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Canada.

Before citing this technical report, please visit our website (https://
www.gerad.ca/en/papers/G-2020-23) to update your reference data,
if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grâce au
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Editorial

Artificial Intelligence (AI) is the next society transformation builder. Massive AI-based applications include cloud
servers, cell phones, cars, and pandemic management systems, among others. AI along with machine learning
(ML) and deep learning (DL), beats human performance in various tasks, ranging from image classification,
facial recognition, medical imaging, machine translation, speech recognition, and many more. Existing DL-based
applications are computationally intensive, and require large amounts of resources, CPU, GPU, memory, and
network bandwidth. These constraints restrict AI application deployment in practice. Embedded devices start
with limited embedded memory in order of kilo bytes with limited computing power in order of 50 MHz, power
in order of mili watts. Many of such edge devices still cannot support deployment of large large deep learning
models.

Most voice assistants, such as Apple Siri, Google Voice, Microsoft’s Cortana, or Huawei Celia, are based on cloud
computing. Such services do not function if their network connection is slow or interrupted. Because existing
intelligent applications rely on centralized data, users send their data to the cloud center and the computation is
fully processed in the cloud. There is a big volume of data collected by billions of mobile end users and Internet of
Thing (IoT) devices distributed at the network edge. Such giant data will explode by moving towards smart cities
and 5G connectivity. According to recent forecasts, data generation by edge devices will reach 850 ZB by 2021.
Providing such volume of data to the cloud requires large bandwidth resources and may violate users’ privacy and
the General Data Protection Regulation (GDPR) imposed by the European Union and adopted in many other
countries as a data privacy standard.

Edge devices are the key enabler for modern AI applications. In recent years, we see a trend in homogenizing edge
and IoT devices, in which billions of mobile and IoT devices are connected to the Internet, and generating a huge
amount of data. AI for edge and IoT devices recently received significant attention leading to different synonyms,
such as Edge AI, Edge Intelligence, Low Resource Computing, Energy Efficient Deep Learning, Embedded AI,
among others. Industry and users both have considerable interest in keeping computation on edge. Industry
saves computing resources by outsourcing computation to the user, and users gain privacy. However this privacy
preservation is not free and AI consumers pay for their edge hardware. By pushing data storage, computing, analysis
and control closer to the network edge, edge computing. Edge intelligence is also viewed as the ultimate solution to
meet the requirements of latency, memory, scalability, energy efficiency, while resolving saving network bandwidth.
In some applications edge computing is simply inevitable for robustness and safety reasons. For instance, in
autonomous driving, constant high-quality network connectivity is an assumption rather than a guarantee.

Diverse edge applications such as smart cities, automation and massive device connectivity, pushes edge computing
to deal with heterogeneous environments with edge big data. A wide range of AI fields will require AI-power at the
edge. Edge intelligence is potentially the right tool to resolve many of the challenges that AI is faced today. This
new interdisciplinary field, edge intelligence, requires to re-invent many of the AI models. Convolutional networks
are mostly on point-wise depth-wise convolution in MobileNet type architectures sometimes combined with ResNet
type connections to bring a high accuracy, while simplifying the computations to a great extent. AutoML focuses
on searching architectures with reinforcement learning and evolutionary methods to design neural networks auto-
matically that meet the computational constraint, NASNet, MNASNet, EfficientNet are quick examples. Most of
these applications are focused on vision, though pushing the speech and language visions on edge is even more
challenging because the neural architectures for such tasks are massively bigger and more complex.

Research on edge intelligence is still in its early stages, and a dedicated venue for exchanging the recent advances
of edge intelligence is highly appealing especially in Canada which is one of the birthplaces of deep learning. There
are many fundamental challenges faced to improve the neural architecture designed for certain edge devices that
maximizes the use of heterogeneous computing architectures such as CPU, Embedded GPU, Neural Processing
Units (NPU), available in a single IoT device. This workshop, the first of a series, calls for industry and academia
experts to get together in an interdisciplinary environment that includes researchers from
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• Mathematics, including functional analysis, numerical analysis, differential equations, linear algebra, opera-
tors theory, compressed sensing, topology;

• Optimization, including theoretical, numerical, blackbox, derivative-free, combinatorial, convex, linear, quadratic,
and pure mathematics;

• Computer Science, including algorithm, machine learning, deep learning, artificial intelligence, computer
vision, natural language processing, speech processing; Human Science including law, social science, er-
gonomics, economics;

• Medicine, including biomedical vision, drug discovery, biostatistics, epidemiology, etc.

Especially after the recent COVID–19 outbreak, sharing gathering and location information provides virus spread
prediction on a large scale. This clearly shows the emergency of quick and reliable AI algorithms to control an
epidemic.

Charles Audet, Sébastien Le Digabel, Andrea Lodi, Dominique Orban, and Vahid Partovi Nia
Editors

A word from the GERAD’s director

GERAD is a proud co-organizer of the first Edge Intelligence Workshop held at HEC Montreal this past March
2020. This first event was a massive success; as seen not only by the profound quality of the research presented,
but also by the great turnout of participants from both academia and the industry. The proceedings you are about
to read are a vibrant testimony to this!

I hope they will inspire you to join the next Edge Intelligence Workshop. Enjoy your reading,

Olivier Bahn
Director, GERAD
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Abstract: Implementation of quantized neural networks on computing hardware leads to considerable speed up and

memory saving. However, quantized deep networks are difficult to train and batch normalization (BatchNorm) layer

plays an important role in training full-precision and quantized networks. Most studies on BatchNorm are focused

on full-precision networks, and there is little research in understanding BatchNorm affect in quantized training which

we address here. We show BatchNorm avoids gradient explosion which is counter-intuitive and recently observed in

numerical experiments by other researchers.

1 Introduction

Deep Neural Networks (DNNs) compression through quantization is a recent direction in edge im-
plementation of deep networks. Quantized networks are simple to deploy on hardware devices with

constrained resources such as cell phones and IoT equipment. Quantized networks not only consume
less memory and simplify computation, it also yields energy saving. Two well-known extreme quanti-
zation schemes are binary (one bit) and and ternary (two bit) networks, which allow up to 32× and

16× computation speed up, respectively. Binary quantization only keep track of the sign {−1,+1}
and ignores the magnitude, and ternary quantization extends the binary case to {−1, 0,+1} to allow
for sparse representation. BatchNorm facilitates neural networks training as a known fact. A common

intuition suggests BatchNorm matches input and output first and second moments. There are two
other clues among others: [4] claim that BatchNorm corrects covariate shift, and [6] show BatchNorm
bounds the gradient and makes the optimization smoother in full-precision networks. None of these
arguments work for quantized networks! The role of BatchNorm is to prevent exploding gradient

empirically observed in [1] and [3].

2 Full-precision Network

Suppose a mini batch of size B for a given neuron k. Let µ̂k, σ̂k be the mean and the standard deviation
of the dot product, between inputs and weights, sbk, b = 1, . . . B. For a given layer l, BatchNorm is
defined as BN(sbk) ≡ zbk = γkŝbk + βk, where ŝbk = sbk−µ̂k

σ̂k
is the standardized dot product and the

pair (γk, βk) is trainable, initialized with (1, 0).

Given the objective function L(.), BatchNorm parameters are trained in backpropagation

∂L
∂βk

=

B∑

b=1

∂L
∂zbk

,
∂L
∂γk

=

B∑

b=1

∂L
∂zbk

ŝbk,

For a given layer l, it is easy to prove ∂L
∂sbk

equals

γk
σ̂k

(
− 1

B

B∑

b′=1

∂L
∂zb′k

− ŝbk
B

B∑

b′=1

∂L
∂zb′k

ŝb′k +
∂L
∂zbk

)
. (1)

Assume weights and activations are independent, and identically distributed (iid) and centred about
zero. Formally, denote the dot product vector slb ∈ IRKl of sample b in layer l, with Kl neurons. Let
f be the element-wise activation function, xb be the input vector, Wl ∈ IRKl−1×Kl with elements

Wl = [wlkk′ ] be the weights matrix; one may use wl to denote an identically distributed elements of
layer l. It is easy to verify

∂L
∂slbk

= f ′(slbk)

Kl+1∑

k′=1

wl+1
kk′

∂L
∂sl+1
bk′

,
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∂L
∂wlk′k

=
B∑

b=1

sl−1bk′
∂L
∂slbk

.

Assume that the feature element x and the weight element w are centred and iid. Reserve k to

index the current neuron and use k′ for the previous or the next layer neuron and where V(wl
′
) is the

variance of the weight in layer l′ V(slbk) = V(x)
∏l−1
l′=1Kl′ V(wl

′
),

V(
∂L
∂slbk

) = V(
∂L
∂sL

)
L∏

l′=l+1

Kl′ V(wl
′
),

which explodes or vanishes depending on V(wl
′
). This is the main reason common full-precision

initialization methods suggest V(wl) = 1
Kl

. For any full-precision network, BatchNorm affects back-
propagation as

V
( ∂L
∂slbk

)
=

( γlk
Bσ̂lk

)2
{B2 + 2B − 1 + V(ŝl

2

bk)}

Kl+1 V(wl+1)V
( ∂L
∂sl+1

)
. (2)

3 Binary network

Controlling the variance has no fundamental effect on forward propagation if sbk is symmetric about

zero as the sign function filters the magnitude and only keeps the sign of the dot product. The term
bk = µk − σ̂k

γk
βk can be regarded as as a new trainable parameter, thus BatchNorm layer can be

replaced by adding biases to the network to compensate. [7] shows that the gradient variance for

binary quantized networks without BatchNorm is

V
( ∂L
∂slbk

)
= V

( ∂L
∂sL

) L∏

l′=l+1

Kl′ ,

and with BatchNorm is

V
( ∂L
∂slbk

)
=
L−1∏

l′=l

Kl′+1

Kl′−1
V
( ∂L
∂sL

)
+ o

(
1

B1−ε

)
,

for an arbitrary 0 < ε < 1.

Gradients are stabilized only if
(
γl
k

B

)2
{B2 + 2B − 1 + V(ŝl

2

bk)} ≈ 1. Moving from full-precision

weight w to binary weight w̃ = sign(w) changes the situation dramatically: i) BatchNorm corrects
exploding gradients in BNNs as the layer width ratio Kl+1

Kl−1
≈ 1 in common neural models. If this ratio

diverges from unity binary training is problematic even with BatchNorm.

4 Ternary network

Ternary neural networks (TNNs) are studied in [8] and the BatchNorm effect is detailed there. Full-

precision weights during training are ternarized during forward propagation. Given a threshold ∆
ternary quantization function is

tern(x) =





−1 if x < −∆

+1 if x > ∆

0 if −∆ ≤ x ≤ ∆

(3)
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Let’s suppose the threshold is given so that the learning is feasible, for instance ∆ is tuned so that
< 50% of ternary weights are set to zero

V(w̃lt) = 2p1 = 1− ∆√
6
Kl

. (4)

In the literature [5] suggests to set ∆l = 0.7E(|wl|). Under simplified assumptions of iid weight and

activation

∆l =
0.7

2

√
6

Kl
(5)

and (4) reduces to V(w̃lt) = 1− 0.7
2 = 0.65. In this setting, variance is bigger than 2

Kl
which produces

exploding gradients similar to the binary case. Suppose weights and activation are iid and weights are

centred about zero, for a layer l,

σ̂2
k = Kl−1

1

2
V(ŝl−1b )V(w̃lt) = Kl−1

1

2
V(w̃lt). (6)

Therefore (2) reduces to

V
( ∂L
∂slbk

)
=

{
1 + o

(
1

B1−ε

)}
(7)

Kl+1

Kl−1
V
( ∂L
∂sl+1

)
, (8)

see [8] for details. Similar to the binary case, in most deep architectures Kl+1 ≈ Kl−1 or equivalently
Kl+1

Kl−1
≈ 1, so the variance would not explode for networks with BatchNorm layer.

5 Conclusion

We derived the analytical expression for full-precision network under assumptions of [2] and extended
it for binary and ternary case. Our study shows that the real effect of BatchNorm is played in scaling.

The main role of BatchNorm in quantized training is to adjust gradient explosion.
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Abstract: Convolutional Neural Networks (CNNs) are state-of-the-art in numerous computer vision tasks such as

object classification and detection. However, the large amount of parameters they contain leads to a high computa-

tional complexity and strongly limits their usability in budget-constrained mobile devices. In this paper, we propose a

combination of a pruning technique and a quantization scheme that reduces complexity and memory of convolutional

layers of CNNs, by replacing the complex convolutional operation by a low-cost multiplexer. We perform experiments on

CIFAR10, CIFAR100, and SVHN and show that the proposed method achieves almost state-of-the-art accuracy, while

drastically reducing the computational and memory footprint. We also propose an efficient hardware architecture to

accelerate inference, which works as a pipeline and accommodates multiple layers working at the same time. In contrast

with most proposed approaches that have used external memory or software defined memory controllers, our work is

based on algorithmic optimization and full-hardware design.

1 Introduction

For the past few years, Deep Neural Networks (DNNs), and especially Convolutional Neural Networks
(CNNs) [7], have received considerable attention thanks to their remarkable accuracy in computer
vision tasks [6, 8, 2, 9]. However, the need for intensive computations and memory leaded to the

fact most DNN implementations are based on GPUs. Consequently, providing efficient hardware
implementations is a very active and prospective field of research. Therefore, the deployment of CNNs
in embedded systems is complex and potentially blocking for many applications.

In this paper, we propose to combine Shift Attention Layer (SAL) [3] a substitution to convolu-
tional layers, in which the complex convolution operation is replaced by a shift operation followed by
a multiplication with binary quantization of weights using Binary Weight Network (BWN), resulting

in very lightweight DNNs in which complex convolution operations are replaced by low cost multi-
plexers that considerably eases hardware implementation on FPGA. We show in the following that
such a combination approaches state-of-art accuracy while reducing computational and memory foot-

print. We also propose a hardware architecture in which we consider all processing blocks, memory
blocks and controllers required, and implement such an architecture which uses very few resources
and computational power on an FPGA, without using any external resources. This implementation
can compute more than one layer at a time and uses a simple multiplexer to replace convolutional

operations and process data through DNN layers. As such, it provides significantly smaller latency
than existing counterparts, as shown in Section 3.

2 Shift layers and Shift Attention Layers

Let us denote by x (resp. y or w) the input (resp. output or kernel) tensor of a given convolutional

layer. We index x (resp. y) using three indices i, j, k (resp. `), where 0 ≤ i < imax and 0 ≤ j < jmax

correspond to 2D coordinates and 0 ≤ k < kmax (rsp. 0 ≤ ` < `max) indexes a feature map. Similarly,
we index w using four indices: 0 ≤ ι ≤ ιmax and 0 ≤ λ ≤ λmax correspond to 2D coordinates, and k

and ` are as introduced above. So, an element of the input tensor is written xi,j,k, an element of the
kernel tensor is written wι,λ,k,l and an element of the output tensor is written yi,j,l.

To obtain a Shift Layer (SL) instead of a Convolutional Layer (CL), the authors in [11] propose
to remove most of the connections in each slice w·,·,k,` of the kernel tensor at the initialisation. The
connections to be kept are chosen according to a deterministic rule agnostic of the initialization and
of the training dataset. Namely, the authors choose to only keep the connections wι,λ,k,` for which

ι+ λιmax = k (mod ιmaxλmax). (1)

When considering 3×3 kernels for example, 89% of the connections are pruned in the convolutional
layer. Then, the training process is performed on remaining connections, disregarding the other ones.
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Using such a configuration, all connections in a 3×3 kernel are pruned but one, and thus the convolution
of each slice of the kernel tensor is replaced by a simple multiplication.

Contrary to SL where the kept connection is predetermined, SAL uses an attention mechanism [10]
that selects the most relevant connection for each kernel and prunes the others. This process is per-

formed during training, so that at the end of the training phase, the network configuration corresponds
exactly to one obtained using SL.

To further benefit from the reduced complexity of the SAL method, we combine it with a weight
binarization method such as binary weight network (BWN). Once remaining connections have been

binarized, it is possible to replace the multiplication operation by a multiplexer, and thus, such a
combination requires only low cost multiplexers to process data during inference.

Results

To evaluate the performance of our proposed combination, we use the CIFAR10 dataset. We compare
various modern CNN architectures such as Resnet [4], Wide-Resnet [12] and Densenet [5]. Note that
these architectures contain 1 × 1 and 3 × 3 convolutional kernels only. Thus we apply the proposed

method on the 3× 3 kernels.

We report in Table 1 the obtained results when using Equation (1) to remove kernels connec-
tions (SL), when applying SAL, and when combining SAL with BWN, and compare the accuracy ob-
tained with baseline architectures. Note that BWN offers a 32 compression factor in terms of memory

used, and SL or SAL method roughly multiply this factor by 9, achieving an almost 300 factor compres-
sion in total. Interstingly, we observe that when using SAL with BWN, the obtained accuracy remains
at most 1% away to that of the baseline. We also perform experiments on SVHN (resp. CIFAR100)
on Resnet18 and obtain 97%/96% (resp. 78%/75.2%) accuracy for Full-precision/SAL+BWN.

Table 1: Comparison of accuracy between baseline architectures, pruned ones, binarized ones, and the proposed method
on CIFAR10.

Resnet18 Resnet34 WideResnet-28-10 Densenet121

Full-precision 94.5% 95% 96.2% 95%
SL 93.5% 93.8% 95% 94.3%
SAL 94.2% 94.9% 96% 94.8%
SAL + BWN 93.5% 94.6% 95.4% 94.6%

3 Hardware implementation

The processing unit uses X (a feature vector, corrsponding to a row in a feature map) and a vector W
made of P values coded on 1 bit each corresponding to weights. It thus computes in parallel P feature
vectors (cf. Figure 1). The First-Input signal (FI) is set to 1 when the first feature vector is read from

the BRAM to initialise registers by 0. To compute each feature vector p where 1 ≤ p ≤ P , we use the
corresponding Wp to add either X or -X to the content of register p. Once all input feature vectors
have been read from the BRAM , the signal Enable s is set to 1, and the content of registers is written

one by one into the BRAM of the next layer. At the end of this process, the Itter done signal is set
to 1 in the processing unit block, so new data can be read to process other feature vectors.

To compute inference, kmaxjmax clock cycles (CCs) are required to copy all contents from a first
layer’s BRAM to a second layer’s BRAM, jmaxkmax`max/P CCs to compute all output feature vectors

of one layer, and jmax`max CCs to write all computed feature vectors into the BRAM of a third layer.
Thus the total number of CCs required is:

CCs = jmaxkmax +
jmaxkmax`max

P
+ jmax`max. (2)
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Figure 1: Hardware architecture of a processing unit block.

When comparing the total number of CCs of the proposed method with those obtained in [1], that
are introduced by the following equation:

CCs =
3j2maxkmax`max

P
, (3)

we observe that the proposed architecture is 3jmax faster than [1], which can be significant when jmax
is big. For instance with the CIFAR10 dataset, at the input layer of a CNN jmax = 32, and thus the
proposed method is 96 times faster. In addition it is a pipeline architecture, so it can be 3Ljmax faster

where L is the total number of layer blocks that fit in an FPGA.

Hardware results

We implemented one/few layers of Resnet18 on Xilinx Ultra Scale Vu13p (xcvu13p-figd2104-1-e) FPGA
(c.f. Table 2). The implemented layers are arranged in a pipeline, and their functionality has been

verified comparing the output of each layer block with the ones obtained by software simulation over
a batch of examples.

Table 2: FPGA results for the proposed architecture on vu13p (xcvu13p-figd2104-1-e).

P LUT FF BRAMs Frequency Processing outflow Power

Conv64 − 64 16 22424 22424 114 240MHz 19230 images/s 3.7W
4×Conv64 − 64 16 89746 75235 456 240MHz 19230 images/s 6.5W
3×Conv128 − 128 64 134090 102552 171 240MHz 29069 images/s 7.8W
3×Conv256 − 256 128 154599 102723 87 218MHz 26595 images/s 7.8W
3×Conv512 − 512 128 132155 52151 45 208MHz 16949 images/s 7.9W

4 Conclusion

In this paper, we proposed to reconsider the hardware implementation and acceleration of DNNs on

limited resources embedded systems such as FPGA. We proposed to use lightweight DNNs architectures
based on shift attention layers, and to combine them with weight binarization to reduce both complexity
and memory usage. The resulting architecture almost matches the accuracy of considered baselines

and only requires multiplexers, easing hardware implementation.
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We implemented the proposed scheme using a low cost hardware architecture in which complex
convolution operations are replaced by multiplexers. Thus, we were able to implement a considerable
part of a complex CNNs (Resnet18). Moreover, the architecture only consumes a few watts and does

not use any external ressources, making it a good solution for embedded applications.
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Abstract: We introduce a novel ensemble learning approach which combines random partitions models through

Potts clustering with a non-parametric predictor such as shallow feedforward neural networks (S-SPNNR). Neural net-

work are known as universal approximators, and are very well suited to explore others learning methods. We combine

them with Potts clustering models to create a bagging-like learning framework where several estimates from each ran-

dom partition are aggregated into one prediction. Our approach carries out the balance between overfitting and model

stability in presence of small datasets with high dimensional features. We found that S-SPNNR is really effective in

multivariate multiple regression task and present more predictive power than Multi-layer feedforward neural network and

the Multi-layer Multi-target Regression (MMR) model given some datasets from the Mulan Multi-label learning project.

1 Introduction

The model called Structured Potts Neural Network is an hierarchical Bayesian model where we train
individual neural nets to specialize on sub-groups (latent clusters components) while we still stay
informed about representations of the overall data. Our Potts neural network model differ from those

of [1] and [4], which is a generalization of the Ising neural network. We call it a structured one,
because we integrate the structured correlations among the weights (and offsets) of the network [5]
through Markov Random Fields (MRF) process. Bayesian learning allows the opportunity to quantify

posterior uncertainty on neural networks (NNs) model parameters. We can specify priors to inform
and constrain our models and get structured uncertainty estimation.

The proposal is organized as follows. Section 2 presents the background framework, section 3 ex-
plains and presents the model as well as its three variations: the Shallow- Structured Potts Neural

Network Regression (S-SPNNR) with Sparse Markov Random Fields (ShallowSparse), the S-SPNNR
with fully Connected Markov Random Fields (ShallowFull), and the S-SPNNR with compound symetry
matrix (ShallowSym). Section 4 and 5 show our results and present our concluding remarks respec-
tively.

2 Background

2.1 Potts clustering

We present Potts Clustering based on [3] paper framework. The training data consists of n examples

in the form of inputs vector x = xi ∈ Rq, and corresponding outputs y = yi, where yi ∈ Rl2 (a
vector response) for each i = 1, ..., n. For our model, x = xi is the vector of available covariates for
observation i.

As in [3], we assume a random partition model with a hierarchical form for these data :

y1, ..., yn|ρn, ψ∗1 , ..., ψ∗kn
ind∼ p(yi|xi, ψ∗si) (1)

ψ∗1 , ..., ψ
∗
kn

ind∼ p(ψ) (2)

ρn ∼ p(ρn|x) (3)

where ρn is a partition of [n] into kn subsets, s1, ..., sn are cluster membership indicators such that
si = j if the ith individual belongs to the jth cluster, and ψi = ψ∗si represent the neural network
parameters for all i ∈ [n].

Potts clustering model can be seen as a stochastic version of the label propagation approach [6]. In

following section, we present the feed-forward network function itself, which is of the form y = g(x,w, b),
with w weights matrix, b biases matrix (offsets), and g an activation function.
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2.2 The feed-forward neural network regression framework

The network itself is (in general) a multi-layer network, defined typically by the following equations.
Layer k computes an output vector hk using the output hk−1 of the previous layer, starting with the

input x = h0.
hk = bk ⊕ gk(hk−1)wk (4)

with parameter bk (a vector of offsets/biases), wk a matrix of weights, ⊕ the Kronecker sum, and gk
which is applied element-wise, represents any suitable non-linear function.

The top layer output hl is used for making a prediction and is combined with the supervised target y
into a loss function L(hl, y). The model output y is given by :

E[y|hl−1] = bl ⊕ hl−1wl

In what follows, a 2-layer network means that we build two (2) layer on top of the input layer.

3 The models

3.1 The S-SPNNR model with Sparse Markov Random Fields (ShallowSparse)

...

...
...

x1

x2

x3

xq

h1

hl1

y1

yl2

Input
layer

Hidden
layer

(l1 neurones)

Output
layer

(l2 neurones)

Figure 1: Shallow feedforward neural network

Given a Potts partition ρn = (S1, ..., Skn) with kn subsets, we denote by {ψ1, ψ2, ..., ψn} the set of

unique cluster-specific parameters. y∗j = {yi, i ∈ Sj} and x∗j = {xi, i ∈ Sj} denote respectively the set
of responses and covariates of cluster Sj . Defining h2i = fψj

(xi), h
∗
2j = {h2i , i ∈ Sj}.

p(y∗j |h∗2j , ψj ,Σ) =
∏

i∈Sj

(2π)−l2/2|Σ|−1/2 × exp{−(1/2)(yi − h2i )′Σ−1(yi − h2i )} (5)

with ψ = (w1, w2, b1, b2) for each cluster. Our distribution specification for each yi, i = 1, ..., n is as
follows:

yi|xi, ψ,Σ ∼ Nl2(fψ(xi),Σ) (6)

p(yi|xi, ψ,Σ) = (2π)−l2/2|Σ|−1/2 exp{−(1/2)[yi − fψ(xi)]
′Σ−1[yi − fψ(xi)]}

The architecture in each cluster is a 2-layers network. The model weights uncertainty is similarly

measured as in [5] paper. As [9] and [10] have introduced a deep-structured conditional random field
model which consists of multiple layers of simple Conditional Random Fields (CRFs) where each layer’s
input consists of the previous layer’s input and the resulting marginal probabilities. We use the Markov
Random Fields (MRFs) to set alike structure on the neural network weights and biases.
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The weights MG-MRF is sparse and defined on vector w = (vec(w1)T , vec(w2)T ), with mean
µ=(µT1 , µ

T
2 ) (let’s say µk = E[vec(wk)]), sparse precision matrix J . For sparsity, we set only w1

j and
w2
i as neighbors with i = j, where w1

j denotes the j−th column of w1, and w2
i the i−th line of w2.

w1
j w2

i

Figure 2: Sparse Multivariate Gaussian Markov Random Fields (MG-MRF) on the network weights

3.2 The S-SPNNR model with Fully Connected Markov Random Fields
(ShallowFull)

The Fully Connected Markov Random Fields model is the same as described above with huge difference

in weights connections. We set the whole matrices w1 and w2 as neighbors.

w1 w2

Figure 3: Fully Connected Markov Random Fields (MG-MRF) on the network weights

Fully-connected graphical models address issues of locally-connected models by assuming full con-
nectivity amongst all nodes in the weights graph, thus taking full advantage of long range relationships

to improve inference accuracy[8]. Just as importantly, in contrast to common fully-connected deep net-
works, we have less parameters in our case, thanks to the shallow network that present less connected
layers.

3.3 The S-SPNNR-FCMRF model with compound symmetry matrix block
(ShallowSym)

We have built for the Fully Connected Markov Random Field S-SPNNR model a compound symmetry

version (ShallowSym) using the precision matrix J . The matrix block Jii for (w1, w2) itself can be
express as a Kronecker product between two matrices Ui and Vi.

Jii = Vi ⊗ Ui, Ui ∈Mli−1×li−1
, Vi ∈Mli×li

To reduce the model complexity, we choose Ui and Vi to be a positive-definite matrix with com-
pound symmetry structure (constant diagonal and constant off-diagonal elements). It means for ex-
ample :

Ui = auI + (1− ρu)11T

where au is a strictly positive number, and ρu a real-number. I is an identidy matrix with dimension
li−1, and 1 a vector of ones of size li−1. In a more interpretive manner, au represent the intra-class
correlation accross the weights and au + (1− ρu) their total variance [2] in the case Vi is estimated as
a matrix of ones. This configuration is more likely usefull when all the variances may be nearly equal,

and the covariances may be nearly equal among all the scalar weights at each layer. Those constraints
save a lot of degrees of freedom with little loss of fit, because we only have to estimate one variance
and one covariance for Ui.
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4 Experimental evaluation

4.1 Datasets

The performance of the S-SPNNR in his three versions (ShallowSparse, ShallowFull and ShallowSym)
were experimentally evaluated. The Mulan project [7] was used to evaluate the results. The experi-

ments were performed on 11 multi-output regression datasets (see Table 1 below) that are among the
benchmark data available from the Mulan project website.1

Table 1: Summary of data sets characteristics: name, domain, number of instances, features and targets

Data sets Domain Instances Numb. of attributes Numb. of targets

Andromeda Water 49 30 6
Slump Concrete 103 7 3
EDM Machining 154 16 2
ATP7D Forecast 296 211 6
ATP1D Forecast 337 411 6
Jura Geology 359 15 3
Online sales Forecast 639 401 12
ENB Buildings 768 8 2
Water quality Biology 1 060 14 16
SCPF Forecast 1 137 23 3
River flow 1 Forecast 9 125 64 8

We have also compared the performance of our models against the Multi-layer Multi-target Regres-
sion (MMR) model [11] that haved already substantially outperformed the best results from state-of-

the-art algorithms on most of those 11 datasets and a 5-layer feedforward regression network (5-layer
FFRNN).

To directly benchmark with state-of-the-art algorithms, we measure the performance by the
commonly-used Relative Root Mean Squared Error (RRMSE) defined as :

√√√√
∑

(xi,yi)∈Dtest(ŷi − yi)2∑
(xi,yi)∈Dtest(Ŷ − yi)2

where (xi, yi) is the i-th sample xi with ground truth target yi, ŷi is the prediction of yi and Ŷ is the
average of the targets over the training set Dtrain. We take the average RRMSE (aRRMSE) across all

the target variables within the test set Dtest as a single measurement. It measures the root squared
error relative to what it would have been if a simple predictor had been used. A lower aRRMSE
indicates better performance.

5 The results

Compare to a simple predictor, the proposed S-SPNNR model and its three versions have achieved

great results against the MMR model. This large improvement of the proposed S-SPNNR over the
MMR with significant margins on all the 11 datasets shows its effectiveness modeling multi-target
regression task. Andromeda, and SCPF show that the 5-layer FFRNN is still beatable in terms of
predictive power for these datasets. ShallowSparse was really effective on EDM, ATP7D, Jura, online

sales and water quality against the ShallowFull and ShallowSym. ShallowSim was better against
ShallowFull only on slump, ENB and water quality.

1http://mulan.sourceforge.net/datasets-mtr.html
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Table 2: Summary of aRRMSE (%) obtained with S-SPNNR and MMR models

Data sets ‘ MMR ShallowFull ShallowSym

Andromeda 52.7 31.63 32.35
Slump 58.7 21.90 18.47
EDM 71.6 28.01 35.96
ATP7D* 44.3 22.69 24.56
ATP1D* 33.2 13.50 14.63
Jura 58.2 28.98 25.81
Online sales* 70.9 18.90 21.59
ENB* 11.1 39.05 45.79
Water quality 88.9 10.01 8.26
SCPF 81.2 12.30 13.86
River flow 1* 8.9 10.97 11.45

* We reduce the input features to the first 6 PCA components.

Table 3: Summary of aRRMSE (%) obtained with S-SPNNR and the 5-layer FFRNN model

Data sets ‘ ShallowSparse 5-layer FFRNN

Andromeda 30.91 37.44
Slump 20.02 19.83
EDM 17.23 15.71
ATP7D* 19.73 13.67
ATP1D* 29.54 9.89
Jura 13.46 8.15
Online sales* 14.79 8.78
ENB* 23.92 4.36
Water quality 6.48 6.15
SCPF 10.78 18.49
River flow 1* 5.16 0.91

* We reduce the input features to the first 6 PCA components.
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Abstract: Deep neural networks usually have unnecessarily high complexities and possibly many features of low

utility, especially for tasks that they are not designed for. In this extended abstract, we present our Deep-LDA-based

pruning framework as a solution to such problems. In addition to accuracy-complexity analysis, we investigate our

approach’s potential in improving networks’ robustness against adversarial attacks (e.g. FGSM and NewtonFool At-

tacks) and noises (e.g. Gaussian, Poisson, Speckle). Experimental results on CIFAR100, Adience, and LFWA illustrate

our framework’s efficacy. Through pruning, we can derive smaller, but accurate and more robust models suitable for

particular tasks.

1 Introduction

With increasing network depths comes more complexity, which reignited research into network pruning.

Approaches that sparsify networks by setting weights to zero include [7, 23, 21, 15, 6, 11, 24]. Compared
to individual weights based approaches, filter or neuron pruning has its advantages. Instead of setting
zeros in weights matrices, filter pruning removes rows/columns/depths in weight/convolution matrices,

leading to direct space and computation savings [26, 17, 19, 9, 20, 27]. However, few if any works have
investigated pruning’s influence on model robustness. Given the large input-output dimension ratio,
input-output correlation could be spurious. In this long abstract, we present our deep LDA based
pruning and also analyze its influence on model robustness against adversarial attacks and noises.

Through pruning large networks of high memorization capability, our method aims to help over-
parameterized nets forget about task-unrelated factors and derive a feature subspace that is more
invariant and robust to irrelevant factors and noises.

2 Deep Fisher LDA pruning

In this section, we present our deep Linear Discriminant Analysis (LDA) based pruning approach that

pays direct attention to final task utility and its holistic cross-layer dependency. We define and capture
task utility by deep LDA and use it to guide the pruning process. The approach is summarized as
Algorithm 1.

Algorithm 1: Deep LDA Pruning of NN
Input: basenet, acceptable accuracy tacc
Result: task-desirable pruned models

Pre-train: SGD optimization with cross entropy loss and dropout.
while accuracy ≥ tacc
do

Step 1 → Pruning

1. Penultimate LDA Utility Unravelling
2. Cross-Layer Utility Tracing by Deconv
3. Pruning as Utility Thresholding

Step 2 → Re-training

Similar to the pre-training step.
Save model if needed.

end

In the rest of the section, we focus on the pruning step. Given the penultimate activation matrix X,
our aim is to abandon dimensions of X that possess low or even negative task utility. Inspired

by [4, 2, 29, 12, 1], Fisher’s LDA is adopted to quantify this utility. Our goal of pruning is to find:

Wopt = arg max
W

|WTΣbW |
|WTΣwW |

(1)
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where Σw, Σb, Σa are within-class, between-class, and total scatter matrices. Through solving a
generalized function with a decorrelated assumption of top layer motifs ([28]), we know that W columns
are standard basis vectors. It follows that W columns and some of the original neuron dimensions are

aligned. To maximize the class separation during pruning, we can safely discard neurons with small
between-class to within-class variance ratios.

After unravelling twisted threads of deep variances and selecting dimensions of high LDA utility,
the next step is to trace the utility across all previous layers to guide pruning. Inspired by [8],
deconvolution as in [30] is used to reverse an unknown filter’s effect and recover corrupted sources.

One unit procedure is composed of unpooling, nonlinear rectification, and reversed convolution:

Ui = FTi Zi (2)

where i indicates the layer, Zi is converted from feature maps, Ui is reconstructed contributing sources
to final utility, FTi represents transposed convolution. Figure 1 provides a high level view of deep LDA
cross-layer utility tracing. With all neurons’/filters’ utility for final discriminability known, pruning

simply becomes discarding structures that are less useful to final classification (colored white). Through
pruning modular structures like Inception nets, the proposed approach determines how many filters,
and of what types, are appropriate in a given layer. The threshold on utility is related to pruning

rates. After pruning, retraining with surviving parameters is needed. Since our pruning selects filter
dimensions according to task demands, the generated pruned models are more invariant to task-
unrelated factors.

Figure 1: Deep LDA-Deconv utility tracing. Useful (cyan) neuron feature maps that contribute to final deep LDA utility
through corresponding (green) next layer filter pieces, only depend on previous layers’ (cyan) counterparts via deconv. our
pruning leads to filter-wise and channel-wise savings simultaneously

3 Experiments and Results

We test our pruning approach on CIFAR100 [16], Adience [3], LFWA [18] datasets using conventional
VGG16 [22] and modular Inception [25] as bases. All base networks are pretrained on ImageNet.
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Figure 2: Accuracy change vs. parameters savings of our method (blue), [7] (red), and [17] (orange), SqueezeNet [13]
and MobileNet [10] on validation data. Top-1 accuracy is used for CIFAR100

Figure 2 demonstrates the relationship of accuracy change v.s. parameters pruned. Pruning meth-
ods [7, 17] and compact structures [13, 10] are included for comparison. According to Figure 2,
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even with large pruning rates (98-99% for the VGG16 cases, 57-82% for the Inception cases), our
approach still maintains comparable accuracies to the original models (loss <1%), beating other prun-
ing approaches. Compared to fixed nets, pruning offers the flexibility to find the boundary between

over-fitting and over-compression.

In the rest of the section, we investigate our pruning’s effects on the model’s robustness to input
perturbations. To this end, we apply Gaussian, Poisson, speckle noises and two adversarial attacks,
i.e. FGSM [5] and Newton Fool Attack [14], to the testing data and compare how the original and

pruned models perform in terms of accuracy drops (Table 1). The left subtable is for Inception and the
right subtable is for VGG16 cases. The selected pruned model has similar accuracy to the unpruned
one on the clean test set in each case. For fair comparison, the adversarial examples are generated on
a third ResNet50 model. According to the results, the pruned models are more, or at least equally,

robust to the noises than corresponding original unpruned models. One reason is that with fewer
task-unrelated random filters, the pruned models are less likely to pick up irrelevant noises and are
thus less vulnerable. Also, reducing parameters per se alleviates overfitting and thus brings down

variance to data fluctuations. The deep nets are more prone to Gaussian and speckle noises than to
Poisson noises. Furthermore, we can see that our pruning method also helps with model robustness to
adversarial attacks. This is because fewer irrelevant deep feature dimensions can possibly mean fewer

breaches where the adversarial attacks can easily put near-boundary samples to the other side of the
decision boundary. That said, the pruning’s effect on robustness is less obvious in the simple FGSM
cases as compared to the Newton Fool Attack cases. Overall, both the task and the net architecture
influence robustness. VGG16 and its pruned models are less susceptible to the attacks than Inception

nets, perhaps because the adversarial examples are generated from ResNet50 in our case and are
therefore more destructive to modular structures.

Table 1: Accuracy drops against noises and adversarial attacks for original and pruned nets (in the left table, the base is
Inception net and in the right table, the base is VGG16). Note: Ori. means original nets, Gauss. represents Gaussian noise
(stddev=5), speckle noise strength is 0.05. FGSM Attack: Fast Gradient Signed Method [5]. Newton Attack: Newton
Fool Attack [14]

Acc Dif
CIFAR100 Adience LFWA-G LFWA-S

Ori. Pruned Ori. Pruned Ori. Pruned Ori. Pruned

Gauss. -2.5% -2.0% -0.5% -0.1% -5.2% -4.2% -1.4% -1.2%
Poisson -0.1% 0.0% -0.3% 0.0% 0.0% 0.0% 0.0% 0.0%
Speckle -3.7% -3.1% -1.5% -1.0% -0.5% -0.2% -0.2% 0.0%
FGSM -8.1% -7.4% -0.4% -0.4% 0.0% 0.0% -0.1% 0.0%
Newton -6.1% -3.9% -4.5% -1.7% -0.2% -0.1% -3.1% -2.5%

Figure 3 and 4 illustrate some failure cases for the original unpruned nets and our pruned ones,
respectively. Compared to the failed cases of pruned models in Figure 4, the fooled unpruned models

in Figure 3 were usually very confident about their wrong predictions. The scenarios where our pruned
models failed are usually ones where the pruned model was not very certain compared to the unpruned
model even on the clean test data (e.g. girl vs woman, house vs castle, oak tree vs forest). Also, the

nudges causing the pruned models to fail are usually more intuitive than those failed the unpruned
models in Figure 3. For example, while it is not directly understandable how the attacks reverted the
original model’s predictions about smile/no smile (the two bottom left cases in Figure 3), we can see

that the attack in the middle of the bottom row in Figure 4 attempted to lift up the mouth corner
into a smile (best viewed when zoomed in). Both of the above observations are related to the fact
that large network models remember more details than the pruned ones, thus can be more confident
in prediction (either correct or wrong), but sensitive to intricate data fluctuation. On the other hand,

to fool a compact model pruned according to task utility, the attack has to focus on remaining task-
desirable dimensions since not many irrelevant, usually easily-fooled, loophole dimensions are present.
In autonomous driving for example, to fool our pruned net to believe a red light to be green, the

attacker possibly needs to literally change the color rather than apply some easy nuances.
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Original FGSM Attack Adversarial

Unpruned: turtle (99.9%)
Pruned: turtle (99.9%)

Unpruned: plate (82.3%)
Pruned: turtle (98.9%)

Original Newton Attack Adversarial

Unpruned: butterfly (99.9%)
Pruned: butterfly (99.7%)

Unpruned: beetle (87.9%)
Pruned: butterfly (82.1%)

Original Newton Attack Adversarial

Unpruned: keyboard (99.9%)
Pruned: keyboard (99.9%)

Unpruned: streetcar (94.9%)
Pruned: keyboard (99.6%)

Original FGSM Attack Adversarial

Unpruned: age 0-2 (99.9%)
Pruned: age 0-2 (98.6%)

Unpruned: age 60+ (45.8%)
Pruned: age 0-2 (95.1%)

Original Newton Attack Adversarial

Unpruned: age 8-13 (63.9%)
Pruned: age 8-13 (82.8%)

Unpruned: age 48-53 (26.5%)
Pruned: age 8-13 (53.8%)

Original Newton Attack Adversarial

Unpruned: age 25-32 (67.0%)
Pruned: age 25-32 (96.7%)

Unpruned: age 60+ (45.0%)
Pruned: age 25-32 (83.3%)

Original FGSM Attack Adversarial

Unpruned: no smile (50.9%)
Pruned: no smile (85.0%)

Unpruned: smile (56.6%)
Pruned: no smile (84.6%)

Original Newton Attack Adversarial

Unpruned: smile (80.5%)
Pruned: smile (80.1%)

Unpruned: no smile (91.5%)
Pruned: smile (73.3%)

Original Newton Attack Adversarial

Unpruned: female (64.3%)
Pruned: female (83.2%)

Unpruned: male (71.5%)
Pruned: female (82.6%)

Figure 3: Example adversarial attacks that have fooled the original unpruned net, but not our pruned one

Original FGSM Attack Adversarial

Unpruned: shrew (99.2 %)
Pruned: shrew (52.1 %)

Unpruned: shrew (98.5 %)
Pruned: mouse (59.4 %)

Original Newton Attack Adversarial

Unpruned: cloud (59.7 %)
Pruned: cloud (72.4 %)

Unpruned: cloud (87.0 %)
Pruned: plain (52.9 %)

Original Newton Attack Adversarial

Unpruned: woman (97.8 %)
Pruned: woman (70.4 %)

Unpruned: woman (97.7 %)
Pruned: girl (56.5 %)

Original Newton Attack Adversarial

Unpruned: 4-6 (86.1 %)
Pruned: 4-6 (58.4 %)

Unpruned: 4-6 (88.4 %)
Pruned: 8-13 (23.0 %)

Original Newton Attack Adversarial

Unpruned: no smile (99.1 %)
Pruned: no smile (61.9 %)

Unpruned: no smile (97.8 %)
Pruned: smile (75.4 %)

Original Newton Attack Adversarial

Unpruned: female (99.9 %)
Pruned: female (51.8 %)

Unpruned: female (99.8 %)
Pruned: male (50.0 %)

Figure 4: Example adversarial attacks that have fooled the pruned net, but not the original unpruned one

4 Conclusion

This paper presents deep-LDA based pruning that is aware of task utility and its cross-layer depen-
dency. In addition to its high pruning rates, the method is shown to generate models that are more
robust to adversarial attacks and noises than the unpruned one on the CIFAR100, LFWA and Adience
datasets with VGG16 and Inception net as bases.
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Abstract: The determinantal point process (DPP) provides a promising and attractive alternative to simple random

sampling in cluster analysis or classification, for the initial random selection of points required by most algorithms. As

a probabilistic model of repulsion, the DPP elects which points are similar and have less probability to appear together,

favouring then more diverse subsets of points. After a short introduction to DPP, we show how its use for choosing ini-

tial subsets of points in a clustering algorithm run multiple times on large datasets can improve the quality of final results.

1 Introduction

A classical core procedure in fields such as biology, psychology, medicine, marketing, computer vision
and remote sensing is to group elements based on similar features (cluster analysis) [13], to provide a
framework for learning. Some clustering techniques, such as the standard k-means algorithm or the

partitioning around medoids (PAM) algorithm, are characterized by an initial choice of a subset of
random points. We find the same type of initial choice in some classification techniques, such as neural
networks or machine learning. However, selecting a simple random subset of points does not take

into account the diversity among the selected points. As this type of sampling gives to every point
an equal probability of being selected, a subset of points may include many similar points that carry
the same type of information and representability. In some domains of research, where the diversity

of elements is a major concern and ensures a better coverage of all its facets, single random sampling
can lack some of them. The determinantal point process settles which points are similar and therefore
have less probability to appear together, in contrast to simple random sampling. It intents to capture
negative correlations between n points and has been used in machine learning as a model for subset

selection [9]. Kulesza and Taskar [15] emphasize that the negative correlations are measured by a
n × n matrix whose entries represent a measure of similarity between each pair of points. Similar
elements have less probability to be co-selected, resulting in subsets that are more diverse. Clustering

techniques in particular seek to obtain a unique optimal partition of data, by maximizing both intra-
cluster similarity and inter-cluster dissimilarity. However, as stressed by [29], if different partitional
techniques are applied to the same data, they can produce very different clustering results, due to
the lack of an external objective and impartial criterion. The techniques’ dependency on the initial

choice of points can also explain those differences. To improve the quality and robustness of clustering
results, [28] proposed the cluster ensembles framework, which main objective is to combine different
clustering results into a single consolidated clustering. Monti et al. [21] introduced a cluster ensemble

method in genomic studies and gene expression: the consensus clustering. Based on resampling and
bootstrapping techniques, it seeks to attain a single consolidated clustering configuration from multiple
runs of the same clustering algorithm. For sampling the initial points of the algorithm, we used the

determinantal point process presented by [10, 15]. The paper is organized as follows: we present the
determinantal point process in Section 2; we explain our consensus clustering algorithm in Section 3; we
study the case of large datasets in Section 4; we present the quality measure for results in Section 5;
we refer algorithms taken as reference in Section 6; we show results on simulated and real data in

Section 7.

2 The determinantal point process (DPP)

Origins of DPP date back to [19] in quantum physics, known then as “fermion process”, intended
to model distributions of fermion systems at thermal equilibrium. The name “Determinantal Point
Process” is established, introduced and made accepted as standard in mathematics’ community by [3].

It also arises in studies of nonintersecting random paths, random spanning trees, and eigenvalues of
random matrices [8, 4, 10].
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Starting with a global overview of DPP, let S = {x1, . . . ,xn} be a discrete set of n elements, with
2 ≤ n < ∞ and where xi represents a p−dimensional vector, i.e. xi ∈ Rp,
i = 1, . . . , n. A point process on S is a probability measure on 2S , the set of all subsets of S. It

is called a DPP if, for a particular random subset Y ∈ 2S , its probability mass function is given by

P (Y = Y ) =
det(LY )

det(L+ In)
, (1)

where Y is a random variable representing the subset selected from 2S , L is a
n × n real, symmetric and positive semidefinite matrix measuring similarity between pair-wised el-
ements of S, LY is the submatrix of L with rows and columns indexed by Y , i.e., LY = [Lij ]i,j∈Y and

In is the n× n identity matrix.

Determinants have a well-known geometric interpretation. Let B be a m × n matrix such that
L = BTB. B can always be found for m < n due to positive semidefiniteness of L. Denoting the
columns of B by Bi, for i = 1, . . . , n, we have

P (Y = Y ) ∝ det (LY ) = Vol2
(
{Bi}i∈Y

)
, (2)

where Vol2 represents the squared volume of the parallelepiped spanned by the columns of B corre-
sponding to elements in Y . The columns of B can be interpreted as feature vectors describing the

elements of S and, therefore, L measures similarity using dot products between feature vectors. By
Equation (2), we can see the probability assigned by a DPP to a subset Y is related to the volume
spanned by its associated feature vectors: diverse sets have then a higher probability, because their

feature vectors are more orthogonal and hence span larger volumes.

3 Consensus clustering algorithm

Consider again the set S of n elements, and a particular partitional clustering technique run M times
over the set S. The agreement among the several runs of the algorithm is based on the consensus
matrix C, a n× n symmetric matrix where the entry Cij , i, j = 1, . . . , n represents the proportion of

runs in which two elements xi and xj of S belong to the same cluster, i.e.

Cij =

∑M
m=1 c

m
ij

M
, (3)

where cmij is an indicator of wether element xi belongs to the same cluster as xj in the m-th run. The

consensus clustering method was meant to attain a single consolidated clustering from multiple runs
of the same clustering algorithm. Any partitional clustering method can be chosen, then. However,
rather than using a well-known clustering method like k−means or PAM, we constructed our clustering

algorithm to obtain a consolidated consensus clustering configuration. At each run, we start the
algorithm with a Voronoi diagram on the set S, which partitions the space into several cells or regions,
based on a subset of points that are called generator points. These points will be sampled among the
elements of S using the DPP defined by (1) and the sampling algorithm developed by [10, 15]. For the

construction of the similarity matrix L, we will use kernel-based methods, which have been widely used
in recent research into pattern analysis, like classification, regression and clustering [11]. As kernels
are often considered measures of similarity, a higher kernel value represents a higher correlation in

a high-dimensional (possibly infinite) Hilbert space. A popular kernel choice is the Gaussian kernel,
which we will use to obtain the entries of L:

L =

[
exp

(
−‖xi − xj‖2

2σ2

)]n

i,j=1

, (4)

where the scale parameter σ represents the relative spread of the distances ‖xi − xj‖, the Euclidean
distance between xi and xj , a common choice for the Gaussian kernel.
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Finally, after M runs, we will obtain M Voronoi diagrams, from which we can compute the con-
sensus matrix C with entries defined by (3). Following [2], if Cij ≥ θ, with 0 ≤ θ ≤ 1, points xi

and xj are defined as “friends” and then included in the same final cluster. As θ is unknown, there

are several choices of final clusters, depending on the value of θ. Motivated then by [23] and [22],
we used the least-squares clustering (LSCLUST) procedure of [7] to choose the optimal final cluster
among the several choices: supposing we have B clusters, for each cluster c in c1, . . . , cB , a n × n
matrix δ(c) can be built. The (i, j) element of the matrix, δi,j(c), is an indicator of wether element i

of S belongs to the same cluster than j. Element-wise averaging of these association matrices yields a
pairwise probability matrix of clustering, denoted π̂. The least-squares clustering cLS is the observed
clustering c that solves the following minimization problem:

cLS = arg min
c∈{c1,...,cB}

n∑

i=1

n∑

j=1

[δi,j(c)− π̂i,j ]2 .

4 Case of large datasets

The eigendecomposition of the matrix L of DPP defined by (1) is a central step for obtaining the

generator points through the sampling algorithm of [10, 15]. It is well known that the computational
complexity of eigendecomposition of a n × n symmetric matrix is O

(
n3
)

and, as n grows larger,
the computation of the characteristic polynomial itself becomes expensive due to the computational

complexity of calculating determinants. Therefore, computing only the largest eigenvalues can sub-
stantially reduce the computational burden of obtaining all the eigenvalues. The literature points out
many references of well-known algorithms that can extract the t largest (or smallest) eigenvalues, with

their associated eigenvectors, of a n × n Hermitian matrix, where usually, we have t � n. One of
the most classical and used algorithms is the Lanczos algorithm [17] and its variations, such as the
implicitly restarted Lanczos method, proposed by [5], which we will use if the dimension of L is very
large. The Lanczos algorithm and its implicitly restarted variation were specially developed for large

sparse symmetric matrices. Consequently, when L is large, to implement the implicitly restarted Lanc-
zos method, it is necessary to find a good approximation of the dense matrix L by a sparse matrix.
Nevertheless, the large size of L can still be a computational burden for the implementation of the

algorithm, which motivated us to consider a special approach for dealing with large matrices, inspired
by dimension reduction techniques.

Let then L be a large kernel matrix, of size n × n, defined by (4) and let L1, L2, . . . , LR denote a
set of R submatrices of size r × r each, taken randomly from L, where r < n (ideally, r � n). We

apply the following methodology to the set of submatrices:

1. select randomly an index i1 from {1, 2, . . . , R} and consider the submatrix Li1 ;

2. find a sparse approximation of the submatrix Li1 considering the k-nearest neighbours of each
point of the submatrix, according to the k-nearest neighbours graph introduced by [25];

3. generate a sample Yi1 from Li1 through DPP, using the usual sampling algorithm of [10, 15] and

the Lanczos algorithm for extracting the t largest eigenvalues;

4. build a Voronoi diagram for the n points, using the generated sample Yi1 ;

5. repeat steps 1 to 4 for indexes i2, i3, . . . , iN , using always {1, 2, . . . , R} ;

6. apply the consensus clustering summarized in Section 3 to the set of N partitions obtained.

The number R of submatrices to be sampled must be chosen so that we get benefits from using the

submatrices to sample the generator sets through DPP rather using the whole kernel matrix L. We
know that the computational complexity of eigendecomposition of the n×n kernel matrix L is O

(
n3
)
,

employing n3 operations. But, if we have R submatrices of size r× r each, the eigendecompositions of
these submatrices employ Rr3 operations. To obtain benefits from the sampled submatrices, we must

guarantee that
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Rr3 < < n3 ⇔
⇔ R <

(n
r

)3
⇔

⇔ R <

(
1

γ

)3

,

where γ = r
n represents the proportions of points considered for the submatrices. As we want to take

advantage of dimension reduction and speed, we decided to choose R so that R�
(

1
γ

)3
, and then, we

decided to fix R =

⌊
( 1
γ )

3

2

⌋
, where bxc represents the floor function.

5 Clustering quality measure

As mentioned by [24], it is a common practice in the clustering literature to measure the goodness-of-fit
of the optimal final cluster. Among the many known measures of goodness-of-fit that can be found in
the literature, we will use the Adjusted Rand Index (ARI), first introduced by [26] and later adjusted
for randomness by [12]. The ARI is a measure of agreement between two clustering configurations.

The original Rand Index counts the proportion of elements that are either in the same clusters in both
clustering configurations or in different clusters in both configurations. The adjusted version of the
Rand Index corrected the calculus of the proportion, so its expected value is zero when the clustering

configurations are random. The larger the ARI, the more similar the two configurations are, with the
maximum ARI score of 1.0 indicating a perfect match.

6 Reference algorithms for comparison

To validate the performance of the consensus clustering summarized in Section 3 using DPP for choos-
ing an initial set of points, we decided to compare the final results to two traditional clustering

algorithms: PAM and k-means algorithms.

The PAM algorithm is a classical partitioning technique of clustering proposed by [14], which
chooses data points for centers by simple random sampling. As DPP selects also data points for
centers but based on diversity, the goal of comparing it with PAM method is to evaluate how the

quality results of clustering behave if we consider diversity as a sampling criterion. The k-means
algorithm was proposed by Stuart Lloyd in 1957, and later published in [18]. It starts with an initial
set of k means, representing k clusters, assigning then each observation to the cluster with the nearest

mean and proceeding with updating steps until convergence to a final optimal cluster configuration.
However, as argued by [6], the popular methods for choosing the initial set of k means, such as Forgy,
Random Partition and Maximin methods, result often in a final optimal cluster configuration with a
low clustering quality. We decided then to use the k-means++ algorithm of [1], a popular choice that

avoids the poor quality results of the traditional methods for choosing the initial means. Once more,
our goal is to evaluate how the quality results of clustering with DPP behave if we consider diversity
as a sampling criterion, when compared to the k-means algorithm that uses k-means++ for choosing

initial points.

7 Results

The consensus clustering algorithm presented in Section 3 was applied to the case of datasets with a
very large number of observations.
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7.1 Simulated data

Using the algorithm of [20], we simulated a dataset constituted by n = 10000 vectors of dimension

p = 15 grouped in 10 predefined clusters. As the dimension of the corresponding matrix L is very
large, we decided to use the methodology described in Section 4 for the eigendecomposition required
for the DPP sampling, adopting N = 1000. Prioritizing also a minimal computational time, we chose
γ = 0.1 (and consequently R = 500), k = 325 nearest neighbours (which results in sparse matrices

with approximately 60% of zeros) and the t = 25 largest eigenvalues of the sparse matrices. The
consensus clustering algorithm of Section 3 was then applied, performing M = 1000 runs, and the
quality of the optimal final cluster was assessed by the ARI described in Section 5. To ascertain the

ARI variability, we decided to repeat the whole procedure 5 times and obtain one Boxplot for the ARI
values. For comparisons, we also included the Boxplot resulting from the application of the clustering
algorithm with DPP to the dense matrix L, from which we extracted all the eigenvalues, and the

Boxplots resulting from k-means and PAM algorithms. All the comparing methods were also repeated
5 times for the construction of the Boxplots. Figure 1 presents the comparison of the four Boxplots.
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Figure 1: From left to right: Boxplots of the ARI for the DPP with dense matrix, DPP with sparse aproximations, k-means
and PAM, with the dashed line indicating the median value obtained with the dense matrix

We also adopted another analysis to evaluate the quality of the sparse approximation of L: we
obtain the kernel density estimation of the set of eigenvalues extracted from the sparse approximations
of L and check graphically how the estimated density concentrates around all true eigenvalues of the
dense kernel matrix L. We choose a Gaussian kernel for the density estimation and [27] rule for the

bandwidth of the kernel. Figure 2 shows the estimated density and the values of the true eigenvalues.

We also took advantage of the opportunity to obtain the kernel density estimation of the set of

the true eigenvalues extracted from the dense matrix L and measure its divergence from the kernel
density estimation of the set of eigenvalues extracted from the sparse approximations of L depicted in
Figure 2. The divergence will be measured through the Kullback-Leibler (KL) divergence, introduced

by [16]. As the KL divergence does not obey to the symmetry property of a metric, for each pair of
compared estimated densities, we will compute the KL divergence in both directions and compute the
average of the two divergences. We can find the result in Table 1.

Table 1: KL divergence between the kernel density estimation of the eigenvalues extracted from the sparse approximations
of L and the kernel density estimation of the true eigenvalues of L.

KL divergence

0.00005336

Additionally, we will also report and compare the elapsed time in seconds for eigenvalues compu-
tation using a sparse approximation of L or the original dense matrix L. The results are shown in
Table 2.
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Figure 2: Kernel estimated density of the set of eigenvalues extracted from the sparse approximations of the dense
matrix L, with the true eigenvalues marked on the abscissa axis

Table 2: Comparison of elapsed times (in seconds) for eigenvalues calculation.

Elapsed time

Sparse L 0.079
Dense L 0.216

Finally, to explain the differences between DPP and PAM, we also present in Figure 3 the histograms

of the logarithm of the probability mass function given by (1) for M = 1000 random subsets, using a
DPP sampling or the simple random sampling.
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Figure 3: Histograms for the logarithm of the probability mass function (loglik) of M = 1000 random subsets using DPP
and random sampling.

7.2 Real data

In this subsection, we considered two real datasets:

1. A dataset about human activity recognition and postural transitions using smartphones, col-
lected from 30 subjects who performed six basic postures (downstairs, upstairs, walking, jogging,

sitting and standing), including also six transitional postures between static postures (stand-to-
sit, sit-to-stand, sit-to-lie, lie-to-sit, stand-to-lie and lie-to-stand), in the same environment and
conditions, while carrying a waist-mounted smartphone with embedded inertial sensors. The
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dataset consists of 10929 observations, with 561 time and frequency extracted features, which
are commonly used in the field of human activity recognition. The dataset has then n = 10929
observations, p = 561 variables and K = 12 classes. The dataset is available on the UCI Machine

Learning Repository, a well known database in the Machine Learning community for clustering
and classification problems.

2. The Modified National Institute of Standards and Technology (MNIST) dataset, one of the most
common datasets used for image classification. This dataset contains 60000 training images and
10000 testing images of handwritten digits, obtained from American Census Bureau employees

and American high school students. Each observation represents a 28×28 pixel gray-scale image
depicting a handwritten version of one of the ten possible digits (0 to 9). Pixels are organized
row-wise, so that each row of the dataset represents an image, where the first number of each

line is the label, i.e. the digit which is depicted in the image, and the remaining 784 numbers
are the pixels of the 28× 28 gray-scale image. The scale is available in two versions: the original
scale between 0 (background or white) and 255 (foreground or black), or scaled between 0 and 1.

For this section, we decided to use the testing set of 10000 images with the scaled pixels between
0 and 1. The dataset has then n = 10000 observations, p = 784 variables and K = 10 classes.

We applied the same strategy of Subsection 7.1 to each dataset, along with a comparison with
k-means (with k-means++ for initial points) and PAM algorithms: we decided to sample a proportion
γ = 0.1 of the points of the kernel matrix L (and consequently R = 500) and again obtain a sparse

approximation of the sampled submatrices with 60% of sparsity, choosing the appropriate number k of
nearest neighbours for each dataset. The Lanczos algorithm was then applied to extract the first t = 25
eigenvalues of the sparse approximated submatrices. The consensus clustering algorithm of Section 3
was then applied, performing M = 1000 runs, and the quality of the optimal final cluster was assessed

by the ARI described in Section 5. To ascertain the ARI variability, we decided to repeat the whole
procedure 5 times and obtain one Boxplot for the ARI values. For comparisons, we also included the
Boxplots resulting from k-means and PAM algorithms. All the comparing methods were also repeated

5 times for the construction of the Boxplots. Figure 4 presents the results for the smartphones dataset
and Figure 5 presents the results for the MNIST dataset.
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Figure 4: From left to right: Boxplots of the ARI for the
DPP, k-means and PAM consensus clustering, with the
dashed line indicating the median value obtained with
DPP, for the smartphones dataset
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Figure 5: From left to right: Boxplots of the ARI for the
DPP, k-means and PAM consensus clustering, with the
dashed line indicating the median value obtained with
DPP, for the MNIST dataset

8 Conclusion

The use of the sparse approximations is totally justified and has clear benefits, even with a low propor-

tion γ of points sampled. The k-nearest neighbour graph approach provides then a good alternative
to the use of the complete dense matrix L. Observing the results section, we present the following
conclusions:
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1. Simulated dataset: observing the Boxplots, we can see a lower quality of k-means and PAM results
when compared to DPP. We also note that the approaches with DPP achieve a higher stability of
the ARI, while the approaches with k-means and PAM give more heterogeneous results. Focusing

on the kernel estimated density of the eigenvalues extracted from the sparse approximations of L,
we can see a reasonably good concentration and fit around the true eigenvalues of L, supported
by a low value of KL divergence. In terms of the elapsed time for eigenvalues extraction, we
can see a clear time reduction, which becomes particularly important as the consensus clustering

implies a repetition of the clustering algorithm a large number of times. Finally, the histograms
of the logarithm of the probability mass function clearly show that DPP selects random subsets
with higher and less dispersed probability mass values than simple random sampling, explaining

a higher stability of the ARI.

2. Real datasets: observing the Boxplots, we can see a lower quality of k-means and PAM results
when compared to DPP. We also note that the approaches with DPP achieve a higher stability
of the ARI, while the approach with PAM give more heterogeneous results. Even if the k-means

algorithm ensures a higher ARI stability when compared to DPP, it provides lower quality results.

The higher likelihood of the random subsets sampled by DPP confirms the higher diversity of those
subsets, while the subsets sampled by random sampling can be highly or poorly diverse, with a very
high dispersion in terms of diversity. DPP tends then to select points that maintain a high level of

diversity at each sampling, proving then to be more consistent and stable than simple random sampling
in terms of ensuring the heterogeneity of elements forming the subset. Moreover, taking into account
the diversity of elements with DPP as a sampling method rather than simple random sampling, does

not harm the quality of results, since the level attained by simple random sampling is more or less
maintained, or even improved.
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Abstract: Min-max formulations have attracted great attention in the ML community due to the rise of deep gen-

erative models and adversarial methods, while understanding the dynamics of gradient algorithms for solving such

formulations has remained a grand challenge. As a first step, we restrict to bilinear zero-sum games and give a system-

atic analysis of popular gradient updates, for both simultaneous and alternating versions. We provide exact conditions

for their convergence and find the optimal parameter setup and convergence rates. In particular, our results offer formal

evidence that alternating updates converge “better” than simultaneous ones.1

1 Introduction

Min-max optimization has received significant attention due to the popularity of generative adversarial

networks (GANs) [14], adversarial training [19] and reinforcement learning [8], just to name some
examples. Formally, given a (bivariate) objective function f(x,y), we aim to find a saddle point
(x∗,y∗) such that

f(x∗,y) ≤ f(x∗,y∗) ≤ f(x,y∗),

∀x ∈ Rn,∀y ∈ Rn. Since the beginning of game theory, various algorithms have been proposed for

finding saddle points [2, 7, 13, 16, 26, 3, 18, 22, 9]. Due to its recent resurgence in ML, new algorithms
designed for training GANs were proposed [5, 15, 11, 20]. However, due to non-convexity in deep
learning formulations, our understanding of the convergence behaviour of new and classic gradient
algorithms is still limited, and existing analysis mostly focused on bilinear games [5, 11] or strongly-

convex-strongly-concave games [17, 21, 29]. Non-zero-sum bilinear games, on the other hand, are
PPAD-complete [4] (for the definition see [24]; for finding approximate Nash equilibria, see e.g. [6]).

In this work, we focus on bilinear zero-sum games as a first step towards understanding general
min-max optimization, although our results apply to some simple GAN settings [10]. It is well-known

that certain gradient algorithms converge at a linear rate on bilinear zero-sum games [17, 21, 26, 16].
These iterative algorithms usually come with two versions: Jacobi style or Gauss–Seidel (GS) style. In
Jacobi style, we update the two sets of parameters (i.e., x and y) simultaneously whereas in GS style we

update them alternatingly (i.e., one after the other). Thus, Jacobi style updates are naturally amenable
to parallelization while GS style updates have to be sequential, although the latter are usually found
to converge faster (and more stable). In numerical linear algebra, the celebrated Stein–Rosenberg

theorem [28] formally proves that in solving certain linear systems, GS updates converge strictly faster
than their Jacobi counterparts, and often with a larger set of convergent instances. However, this
result does not readily apply to bilinear zero-sum games (see Section 3). Our main goal here is to
answer the following questions about solving bilinear zero-sum games:

• When exactly does a gradient-type algorithm converge?

• What is the optimal convergence rate by tuning the step size or other parameters?

• Can we prove similar things for Jacobi and GS updates as the Stein–Rosenberg theorem?

Contributions In Section 2, we review bilinear games and popular gradient algorithms. On bilinear
games, gradient algorithms have a unified formulation. With this new formulation, we give exact

convergence conditions, and show that alternating updates are more stable than their simultaneous
counterparts in Section 3. We give optimal convergence rates for different algorithms in Section 4 with
supporting experiments in Section 5.

1A more thorough version is published at ICLR 2020 [30].
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2 Preliminaries

Mathematically, zero-sum bilinear games can be formulated as the following min-max problem:

minx∈Rn maxy∈Rn x>Ey + b>x + c>y. (1)

(Throughout for simplicity we assume E is invertible.) For bilinear games, it is well-known that
simultaneous gradient descent does not converge [22] and other gradient-based algorithms tailored for
min-max optimization have been proposed [16, 5, 10, 20]. These iterative algorithms all belong to the

class of general linear dynamical systems (LDSs), and they can be described as:

z(t) =
∑k
i=1 Aiz

(t−i) + d, z(t) := (x(t),y(t)).

The following well-known result decides when such a k-step LDS converges for any initialization:

Theorem 1 (e.g. [12]) The LDS z(t) =
∑k
i=1 Aiz

(t−i) + d converges for any initialization

(z(0), . . . , z(k−1)) iff the spectral radius r := max{|λ| : det(λkI−∑k
i=1 Aiλ

k−i) = 0} < 1, in which case
{z(t)} converges linearly with (asymptotic) exponent r.

Therefore, understanding the bilinear game dynamics reduces to spectral analysis. The (sufficient
and necessary) convergence condition reduces to that all roots of the characteristic polynomial lie in
the unit circle, which can be conveniently analyzed through the celebrated Schur’s theorem [27].

Let us formally define Jacobi and GS updates: Jacobi updates take the form

x(t) = T1(x(t−1),y(t−1), . . . ,x(t−k),y(t−k)),

y(t) = T2(x(t−1),y(t−1), . . . ,x(t−k),y(t−k)),

while Gauss–Seidel updates replace x(t−i) with the more recent x(t−i+1) in operator T2, where T1, T2 :

Rnk×Rnk → Rn can be any update functions. For LDS updates in (2) we find a nice relation between
the characteristic polynomials of Jacobi and GS updates:

Theorem 2 (Jacobi vs. Gauss–Seidel) Let p(λ, γ) = det(
∑k
i=1(γLi + Ui)λ

k−i − λkI), where Ai =

Li + Ui and Li is strictly lower block triangular. Then, the characteristic polynomial of the Jacobi
update is p(λ, 1) while that of the Gauss–Seidel update is p(λ, λ).

Next, we define some popular gradient algorithms for finding saddle points in the min-max problem
minx maxy f(x,y). Unlike their usual presentations, we introduced more “step sizes” for refined analy-

sis, as the enlarged parameter space often contain choices for faster linear convergence (see Section 4).
We only define the Jacobi updates, while the GS counterparts can be easily inferred.

Extra-gradient (EG) We study a generalized version of EG, defined as follows:

x(t+1/2) = x(t) − γ2∇xf(x(t),y(t)), y(t+1/2) = y(t) + γ1∇yf(x(t),y(t)); (2)

x(t+1) = x(t) − α1∇xf(x(t+1/2),y(t+1/2)), y(t+1) = y(t) + α2∇yf(x(t+1/2),y(t+1/2)). (3)

EG was first proposed in [16] with the restriction α1 = α2 = γ1 = γ2, under which linear convergence
was proved for bilinear games. A slightly more generalized version was analyzed in [17] where α1 = α2,
γ1 = γ2, again with linear convergence proved. For later convenience we define βi = αiγi.

Optimistic gradient descent (OGD) We study a generalized version of OGD, defined as follows:

x(t+1) = x(t) − α1∇xf(x(t),y(t)) + β1∇xf(x(t−1),y(t−1)), (4)

y(t+1) = y(t) + α2∇yf(x(t),y(t))− β2∇yf(x(t−1),y(t−1)). (5)

The original version of OGD was given in [5] with α1 = α2 = 2β1 = 2β2, and its linear convergence
for bilinear games was proved in [17]. A slightly generalized version with α1 = α2 and β1 = β2 was
analyzed in [21], again with linear convergence proved.
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Momentum method Generalized heavy ball method was proposed and analyzed in [11]:

x(t+1) = x(t) − α1∇xf(x(t),y(t)) + β1(x(t) − x(t−1)), (6)

y(t+1) = y(t) + α2∇yf(x(t),y(t)) + β2(y(t) − y(t−1)), (7)

as a modification of Polyak’s heavy ball (HB) [25], which also motivated Nesterov’s accelerated gradient
algorithm (NAG) [23]. For bilinear games, HB and NAG are the same and hence we call both the
momentum method. For this algorithm our result below improves those obtained in [11].

3 Exact conditions

With tools from Section 2, we give necessary and sufficient conditions under which a gradient-based
algorithm converges for bilinear games. For simplicity, we mostly take the parameters for the two sets
of variables to be the same, i.e., α1 = α2 = α, β1 = β2 = β and γ1 = γ2 = γ (if available). The same

conditions for more general algorithms can be found in our complete paper.

Theorem 3 (EG) For generalized EG with α1 = α2 = α and γ = β/α, linear convergence is achieved
iff for any singular value σ of E, we have α2σ2+(βσ2−1)2 < 1 for the Jacobi update, and 0 < βσ2 < 2
and |ασ| < 2−βσ2 for the GS update. If 2β+α2 < 2/σ2

1, the convergence region of GS updates strictly
include that of Jacobi updates.

Theorem 4 (OGD) For generalized OGD with α1 = α2 = α, linear convergence is achieved iff for

any singular value σ of E, we have: 0 < βσ < 1, β < α < β 3−β2σ2

1+β2σ2 for the Jacobi update, and

|α+β|σ < 2, |1 +αβσ2| > 1 +β2σ2 for the GS update. The convergence region of GS updates strictly
include that of Jacobi updates.

Theorem 5 (momentum) For generalized momentum with α1 = α2 = α, the Jacobi update never
converges, while the GS update with β1 = β2 = β converges iff for any singular value σ of E, we have
−1 < β < 0, |ασ| < 2(1 + β). If β2 = 0, the exact condition is −1 < β1 < 0 and 0 < ασ1 < 2

√
1 + β1.

Prior to our work, only sufficient conditions for linear convergence are given for the usual EG and

OGD; see Section 2 above. For the momentum method, our result improves upon [11] where the
authors only considered specific cases of parameters. For example, they only considered β ≥ −1/16 for
Jacobi momentum, and β1 = −1/2, β2 = 0 for GS momentum. Our Theorem 5 gives a more complete

picture. (For an even more general result please refer to our ICLR paper.)

In the theorems above, we use the term “convergence region” to denote a set of the parameters
(α, β or γ) where the algorithm converges. Our result shares similarity with the Stein–Rosenberg
theorem [28], which only applies to solving linear systems with non-negative matrices. In this sense,
our results extend the Stein–Rosenberg theorem to cover nontrivial bilinear games.

4 Optimal rates

In this section we study the optimal convergence rates of EG and OGD. We define the exponent of
linear convergence as r = limt→∞ ||z(t)||/||z(t−1)||. For ease of presentation we fix α1 = α2 = α > 0

and we use r∗ to denote the optimal rate (w.r.t. the parameters α, β, γ). In Theorem 7, the exact
formula β∗ in Jacobi OGD, as well as more relevant results, can be found in our full paper.

Theorem 6 (EG optimal) Both Jacobi and GS EG achieve the optimal exponent of linear convergence

r∗ = (κ2 − 1)/(κ2 + 1) at α→ 0 and β1 = β2 = 2/(σ2
1 + σ2

n). As κ→∞, r∗ → 1− 2/κ2.

Theorem 7 (OGD optimal) For Jacobi OGD with β1 = β2 = β, to achieve the optimal linear con-
vergence, we must have α ≤ 2β. At β = α/2 = β∗, r∗ ∼ 1 − 1/(6κ2) at large κ. For GS OGD with
β2 = 0, r∗ =

√
(κ2 − 1)/(κ2 + 1) ∼ 1− 1/κ2, at α =

√
2/σ1 and β1 =

√
2σ1/(σ

2
1 + σ2

n).
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5 Experiments

Bilinear game We experiment on a bilinear game and choose the optimal parameters as suggested in
Theorem 6 and 7. The results, shown in Figure 1, agree with our theory.

Figure 1: Linear convergence of optimal EG, Jacobi OGD, Gauss–Seidel OGD in a bilinear game

Wasserstein GAN As in [5], we consider a WGAN [1] that learns the mean of a Gaussian: with s(x)
the sigmoid function. Near the saddle point (θ∗, φ∗) = (0, v) the min-max optimization can be treated

as a bilinear game. Since we are doing stochastic versions of the algorithms, we should not expect they
will converge exactly to a saddle point. Instead, convergence to a neighborhood is good enough.

With GS updates, we find that Adam [15] diverges, SGD goes around a limit cycle, and EG con-
verges, as shown in the left panel of Figure 2. Our next experiment shows that generalized algorithms

may have an advantage over traditional ones. Inspired by Theorem 6, we compare the convergence
of two EGs with the same parameter β = αγ, and find that with scaling (decreasing α), EG con-
verges faster to a neighborhood of the saddle point with less oscillation, as shown in the right panel of
Figure 2. Note that we always use the squared distance as a measure of convergence.

Figure 2: Left: comparison among gradient algorithms; Right: the scaling effect of EG

Finally, we compare Jacobi updates with GS updates. In Figure 3, GS updates converge even when
the corresponding Jacobi updates do not.
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Figure 3: Jacobi vs. GS updates. Left: OGD with α = 0.2, β1 = 0.1, β2 = 0; Right: Momentum with α = 0.08,
β = −0.1. We plot only a few epochs for Jacobi updates if they do not converge

6 Conclusions

In this paper, we study convergence of gradient algorithms on bilinear games. Surprisingly, even
such a simple game could provide us with great insights for practice. The lessons we have learned
are: alternating updates are often more stable than simultaneous updates; by generalizing existing

algorithms we can achieve faster convergence rates. We provide guidance for choosing hyper-parameters
in bilinear games which could potentially generalize to GAN training.
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Abstract: Binary neural networks improve computationally efficiency of deep models with a large margin. However,

there is still a performance gap between a successful full-precision training and binary training. We bring some insights

about why this accuracy drop exists and call for a better understanding of binary network geometry. We start with an-

alyzing full-precision neural networks with ReLU activation and compare it with its binarized version. This comparison

suggests to initialize networks with random bias, a counter-intuitive remedy.

1 Introduction

It is common to use low-bit quantized networks such as Binary Neural Networks (BNNs) [1] to imple-
ment deep neural networks on edge devices such as cell phones, smart wearables, etc. BNNs only keep

the sign of weights and compute the sign of activations {−1,+1} by applying the sign function in the
forward pass. In backward propagation, BNN uses Straight-Through-Estimator (STE) to estimate the
backward gradient through the sign function and update on full-precision weights. The forward and
backward loop of a BNN, therefore, becomes similar to the full-precision neural network with hard

hyperbolic tangent htanh activation. The htanh function is a piece-wise linear version of the nonlinear
hyper-bolic tangent, and is known to be inferior in terms of accuracy compared to ReLU-like activation
function. Although the analysis is based on htanh function, this conclusion equally applies to BNNs

that use STE, a htanh-like, back propagation scheme. Other saturating activations like hyperbolic
tangent and sigmoid commonly applied in recurrent neural networks and attention-based models may
benefit from this resolution as well. Among others, [3] recommends an initialization scheme for bi-

nary weights but ignores the bias term. [2] utilized automatic search techniques on searching different
activation functions. Most top novel activation functions found by the searches have an asymmetric
saturating regime, which is similar to ReLU.

2 Full-precision networks

A typical full-precision neural network block can be described by

xi+1 = ReLU(W ixi + bi)

W i ∈ Rm×n, bi ∈ Rm, xi ∈ Rn, xi+1 ∈ Rm.
(1)

Neural networks are trained using the back-propagation algorithm. Back propagation is composed
of two components i) forward pass and ii) backward propagation. In the forward pass, the loss func-
tion L(.) is evaluated on the current weights, and in backward propagation, gradients and then weights

are updated sequentially.

Assume weight vectors W i
j have unit norm. It is a reasonable assumption when the network has

batch normalization layers in which all neuron responses are normalized, as the magnitude of the
weight vectors does not affect the layer output. The jth neuron response in the (i + 1)th layer are
computed as

xi+1
j =

{
W i
jx
i + bij W i

jx
i + bij > 0

0 W i
jx
i + bij ≤ 0

(2)

First, the input data points xi are projected to the jth row vector of the weight matrix. The dot
product of W i

j and xi are cut by the corresponding bias term bij , i.e. the output xi+1
j is set to zero if

the dot product is smaller than the threshold, see Figure 2 (left panel). A hyper-plane whose normal
direction defined by W i

j divides the input space into two parts: i) activated region (non-saturated
regime) and ii) non-activated region (saturated regime), see Figure 1. If the data point xi falls on the

positive side of a hyper-plane (activated region), the hyper-plane is activated by xi. Consequently,
xi+1
j is positive. Otherwise, xi+1

j equals zero and remains inactive.
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Figure 1: Activated and non-activated regions of ReLU (left panel). Activated region of ReLU at initialization (right
panel)
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Figure 2: Geometric behavior of ReLu during forward pass, trained hyperplanes (left panel) and their geometry (right
panel)

The weight matrix W i of size m× n and the bias vector bi of size m× 1 define m hyper-planes in
the n-dimensional input space, see Figure 2 (right panel).

During backward propagation, the backward gradient update on W i
j and xi are computed using





dL
dW i

j
= dL

dxi+1
j

∗ dx
i+1
j

dW i
j

dL
dbij

= dL
dxi+1

j

∗ dx
i+1
j

dbij

dL
dxi = dL

dxi+1
j

∗ dx
i+1
j

dxi

(3)

For the case of ReLU activation

dxi+1
j

dW i
j

=

{
xi W i

jx
i + bij > 0

0 W i
jx
i + bij ≤ 0

(4)

dxi+1
j

dbij
=

{
1 W i

jx
i + bij > 0

0 W i
jx
i + bij ≤ 0

(5)

dxi+1
j

dxi
=

{
W i
j W i

jx
i + bij > 0

0 W i
jx
i + bij ≤ 0

(6)
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The activation function only allows the gradients from data point on the activated region to back-
ward propagate and update the hyper-plane (4).

From the hyper-plane analysis, we realize that ReLU activation has three ideal properties i) the
diversity of activated regions at initialization, ii) The equality of data points at initialization, iii)

The equality of hyper-planes at initialization which we discuss each property in more details later.
These may explain why ReLU activation outperforms the traditional Hyperbolic tangent or sigmoid
activations. To argue each property, let us suppose that the distribution of the dot products is zero-

centered. This assumption is automatically preserved in neural networks with batch normalization
layer.

i) Region diversity: the activated regions of hyper-planes solely depend on the direction of the weight
vector, which is randomly initialized. This allows different hyper-planes to learn from a different subset

of data points, and ultimately diversifies the backward gradient signal. ii) Data equality: an arbitrary
data point xi, is located on activated regions of approximately half of the total hyper-planes in a
layer. In other words, the backward gradients from all data points can pass through the approximately

same amount of activation function, update hyper-planes, and propagate the gradient. iii) Hyperplane
equality: an arbitrary hyper-plane W i

j , is affected by the backward gradients from approximately 50%
of the total data points. All hyper-planes on average receive the same amount of backward gradients.
Hyper-plane equality speeds up the convergence and facilitates model optimization, see Figure 1 (right

panel).

The performance gap between ReLU activation and htanh activation is caused by their different
activated region distribution, see Figure 3. Clearly, htanh activation is not as good as ReLU in defining
balanced and fair activated regions. However, we analyze each property for htanh as well.

i) Region diversity: activated regions of htanh are not as diverse as ReLU. Activated regions of
htanh cover only the area close to the origin. Assuming Gaussian data, this is a dense area that
the majority of data points are located in.

ii) Data equality: data points are not treated fairly htanh activation function. Data points that

closer to the origin can activate more hyper-planes than the data points far from the origin. If
the magnitude of a data point xi is small enough, it can activate all hyper-planes in the same
layer, see the deep-red region of Figure 3 (right panel). As a consequence, in backward gradients,

few data instances affect all hyper-planes. In other words, the backward gradients from a part of
the training data have a larger impact on model than others. This imbalance ultimately affects
model generalization problem since the model training focuses only on a subset of the training
data points close to the origin.

iii) Hyperplane equality: The initial activated regions should cover a similar-sized subset of the

training data points overall, and this property is shared in both ReLU and htanh activations.
Similar analysis also applies to other activation functions with the zero-centered activated region,
like sigmoid or tanh.

3 Training acceleration

Here we proposed a simple initialization strategy to alleviate the data inequality issue and improve
activated region diversity for the htanh activation relying on our geometric insight described earlier.
We argue bias initialization with a uniform distribution between [−λ, λ], where λ is a hyper-parameter
is a quick remedy. With random bias initialization, the data points that far from the origin can activate

more hyper-planes. If λ > max(‖x‖) + 1, all data points activate approximately the same number of
hyper-planes during backward propagation, so data equality can be achieved. Also, with the diverse
initial activated region, different hyper-planes learn from different subset of training data points.

However, this initialization strategy comes with a drawback. Hyper-plane equality no longer holds

when the biases are not set to zero. Hyper-planes with larger initial bias have less activated data.



G–2020–23–EIW07 Les Cahiers du GERAD

𝒙𝒊

𝑾𝒋
𝒊

𝑊𝑗
𝑖𝑥𝑖 + 𝑏𝑗

𝑖 = 1

𝑊𝑗
𝑖𝑥𝑖 + 𝑏𝑗

𝑖 = −1

−𝟏 < 𝑾𝒋
𝒊𝒙𝒊 + 𝒃𝒋

𝒊 < 𝟏

Activated region

𝑾𝒋
𝒊𝒙𝒊 + 𝒃𝒋

𝒊 < −𝟏

Non-activated region

𝑾𝒋
𝒊𝒙𝒊 + 𝒃𝒋

𝒊 > 𝟏

Non-activated region
Activated 

Region

Non-activated 
Region

Non-activated 
Region

Figure 3: Activated region and non-activated region of htanh activation function(left panel). Activated region of Hard
Tanh at initialization (right panel)

Therefore, choosing the optimal value of λ is a trade-off between the hyper-plane equality and the

data equality. Experiments below shows that the validation curve becomes unsteady if λ value set to
too high. Empirically, with a batch normalization layer, λ ≈ 2 provide a good initial estimate. In this
case, the activated regions covering from −3 to +3, so it allows the gradients from almost all data
points to propagate. Our experiments shows small λ also helps to improve the performance of ResNet

architecture.

4 Numerical Results

The proposed bias initialization method is evaluated on the CIFAR-10. The network architectures
are based on the original implementation of the BNN [1]. We choose the VGG-7 architecture and the
ResNet architecture.

The VGG-7 architecture, is a simple and over-parameterized model for CIFAR 10. This is an ideal
architecture to compare the performance between different activations. Figure 4 confirms that the
random bias initialization strategy helps to reduce the performance gap between htanh and ReLU
activation. A similar effect is observed for ResNet type architectures.
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Figure 4: Training of full-precision ResNet architecture (top left panel) Binary VGG-7 architecture (top right), and Binary
ResNet (bottom panel)
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We also tested the proposed bias initialization on the ResNet-like architecture. The results are
depicted in Figure 4 re-assures that bias initialization improves htanh and pushes it toward ReLU
accuracy, see Table 1.

Table 1: Validation error rate % for full-precision training, λ = 0 coincides with common deterministic initialization

Activations VGG-7 ResNet

ReLU (Baseline) 6.98 9.45
htanh 10.91 10.63
htanh (λ=0.5) 9.99 9.87
htanh (λ=1.0) 9.15 10.47
htanh (λ=1.5) 8.36 10.13
htanh (λ=2.0) 7.98 10.23
htanh (λ=2.5) 7.83 9.84

Binary training that use STE is similar to htanh activation. We expect to observe a similar effect

in BNN training with STE gradient approximator. The validation error rate is summarized in Table 2.
In the Binary VGG-7 experiments, we reduced the accuracy gap between full-precision network with
ReLU activation and BNN from 4% to 1.5%. The bias initialization strategy is effective to close the

gap on binary ResNet architecture by almost 1%, even while the full-precision model even under-fits
on CIFAR10 data.

Table 2: Validation error rate % for Binary training, λ = 0 coincides with common deterministic initialization

λ Binary VGG-7 Binary ResNet

0.0 10.77 23.11
0.5 9.57 22.31
1.0 9.17 22.83
1.5 8.57 22.56
2.0 8.56 22.47
2.5 8.53 22.19
3.0 8.48 22.30

5 Conclusion

We analyzed different geometric behaviour of ReLU activated and hard tanh activated full-precision
neural network. The analysis implies the superior performance of ReLU activation may come from its

three preferred geometric properties, region diversity, data equality and hyper-plane equality. However,
a theoretical investigation is required to prove this claim. We proposed to use random bias initialization
in hard tanh activated neural network to micmic the geometric properties of ReLU. The same analysis

can also apply to binary neural networks with Straight-Through-Estimator back-propagation scheme.
Our numerical experiments confirm our geometric intuition. The CIFAR10 experiments show the
proposed random bias initialization reduces the performance gap between ReLU activation and hard
tanh activation on ResNet and VGG architectures. This initialization strategy improves the binary

neural network performance as well.
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les exigences légales associées à ces droits. Ainsi, les utilisateurs:
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Abstract: Training large-scale deep neural networks is a long, time-consuming operation, often requiring many

GPUs to accelerate. In large models, the time spent loading data takes a significant portion of model training time. As

GPU servers are typically expensive, tricks that can save training time are valuable. Slow training is observed especially

on real-world applications where exhaustive data augmentation operations are required. Data augmentation techniques

include: padding, rotation, adding noise, down sampling, up sampling, etc. These additional operations increase the

need to build an efficient data loading pipeline, and to explore existing tools to speed up training time. We focus on

the comparison of two main tools designed for this task, namely binary data format to accelerate data reading, and

NVIDIA DALI to accelerate data augmentation. Our study shows improvement on the order of 20% to 40% if such

dedicated tools are used.

1 Introduction

Deep neural networks have achieved great successes in various domains such as computer vision [3, 2],
natural language processing [10, 9], and speech recognition [17] among others. This is a result of

deeper and wider models, which allow modeling large and complex data. As computing hardware
has improved, larger data sets are analyzed. It appears that processing power always falls behind
data volume and model size. In order to make the training process more efficient, several fields are

developing new techniques such as providing dedicated tools to accelerate training and inference, as
well as neural model compression to deploy a simpler model with comparable accuracy but fewer
operations.

Training acceleration is a difficult task. Let’s understand the core of the problem using an a very
simple neural network, e.g. logistic regression. Suppose N pairs of input features of dimension d,

say xi and binary output data, say yi are available (xi, yi), i = 1, . . . , N . A logistic regression model
is equivalent to a fully-connected network with a single hidden layer and a single neuron. As the data
size gets bigger in terms of N and d, training requires more computation.

A training process optimizes a loss function, here

L(w) =−
n∑

i=1

yi log σ(x>i w)

+ (1− yi) log(1− σ(x>i w)),

(1)

where

σ(x) = {1 + exp(−x)}−1

is the sigmoid activation. For the case of logistic regression iterative re-weighted least squares is often
used to optimize L, which is equivalent to Newton’s method. Newton’s method starts from an initial
estimate w0 and updates

wt+1 ← wt −H−1∇L(w) |w=wt (2)

where H is the d× d Hessian of L and ∇L =
∑n
i=1∇Li(w) is the sum of individual gradients, each of

length d. Computing the local approximation of H =
∑n
i=1 xix

>
i is of O(nd2) and factorizing it is of

O(nd3), if not impossible.

Increasing the number of data points N →∞ theoretically makes the optimization easier, because

L(w) has more curvature as N increases, a blessing. However, computation of L(w), ∇L(w), and
H becomes a curse since all of these quantities are in the form of a sum and their computation may
lead to memory overflow. Optimization using Newton’s method becomes increasingly hard with large
feature size d. Large features are common in almost all machine learning challenges. The remedy for

large N is to break computations into smaller sub-operations. The remedy for large d is to switch from
a second-order approximation, i.e., Newton’s method, to a first-order approximation, i.e., the gradient
method.
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Computing partial sums is a simple way to overcome the large N issue, so that each partial sum
remains within the memory resource constraints. Then the final quantity is computed by summing
the partial sums, perhaps with a proper re-scaling. The idea of partial sum is somehow a re-shape of

the mini batch training approach.

In neural networks with a large d and n, numerical optimization is simplified to gradient descent
in which the hessian H is replaced by the identity matrix with a positive scalar learning rate

H =
1

η
I, η > 0

so the weight update is simplified to

wt+1 ← wt − η∇L(w) |w=wt
. (3)

Furthermore, to benefit from parallel computation, N data points are arranged in n random mini
batches, each of size B, i.e. N = nB. Each batch has its own gradient

∇Lb(w) =
B∑

i=1

∇Lbi(w),

which is equivalent to scaling η by n, on average. This allows computations to be run in parallel for
each batch [4, 16].

Even if computations are run in parallel, all data still needs to be fed to the optimizer in several
rounds of epochs, similar to Newton’s method. Therefore, investing in an efficient data loading pipeline
plays an important role in training speed [18].

The rest of the paper focuses on clarifying the benefit of a dedicated tool such as DALI1 for

managing data loading implemented by NVIDIA in PyTorch, while a using a convenient data reading
format such as Hierarchical Data Format 5 (HDF5) [14] or TensorFlow Record [1] to accelerate file
reading.

Data loading is a crucial part of model training in neural networks. It begins by reading the data
from a secondary memory storage, such as Solid State Drive, then caches it into a primary memory

storage, such as Random Access Memory. This data transfer includes extra operations like data
augmentation to feed the data to the model. See Figure 1.

Read Preprocessing Data	
augmentation

	Training	
	operations

Open,	(seek),	read
and	(close)

Decode,	resize,	gray
scale	normalize,	etc.

Random	resize	and
crop,	color	jitter,	add

noise,	etc.

Forward	pass	and
backward	pass

Load	
on	GPU

Convert	to	tensor
and	put	the	data	on

GPU

Read Preprocessing Data	
augmentation

	Training	
	operations

Load	
on	GPU

Original	
Pipeline

DALI	
Pipeline

Data Loading Process Model Training

Figure 1: Batch training sequence performed on a GPU with and without DALI

There are two main issues in the data loading process i) reading data directly from files is inefficient

ii) resource allocation for extra operations on data overloads the CPU.

Reading data from individual files directly is slow. This happens when the entire data set is not
cached in the local memory. Every single file is opened, is read, and is closed sequentially. These
sequential operations add considerable overhead to the file retrieval time. One solution to prevent

1https://github.com/NVIDIA/DALI
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this overhead is to use the Hierarchical Data Format version 5 (HDF5) [14], which has an open-source
library to store, manipulate, and manage the large data set. HDF5 format stores multiple data sets
in one file as a multidimensional array of binary data. It also groups storage layout by storing data

in fixed-size chunks on disk. Another alternative to HDF5 is the TensorFlow Record (TFRecord) [1],
which uses a sequence of binary strings to store data. It allows large data sets to be sequentially loaded
to the local memory.

The whole process of data loading is managed by CPU, which can create a bottleneck for model

training. This bottleneck happens normally in the case of multi-node-multi-GPU training, as loading
batches of data takes more time than forward-backward propagation. To prevent the CPU bottleneck
issue, NVIDIA Data Loading Library (DALI) helps by sharing some data loading tasks between the
CPU and GPU, to prevent the CPU bottleneck issue. Figure 2 shows how employing this library

improves the data loading process considerably. DALI is a collection of highly optimized building
blocks and execution engines which provides a full data accelerated pipeline: from reading the data to
preparing for training and inference.

Figure 2: Logarithmic scale of average time of data loading (in micro second) for ResNet-50 [12] on ImageNet data set
with batch-size B = 256

2 Data format

In order to explore the effect that data format and resource allocation has on data loading performance,

we present four pipelines for data loading: with/without dedicated reader, and with/without resource
allocation. We used PyTorch version 1.2.0 to implement these pipelines on a computer vision task.

The PyTorch file reader pipeline is the PyTorch DataLoader class which combines data set object
with a sampler object, to provide a single or multi-process iterators over the data set. This pipeline

reads data from individual JPEG files on the storage and uses the PyTorch Transforms class to chain
several image transformation operations together. This prepares the data for training by doing the
data augmentation. By default, all these operations are directed to the CPU.

The dedicated reader pipeline is also based on the PyTorch DATALOADER class. This pipeline

stores data differently, i.e. instead of reading data from individual JPEG files, the entire train and
validation data sets are stored as two HDF5 files.

3 Resource allocation

This pipeline uses the NVIDIA DALI library to read data from JPEG files, process and then feed
GPUs for training. In the DALI pipeline, the data loading process is shared between CPU and GPU.

This means that all operations on data, such as resizing, cropping and data augmentation can be run
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on CPU, GPU, or a mix of both. To measure the effect of file formatting, data file retrieval has been
done in two cases: reading directly from JPEG files and using a dedicated file reader to read data from
TFRecord data set.

4 Training time improvement

We summarize our experiments using four configurations, i.e., with/without a dedicated file reader,
and with/without DALI. In order to compare these pipelines, we performed several experiments in
two use cases: with few or with extensive data augmentation operations. By few operations, we mean
resize with random crop and random horizontal flip operations and by extensive, we mean resize with

random crop operation, random horizontal flip operation and random adjustment of the brightness,
contrast and saturation of an image. Simple data augmentation is applied in most deep learning
prototypes, while extensive data augmentation is very common in industry to ensure model robustness

in real products. Our experiments are run twice, once on small subset of InsightFace [6, 7, 8, 11] and
once on large ImageNet data set [5].

Figure 3 shows that a dedicated data reader is enough to improve epoch time, but only if data is
small. However, the DALI pipeline still is a winner for small data requiring extensive data augmenta-

tion. This is because DALI distributes the data augmentation operation between CPU and GPU to
avoid CPU overcharge. This can be seen by comparing the top left panel, with the top right panel.

If extensive data preprocessing operations are performed in a larger ImageNet data, CPU work-
load becomes the bottleneck even with few data augmentation operations. Consequently, epoch time

increases in data loading and DALI can avoid the CPU overcharge by performing some of these oper-
ations on GPU. Figure 3 (bottom right) shows that DALI improves data loading from 2200 seconds to

Figure 3: Epoch time for the small subset of InsightFace (top panels) and large ImageNet data (bottom panels), while
few data processing operations are performed (left panels) and while extensive preprocessing operations are performed
(right panel). The experiments in top panels were performed on 4 GPUs (NVIDIA TITAN 12 GB memory) and in bottom
panels on 8 GPUs (NVIDIA TESLA V100 32GB memory)
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1300 seconds, to gain performance benefit of about 40%. Using only a dedicated reader without DALI
improves the training time from 1800 seconds to 1300 seconds, giving a performance improvement of
30%. This effect is also visible in Figure 4 on a single epoch time. DALI fuses multiple operations such

as cropping and normalizing and run it on one GPU CUDA kernel. This speeds up data augmentation
process by reducing the number of memory access.

Figure 4: Time comparison for few (gray) and extensive (dark) data augmentations

5 Data loading improvement

Let’s move from epoch time to data loading time by removing forward and backward pass from training
time, see Figure 1. Data loading contributes about 40% to the epoch time, see Figure 5.

Figure 5: Percentage of data loading time (gray) added on top of training time (dark) in a single training epoch. Each
data loader test case has two bar charts for showing few and extensive data augmentations

Figure 6 confirms that the DALI pipeline considerably improves data loading by a factor of 100×.
However, for very large models, the GPU is only required to perform forward and backward passes,
so loading the CPU for data is wiser. Therefore, it is important to keep the CPU and GPU load
well balanced through DALI load option. Figure 7 confirms the same message when training time is

stacked on data loading time to measure the epoch time overall.

In Figure 7 data loading is stacked on training to reflect the epoch time overall. There is a small

difference between the common data loader pipeline and NVIDIA DALI data loader pipeline. Using
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the GPU resources for data loading may slow down the overall model training time if it fails to balance
CPU and GPU load.

Figure 6: Logarithmic scale plot of average data loading time (per epoch), four data loader pipelines: with/without DALI,
and with/without a dedicated reader. Time for few (gray) and extensive (dark) data augmentations

Figure 7: Training time on four data loader pipelines: with/without DALI, and with/without a dedicated reader. Each
data loader pipeline has two bar charts for showing few and extensive data augmentations

By default, DALI uses the first GPU slot to perform data loading process. However, the NVIDIA

APEX library uses multiple GPUs for this task. This flexibility becomes increasingly important for
large models while all data and models cannot be loaded into a single GPU and multi-GPU operation
becomes a necessity.

6 Conclusion

NVIDIA DALI provides an effective alternative to common data loading process. It provides a full

pipeline of optimizations including data readers and tools to accelerate training and inference. It
also enables most data augmentation operations to be performed on GPU and on CPU. In addition,
DALI prepared a full pipeline for common data sets like MS-COCO data set [15] as well as provides
a reader for TFRecord and CAFFE LMDB data formats [13]. DALI remains extremely flexible by

supporting ExternalSource operator so that implementation of unsupported readers such as HDF5
becomes feasible.
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Here, we focused on large models, in which DALI GPU improves training time. However, training
is faster with DALI CPU for small networks.
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Abstract: In time-to-event data analysis, the main object of interest is the time elapsed between the occurrence of

two ordered events, say E1, E2. Sampling from the incident population, i.e., subjects who have experienced the incidence

of E1 before being sampled regardless of the occurrence of E2, is the gold standard in follow-up studies. Yet often in

practice, it is more feasible to sample from the prevalent population, i.e., subjects who have already experienced E1, but

not E2. It is well known that the prevalent sampling design induces sample selection bias. Moreover, time-to-event data

are usually subject to censoring which causes partial loss of information on a fraction of the subjects. Here, we discuss

the inefficiency of the conventional learning methods due to ignoring sample selection bias and show how this problem

can be avoided by properly incorporating the selection bias into the analysis. Arguments are backed by simulation studies.

1 Introduction

Time-to-event is the output of interest in numerous disciplines spanning epidemiology, economics,
econometrics, gerontology, and etc. It is defined as the amount of time elapsed from the occurrence of
an initiating event until that of a second event called terminating event. Both events are pre-defined.

For example, the initiating event might be birth, onset of a disease, or an aircraft’s release, while
the terminating event could be retirement, death, or the aircraft’s phase-out, respectively. Time-to-
event modelling is a ubiquitous problem, an evidence of which is the existence of multiple domains,

such as survival analysis, reliability theory, event history analysis, duration modelling, etc., all with
similar objectives. As a result, a vast variety of methods have been developed for this purpose.
Survival analysis alone hosts a great deal of theory, a big portion of which is related to modelling
potential associations between the time-to-event or an individual’s survival time and a set of observed

measurements for that individual. Naturally, any data-driven inference depends on characteristics of
the training data. That is, any quality of the data, potentially affecting the outcome of the analysis,
should be properly incorporated in the learning process; otherwise the algorithm’s learnability, i.e.,

the ability to extract relevant information might be influenced negatively. Regarding time-to-event
data, there are several points worth considering. One is that data may suffer from multiple types of
incompleteness, ignoring which may cause serious issues. The gold standard in time-to-event data is to
conduct follow-up studies on randomly selected cases from the incident population, i.e., subjects who

have not experienced the initiating event before the study starts. Logistic or other constraints may,
however, preclude the possibility of conducting incident cohort studies. A feasible alternative in such
cases is to conduct a cross-sectional prevalent cohort study for which one recruits prevalent cases, that

is, subjects who have already experienced the initiating event, but not the terminating event. When
the interest lies in estimating the lifespan between the initiating and the terminating event, subjects
may be followed prospectively either until the terminating event happens or they are lost to follow-up,

whichever occurs first. This study design gives rise to two types of incompleteness: First, the response
variable, being lifetime, is observed for some subjects while for others we only know that it is greater
than some observed period, called censoring time. This type of incompleteness due to censoring is
called right censoring. Learning from such data for prediction and generalization falls, roughly, into

the realm of semi-supervised learning with the difference that there is partial information on subjects
whose response is not observed, hence the name semi+-supervised learning. Second, it is well known
that prevalent cases have, on average, longer lifespans since longer survivors are more prone to be

selected at the recruitment time. As such, a prevalent cohort comprises a biased, and non-random
sample of the target population. An important feature of such data is that the response selection bias
induces a bias on the feature space’s sampling frame. This is so since certain feature values could be
preferentially selected into the sample, being linked to the long-term survivors, who themselves are

favored by the sampling mechanism. This systematically introduced bias comprises the second type
of incompleteness, called sample selection bias. Here, we discuss different challenges in analysing and
learning from such data. Particular attention is paid to the case where the chance of being selected into

the sample is proportional to the survival time, the so-called length-biased sampling. Especially, we
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consider the learning problem in (i) variable selection, and (ii) classification settings, and will conclude
that the conventional approach for learning lacks efficiency and describe how this can be fixed.

2 Training data

Throughout this note, uppercase letters denote one-dimensional random variables, while bold upper-
case denotes random vectors. For any subject i, we define the following: The response variable, i.e.,

time-to-event, represented by Ui. The length-biased variables will be marked with a tilde, e.g., Ũi refers
to the length-biased survival time. Naturally, we assume that Ui, Ũi ≥ 0. Also, Zi = (Zi1 , Zi2 , . . . , Zid),
with d ≥ 1, is a vector of covariates. To distinguish biased covariates, we shall use the superscript “∗”.

Realizations of random variables and vectors are shown via lowercase and bold lowercase, respectively.
To avoid cumbersome notation, no distinction between unbiased and biased realizations is made. When
applicable, regression coefficients are denoted by β = (β0, . . . , βd)

>. Nevertheless, θ is used to indicate
the vector of all parameters to be estimated, including the regression ones. Define Ti as the current

lifetime, i.e., the time interval between the initiating event and sampling time. Similarly, the residual
lifetime, denoted by Ri, is defined to be the time interval from the sampling until the terminating
event. Therefore, Ui = Ti +Ri. Also, let Ci denote the censoring time, which is the time elapsed from

the sampling of the subject until its possible censoring. One may observe only Ri ∧ Ci = min(Ri, Ci)
due to possible censoring. Additionally, we define Xi := Ti + (Ri ∧ Ci). A failure indicator δi is
defined to be a Bernoulli random variable indicating whether a subject has failed or censored; that is,

δi = 1{R≤C}. Finally, the training data is assumed to be of the following form:

S̃c = {(T̃i, R̃i ∧ Ci, δi,Z∗i ) : i = 1, . . . , n},

with Z∗i = (Z∗i1 , . . . , Z
∗
id

). Recall that S̃c is length biased (see Figure 1).

T

U

U
=
T

Prevalent
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(U > T )

Non-Observed
Population

(U < T )

Figure 1: Prevalent vs. Incident Populations: The upper triangle depicts the prevalent population, while the incident
population consists of both upper and lower triangles

3 Conditional vs. joint approaches

Consider the regression problem

Ui = fβ(Zi) + εi, i = 1, . . . , n (1)

where Ui is the response, Zi ∈ Rd a vector of covariates, β ∈ Rd+1 vector of coefficients, fβ a real-

valued function of Zi, and εi a suitable error term independent from Zi. The core of the conventional
approach is utilizing the conditional distribution of Ui given Zi for estimation. Bergeron et al. [2]
showed that, with left truncation, the conditional likelihood LI yields biased estimation because it

ignores the information carried by the selection-biased covariates. Moreover, they established that, in
contrast, grounding the analysis in the joint distribution of the covariates and response incorporates
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this information into the analysis and, consequently, produces superior estimation. Let LJ denote the
joint likelihood. Note that LJ(θ) = LI(θ) pZ∗(z), with pZ∗(z) representing the distribution of the
biased covariate Z∗. Following the same view as Bergeron et al., we study the impact of the choice of

the likelihood function on variable selection and classification.

4 Variable selection

Suppose that in equation (1), fβ(Zi) = β0 + β1Z1 + · · ·+ βdZd. Although, training data S̃c contains
d-dimensional features Z∗i , not all of them are necessarily related to Ui. In other words, if β0 =

(β0
1 , . . . , β

0
d) is the true underlying regression coefficient, then there may exist some j’s with 1 ≤ j ≤ d

such that β0
j = 0. Variable selection in this setting involves finding truly non-zero entries of the

regression coefficient β in (1) using the train data S̃c. Let an arbitrary model M be denoted by the set

of indices of non-zero entries of the corresponding regression coefficient, i.e., for instance, M = {j1, j2}
is the model corresponding to the family of all β’s with their only βj1th and βj2th entries being non-
zero, where 1 ≤ j1, j2 ≤ d. (Note that such β is not unique.) Let M0 denote the true model, i.e., the

model corresponding to β0, and M be the set of all candidate models. M may or may not include
M0. Following [8], we define

• Mo := {M ∈M : M0 ⊆M}, called the set of correct models, and

• Mu :=M\Mo, set of incorrect models.

Correct models might be inefficient because of their superfluous complexity. The optimal candidate
model is the least complex model in Mo, denoted by M?. Selecting a model from Mu means missing
at least one of the true predictors and, hence, must be avoided. Particularly, as far as revealing the
true risk factors is the main interest, it is ultimately desirable for a learning algorithm whose purpose

is discovering the true non-zero coefficients not to choose an underfitted model, i.e., from Mu. In
the literature numerous likelihood-based criteria has been introduced for model selection (which is, in
the present setting, equivalent to variable selection). Examples include Akaike Information Criterion

(AIC) [1], Bayesian Information Criterion (BIC) [7], etc, among others. It can be shown that, under
length-biased and right-censored training data, employing LJ as the baseline likelihood function for
variable selection is more efficient compared to its counterpart LI . Roughly, a selection criterion based

on LJ takes less samples to find M? in comparison to it being based on LI . In addition to theoretical
justifications, simulation studies, presented in section Simulation Study, also supported this suggestion.

5 Classification

Recently, adopting machine learning techniques has attracted huge attention amongst researchers and

policy makers in health care related domains. To a considerable extent, this has been attributed to the
swiftly increasing availability of patient records through electronic health records data (EHR). EHR
provide access to a large amount of rich data extracted from clinical and administrative data bases. An

important question in patient care management is to predict the risk of experiencing a certain outcome,
e.g., recurring a health condition, within a particular time frame, say 1 year. However, due to the
specific properties of EHR, including length bias and censoring, most of well-known learning techniques

cannot be applied naively. Several ad hoc approaches have been tried previously to adapt some machine
learning techniques to EHR data but these methods either involve even further loss of information, e.g.,
by ignoring censored objects, or require the data to be tweaked unnaturally (see [10]). On the other
hand, there have been several successful treatments of right-censored data using, for instance, support

vector machines, decision trees, and random forests (see, e.g., [3, 4, 5, 6, 9], among others). What is
mostly missing in the literature is difficulties induced by left-truncation. This is another problem that
we try to address appropriately when it comes to the aforementioned classification question. That is,

in presence of length bias how one may correctly model the occurrence of the terminating event in a
certain time interval, especially, we focus on the selection bias imposed to the covariates. This may
play an important role in methods that rely essentially on the characteristics of the covariate or input
space such as tree-based methods.
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6 Simulation study

Figure 2 demonstrates the results obtained from BIC variable selection, based on LI and LJ (BICI ,

BICj), on simulated, length-biased data generated as follows: (1) Fix λ > 0,β, and sample size n; (2)
generate Z ∈ Z := {0, 1}2 according to discrete uniform distribution over Z; (3) generate U such that
U |Z ∼ Exp(λeZβ); and (4) truncate and censor the data based on pre-decided criteria.
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Figure 2: As n increases, underfitting percentage for both BICI and BICj approaches 0 (consistency)

Size n has been gradually increased from n = 50 to 1000 by steps of 25. For each size, 50 different

datasets were randomly generated. Figure 2 compares the estimated probability of selecting an under-
fitted model, i.e., a model containing either Z1 or Z2, applying BICI and BICJ . As depicted, BICJ
constantly exhibits a slightly superior performance.

References

[1] H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic Control,
19(6):716–723, 1974.
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Abstract: Knowledge distillation is a technique that consists in training a student network, usually of a low capac-

ity, to mimic the representation space and the performance of a pre-trained teacher network, often cumbersome, large

and very high capacity. Starting from the observation that a student can learn about the teacher’s ability in providing

predictions, we examine the idea of uncertainty transfer from teacher to student network. We show that through distil-

lation, the distilled network does not only mimic the teacher’s performance but somehow captures the original network’s

uncertainty behavior. We provide experiments validating our hypothesis on the MNIST dataset.

1 Introduction

The complexity of DNNs demands model compression. It is certain that training these very deep
networks can be done with high performance CPUs or even with multiple GPUs. However, these

trained models face a challenging situation during deployment wherein they are supposed to fit in
terms of memory in small sensors, portable devices and are assumed to provide real-time predictions
especially for critical applications such as decision making for autonomous driving. Model compression

is a method of obtaining smaller and lower memory networks, trained to mimic the behaviour of
the original trained large networks. There are different ways to achieve model compression in the
literature. Some approaches concentrated on network pruning such as Weight quantization [9] and

Low-rank approximation [19]. Other methods focused on network distillation [3, 10, 13, 16]. The latter
is a method involving a teacher-student training. The student network, usually a shallow one with
few parameters, is trained to replicate the performance of the teacher network, a very deep network.
Over the past years, there have been many uncertainty estimation methods for Deep Learning models

proposed. Since these deep models are being used for complicated tasks and risk-related applications,
estimating uncertainty in these models has become as important as achieving high performance and
accuracy. There are different types of uncertainty in Deep Learning [11] and there are various ways

of extracting these from models [6, 18]. What all these trends have in common is that they focus
on extracting uncertainty using the original network, which can often be very slow. However, in
applications where execution speed and memory are crucial such in mobile devices, there should be an

alternate way to acquire uncertainty without going through the original large network. In this work,
we investigate whether distillation training results into uncertainty transfer from the teacher to the
student network. The idea is that a student trained through the distillation process could be able
to estimate the teacher network’s capacity in providing prediction. In other words, the student can

measure the teacher’s uncertainty level given an input sample.

2 Related work

2.1 Knowledge Distillation (KD)

The distillation process involves teacher-student training. The student network usually consists of

a smaller and shallower network (i.e. fewer parameters). It is trained to replicate the performance
of the teacher network, which itself consists of a large and deep network. There have been different
variants where different distillation losses were proposed. The work in [2] shows that it is possible

to compress the information from an ensemble of networks into a single one. Some research looked
at the architecture of the fully connected deep networks and distilled their behavior onto shallow but
wider hidden units [1]. Hinton et al. [10] proposed a network that involves the use of parameter called
the temperature factor at the level of logits. This temperature parameter determines how much the

activations of incorrect classes are encouraged. There is also the work of Chen et al. [4] that involved
the learning of a ”function-preserving” transformation to initialize the parameters of a larger student
network. Their goal was to achieve a faster training of deep neural networks.
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2.2 Uncertainties in deep learning

There are different types of uncertainty in Deep Learning [11]: aleatoric, which captures the noise
related to the observations, and epistemic, which captures uncertainty about the model parameters.
Aleatoric uncertainty is the ambiguity about the observation caused by a noisy dataset. An example

of aleatoric uncertainty in images would be due to occlusions. Epistemic uncertainty is associated with
our incapacity to explain which model parameters are responsible for the set of model outputs. This
uncertainty can be explained away if enough data is given to the model [6]. Epistemic uncertainty is
important for critical applications and for models that are trained on very small datasets. There have

been many methods to quantify uncertainty in Deep Learning. We can categorize these uncertainty
measures into three main groups: True Bayesian framework, Bayesian Approximation framework, and
the non-Bayesian framework. The Bayesian formalism naturally incorporates uncertainty modelling

with probability distributions, which shows the degree of belief regarding of the unknown parameters.
Exact Bayesian methods are known to be computationally expensive and complicated especially when
dealing with millions of parameters [7]. Therefore, a variety of methods have been developed to over-

come this problem, such as variational approximations. The most used techniques under the Bayesian
approximation framework are the Monte-Carlo dropout [6] and Monte-Carlo batch normalization[18].
For the non-Bayesian framework for quantifying uncertainty, methods based on ensembles such as
Deep ensembles [12] can be used.

3 Methods

3.1 Distillation

In this paper we use the method of knowledge distillation proposed by [10]. To train the distilled
network, we are in need of both of hard targets, which are the true labels of the dataset, and the soft

targets, which are the class probability produced by the teacher network. This method shows that the
logits, which are the inputs to the final softmax, can be used for training small models. These soft
targets are obtained through the softmax function that uses a temperature value. A higher value of

this temperature parameter produces softer probabilities over classes. The distillation process is then
performed through the minimization of the average of two objective functions: (1) cross entropy with
the soft targets with high temperature for the softmax and (2) cross entropy with the correct labels

using the logits in the softmax.

3.2 Model uncertainty with Monte-Carlo dropout

We used the method of MC dropout to capture model uncertainty. This method, in practice, consists

of having a deep network trained using dropout. At test time, we use dropout to sample N networks
and record their predictions. The variance of these outputs is the model uncertainty. Please refer to
the original work [6] for more details on the mathematical formalism.

4 Experiments and results

4.1 Experimental set up

To investigate our hypothesis that distilled networks can estimate the model uncertainty of the original
deep network, we conducted experiments where we considered a VGG16-like network, trained for

classification with dropout (having a fixed probability of p = 0.5, since this is considered to be the
optimal range [17]) using the MNIST dataset. We performed distillation training onto three different
student networks in which we varied the number of learnable parameters. The teacher network has

16 layers with 14, 913, 226 learnable parameters. The smallest student network (SN1) has four layers
with 4, 265, 066 parameters. The student network (SN2) has seven layers with 4, 721, 610 parameters.
Finally, student network 3 (SN3) has the exact same architecture as the teacher network (i.e. 16 layers
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and 14, 913, 226 parameters). To evaluate the captured model uncertainty of these different student
networks we use these following measures.

Calibration Curves To see if a model is well calibrated, we often use calibration curves, sometimes
called reliability diagrams [5, 15]. These diagrams are a way to represent model calibration. They

represent expected accuracy as a function of the confidence (i.e. softmax probabilities). A ”perfectly”
calibrated model is represented by the identity function. A deviation above (under-confidence) or
below (over-confident) the diagonal shows a miscalibrated model. To plot this curve, the confidence
level (i.e. probability predictions of the network) are regrouped into M bins of size 10.

Expected Calibration Error In contrast to the calibration curves, which are visual diagrams capturing

the degree of model calibration, the Expected Calibration Error (ECE) [14] is a loss function that
returns a scalar value that can capture the degree of miscalibration of a particular deep learning
model. Similarly to the calibration curves, confidence values are partitioned into M = 10 equal bins

and we take the weighted average of the difference between the accuracy and confidence at each bin.
Full details about this metric can be found at [8].

Mean Uncertainty Prediction Error This measures the mean squared error between the predicted
confidence (uncertainty) of the teacher and student networks over the test dataset.

4.2 Results and discussion

We provide in Table 1 the classification accuracy for each of the teacher and student networks trained
with KD (KD-SN1, KD-SN2, and KD-SN3) and without KD for student network 2 (SN2). We can
observe that each of the distilled student network was able to closely represent and mimic the teacher’s

performance on all sets of the MNIST dataset. In fact, as these student models get deeper and larger,
we can note a decrease in the accuracy. This decrease within the different student networks could
be explained by the fact that the MNIST dataset does not require very deep models to achieve high

performance. Instead, a smaller network can perform better. Through the use of soft targets, we
would expect the larger student network (KD-SN3) to have at least the closest performance to the
teacher network since they share the same architecture and capacity. However, we see that distilling a
large network onto a large student network does not always lead to similar performance. The student

networks SN2 trained without KD and KD-SN2 trained with KD have similar performance on the
dataset.

Table 1: Summary table of Classification Accuracies for all networks, Expected Calibration Error (ECE), and Mean
Uncertainty Prediction Error (MUPE)

TN KD-SN1 KD-SN2 SN2 KD-SN3
Training acc. 99.87% 99.75% 99.52% 99.99% 98.75%
Validation acc. 99.08% 98.93% 98.80% 99.44% 98.08%
Test acc. 99.21% 99.14% 99.04% 99.51% 98.36%
ECE 0.0027 0.0064 0.0019 0.0036 0.0029
MUPE — 0.0037 0.0019 – 0.0016

One question that can be asked here is: If we could train a student network to perform as accurate
as the teacher model (in giving similar class accuracy) can this student exhibit similar uncertainty
behavior as the teacher network?

To attempt to provide an answer to this question, we performed 100 Monte Carlo (MC) dropout
at test time on each of the teacher and student networks then record their predictive mean confidences
and plot their corresponding calibration curves. Figures 1, 2, and 3 show, respectively, the calibration
graphs MC KD-SN1, MC KD-SN2, and MC KD-SN3 overlayed on the MC TN calibration curve. We

chose to plot the MC networks to better apprehend the model uncertainty behavior that underlies
within each of these networks.
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Figure 1: Calibration curve of the MC Student Network 1 (light blue) overlaid on the calibration of MC Teacher Network
(red)

Figure 2: Calibration curve of the MC Student Network 2 (blue) overlaid on the calibration of MC Teacher Network (red)

Figure 3: Calibration curve of the MC Student Network 3 (teal) overlaid on the MC Teacher Network (red)

By comparing these graphs, we could observe that as the student network gets deeper and asymp-
totically closer to the number of parameters of the original network, the calibration curves tend to be

as similar as the teacher network. We observe from the figures that the calibration curve of student
SN3 is visually closer to the teacher network’s calibration graph. This observation can also be analyzed
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using the statistical metric ECE. In Table 1, we provide the ECE for each of the teacher and student
networks. We see that both student networks KD-SN2 and KD-SN3 are closer to the miscalibration
value of the teacher. Specifically, the ECE of KD-SN3 is the closest to the ECE of the teacher network.

It is also noteworthy to mention that the ECE of KD-SN2 can also be considered as a close value to
the ECE of the teacher model even though this has got better model calibration. Furthermore, the
mean uncertainty prediction error can be observed in Table 1 for each of the MC student networks.
We note that student KD-SN3 has the lowest mean uncertainty error, which shows that this network

reflects the best on the uncertainty behavior of the teacher network. Although both student networks
KD-SN2 and KD-SN3 did not provide the closest class accuracy, these distilled networks somehow
reflect the teacher’s uncertainty. At this stage, we could say that there is a partial uncertainty transfer

from teacher to student through the distillation process. However, there are some factors associated
with this uncertainty transfer which are mainly the distilled network architecture configuration and
the network capacity. Moreover, we see in Table 1 that the ECE for KD-SN2 is lower than the ECE

of SN2. This shows that the student network trained with KD is better calibrated. As we have seen, a
large student network can almost capture the teacher’s uncertainty. Nevertheless, a smaller and com-
pressed network can be used as a higher level insight about the teacher model’s uncertainty behavior.
Additionally, KD training can be useful for model calibration.

5 Conclusion

We investigated in this paper the possible uncertainty transfer between teacher and student network
during distillation training. Our key finding is that uncertainty transfer through distillation can not
happen when the student network’s capacity is too low.
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[2] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In Proceedings of
the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 535–541.
ACM, 2006.

[3] Zhengping Che, Sanjay Purushotham, Robinder Khemani, and Yan Liu. Distilling knowledge from deep
networks with applications to healthcare domain. arXiv preprint arXiv:1512.03542, 2015.

[4] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Weinberger, and Yixin Chen. Compressing neural
networks with the hashing trick. In International Conference on Machine Learning, pages 2285–2294,
2015.

[5] Morris H DeGroot and Stephen E Fienberg. The comparison and evaluation of forecasters. Journal of the
Royal Statistical Society: Series D (The Statistician), 32(1–2):12–22, 1983.

[6] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncer-
tainty in deep learning. In international conference on machine learning, pages 1050–1059, 2016.

[7] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning with image data.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 1183–1192.
JMLR. org, 2017.

[8] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural networks.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 1321–1330.
JMLR. org, 2017.

[9] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

[10] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

[11] Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
vision? In Advances in neural information processing systems, pages 5574–5584, 2017.



G–2020–23–EIW10 Les Cahiers du GERAD

[12] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive un-
certainty estimation using deep ensembles. In Advances in Neural Information Processing Systems, pages
6402–6413, 2017.
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Abstract: The design of compact deep neural networks is a crucial task to enable widespread adoption of deep neural

networks in the real-world, particularly for edge and mobile scenarios. Due to the time-consuming and challenging na-

ture of manually designing compact deep neural networks, there has been significant recent interest into algorithms that

automatically search for compact network architectures. A particularly interesting class of compact architecture search

algorithms are those guided by baseline network architectures. In this study, we explore the current state of compact

architecture search for deep neural networks through both theoretical and empirical analysis of four different state-of-

the-art compact architecture search algorithms: i) group lasso regularization, ii) variational dropout, iii) MorphNet, and

iv) Generative Synthesis. We examine these methods in detail based on a number of different factors such as efficiency,

effectiveness, and scalability across three well-known benchmark datasets, as well as explore practical considerations.

1 Introduction

Designing compact deep neural network architectures for edge scenarios is very time-consuming and
human insight about optimized macro- and micro-architectures is limited in terms of design granularity.

To address this need, a number of algorithmic approaches have been proposed in literature for designing
compact neural network architecture. For example, a combination of pruning, quantization and coding
techniques have been leveraged to address the storage requirement of a deep neural network. Low-rank

matrix factorization is another technique which was applied to approximate the filter structures and
convolutional kernels in a deep neural network. Structural learning approach during the training of
a model is another trick to learn the filter shape and depth during the training process. Compact
architectural search was also addressed via variational Bayesian algorithms. One are of great recent

interest is neural architecture search (NAS) [1], leading to a variety of strategies such as evolutionary
algorithms, reinforcement learning methods, or Bayesian optimization. For example, Shafiee et al. [6]
formulated the compact network architectural search problem via an evolutionary synthesis framework

so-called EvoNet. Such methods can be designed to target compact network architectures to great
potential effect, which we will refer to as compact architecture search approaches.

In this study, we explore the current state of compact architecture search for deep neural networks
by conducting both theoretical and empirical analysis on four different state-of-the-art compact archi-

tecture search algorithms across three different datasets based on accuracy, computational complexity,
and architectural complexity. This provides us with a detailed perspective of where the field stands in
this area of research.

2 Theoretical analysis

A key criteria when selecting the set of algorithms to study for a better understanding of the current

state of compact architecture search is scalability. Here, we focus on exploring state-of-the-art compact
architecture search algorithms that, guided by baseline network architectures, produce compact neural
network architectures with smaller yet structured topologies that tend well to parallel computing on

modern processor architectures as well as provide lower effective memory footprint during inference.
Furthermore, such approaches have been demonstrated to scale well in producing compact deep neural
networks that possess strong modelling accuracy for more complex problems and data.

2.1 Group Lasso regularization

Group Lasso can be used to learn structured sparsity in an efficient way. For compact architecture
search purposes, it was applied [7] to regularize network structures such as filters or channels during
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training via the following loss function:

L(W ) = ED(W ) + λg

L∑

l=1

Rg(W
(l)) (1)

where W represents the set of weights in the network and ED(·) is the loss of the network on the data
D. Rg(·) formulates the group lasso for each layer which enforces the structure sparsity during the
training and λg is the regularization factor.

2.2 Variational dropout

The variational dropout technique adds a Gaussian stochastic factor on each activation during the
training step and the mean and standard deviation of this distribution are learned during the training.

The values of these parameters reach to zero for those weights that have no impact on the network
output which promotes the sparsity. Therefore, the network weights at the end of training are sparse.
However the produced sparsity is unstructured and cannot provide any speed up inference. Here we

extend upon this approach and drop those filters (i.e., a set of weights in a layer which produces one
activation channel at the output) which are more sparse than a pre-defined threshold to generate the
final network architecture. Setting up proper parameters and initialization of the parameters is very
important to produce the best results.

2.3 MorphNet

MorphNet [3] performs an iterative shrink-and-expand approach to automatically design the structure
of a deep neural network. It utilizes weight regularization on network activations to sparsify the network

in the shrinking step, followed by a uniform multiplicative approach on all layers in the expand step.
More specifically, a penalty term is applied on the loss function during the training in the shrinking
step as follows:

L(W ) =ED(W ) + λF(O1:M ) s.t. (2)

F(O1:M ) =
M+1∑

L=1

F(layer L).

The F(·) is a regularizer on neurons which can induce some of the neurons to be zeroed out and can

be formulated as:

F(layer L) = C

IL−1∑

i=0

AL,j

OL−1∑

j=0

BL,j (3)

where AL,j and BL,j are indicator functions that encode whether the input i or output j are alive
or zeroed out. L1 norm on variables of batch normalization is utilized to provide tractable learning

via gradient descent. The batch-norm is applied to each layer which means that each neuron has a
particular variable in the batch-norm; setting this variable to zero effectively disables the neuron. The
MorphNet method needs hyper-parameter tuning; Tuning the parameters in this method plays a vital

rule to produce reasonable results.

2.4 Generative synthesis

The overall goal of the Generative Synthesis method [8] as a compact architecture search method is to
learn a generator G that can synthesize deep neural networks {Ns|s ∈ S}, given a seed set S, maximize a

universal performance function U while satisfying quantitative human-specified design constraints and
performance targets, as defined by an indicator function 1r(·). This learning of generative machines
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for synthesizing deep neural networks can be formulated as the following constrained optimization
problem:

G = max
G
U
(
G(s)

)
s.t. (4)

1r

(
G(s)

)
= 1,∀s ∈ S.

Given the intractability of solving this problem, an approximate solution G to the constrained
optimization problem posed is achieved by leveraging the interplay between a generator-inquisitor
pair that work together in a synergistic manner to obtain not only improved insights about deep
neural networks (via an inquisitor) as well as learn to synthesize compact deep neural networks (via

a generator) in a cyclical and iterative manner, taking into consideration human-specified design and
operational requirements (size, accuracy tolerance, performance targets, hardware-level requirements
such as channel multiplicity and data precision, etc.) when synthesizing progressively more compact

deep neural networks until performance targets and operational requirements are satisfied.

3 Empirical analysis

In this study, we further empirically examine the current state of compact architecture search algo-

rithms for producing deep neural networks. The trade-offs between size, speed, and accuracy are
measured by conducting several empirical experiments using well-known benchmark datasets. Based
on the experimental results, we study the different performance characteristics of the compact deep
neural networks produced by the tested compact architecture search algorithms to gain better insights

into the effectiveness as well as the search behaviours of the tested algorithms.

3.1 Datasets & networks

The four state-of-the-art compact network architecture search methods studied here are evaluated
using CIFAR-10, CIFAR-100 [4], and ImageNet 64x64 [2], a downsampled variant of ImageNet with
over 1.28M training images across 1000 classes. In this study, a 32 layer ResNet architecture is used as

the baseline architecture for CIFAR-10 while a deeper 50 layer ResNet architecture is used for CIFAR-
100 given that they are more difficult tasks. For ImageNet 64x64, two baseline architectures were
used for evaluation: i) ResNet-50, and ii) InceptionV3. For the CIFAR-10, CIFAR-100 and ImageNet

64×64 evaluations, the FLOPs target for all four of the tested methods is set to one-third of the
respective baseline network architectures to quantitatively investigate the efficacy of the four methods
at producing highly compact deep neural networks with low computational costs.

3.2 Results & discussion

The experimental results for CIFAR-10 and CIFAR-100 are shown in Table 1, while the results for

ImageNet 64x64 are shown in Table 2.

CIFAR-10/CIFAR-100: As seen in Table 1, the compact deep neural networks produced by each of the
tested compact architecture search algorithms have drastically different neural network architectures

with very different performance tradeoffs to meet the ∼48 and ∼74 MFLOPs (1/3 of the baseline)
performance target for CIFAR-10 and CIFAR-100.

Conducting a close examination of the performance characteristics of the compact deep neural

networks produced using the four tested compact architecture search algorithms allowed for the ob-
servation of several interesting insights:

• While all produced networks have similar FLOPs as a result of the FLOPs target, several of
the produced neural networks have significant more parameters than others. For CIFAR-10, the
deep neural network produced via the Group Lasso approach had noticeably more parameters
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than the other three methods (e.g., ∼33% higher than Variational Dropout). For CIFAR-100,
the deep neural networks produced by MorphNet and Variational Dropout have more than twice
the number of parameters as that produced using Group Lasso and Generative Synthesis.

• While all tested methods have the same FLOPs performance target (1/3 FLOPs of baseline),

none of the methods produce networks that hit the target exactly. The deep neural network
produced by Generative Synthesis had the lowest number of parameters (by around 3% and 7%
lower than others for CIFAR-10 and CIFAR-100, respectively).

• Of the methods, Variational Dropout produced the network with the lowest modeling accuracy.
MorphNet and Generative Synthesis produced networks with better modeling accuracy than

the Group Lasso and Variational Dropout methods, with Generative Synthesis producing the
network with the highest accuracy amongst the tested methods for the given FLOPs target. In
fact, the network produced by Generative Synthesis achieved the same accuracy as the baseline

architecture in the CIFAR-10 case. which illustrates that it was able to find the most balanced
trade-off between size, speed, and accuracy.

Table 1: Results for CIFAR-10 and CIFAR-100 across four tested algorithms. Best results in bold

CIFAR-10 CIFAR-100
Methods MFLOPs #Parameters Top-1(%) MFLOPs #Parameters Top-1(%)

Baseline 144.369 487,754 91.6 223.946 769,476 67.8

Group Lasso [7] 46.282 225,564 86.7 74.852 268,609 61.6
MorphNet [3] 46.280 153,179 88.8 74.995 435,396 63.3
Variational Dropout [5] 46.046 151,238 84.9 74.410 563,197 57.9
Generative Synthesis [8] 44.658 152,668 91.6 70.800 214,692 64.8

Table 2: Results for ImageNet 64x64 using two baseline architectures. Best results in bold

Architectures ResNet-50 InceptionV3
Methods MFLOPs #Parameters Top-1(%) MFLOPs #Parameters Top-1(%)

Baseline 2,629.21 25,593,400 60.0 7,515.7 22,895,000 61.8

Group Lasso [7] 896.71 9,079,334 50.6 2506.7 8,160,687 57.6
MorphNet [3] 824.91 9,294,711 52.9 2490.6 9,489,201 58.5
Variational Dropout [5] 873.29 8,850,781 43.3 2,508.0 8,160,687 53.9
Generative Synthesis [8] 802.14 3,293,420 57.8 2,340.3 5,257,960 62.3

ImageNet 64x64: As seen in Table 2, similar to the CIFAR-10/CIFAR-100 experiments, the compact
deep neural networks produced by each of the tested compact architecture search algorithms produce
drastically different neural network architectures with very different performance tradeoffs to meet

the ∼876 MFLOPs and ∼2505 MFLOPs (1/3 of the baseline) performance targets for ResNet-50 and
InceptionV3, respectively.

Experimental results show several interesting insights regarding the performance characteristics of
the compact deep neural networks produced using the four compact architecture search algorithms:

• The MorphNet approach produced the largest networks for both cases (in terms of number
of parameters). For example, MorphNet produced a network architecture that has ∼2.8× the

number of parameters as Generative Synthesis for the ResNet-50 case.

• While all methods have the same FLOPs performance target (1/3 FLOPs of baseline), results
demonstrate that, as with the previous experiment, none of the methods produce networks that
hit the target exactly. However, Generative Synthesis was able to achieve lower than expected
FLOPs (by ∼7% lower for both cases) in this experiment as well.

• As with CIFAR-10 and CIFAR-100, MorphNet and Generative Synthesis produced networks

with better modeling accuracy than the Group Lasso and Variational Dropout methods. In both
cases, Generative Synthesis produced neural networks that had the highest accuracy and lowest
number of parameters amongst the tested methods for the given FLOPs target (e.g., ∼4.9%
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higher accuracy than MorphNet in the ResNet-50 case) on ImageNet 64x64. In fact, the neural
network produced by Generative Synthesis outperformed the baseline architecture in terms of
accuracy by 0.5% in the InceptionV3 case. This illustrates that it was able to find the most

balanced trade-off between size, speed, and accuracy.

4 Practical considerations

In order to take advantage of the aforementioned compact architecture search algorithms, there are a
number of practical challenges unique to each method that must be considered to achieve good per-
formance in the resulting deep neural networks. One of the biggest challenges to effectively leveraging

the Group Lasso regularization technique as a compact architecture search algorithm is to identify the
optimal set of hyperparameters, with one of the most crucial hyperparameters being a proper and opti-
mal regularization factor λg during the training process. Much like Group Lasso, Variational Dropout
also suffers from the curse of hyper-parameterization. Selecting the correct regularization strength is

key for allowing the model to learn. Too high a rate and a model will not learn at all, too low a rate
and the model is not fully learning what parameters should be dropped. MorphNet follows an iterative
process of sparsifying a network and linearly growing the network back up. The hyper-parameters that

control each step in a given iteration can differ from previous iteration. Selecting the correct rate to
sparsify a network is performed via trial and error. Determining when to stop sparsifying a network
during any given iteration can be unclear. Generative Synthesis employs an iterative process to learn to

generate compact deep neural networks that meet operational requirements and desired performance
targets. As such, while Generative Synthesis will iterate until it hits the desired performance targets,
a practical challenge with Generative Synthesis is that the number of iterations can vary depending
on the complexity of the neural network architecture, the desired performance targets, as well as the

complexity of the underlying data.
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Abstract: The past few years have seen the ability of cooperative Malware Detection Systems (MDS) to detect

complex and unknown malware. In a cooperative setting, an MDS can consult other MDSs about suspicious malware

and make a final decision using an aggregation mechanism. However, large delays may arise from both applying an

aggregation mechanism and waiting to receive feedback from consulted MDSs. These shortcomings render the decisions

produced by existing cooperative MDS approaches ineffective in real-time. To address the above-mentioned problem,

we propose a deep learning-based cooperative MDS that efficiently exploits historical feedback data to foster proactive

decision-making. More specifically, the proposed approach is based on Denoising Autoencoder (DA), which allows us

to learn how to reconstruct complete MDSs’ feedback from partial feedback. Our results show the effectiveness of the

proposed framework on a real-life dataset.

1 Introduction

The current communication and computing infrastructure is becoming more and more complex and

vulnerable to cyber attacks. In the recent years, studies and results have shown that the use of
cooperative Malware Detection Systems (MDSs) can enhance the detection accuracy compared to
traditional single MDSs [1, 4, 5]. This is such since it is becoming increasingly difficult for one single
MDS to detect all existing malware [1, 2, 5], due to its limited knowledge of such malware patterns

and implications. The cooperation among MDSs can be achieved through allowing them to exchange
their malware analysis feedback and exploit each other’s expertise to cover unknown malware patterns,
thus achieving mutual benefits.

There are considerable delays associated with adopting existing cooperative MDS approaches [1, 5].
These delays are mostly due to the computation complexity of using aggregation algorithms such as
Bayesian Theory, and also the large geographic distances that separate the MDSs. In fact, each MDS,

after receiving feedback from consulted MDSs regarding a suspicious malware, is required to use a
suitable feedback algorithm, in order to make a final decision about the suspicious malware. The
aggregation method is usually costly in terms of computation time and depends on many factors such
as the number of consulted MDSs, and MDSs’ trust levels and expertise [1, 2, 5]. In addition, due to the

uneven MDSs’ connections and communication speeds and other unknown factors (e.g., busy MDSs,
compromised MDSs), there is no guarantee that feedback will be synchronously received. Therefore,
decisions on whether or not to raise an alarm regarding some suspicious malware might be excessively

delayed due to the missing feedback of a single MDS. Hence, the decisions generated by the cooperative
MDS are ineffective in a real-time setting.

To address the above-mentioned limitations, we propose a proactive cooperative MDS that inte-

grates a deep learning approach. The proposed approach exploits the historical MDSs’ feedback to
predict the status of a certain suspicious malware. This is done proactively without having to ap-
ply any aggregation mechanism on consulted MDSs’ feedback, nor having to wait until receiving all
the feedbacks from the consulted MDSs, i.e., only partial and/or incomplete feedback can be used

to predict the status of suspicions attack. This, in turn, makes our approach reliable and feasible in
real-time environments, where decisions on malware must be rapidly taken in order to effectively apply
the required action measures at the right time. More particularly, the proposed approach is based on

Stacked Denoising Autoencoders (SDAE), where a denoising autoencoder is used as a building block
to train a deep neunetwork [11, 12]. We capitalize on the fact that a denoising autoencoder can learn
how to reconstruct original inputs giving partial data inputs, through allowing deep neural networks

to learn how to extract features that are robust to incomplete MDSs’ feedback. Our contributions are
summarized as follows:

• Proposing a cooperative malware detection system that enables decision-making on suspicious
malware, even with partial MDSs’s feedback.

• Designing a proactive cooperative MDS, which enables us to make decisions about suspicious
malware proactively, i.e., without the need to apply aggregation mechanisms on MDSs’ feedback.
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2 SDAE-MDS: The proposed approach

In this section, we first present the concept of traditional autoencoders. Then, we explain the proposed

approach.

2.1 The traditional autoencoders

An autoencoder is an unsupervised learning method that is used to learn reliable data codings [9]. It
is used to pre-train each layer in a deep neural network in order to obtain better initial weights that

lead to a better-performing classification [3]. Researchers have reported that weights initialization
using autoencoders can improve the performance of deep neural networks, compared to a random
initialization [3].

An autoencoder is used as a building block for deep networks [3]. In particular, it takes an input

vector (MDSs’ feedback) x ∈ [0, 1]d , where d is the vector dimension, and maps it to a hidden
representation h ∈ [0, 1]d

′
using the following equation:

h = fθ(x) = Sig(W ∗ x+ b) (1)

θ = {W, b}, W is a weight matrix and b is a bias vector. Thereafter, the resulting hidden layer

representation h will be reconstructed to the output layer x′ using a decoding function as follows:

x′ = gθ′(h) = Sig(W ′ ∗ h+ b′) (2)

θ′ = {W ′, b′}, W ′ and b′ are a weight matrix and a bias vector of the reverse mapping, respectively.
The purpose of the model is to optimize the parameters of the model, so that the reconstruction error
between the input and output can be reduced [6].

2.2 The proposed approach

In order to make an autoencoder robust to incomplete MDSs’ feedback, the autoencoder should be
trained to reconstruct its MDS’s feedback even if the feedback does not represent the whole MDSs’
feedback (i.e., when some feedback are not available). The autoencoder that deals with corrupted

version of the input is called a denoising autoencoder [11]. This is achieved by adding noise to the
initial input x before passing it to the hidden layer. The objective is to reconstruct x, where x
represents the MDSs’ feedback. Thus, a partially corrupted version z will be obtained from x as

follows: z = alpha(x) where alpha is a corruption mechanism [11]. In our model, we use Masking
Noise Approach (MNA) for the corruption process, as it is useful to represent incomplete MDS’s
feedback [12]. In MNA noise, a fraction v (selected at random) of each MDSs’ feedback x is forced to
be 0, while the others remain untouched. In fact, other noise can also be used such as Gaussian noise.

However, MNA noise is more useful to simulate incomplete MDSs’ feedback [12] since the noise will
only change partial feedback.

The autoencoder is then used to take corrupted data z and attempt to learn how to reconstruct x.

This is done by allowing the input z to be mapped to a hidden representation, i.e.,

h = fθ(z) = Sig(W ′ ∗ z + b′) (3)

Note that we select z as input instead of x since a traditional autoencoder was used. The value

of h is then used to reconstruct x′ as follows:

x′ = gθ′(h) = Sig(W ∗ h+ b) (4)
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The denoising autoencoder architecture is described in Figure 1. As given in the traditional au-
toencoder, the parameters are trained to minimize the average reconstruction error:

θ∗, θ′∗ = arg minimizeθ,θ′
1

n

n∑

j=1

L(z(j), x′(j))

=
1

n

n∑

i=1

L(z(j), gθ′(fθ(z
(j))))

(5)

Figure 1: MDS-based denoising autoencoder architecture

The training algorithm of the proposed MDS-based denoising autoencoder is described as follows.
For the raw inputs x, we randomly select parts of them to be set to 0 as the corrupted inputs z. The

corrupted input z will then be encoded to the hidden code and reconstructed to the output. Note
that x′ is a deterministic function of z rather than x. The reconstruction that is computed between z
and x is denoted as L(x, x′). The parameters of the model are randomly initialized and then optimized
using stochastic gradient descent algorithms. The above mentioned-steps are performed for each layer

added in the proposed MDS-based deep neural network. To generate a classifier for MDS, we add a
classifier (e.g., logistic regressions) to the last layer. Then, the parameters of all the layers will be
fine-tuned to minimize the error of predicting the target label (i.e., malware or not) using a back-

propagation algorithm [3, 7, 8, 11, 12].

3 Evaluation results

To evaluate the proposed model, we create a dataset containing MDSs’ feedback on suspicious malware.
This dataset was created based on the Android Malware Dataset (MAD) [10], where each 1 or 0 in
the new dataset corresponds to the answer of an MDS to a given row of the MAD dataset [10]. The

created dataset is used to train the proposed model. Then, the ability of the proposed approach in
making decisions about suspicious malware was tested in the presence of partial/incomplete feedback.
To represent partial/incomplete MDSs’ feedback, some of the MDSs’ feedback (selected randomly)
were left blank. In this case, blanks indicate that some of MDSs’ feedback are yet to be received, due

to some unexpected delays (e.g., busy MDS).

The accuracy of the proposed approach is first tested and compared in a complete information
scenario, i.e, all MDSs’ feedback is received on time. This is useful to evaluate the effectiveness of the
proposed approach in making decisions given partial feedback. Figure 2 shows that the accuracy of the
proposed model, with a variety of hidden units, was slightly degraded (less than 1.1%). These results

suggest that the proposed deep leaning-based approach is able to effectively makes the right decisions
on suspicious malware events, even in the presence of some incomplete feedback.

The proposed model (i.e., SDAE-MDS) was also compared with another approach, namely the
Stacked Auto Encoder-MDS (SAE-MDS). SAE-MDS uses traditional autoencoders as a building block
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Figure 2: Detection accuracy performance compare to having all the MDSs’ feedback (complete
information) - number of hidden layers = 3.

for the deep neural networks. The study was conducted with different numbers of layers and hidden
nodes. Our model (Figure 3) yields an increased accuracy compared to SAE-MDS (Figure 4). The
reason is that we use denoising autoencoders as a building block for our deep neural networks, which

allow us to extract robust features that lead to a better classification, despite the incomplete feedback
given as inputs to the deep neural network [11]. The denoising autoencoder learned how to reconstruct
the feedback from corrupted inputs.

Figure 3: Detection accuracy of SDAE-MDS Figure 4: Detection accuracy of SAE-MDS

Figure 5 compares SDAE-MDS (the proposed model) with two other denoising models based on
training with noisy input, namely SAE(1)-MDS and SAE(2)-MDS. SAE(1)-MDS is a 3-hidden-layers

SAE-MDS where noisy inputs were only used for the pretraining. However, SAE(2)-MDS is also
3-hidden-layers SAE-MDS where noisy inputs were used for both pretraining and fine-tuning. The
results demonstrate that our model is also resilient to the increase in the percentage of noises.

Figure 5: SDAE-MDS vs. training with noisy input
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Note that when the corrupted inputs (percentage) equals 0%, all models (SAE(1)-MDS, SAE(2)-
MDS and SDAE-MDS) yield the same results in terms of classification accuracy. This is due to the
fact that when 0% is applied, the three models will be the same as SAE.

4 Conclusion

We proposed a proactive cooperative MDS. The proposed approach allows us to exploit historical

feedback to produce learning models that can effectively and efficiently predict the label (malware
or not) of the suspicious malware even when some feedback are missing. The proposed approach is
based on stacked denoising autoencoders, where we use a denoising autoencoder as a building block for

the deep learning classifier. The proposed MDS-based denoising autoencoder is used to learn how to
reconstruct original MDSs’ feedback given partial ones. The proposed model can also make decisions
regarding suspicious malware without having to apply any aggregation mechanism on the consulted
MDSs’ feedback. Experimental results show the effectiveness of the proposed approach.
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Abstract: Pruning methods for deep neural networks based on weight magnitude have shown promise in recent

research. We propose a new, highly flexible approach to neural network pruning based on Gibbs measures. We apply

it with a Hamiltonian that is a function of weight magnitude, using the annealing capabilities of Gibbs measures to

smoothly move from regularization to adaptive pruning during an ordinary neural network training schedule. Compar-

ing to several established methods, we find that our network outperforms those that do not use extra training steps and

achieves a high accuracy much faster than those that do. We achieve a ¡3% reduction in accuracy on CIFAR-10 with

ResNet-32 when pruning 90% of weights.

1 Introduction

Neural network sparsification via connection pruning has recently been a topic of renewed academic
interest. Recent work has shown both the practical utility of pruning in neural network compression
systems [6] and theoretical insights gained by experiments with pruning [2]. With modern deep neural

network topologies, it is common to be able to prune over 80% of weights with little degradation in
performance.

While other criteria have been explored, recent research has focused on pruning weights with low

magnitude, since magnitude-based pruning schemes have proven more effective than other established
ones [4, 5]. However, existing schemes often require loops of pruning and retraining to achieve good
results [6, 2], substantially increasing training time. Our work seeks to approach the performance of
such methods without requiring additional training.

Taking inspiration from statistical physics, we propose inducing a Gibbs measure over the weights
of a neural network, and sampling from it during training to determine pruning masks. This procedure
induces a learned network structure that is resilient to high degrees of pruning. Gibbs measures are

highly flexible in terms of network properties that they can express, and quadratic energy functions,
such as Ising models, can capture parameter interactions and induce desired structure in pruning masks.
They also naturally allow a temperature parameter to be used for annealing, gradually converging to a

final pruning mask during training and improving network resilience to pruning. We propose a simple
energy function based on weight magnitude to define the Gibbs measure used in our experiments.

2 Proposed method

A Gibbs measure is a probability measure over a vector x of the form:

p(x) =
1

Z(β)
e−βH(x), (1)

where H(x) is the Hamiltonian function, or energy, β is an inverse temperature parameter that can
be used for annealing, and Z(β) is a partition function that normalizes the measure. In our proposed
method, x represents a pruning mask for a single neural network layer, with xi ∈ {0, 1}. Given the

weights of the layer as a flattened vector w, a weight wi is masked (treated as zero) during training if
the corresponding xi is 0. x is sampled from p(x) at every training step and once again after training
to determine the final mask.

To sample in such a way that weights with lower magnitude are more likely to be masked, we use
a Hamiltonian of the form:

H(x) =
∑

i

(Q(p,w ◦w)− w2
i )xi, (2)

where ◦ represents elementwise multiplication, p is the target pruning fraction, and Q(p,w ◦w) rep-
resents the pth quantile of the values in the vector w ◦w.
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We perform annealing by increasing β from a low value to a high value while training. At high
temperatures (low β), differences in the Hamiltonian do not affect sampling much, and so roughly
50% of weights are pruned randomly. This is equivalent to the regularization method dropconnect [10]

and starts conditioning the network to be robust under weight pruning. Once annealed to a low
temperature (high β), the Gibbs measure converges to pruning the fraction p of weights with lowest
magnitude.

This is a highly flexible pruning approach, and although we only consider one Hamiltonian formu-

lation in this paper, others could be designed that take into account characteristics such as network
activations or interactions between weights. A Hamiltonian with quadratic terms, such as an Ising
model, could induce structure in the pruning masks so as to make them more practically applicable to
network compression.

In general, Gibbs measures are computationally expensive to sample from, since the partition
function contains many terms. However, since our proposed Hamiltonian is a sum of terms that are
each a function of just one element in x, the measure factors into functions of each xi, and each xi can

therefore be sampled independently. More complex Hamiltonians would likely require similar shortcuts
based on independence, or acceleration on GPU or hardware using an efficient sampler such as the
Swendsen-Wang algorithm [1] to be realistically usable at each training step.

The goal of our proposed method is to optimize a network’s parameters through training at the

same time as the final pruning mask over the network is being determined. This means that early
on in training, the network learns to be robust under random pruning and receives the regularization
benefits of dropconnect, and then gradually converges towards a particular pruning mask, spending
a significant amount of later training time adapting to the particular structure of the pruning mask.

The balance between time spent on adapting to random masks and time spent adapting to the final
mask can be controlled by the particular annealing schedule for β used in training.

3 Experiments

We compare the performance of our proposed method to various baselines and established methods
using ResNet-20 and ResNet-32 [7] on the CIFAR-10 [9] dataset. The networks are trained for 200

epochs using the Adam optimizer [8], with a learning rate initially set to 1 × 10−3 and reduced by a
factor of 10 every 60 epochs. This achieves baseline top-1 accuracies of 90.7% for ResNet-20 and 91.6%
for ResNet-32. We prune all convolutional layers except for the first one, following the recommendation

in [4]. When using our proposed method, we anneal β according to a logarithmic schedule from 0.7
to 10000 over the first 128 epochs. These values were chosen empirically to cover a range from an
effective pruning rate of 50% to p.

We compare our methods to two kinds of established methods: those that do not add extra training

steps to the optimization procedure and those that do. Since our method does not add extra training
steps, when comparing to other methods that do not either, we simply compare final accuracies at
different p values. This comparison is shown in Tables 1 and 2. One-off pruning simply removes

the fraction p of weights in each layer with the lowest magnitude, with no changes to the training
procedure. We also test applying a random pruning mask at the beginning of training and maintaining
it throughout, effectively training a smaller network from the start. We test using l1 regularization
with a tuned penalty of 0.001 to induce sparsity during training before masking the fraction p weights

in each layer with the lowest magnitude. Finally, we test targeted dropout, which is a recently proposed
method described in [5]. We use the most successful hyperparameter settings described in the paper:
α = 0.75, γ = 0.9. The results show our proposed method consistently outperforming the other tested

pruning methods at all p values.

We also compare our proposed method to established pruning methods that require additional
training steps beyond the initial network training in Figure 1. In these comparisons, we look at how
many training epochs are required for such methods to match the performance of our proposed method.
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Table 1: Comparison of our proposed method to other pruning methods that do not use retraining on ResNet-20. Values
are top-1 accuracy in percent on CIFAR-10 averaged over two runs

Method Pruning rate
50% 75% 90% 95%

One-off 79.6 17.6 10.0 9.9
Random mask 89.3 87.2 83.2 79.8
l1 loss 81.6 81.7 75.6 43.1
Targeted dropout 82.1 82.1 82.1 21.2
Proposed method 89.9 89.0 87.5 85.2

Table 2: Comparison of our proposed method to other pruning methods that do not use retraining on ResNet-32. Values
are top-1 accuracy in percent on CIFAR-10 averaged over two runs

Method Pruning rate
50% 75% 90% 95%

One-off 86.3 29.9 10.0 10.0
Random mask 90.3 88.3 84.8 82.1
l1 loss 81.6 81.1 82.4 55.6
Targeted dropout 87.1 87.1 87.1 26.5
Proposed method 90.5 90.4 88.8 87.1

250 500 750 1000 1250 1500 1750 2000 2250

Total training epochs

30

40

50

60

70

80

90

A
cc

u
ra

cy

IMP

Prune-retrain

Proposed method

(a) ResNet-20

250 500 750 1000 1250 1500 1750 2000 2250

Total training epochs

30

40

50

60

70

80

90
A

cc
u

ra
cy

IMP

Prune-retrain

Proposed method

(b) ResNet-32

Figure 1: Comparison of our proposed method to other pruning methods that use retraining on ResNet variants. Values
are top-1 accuracy in percent on CIFAR-10. All methods prune 90% of weights

The first method we compare to is that proposed in [6], which we call prune-retrain sparsification. In

this method, once training is complete, a certain percentage of the weights with lowest magnitude are
pruned and the network is retrained for a certain number of epochs. This procedure is then repeated
several times, with the pruning percentage increasing each time. We use pruning percentages of 10%,

20%, 30%, etc. up to 90%, retraining for n epochs after each step, leading to a total of 200 + 9n
epochs. n is varied to test different overall training times. The other method we compare to is
iterative magnitude pruning (IMP) [2] with rewinding [3]. This method trains the network several
times, pruning gradually more each time and then rewinding the network weights to the values they

had after the first 500 training steps. To test different training times, we vary the number of number
of times that the network is trained with some pruning rate between the initial rate of 0% and the
final rate of 90%.

These results show that established iterative methods require many more training steps to achieve

the same results as our proposed method: six times as many on ResNet-20 and over three times as long
on ResNet-32 for IMP. Prune-retrain sparsification had far worse performance than our method, even
with ten times the number of training epochs. For many applications and datasets, trading a slight

reduction in accuracy for being able to avoid expensive retraining schemes could be preferable. It also
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might be possible to combine our proposed method with an iterative retraining scheme to produce the
same accuracies as IMP with less training time.

In summary, our experiments show our proposed method outperforming several other methods that
do not use network retraining, and achieving high performance much more quickly than methods that

use network retraining.

4 Conclusion

We introduce a novel neural network sparsification method based on Gibbs measures that achieves
high pruning ratios with little reduction in accuracy and without requiring additional training steps.
It shows the efficacy of simultaneously training and pruning a network rather than training and pruning

as distinct steps at different times. Future work could use this method to accelerate iterative magnitude
pruning by converging to an effective pruning mask more quickly. The generality of Gibbs measures
also means that similar pruning methods could be developed that induce desired structures in the final

pruning mask.
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Abstract: One of the major challenges in large-scale distributed machine learning involving stochastic gradient meth-

ods is the high cost of gradient communication over multiple nodes. Gradient quantization and sparsification have been

studied to reduce the communication cost. In this work we bridge the gap between gradient sparsity and quantization.

We propose a quantizatized compressive sensing-based approach to address the issue of gradient communication. Our

approach compresses the gradients by a random matrix and apply 1-bit quantization to reduce the communication cost.

We also provide a theoretical analysis on the convergence of our approach, under the gradient bound assumption.

1 Introduction

The advent of internet-of-things (IoT) has changed the way data is collected and processed. Mil-
lions of connected users are generating huge amount of un-processed data, often sensitive. Dis-

tributed processing, exploiting data-parallelism, is often adopted to train a large-scale machine learning
model [13, 18, 22]. Chen et al. proposed Synchronous stochastic gradient descent (Sync-SGD), which
is often used as a preferred distributed optimization technique [5]. Sync-SGD consists of a centralised

parameter server and a number of workers performing the following tasks:

• Parameter server communicates the model parameters with each worker.

• Each worker, in parallel, computes the gradients on a mini-batch of training data. Gradients are
then sent to parameter server.

• Upon receiving gradient updates from all participating workers, parameter server performs a

gradient aggregation. Global model parameters are updated based on the aggregated gradients
and sent to each worker.

The above process is repeated until the model converges.

Although Sync-SGD performs well while the number of participating workers are scaled up, com-
munication of gradients between the workers and the parameter server causes a bottleneck [10, 21].
In other words, the total time required for one complete iteration of Sync-SGD can be categorized

as gradient computation and communication by each worker. Earlier studies have identified gradient
communication cost to be more challenging over the gradient computation cost [25, 26, 27]. Hence
compressing the gradients to reduce the communication overhead is widely studied.

In literature various techniques involving sparsity and quantization of deep neural networks (DNNs)

have been explored [2, 8, 9, 12, 23, 24]. Stich et al. proposed gradient sparsification technique,
where each worker sends top-k gradient parameters to the parameter server [15, 19]. Although such
heuristic technique works well in practice, scaling up the number of workers leads to poor compression

performance and divergence [20]. However, to the best of our knowledge, compressive sensing has not
been used, exploiting sparsity of the gradient updates.

In this paper, we propose a quantized compressive sensing approach to reduce the gradient com-
munication time. We use compressive sensing to acquire compressed measurements from the sparse

gradient updates. Compressed measurements are further quantized using a 1-bit quantizer, for the
ace of hardware implementation. Our work has two major contributions: (1) we propose a quantized
compressive sensing-based approach to reduce the the gradient communication cost in the distributed
learning, (2) we provide a theoretical analysis on the convergence of the proposed approach.

2 Motivation

Our work is motivated by the observation of sparsity, induced by Rectified Linear Unit (ReLU) ac-
tivation layers, in DNNs. ReLU activation function takes the following form: f(x) = max(0, x) and
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forces the gradients to be 0 ∀x < 0 [11]. As a result on average 44% of the operations performed in
most of the modern DNNs, for example AlexNet, GoogLeNet etc., are ineffective [17]. In our work,
compressive sensing is used to exploit this sparsity of DNNs.

3 Background

3.1 Compressive sensing

Compressive sensing is a sampling technique for signals which are sparse or compressible in some
known basis [6]. Let us assume an N dimensional signal x which is K ′-sparse 1, where K ′ << N . The

sensing process can be defined as follows,

yM×1 = ΦM×NxN×1 (1)

= ΦM×NΨN×NsN×1 (2)

where y denotes M dimensional measurement vector, Φ and Ψ denote measurement matrix and the
sparsifying basis respectively. Here s denotes the sparse vector.

Once the compressive measurements are obtained, goal of the reconstruction is to find the sparsest
solution from y. Although the sparsest solution can be obtained by solving `0 optimization problem,
it is computationally complex. Instead, in classical compressive sensing `1 minimization problem is
solved to obtain the sparse solution, which is theoretically proven to be equivalent to minimizing `0
optimization problem [4, 7]. The reconstruction of the compressed measurements can be expressed as
follows,

x̂ = argmin
x
‖x‖1 s.t. y = Φx (3)

where ||.||1 represents `1 norm.

3.2 Quantized Compressive Sensing

Boufounos et al. introduced quantized compressive sensing (QCS) where the quantization is modeled
as an additive measurement noise, shown in equation 4 [3].

y = Q(Φx) = Φx + e (4)

where Q(.) denotes the quantizer. Measurement noise n is bounded by the quantization interval ∆
and the dimension of the compressed measurement (M) as follows [3],

||e||2 ≤
√
M∆2

12
= ε (5)

In QCS reconstructed signal can be obtained by solving,

x̂ = argmin
x
‖x‖1 s.t. ‖y − Φx‖2 ≤ ε (6)

A LP-based reconstruction algorithm can be used to obtain x̂ from the compressed measurements
y [3, 4]. In this work, the reconstruction error β is considered to be a factor accounting both the

quantization error (during measurement) and the LP-based reconstruction error. Equation 7 shows
the aforementioned noise, which can be bounded by a positive quantity β.

||x̂− x||2 = ||n||2 ≤ β (7)

In the next section we discuss the proposed QCS-based gradient compression in distributed learning.

1Although in literature sparsity is denoted as K, we use K′ to denote sparsity for avoiding conflict with the total
number of workers (denoted by K).



Les Cahiers du GERAD G–2020–23–EIW14

4 Proposed approach

4.1 Problem formulation

Let us consider K number of workers participating in a distributed learning process to evaluate param-
eters w on training samples x, drawn (i.i.d.) from a probability distribution dP (x). At t-th iteration,
a mini-batch of training samples are split and evenly distributed among K workers. Each worker com-

putes its local gradients g
(k)
t with respect to its training samples x

(k)
t and communicates the update

with the parameter server to perform aggregation, following: gt = 1
K

∑K
k=1 g

(k)
t . The aggregated

global gradient gt is used to evaluate the updated model parameter wt+1 as,

wt+1 = wt − γgt (8)

where γ denotes learning rate. Updated parameters are sent back to each worker to compute the
gradients for the (t+ 1)-th iteration [14, 23]. The process is repeated untiall convergence is attained.

4.2 Proposed distributed learning approach

Based on the motivation (see Section 2), we use QCS to compress the sparse gradients and obtain the

quantized compressed measurement y
(k)
t as follows,

y
(k)
t = Q(Φ(k)g

(k)
t ) (9)

Each worker sends the compressed measurements or y
(k)
t to the parameter server. As the quantization is

performed on the compressed gradients, our approach requires lower communication cost over standard

gradient quantization approaches (where quantization is performed directly on the gradients).

At the parameter server the quantized compressed measurements are recovered to obtain g̃
(k)
t .

Parameter server performs the gradient aggregation g̃t = 1
K

∑K
k=1 g̃

(k)
t followed by the parameter

update shown as,
wt+1 = wt − γg̃t (10)

where γ denotes the learning rate.

Note: In this work, we focused on providing a convergence analysis for a general setup where each

worker uses different measurement matrix (which is available to the parameter server a priori). As a
result, parameter server needs to perform QCS recovery K times. Whereas, if each user uses same
measurement matrix, parameter server would require to perform QCS recovery only once. Following

measurement vector would be considered in the aforementioned case: yt = Q(Φ[ 1
K

∑K
k=1 g

(k)
t ]). Ag-

gregated gradient g̃t can be obtained by performing recovery only once, as opposed to K times. The
convergence rate can be modified accordingly.

4.3 Convergence analysis

In this section we analyse the convergence of the proposed approach in the non-convex setting, which
is typical in most of the deep learning systems. For this analysis we follow the standard assumptions
of the stochastic optimization summarized by Allen et al. [1].

Assumption 1 ∀w and some constant f∗, global objective function f(w) > f∗.

Above assumption guarantees the convergence of the global objective function to a stationary point.

Assumption 2 Let ḡ(w) denote ∇f(w) evaluated at w = [w1, w2, . . . , wd]
T . Then ∀w, Θ =

[θ1, θ2, . . . , θd]
T and a non-negative constant vector L = [l1, l2, . . . , ld]

T ,

|f(Θ)− [f(w) + ḡ(w)
T

(Θ−w)]| ≤ 1

2

d∑

i=1

li(θi − wi)2
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Above assumption acts as a smoothness criteria. We define l′ = ||L||∞.

Assumption 3 Stochastic gradient g(w) is an unbiased estimate having bounded coordinate variance
E[g(w)] = ḡ(w) and,

E[(g(k)(w)i − ḡ(w)i)
2] ≤ σ2

i

for some non-negative constant vector σ = [σ1, σ2, . . . , σd]
T .

Assumption 4 Let n̄t = E[nt] and there exists a non-negative µ such that (for µ < 1),

||n̄t|| ≤ µ||ḡt||

Under assumptions {1, 2, 3, 4} we have the following convergence rate:

Theorem 1 Let T be the total number of iterations and learning rate γ = 1
l′K
√
T

and f0 be the initial

objective value. Then,

E

[
1

T

T−1∑

t=0

||ḡt||2
]
≤ 1√

T

[
l′K2(f0 − f∗) + ||σ||2 + β

1− µ

]

Proof. From assumption 2 we can write,

ft+1 − ft ≤ ḡTt (wt+1 −wt) +
1

2

d∑

i=1

li(wt+1 −wt)
2
i (11)

where ft denotes the global objective at t-th iteration and the gradient of which is denoted by ḡt.

By taking the expected improvement conditioned on wt we get,

E[ft+1 − ft|wt] ≤
I︷ ︸︸ ︷

E[ḡTt (wt+1 −wt)|wt] +

II︷ ︸︸ ︷

E

[
1

2

d∑

i=1

li(wt+1 −wt)
2
i |wt

]
(12)

Considering part I of equation 12 we can write,

E[ḡTt (wt+1 −wt)|wt] =− E[ḡTt γ
1

K

K∑

k=1

g̃
(k)
t |wt]

=− γḡTt E

[
1

K

K∑

k=1

(g
(k)
t − n

(k)
t )|wt

]

=− γḡTt E

[
1

K

K∑

k=1

g
(k)
t |wt

]
+ γḡTt E

[
1

K

K∑

k=1

n
(k)
t |wt

]

=− γḡTt ḡt + γḡTt n̄t

(13)

Considering Assumptions 3 and 4, Equation 13 can be simplified as below,

E[ḡTt (wt+1 −wt)|wt] ≤ −γ||ḡt||2 + γ||ḡt||||n̄t||
≤ −γ||ḡt||2 + γµ||ḡt||2

(14)
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Considering II of Equation 12,

E

[
1

2

d∑

i=1

li(wt+1 −wt)
2
i |wt

]
≤E
[

1

2
l′||wt+1 −wt||2|wt

]

=E

[
1

2
l′
∣∣∣∣∣

∣∣∣∣∣
γ

K

K∑

k=1

g̃
(k)
t

∣∣∣∣∣

∣∣∣∣∣

2∣∣∣∣∣wt

]

≤ l
′γ2

2K

K∑

k=1

E[||g̃(k)
t ||2|wt]

=
l′γ2

2K

K∑

k=1

E[||g(k)
t − n

(k)
t ||2|wt]

≤ l
′γ2

2K

[
K∑

k=1

2E
[
||g(k)

t ||2|wt

]
+

K∑

k=1

2E
[
||n(k)

t ||2|wt

]]

(15)

From the variance bound of Assumption 3 we can write,

E
[
||g(k)

t − ḡt||2|wt

]
≤ ||σ||2 (16)

Equation 16 can be re-written as,

||σ||2 ≥E
[
||g(k)

t − ḡt||2
]

=E
[
||g(k)

t ||2 − 2ḡTt g
(k)
t + ||ḡt||2

]

=E
[
||g(k)

t ||2
]
− 2ḡTt E

[
||g(k)

t ||
]

+ ||ḡt||2

=E
[
||g(k)

t ||2
]
− 2ḡTt ḡt + ||ḡt||2

=E
[
||g(k)

t ||2
]
− ||ḡt||2

(17)

From Equation 17 we get,

E
[
||g(k)

t ||2
]
≤ ||σ||2 + ||ḡt||2 (18)

Substituting Equations 7 and 18 into Equation 15 we can write,

E

[
1

2

d∑

i=1

li(wt+1 −wt)
2
i |wt

]
≤ γ2l′

[
||σ||2 + ||ḡt||2 + β

]
(19)

Combining Equation 14 and 19 Equation 12 can be simplified as shown below,

E[ft+1 − ft|wt] ≤ −γ||ḡt||2 + γµ||ḡt||2 + γ2l′
[
||σ||2 + ||ḡt||2 + β

]
(20)

Substituting the value of γ in Equation 20,

E[ft+1 − ft|wt] ≤ ||ḡt||2
( 1

l′TK2
− 1− µ
l′
√
TK

)
+

1

l′TK2
(||σ||2 + β)

≤ − 1− µ
l′
√
TK2

||ḡt||2 +
1

l′TK2
(||σ||2 + β)
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Let us further extend the expectation over randomness in the trajectory and perform a telescoping
sum over all the iterations. We obtain,

f0 − f∗ ≥f0 − E[fT ]

=E
[ T−1∑

t=0

(ft − ft+1)

]

≥ 1

l′
E
T−1∑

t=0

[
(1− µ)||ḡt||2√

TK2
− ||σ||

2 + β

TK2

]

=E

[√
T (1− µ)

l′K2
||ḡt||2 −

||σ||2 + β

l′K2

]

=
1

l′K2

{
√
T (1− µ)E

[
1

T

T−1∑

t=0

||ḡt||2
]
− (||σ||2 + β)

}

By rearranging the above inequality we can write,

E

[
1

T

T−1∑

t=0

||ḡt||2
]
≤ 1√

T

[
l′K2(f0 − f∗) + ||σ||2 + β

1− µ

]

This completes the proof. �

Note that the asymptotic convergence rate of the proposed approach is O

(
β√
T

)
. In comparison,

SGD has the same asymptotic convergence rate of O

(
β√
T

)
. Earlier work on error-compensated

DoubleSqueeze admits the same convergence rate of O

(
β√
T

)
[16].

5 Conclusion

In this work, we introduce a novel quantized compressive sensing-based gradient compression approach.
We exploit the gradient sparsity induced by the activation layers in DNNs to reduce the communication

cost between the workers and the parameter server in a distributed learning framework. We also provide
a theoretical analysis on the convergence of the proposed approach.

Further studies would involve validation with experimental results. Comparison would be made
against the state of the art quantization-based gradient compression technique. Suitability of a low

complexity QCS recovery algorithm would be investigated. The work would further be extended into
de-centralized setting exploiting joint sparsity.
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