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Les textes publiés dans la série des rapports de recherche Les Cahiers
du GERAD n’engagent que la responsabilité de leurs auteurs. Les
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The authors are exclusively responsible for the content of their re-
search papers published in the series Les Cahiers du GERAD. Copy-
right and moral rights for the publications are retained by the authors
and the users must commit themselves to recognize and abide the
legal requirements associated with these rights. Thus, users:

• May download and print one copy of any publication from the
public portal for the purpose of private study or research;

• May not further distribute the material or use it for any profit-
making activity or commercial gain;

• May freely distribute the URL identifying the publication.
If you believe that this document breaches copyright please contact us
providing details, and we will remove access to the work immediately
and investigate your claim.



Les Cahiers du GERAD G–2020–23–EIW13 1

Abstract: Pruning methods for deep neural networks based on weight magnitude have shown promise in recent

research. We propose a new, highly flexible approach to neural network pruning based on Gibbs measures. We apply

it with a Hamiltonian that is a function of weight magnitude, using the annealing capabilities of Gibbs measures to

smoothly move from regularization to adaptive pruning during an ordinary neural network training schedule. Compar-

ing to several established methods, we find that our network outperforms those that do not use extra training steps and

achieves a high accuracy much faster than those that do. We achieve a ¡3% reduction in accuracy on CIFAR-10 with

ResNet-32 when pruning 90% of weights.

1 Introduction

Neural network sparsification via connection pruning has recently been a topic of renewed academic

interest. Recent work has shown both the practical utility of pruning in neural network compression

systems [6] and theoretical insights gained by experiments with pruning [2]. With modern deep neural

network topologies, it is common to be able to prune over 80% of weights with little degradation in

performance.

While other criteria have been explored, recent research has focused on pruning weights with low

magnitude, since magnitude-based pruning schemes have proven more effective than other established

ones [4, 5]. However, existing schemes often require loops of pruning and retraining to achieve good

results [6, 2], substantially increasing training time. Our work seeks to approach the performance of

such methods without requiring additional training.

Taking inspiration from statistical physics, we propose inducing a Gibbs measure over the weights

of a neural network, and sampling from it during training to determine pruning masks. This procedure

induces a learned network structure that is resilient to high degrees of pruning. Gibbs measures are

highly flexible in terms of network properties that they can express, and quadratic energy functions,

such as Ising models, can capture parameter interactions and induce desired structure in pruning masks.

They also naturally allow a temperature parameter to be used for annealing, gradually converging to a

final pruning mask during training and improving network resilience to pruning. We propose a simple

energy function based on weight magnitude to define the Gibbs measure used in our experiments.

2 Proposed method

A Gibbs measure is a probability measure over a vector x of the form:

p(x) =
1

Z(β)
e−βH(x), (1)

where H(x) is the Hamiltonian function, or energy, β is an inverse temperature parameter that can

be used for annealing, and Z(β) is a partition function that normalizes the measure. In our proposed

method, x represents a pruning mask for a single neural network layer, with xi ∈ {0, 1}. Given the

weights of the layer as a flattened vector w, a weight wi is masked (treated as zero) during training if

the corresponding xi is 0. x is sampled from p(x) at every training step and once again after training

to determine the final mask.

To sample in such a way that weights with lower magnitude are more likely to be masked, we use

a Hamiltonian of the form:

H(x) =
∑
i

(Q(p,w ◦w)− w2
i )xi, (2)

where ◦ represents elementwise multiplication, p is the target pruning fraction, and Q(p,w ◦w) rep-

resents the pth quantile of the values in the vector w ◦w.
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We perform annealing by increasing β from a low value to a high value while training. At high

temperatures (low β), differences in the Hamiltonian do not affect sampling much, and so roughly

50% of weights are pruned randomly. This is equivalent to the regularization method dropconnect [10]

and starts conditioning the network to be robust under weight pruning. Once annealed to a low

temperature (high β), the Gibbs measure converges to pruning the fraction p of weights with lowest

magnitude.

This is a highly flexible pruning approach, and although we only consider one Hamiltonian formu-

lation in this paper, others could be designed that take into account characteristics such as network

activations or interactions between weights. A Hamiltonian with quadratic terms, such as an Ising

model, could induce structure in the pruning masks so as to make them more practically applicable to

network compression.

In general, Gibbs measures are computationally expensive to sample from, since the partition

function contains many terms. However, since our proposed Hamiltonian is a sum of terms that are

each a function of just one element in x, the measure factors into functions of each xi, and each xi can

therefore be sampled independently. More complex Hamiltonians would likely require similar shortcuts

based on independence, or acceleration on GPU or hardware using an efficient sampler such as the

Swendsen-Wang algorithm [1] to be realistically usable at each training step.

The goal of our proposed method is to optimize a network’s parameters through training at the

same time as the final pruning mask over the network is being determined. This means that early

on in training, the network learns to be robust under random pruning and receives the regularization

benefits of dropconnect, and then gradually converges towards a particular pruning mask, spending

a significant amount of later training time adapting to the particular structure of the pruning mask.

The balance between time spent on adapting to random masks and time spent adapting to the final

mask can be controlled by the particular annealing schedule for β used in training.

3 Experiments

We compare the performance of our proposed method to various baselines and established methods

using ResNet-20 and ResNet-32 [7] on the CIFAR-10 [9] dataset. The networks are trained for 200

epochs using the Adam optimizer [8], with a learning rate initially set to 1 × 10−3 and reduced by a

factor of 10 every 60 epochs. This achieves baseline top-1 accuracies of 90.7% for ResNet-20 and 91.6%

for ResNet-32. We prune all convolutional layers except for the first one, following the recommendation

in [4]. When using our proposed method, we anneal β according to a logarithmic schedule from 0.7

to 10000 over the first 128 epochs. These values were chosen empirically to cover a range from an

effective pruning rate of 50% to p.

We compare our methods to two kinds of established methods: those that do not add extra training

steps to the optimization procedure and those that do. Since our method does not add extra training

steps, when comparing to other methods that do not either, we simply compare final accuracies at

different p values. This comparison is shown in Tables 1 and 2. One-off pruning simply removes

the fraction p of weights in each layer with the lowest magnitude, with no changes to the training

procedure. We also test applying a random pruning mask at the beginning of training and maintaining

it throughout, effectively training a smaller network from the start. We test using l1 regularization

with a tuned penalty of 0.001 to induce sparsity during training before masking the fraction p weights

in each layer with the lowest magnitude. Finally, we test targeted dropout, which is a recently proposed

method described in [5]. We use the most successful hyperparameter settings described in the paper:

α = 0.75, γ = 0.9. The results show our proposed method consistently outperforming the other tested

pruning methods at all p values.

We also compare our proposed method to established pruning methods that require additional

training steps beyond the initial network training in Figure 1. In these comparisons, we look at how

many training epochs are required for such methods to match the performance of our proposed method.
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Table 1: Comparison of our proposed method to other pruning methods that do not use retraining on ResNet-20. Values
are top-1 accuracy in percent on CIFAR-10 averaged over two runs

Method Pruning rate
50% 75% 90% 95%

One-off 79.6 17.6 10.0 9.9
Random mask 89.3 87.2 83.2 79.8
l1 loss 81.6 81.7 75.6 43.1
Targeted dropout 82.1 82.1 82.1 21.2
Proposed method 89.9 89.0 87.5 85.2

Table 2: Comparison of our proposed method to other pruning methods that do not use retraining on ResNet-32. Values
are top-1 accuracy in percent on CIFAR-10 averaged over two runs

Method Pruning rate
50% 75% 90% 95%

One-off 86.3 29.9 10.0 10.0
Random mask 90.3 88.3 84.8 82.1
l1 loss 81.6 81.1 82.4 55.6
Targeted dropout 87.1 87.1 87.1 26.5
Proposed method 90.5 90.4 88.8 87.1

250 500 750 1000 1250 1500 1750 2000 2250

Total training epochs

30

40

50

60

70

80

90

A
cc

u
ra

cy

IMP

Prune-retrain

Proposed method

(a) ResNet-20

250 500 750 1000 1250 1500 1750 2000 2250

Total training epochs

30

40

50

60

70

80

90
A

cc
u

ra
cy

IMP

Prune-retrain

Proposed method

(b) ResNet-32

Figure 1: Comparison of our proposed method to other pruning methods that use retraining on ResNet variants. Values
are top-1 accuracy in percent on CIFAR-10. All methods prune 90% of weights

The first method we compare to is that proposed in [6], which we call prune-retrain sparsification. In

this method, once training is complete, a certain percentage of the weights with lowest magnitude are

pruned and the network is retrained for a certain number of epochs. This procedure is then repeated

several times, with the pruning percentage increasing each time. We use pruning percentages of 10%,

20%, 30%, etc. up to 90%, retraining for n epochs after each step, leading to a total of 200 + 9n

epochs. n is varied to test different overall training times. The other method we compare to is

iterative magnitude pruning (IMP) [2] with rewinding [3]. This method trains the network several

times, pruning gradually more each time and then rewinding the network weights to the values they

had after the first 500 training steps. To test different training times, we vary the number of number

of times that the network is trained with some pruning rate between the initial rate of 0% and the

final rate of 90%.

These results show that established iterative methods require many more training steps to achieve

the same results as our proposed method: six times as many on ResNet-20 and over three times as long

on ResNet-32 for IMP. Prune-retrain sparsification had far worse performance than our method, even

with ten times the number of training epochs. For many applications and datasets, trading a slight

reduction in accuracy for being able to avoid expensive retraining schemes could be preferable. It also
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might be possible to combine our proposed method with an iterative retraining scheme to produce the

same accuracies as IMP with less training time.

In summary, our experiments show our proposed method outperforming several other methods that

do not use network retraining, and achieving high performance much more quickly than methods that

use network retraining.

4 Conclusion

We introduce a novel neural network sparsification method based on Gibbs measures that achieves

high pruning ratios with little reduction in accuracy and without requiring additional training steps.

It shows the efficacy of simultaneously training and pruning a network rather than training and pruning

as distinct steps at different times. Future work could use this method to accelerate iterative magnitude

pruning by converging to an effective pruning mask more quickly. The generality of Gibbs measures

also means that similar pruning methods could be developed that induce desired structures in the final

pruning mask.
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