport provide a cost-optimal solution, independently of the customer’s value

of time, so that several origin-destination pairs are served completely by public transport (trip 528)

or AMoD (trips 530, 532). In total, 22.0% of all trips are served solely by AMoD, 38.9% of all trips

are served solely by public transport, and 4.4% of all trips are completed solely by walking. Only

if the cost-optimal trip selection for customers varies between AMoD, public transport, and walking,

depending on each customer’s value of time, an origin-destination pair shows a modal split (trips 525,

526, 527, 529, 531). This is the case for 34.7% of the trips.

Table 2 further details the share of trips served by public transport, as a function of (i) the (graph)

distance between origin and destination of the trip, and (ii) the station vicinity, defined as the sum

of the (graph) distances between the origin and destination and their corresponding closest railway

stations (i.e., U-Bahn or S-Bahn). As can be seen, the share of public transport trips increases for

increasing trip lengths, which can be attributed to two main reasons. First, the distance-independent

public transport price disincentives short trips in favour of long trips with the public transportation

system. Second, the AMoD operator can gain more profit by serving shorter trips, because it can

serve more trips (given a limited fleet size) and because the rebalancing costs are lower. Therefore, the

AMoD operator adjusts her prices to make public transport less attractive for customers requesting

short trips. Moreover, we observe that the public transport share generally increases with decreasing

station vicinity.

AMoD related impact factors
Figure 9 shows the total modal split, the AMoD operator’s revenue and profit, and the public transport

revenue, depending on the AMoD fleet size (S2). As can be seen, the AMoD fleet size heavily influences

the modal split and the AMoD operator’s revenue and profit, resulting in AMoD shares that vary

between 7.3% and 76.1%. The revenue of the AMoD operator increases steeper than the revenue of

the public transport decreases, because the AMoD operator increases her prices to a maximum which

is only slightly below the customer’s trade-off to switch to public transport. As can be seen, the AMoD

profit shows a decreasing utility margin as the operator serves the most profitable rides first, before

accepting less profitable rides. With a fleet size exceeding 21,000 vehicles, no more additional requests

are served by the AMoD system as the last 23.9% remain unprofitable due to high operational and

rebalancing costs. Notably, the AMoD operator’s profit begins to nearly stagnate already for fleet sizes

above 15,000 vehicles.

Figure 10 shows the resulting modal share and profits for non-autonomous vehicles, scaled with
respect to the nominal case (S3). The results show that the viability of a ride-hailing system depends

heavily on the vehicle autonomy: As can be seen, for non-autonomous fleets, the share of served trips

decreases by a factor of 4 for low-wage drivers and by a factor of 40 for high-wage drivers.

Table 2: Public transport modal share (in %) as a function of the (graph) distance between the origin and destination
and of the station vicinity, defined as the sum of the (graph) distances between the origin and destination and their
corresponding closest railway stations.

Distance between origin and destination [km]
All < 2 km 2–4 km 4–6 km 6–8 km 8–10 km 10–12 km 12–14 km > 14 km

S
ta

ti
o
n

v
ic

in
it

y
[k

m
] All 49.3 12.0 32.6 57.8 76.8 88.5 94.0 97.8 99.5

< 0.1 km 55.0 21.5 48.7 86.1 92.4 85.1 100.0 100.0 100.0
0.1–0.5 km 50.6 10.0 35.7 67.0 88.8 93.7 97.0 98.5 100.0
0.5–1.0 km 45.8 10.6 26.7 57.2 80.7 93.2 96.9 97.8 99.8
1.0–1.5 km 47.4 9.2 30.8 54.5 73.3 87.7 96.4 98.9 99.3
1.5–2.0 km 51.0 14.9 35.0 55.5 69.5 80.6 91.5 97.2 99.5
2.0–2.5 km 59.5 25.6 45.8 61.3 74.3 80.2 82.8 95.4 99.0
2.5–3.0 km 59.5 11.5 44.0 61.2 75.0 81.4 89.8 97.8 100.0
> 3 km 48.8 17.0 32.9 53.4 71.6 90.4 93.1 98.0 99.0
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Figure 9: Impact of the fleet size on the modal share (left axis), on the profit and revenue of the AMoD operator, and
on the revenue of the municipality (right axis).
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Figure 10: Impact of vehicle autonomy on the modal share, the profit and revenue of the AMoD operator, and the revenue
of the municipality. The values are scaled with respect to the nominal case and depicted in logarithmic scale.

Table 3: Change in the modal share, profit, revenue, and cost incurred by the AMoD operator and the municipality
between the nominal case (no group pricing) and the case where the AMoD operator may apply group pricing (group
pricing), together with the corresponding relative difference.

Modal share Profit Revenue Cost
AMoD Public transport AMoD AMoD Municipality AMoD

No group pricing 42.3% 49.3% 28.6 USD/s 38.7 USD/s 27.7 USD/s 10.1 USD/s
Group pricing 42.1% 49.4% 28.7 USD/s 38.8 USD/s 27.7 USD/s 10.1 USD/s

Rel. difference −0.4% +0.1% +0.3% +0.2% +0.1% +0.0%

Table 3 details the impact of group pricing when considering heterogeneous customer groups (S4).

As can be seen, group pricing at the AMoD operator’s side causes only minor changes in the equilibrium:

The profit of the AMoD operator increases by 0.3%, due to a slightly larger revenue while costs remain

constant, and the modal share remains nearly unaffected. This result confirms that group pricing is

indeed profitable for the AMoD operator, but it highlights its minor impact on the equilibrium.

Public transport impact factors
Figure 11 shows the development of the modal split based on the public transport price (S5). As can

be seen, offering free or cheaper public transport can partly decrease the AMoD share in the system.

In the latter case, the share of AMoD services in the system is about 35%. For a large range of prices
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Figure 11: Impact of the public transport price on the modal share (left axis), on the profit and revenue of the AMoD
operator, and on the revenue of the municipality (right axis).

(1 USD to 3.5 USD), the AMoD share remains constant, whereas it even decreases for public transport

prices above 3.5 USD (which correlates with an increased average distance between the origin and the

destination of the customers served). Indeed, further increased public transport prices do not shift

customers from public transport to the AMoD system, but increases the share of walking customers.

However, the AMoD operator’s revenue and profit constantly increase with higher public transport

prices. These effects occur because a higher public transport price allows the AMoD operator to raise

the prices in the AMoD system as well, without affecting its operations. Similarly, the slight decrease

in the AMoD modal share results from the AMoD operator focusing on less but more profitable trips

in these settings.

One comment with these findings is in order. We currently do not model a customer’s option to use

no transportation mode at all, i.e., to stay home. In practice, customers would decline both services if

prices increased too drastically, which would limit the revenue and profit increase for both the AMoD

operator and the public transport. This behavior is partly reflected in an increasing shift to pure

walking trips. However, here the model implies that a customer’s individual price threshold to resign

from a trip relates to her general value of time. Although the tendencies shown are not accurate for

very high public transport fees, the dynamics shown for reasonable changes in public transport prices

remain valid.

Figure 12 shows the impact of an increasing frequency of public transport services (S6). As can be

seen, the modal split and the public transport revenue are slightly affected, while the AMoD operator’s

revenue and profit decrease. A more frequent public transport is more viable for the customers as the

total cost of a public transport route decreases due to reduced waiting times. Accordingly, this forces

the AMoD operator to reduce her prices to remain competitive. This shows that although an increased

public transport service does not influence the AMoD share in the system, it may lower the prices for

AMoD services, as the AMoD operator must reduce her prices to maintain her market share.

Figure 13 shows the impact of a service tax, imposed on the AMoD operator’s revenue, i.e., on

the revenue of each individual trip (S7). As can be seen in Figure 13a, a service tax up to 60% does

not yield a change in the modal split but decreases the AMoD operator’s profit. This effect results

from the high profit share that the AMoD operator earns in the basic scenario. With a service tax

above 60%, the modal split changes because the AMoD operator begins to refuse services that become

unprofitable.

Focusing at the total revenue of the municipality, consisting of public transport fee revenues and

tax revenues (Figure 13b), the municipality earns the highest total revenue when leveraging a fee of

70%. However, it remains questionable if a municipality could find acceptance for a service tax that is

sufficiently high to impact the modal split. Still, a lower fee could be used to substitute other modes
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Figure 12: Impact of the public transport service frequency on the modal share (left axis), on the profit and revenue of
the AMoD operator, and on the revenue of the municipality (right axis).

of public transport or to invest into additional infrastructure to increase the overall performance of

the transportation system.
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(a) Impact of a service tax on the modal share (left axis), profit and revenue of the AMoD operator, and
revenue of the municipality (right axis).
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7 Conclusions

With this work, we focused on the interplay between AMoD fleets and public transportation. To

this end, we developed a general methodological framework to model interactions among MSPs and

between MSPs and customers. Our framework combines graph-theoretic network flow models with

a game-theoretic approach to capture both the interactions between MSPs and customers on the

transportation market place and the constraints that result from the transportation network. We

specified this framework for our application case, focusing on the interactions among an AMoD fleet

operator, a municipality, and customers. We developed a computationally tractable quadratic program

to find the equilibrium of the resulting game. We applied our methodology to a real-world case study

for the city of Berlin, and we presented results for various settings to identify major impact factors.

The results of our case study yield the following insights:

Autonomous mobility-on-demand systems can cannibalize public transportation. Our experiments

reveal that the modal share splits nearly equally between AMoD system and public transport for the

analyzed case study. If the AMoD fleet size is not limited, the share of customers taking the AMoD

system can increase up to 76%.

Local cannibalization can deviate from the macroscopic effects. Our results show that nearly 22.5%

of the trips are entirely served by the AMoD system, 38.9% are served solely by public transport, and

only 34.7% show a modal split that correlates with the macroscopic findings.

Increasing the AMoD fleet size shows a diminishing utility margin. Our experiments indicate that

the profit growth gained by enlarging the AMoD fleet diminishes as the fleet gets larger. The profit

generated by the AMoD system reaches a plateau for a fleet of 15,000 vehicles, which is roughly 80%

more than the number of taxi concessions released by the Berlin municipality.

Vehicle autonomy strongly influences the profitability of ride-hailing systems. Our studies showed

that a (non-autonomous) mobility-on-demand system generates less than 10% of the profit and serves

less than 25% of the customers compared to its autonomous counterpart.

Free public transport counteracts an AMoD system. Our results suggest that a free public trans-

portation system reduces the AMoD modal share and profit by about 20% and 70%, respectively.

Improving the public transport availability does not impact the modal split. Our studies show that

improving public transport availability through an increased service frequency does not shift the modal

split towards public transport, but diminishes the profit of the AMoD operator.

Imposing high taxes on an AMoD system can impact the modal split. Our experiments revealed

that a service tax imposed on the revenue of each AMoD trip lower than 60% diminishes the profit

generated by the AMoD operator, yet it does not shift the modal split towards public transport. Only

taxes above 60% shift the modal split towards public transport, e.g., decrease the AMoD share to

13.4% for a tax of 80%.

Three final comments are in order and open the field for future research directions. First, we did

not allow customers to combine AMoD service and public transport in an intermodal fashion or to

give up their trip. Incorporating these aspects may reveal further insights into the system behavior

and into the exploitation of different transport modes. Second, we focused on a problem setting with

a single AMoD operator. Extending this setting to multiple operators may yield additional insights.

Finally, incorporating endogenous congestion and congestion pricing opens a variety of future research

directions.
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A Notation

Let X and Y be sets. The cardinality of the set X is |X |; we say that X is a singleton if |X | = 1. The

set of all functions mapping x ∈ X to y ∈ Y is denoted by YX . The set of all subsets of X is 2X . The

set of nonnegative real numbers is R≥0 and the set of strictly positive real numbers is R>0.

The nomenclature used throughout this paper holds as follows:

Graph-related symbols

G Multigraph

V Set of vertices

A Set of arcs

so(a) Source of arc a

sd(a) Sink of arc a

v Vertex

a Arc

p Path

P(A) Set of all paths for the arc set A
χo(p) Origin of path p

χd(p) Destination of path p

P∗(o, d) Shortest path between o and d

f Flow

F Set of flows

χp(f) Path of flow f

χr(f) Rate of flow f

degin(v) In-degree of vertex v

degout(v) Out-degree of vertex v

Operators-related symbols

o Operator

N Set of operators

N Number of operators

ξ Pricing strategy

Ξ Set of pricing strategies

U Profit

c(F) Cost of the set of flows F
co(a) Cost of arc a

cd Distance-based cost

Bo Operator’s action space

H(φ) Set of potentially active sets of flows for

the reaction curve φ

Demands-related symbols

q Demand

Q Set of demands

M Number of demands

o Origin vertex

d Destination vertex

α Demand rate

J Cost related to a demand

S(q) Set of paths satisfying demand q

φ Reaction curve

Bc Customers’ action space

Φ(q) Set of valid reaction curves for demand

q

E Set of optimal reactions

Other symbols

Nveh Number of vehicles

VT Value of time

t(a) Travel time to traverse arc a

tAMoD Travel time of the AMoD ride

tPT Travel time of the public transport ride

B Graph theory

Definition 10 (Multigraph) A (directed) multigraph G is a quadruple (V,A, so, sd) such that V is the

set of vertices, A is the set of arcs, so : A → V assigns to each arc its source vertex, and sd : A → V
assigns to each arc its sink vertex.

Definition 11 (Path) We refer to a path of length L ∈ N as a set of distinct arcs {a1, . . . , aL−1}
for which there exists a set of exactly L + 1 distinct vertices {v1, . . . , vL} such that so(ai) = vi and

sd(ai) = vi+1 for all i ∈ {1, . . . , L− 1}. Note that by definition such a path cannot contain cycles. Let

P(A) be the set of all paths.

Definition 12 (Origin and destination) Given a path p = {a1, . . . , aL−1} on G = (V,A, so, sd) we

define the path origin and destination functions as χo : P(A)→ V and χd : P(A)→ V.
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Definition 13 (Fully-connected) A multigraph G = (V,A, so, sd) is fully-connected if for all v1, v2 ∈ V
such that v1 6= v2 there exists an arc a ∈ A such that so(a) = v1 and sd(a) = v2.

Definition 14 (Fully-connected graph) Consider G = (V,A, so, sd) with V = {v1, . . . , v|V|}. Then,

the fully-connected version of G is the quadruple Ḡ = (V̄, Ā, s̄o, s̄d), where

V̄ = V,
Ā = {a1,2, a1,3, . . . , a|V|,|V|−1},

s̄o(ai,j) = vi,

s̄d(ai,j) = vj .

Definition 15 (Shortest path) Consider a multigraph G = (V,A, so, sd) and a non-negative function

f : A → R≥0. A path p is a shortest path between v1 ∈ V and v2 ∈ V if (i) χo(p) = v1 and χd(p) = v2

and (ii) it minimizes
∑
a∈p f(a). We denote the set of shortest paths by P∗(v1, v2).

C Proofs

Proof of Proposition 1. Since the graph has a finite number of nodes, the space of pricing strategies

of a subgraph G̃ = (Ṽ, Ã, s̃o, s̃d) is isomorphic to R̄m≥0 with m = |V̄|2, such that there exists an

isomorphism f : R̄|Ṽ|×|Ṽ|≥0 → R̄m≥0 uniquely mapping a pricing strategy to some x ∈ R̄m≥0. Then, with

f−1(X̄j) being the bounded set containing all pricing strategies, Theorem 1 in Harker (1991) with

Xj = R̄m≥0 ∩ X̄j and Kj(x) = f(Ξ̄j({ξk}k 6=j)) establishes the sufficient condition for the existence of

an equilibrium in the space of pricing strategies yielding a profit larger than negative infinity. Clearly,

this is an equilibrium for the game with the full set of pricing strategies.

Proof of Proposition 2. The proof follows directly from the definition of the optimal reaction curve

(Definition 8) and the game equilibrium (Definition 9).

Proof of Lemma 1. Recall that for a given value of time VT the optimal reaction curve of the demand

qi = (oi, di, αi), denoted by φ̃i, reads φ̃i(pAMoD,i) = x̃AMoD,i and φ̃i(pPT,i) = αi − x̃AMoD,i, where1

x̃AMoD,i(VT) =

{
αi if ξ1(oi, di) + VTtAMoD,i ≤ ξPT,i + VTtPT,i,

0 else.

Then, the customer flow on the AMoD path pAMoD,i, denoted by xAMoD,i := φi(pAMoD,i), is xAMoD,i =

EVT [x̃AMoD,i]. For i ∈ I>, i.e., tAMoD,i < tPT,i, we have

xAMoD,i = EVT [x̃AMoD,i] =

∫ VT,max

VT,min

1

VT,max − VT,min
x̃AMoD,i(v) dv

=

∫ VT,max

max

{
VT,min,

ξ1(oi,di)−ξPT,i
tPT,i−tAMoD,i

} αi
VT,max − VT,min

dv

=


0 if ξ1(oi, di) > ξPT,i + VT,min(tPT,i − tAMoD,i),
αi(VT,max(tPT,i−tAMoD,i)+ξPT,i−ξ1(oi,di))

(VT,max−VT,min)(tPT,i−tAMoD,i)
if ξ1(oi, di) ∈ ξPT,i + [VT,min, VT,max](tPT,i − tAMoD,i),

αi if ξ1(oi, di) < ξPT,i + VT,max(tPT,i − tAMoD,i).

1Strictly speaking, the given VT 7→ xAMoD,i(VT) is not the only optimal reaction curve for a given value of time.
However, all functions differ only at one point and, by basic properties of Lebesgue integration, their integrals coincide.
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For i ∈ I<, i.e., tAMoD,i > tPT,i, we have

xAMoD,i = EVT [x̃AMoD,i] =

∫ VT,max

VT,min

1

VT,max − VT,min
x̃AMoD(v) dv

=

∫ min

{
VT,max,

ξPT,i−ξ1(oi,di)

tAMoD,i−tPT,i

}
VT,min

αi
VT,max − VT,min

dv

=


0 if ξ1(oi, di) > ξPT,i − VT,min(tAMoD,i − tPT,i),
αi(−VT,min(tAMoD,i−tPT,i)+ξPT,i−ξ1(oi,di))

(VT,max−VT,min)(tAMoD,i−tPT,i)
if ξ1(oi, di) ∈ ξPT,i − [VT,min, VT,max](tAMoD,i − tPT,i),

αi if ξ1(oi, di) < ξPT,i − VT,max(tAMoD,i − tPT,i).

Since we assumed tAMoD,i 6= tPT,i the sets I> and I< are indeed partition sets and xAMoD,i is well-

defined. This concludes the proof.

Proof of Proposition 3. To show the equivalence of the two problems, we show that the modified

profit equals the original profit. As revenues coincide, it is sufficient to show that costs are equivalent.

Specifically, a set of flows Fi is feasible (i.e., Fi ∈ Hi(φi)) if and only if χo(χp(f)) = χo(pAMoD,i),

χd(χp(f)) = χd(pAMoD,i) ∀f ∈ Fi, and
∑
f∈Fi χr(f) = φi(pAMoD,i). Consider F?i , F̄i ∈ Hi(φi), with

F?i 6= F̄i. First, by the definition of a shortest path, the cost related to F?i imposes a lower bound on

the cost of F̄i: ∑
f∈F̄i

χr(f)
∑

a∈χp(f)

co,1(a) ≥
∑
f∈F̄i

χr(f)
∑

a∈χp(f?)

co,1(a)

= φi(pAMoD,i)
∑

a∈χp(f?i )

co,1(a)

= χr(f
?
i )

∑
a∈χp(f?i )

co,1(a).

Second, the operator space does not depend on paths in Fi; therefore, ({F?i }Mi=1,F0) ∈ Bo,1 implies

({F̄i}Mi=1,F0) ∈ Bo,1. Hence, the cost minimum can be attained with Fi = F?i . This proves equivalence

of the two profits and, consequently, of the two problems.

Proof of Lemma 2. We prove non-emptiness, closedness, boundedness, convexity, and affinity of the

map separately.

Non-emptiness: It suffices to observe that for tPT,i > tAMoD,i there always exists a feasible price (since

VT,min < VT,max) and that for tPT,i > tAMoD,i ξ1(o, d) = 0 is always feasible. Closedness: The set

Ξres,1 is the intersection of closed spaces and is therefore closed.

Boundedness: It is easy to bound the set (w.r.t. an arbitrary norm).

Convexity: Convexity follows directly from the well-known fact that the intersection of convex sets is

again convex.

Affinity of the map: The result follows directly from Lemma 1.

This concludes the proof.

To prove Lemma 3, we state Lemma 4.

Lemma 4 We consider a pricing strategy ξ1 ∈ Ξ1 and define its projection ξproj,1 in the restricted set

of pricing strategies Ξres,1 (cf. Lemma 2) as ξproj,1(o, d) := 0 if there is no demand from o to d, i.e.,

if (o, d, α) /∈ Q for all α ∈ R≥0. If there is demand from o to d, i.e., if qi = (o, d, α) ∈ Q for some

α ∈ R≥0, we define it as

ξproj,1(o, d) :=


max{ξPT,i + VT,min(tPT,i − tAMoD,i),

min{ξPT,i + VT,max(tPT,i − tAMoD,i), ξ1(o, d)}} if i ∈ I>,
max{ξPT,i − VT,max(tAMoD,i − tPT,i),

min{ξPT,i − VT,min(tAMoD,i − tPT,i), ξ1(o, d), 0}} if i ∈ I<.
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Then,

i) ξproj,1 ∈ Ξres,1 and ξproj,1 = ξ1 if ξ1 ∈ Ξres,1,

ii) Ei(ξproj,1, ξ2) = Ei(ξ1, ξ2)∀ i ∈ {1, . . . ,M}, and

iii) U1(ξproj,1, {Ei(ξproj,1, ξ2}Mi=1) ≥ U1(ξ1, {Ei(ξ1, ξ2}Mi=1).

Proof of Lemma 4. Properties (i) and (ii) follow directly from the definition of projection and

Lemma 1. To prove (iii), we use the definition of profit and the equivalence of the reaction curves.

Specifically, for φi ∈ Ei(ξ1, ξ2) = Ei(ξproj,1, ξ2) for all i ∈ {1, . . . ,M} we have

U1(ξ1, {φi}Mi=1)− U1(ξproj,1, {φi}Mi=1)

=

M∑
i=1

φi(pAMoD,i) · (ξ1(χo(pAMoD,i), χd(pAMoD,i))− ξproj,1(χo(pAMoD,i), χd(pAMoD,i)))

≥ 0.

Then, the desired inequality follows from φi(pAMoD,i) = 0 whenever ξ1(χo(pAMoD,i), χd(pAMoD,i)) ≥
ξproj,1(χo(pAMoD,i), χd(pAMoD,i)). Rearranging the equation above yields

U1(ξproj,1, {Ei(ξproj,1, ξ2}Mi=1) ≥ U1(ξ1, {Ei(ξ1, ξ2}Mi=1).

This concludes the proof.

Proof of Lemma 3. The proof is based on the definition of equilibrium (cf. Definition 9). Consider

an arbitrary pricing strategy ξ1 ∈ Ξ1 and its related projection ξproj,1, as defined in Lemma 4. Then,

we have

U1(ξ?1 , {Ei(ξ?1 , ξ?2)}Mi=1) ≥ U1(ξproj,1, {Ei(ξproj,1, ξ
?
2)}Mi=1) ((ξ?1 , ξ

?
2) is an eq. in Ξres,1 × Ξ2)

≥ U1(ξ1, {Ei(ξ1, ξ?2)}Mi=1). (Lemma 4)

As ξ1 is arbitrary, we conclude that U1(ξ?1 , {Ei(ξ?1 , ξ?2)}Mi=1) ≥ U1(ξ1, {Ei(ξ1, ξ?2)}Mi=1) for all ξ1 ∈ Ξ1,

implying that (ξ?1 , ξ
?
2) is indeed an equilibrium in the full set of pricing strategies.

We state and prove Lemma 5 to proceed with the proof of Theorem 1.

Lemma 5 The set of pricing strategies ξ1 ∈ Ξres,1 for which U1(ξ1, {Ei(ξ1, ξ2)}Mi=1) > −∞ is non-

empty, closed, bounded, and convex.

Proof of Lemma 5. We prove non-emptiness, boundedness, closedness, and convexity separately.

Non-emptiness: It suffices to consider the pricing strategy ξ̄1 that yields φi(pAMoD,i) = 0 for all

i ∈ {1, . . . ,M}.
Boundedness: The result follows directly from the set being a subset of the bounded set Ξres,1 (cf.

Lemma 2).

Closedness: Since Bc,1 is closed, the set is closed too.

Convexity: The profit equals negative infinity for ξ1 ∈ Ξres,1 if and only if the set F̄(ξ1) := {F0 ∈
2F(Gj) | ({F?i (ξ1)}Mi=1,F0) ∈ Bo,1} is non-empty. Let ξ1

1 and ξ2
1 and assume that the sets F̄0(ξ1) and

F̄0(ξ2) are non-empty. Consider ξ̄1 = λξ1
1 + (1− λ)ξ2

1 for λ ∈ (0, 1). We aim to show that the profit is

finite for ξ̄1. Take F1
0 ∈ F̄(ξ1

1) and F2
0 ∈ F̄(ξ2

1), and consider

F̄0 :=

f ∈ F(G1)

∣∣∣∣∣∣
f ∈ λf2 ⊕ (1− λ)f2 for (f1, f2) ∈ F1

0 ×F2
0 sharing the same path,

∨

f ∈ {λf1, (1− λ)f2} for (f1, f2) ∈ F1
0 ×F2

0 not sharing the same path with other flows.

 ,
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where λf := (χp(f), λ · χr(f)) for λ > 0 and

f1 ⊕ f2 :=

{
{(χp(f1), χr(f

1) + χr(f
2))} if χp(f1) = χp(f2),

{f1, f2} else.

Since φ̄i(pAMoD,i) = λφ1
i (pAMoD,i) + (1−λ)φ2

i (pAMoD,i) (see Lemma 2), ({F?i }Mi=1, F̄0) is balanced and

fulfils the fleet size constraint. Hence, the set F̄(ξ̄1) is non-empty, meaning that the profit is finite,

showing the required convexity property.

This concludes the proof.

Proof of Theorem 1. We first prove the existence of an equilibrium. We then show that the

quadratic program suffices in finding it.

Existence of Equilibrium: To prove existence of an equilibrium we use Proposition 1. Consider the

game with the restricted set of pricing strategies, i.e., with (ξ1, ξ2) ∈ Ξres,1×Ξ2. If this game possesses

an equilibrium, then the game with the full set of pricing strategies, i.e., with (ξ1, ξ2) ∈ Ξ1×Ξ2, has an

equilibrium according to Lemma 3. First, we note that Ξ1 is trivially upper and lower semicontinuous

in all prices ξ2(v1, v2) with v1, v2 ∈ V2 because Ξ2 is a singleton. Second, the set of pricing strategies

for which the profit is finite is closed, bounded (and therefore contained in a bounded set), and convex

according to Lemma 5. Third, concavity of the profit of the AMoD operator (which implies continuity)

follows from:

1. φi(pAMoD,i) · ξ1(χo(pAMoD,i), χd(pAMoD,i)) is quadratic in the prices ξ1(o, d) for o, d ∈ V1 (cf.

Lemma 2).

2. minF0∈2F(Gj),({F?i }
M
i=1,F0)∈Bo,1

χr(f
?
i )
∑
a∈χp(f?i ) co,1(a) +

∑
f∈F0

χr(f)
∑
a∈χp(f) co,1(a) is convex

in φi(pAMoD,i) (cf. Chapter 5 of Bertsimas and Tsitsiklis 1997). Since the map ξ1 7→ φi(pAMoD,i),

with φi ∈ Ei(ξ1, ξ2), is affine (cf. Lemma 2) and the composition of a convex and an affine function

is convex, the cost is convex in the prices ξ1(o, d) for o, d ∈ V1.

Further, the profit of the AMoD operator is concave in the pricing strategy ξ1, because the function

h(x) = f(x) − g(x) is concave for concave f : X → Y and convex g : X → Y. Hence, Proposition 1,

together with the municipality being an inactive player, establishes the existence of an equilibrium.

Quadratic Programming Formulation: Again, we show that the given pricing strategy is an equi-

librium in the restricted set of pricing strategies and leverage Lemma 3 to conclude that it is an
equilibrium also in the game with the full set of pricing strategies. It is easy to see that prices of

origin-destination pairs with no demand are irrelevant. Formally, if there is no demand from õ ∈ V1

to d̃ ∈ V2 and ξ̄1 is an equilibrium pricing strategy, then

ξ̃1(o, d) :=

{
γ if o = õ, d = d̃,

ξ̄1(o, d) else,

is an equilibrium pricing strategy for any γ ∈ R̄≥0. This allows us to focus on origin-destination pairs

corresponding to some demand. Lemma 2 allows to express φi(pAMoD,i) = [−Qρ + b]i for the given

Q and b, yielding the revenue ρ>(−Qρ + b) and the cost c>(−Qρ + b). For arc-based costs we can

always map f̄0 ∈ R|A1|
≥0 to a set of flows and vice versa. Hence, the rebalancing cost is c>0 f̄0 and the

balanced set constraint can be expressed through the incidence matrix. The fleet size constraint follows

analogously.

It remains to prove that we can jointly optimize prices and rebalancing vehicles. This follows from

maxx∈X maxy∈Ȳ(x)⊆Y f(x, y) = max(x,y)∈X×Y,y∈Ȳ(x) f(x, y) and −minx∈X g(x) = maxx∈X −g(x) for

finite functions f(x, y) : X × Y → Z and g(x) : X → Z. Hence, the optimization problem (2) yields

an equilibrium. This concludes the proof.
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Proof of Proposition 4. As the optimization problem (2) is strictly convex in ρ, there exists a

unique maximizer ρ?. Hence, the equilibrium in the restricted set of pricing strategies is unique (cf.

Theorem 1).

One may easily create examples of games with the full set of pricing strategies possessing multiple

equilibria (e.g., by perturbing the prices of origin-destination pairs without demand). To prove that

all equilibria result in the same reaction curves and in the same profits consider two arbitrary non-

equal equilibrium (ξ?1 , ξ
?
2) and (ξ̄1, ξ̄2) and assume without loss of the generality that ξ?1 ∈ Ξres,1 and

ξ̄1 /∈ Ξres,1 (of course, ξ?2 = ξ̄2 = ξ2).

First, the profit of the AMoD operator at both equilibria, given by U1(ξ?1 , {Ei(ξ?1 , ξ?2}Mi=1) and

U1(ξ̄1, {Ei(ξ̄1, ξ̄2}Mi=1), must coincide; else, the equilibrium yielding the lower profit would not be an

equilibrium (cf. Problem 1).

Second, we show that both equilibria result in the same optimal reaction curves. We assume for

the sake of contradiction that at least one reaction curve differs, i.e., Ei(ξ?1 , ξ?2) 6= Ei(ξ̄1, ξ̄2) for some

i ∈ {1, . . . ,M}. Define ξ̄proj,1 ∈ Ξres,1 for ξ̄1 as in Lemma 4. By the lemma, Ei(ξ̄proj,1, ξ2) = Ei(ξ̄1, ξ2)

and U1(ξproj,1, {Ei(ξproj,1, ξ2}Mi=1) ≥ U1(ξ1, {Ei(ξ1, ξ2)}Mi=1). We consider two cases:

1. If ξ?1 = ξ̄proj,1, we clearly have Ei(ξproj,1, ξ2) = Ei(ξ̄1, ξ2) and, by transitivity, the optimal reaction

curves of the two equilibria coincide, leading to a contradiction.

2. If ξ?1 6= ξ̄proj,1, uniqueness of the equilibrium in the restricted set of pricing strategies im-

plies U1(ξ?1 , {Ei(ξ?1 , ξ?2)}Mi=1) > U1(ξ̄proj,1, {Ei(ξ̄proj,1, ξ2)}Mi=1) and, thus, U1(ξ?1 , {Ei(ξ?1 , ξ2)}Mi=1) >

U1(ξ̄1, {Ei(ξ̄1, ξ2)}Mi=1), contradicting (ξ̄1, ξ̄2) being an equilibrium.

Hence, the optimal reaction curves coincide.

Third, since the reaction curves coincide and the municipality is an inactive player, the profit of

the municipality coincides, too. This concludes the proof.
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