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– Library and Archives Canada, 2020

GERAD HEC Montréal
3000, chemin de la Côte-Sainte-Catherine
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les exigences légales associées à ces droits. Ainsi, les utilisateurs:
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activité à but lucratif ou pour un gain commercial;

• Peuvent distribuer gratuitement l’URL identifiant la publica-
tion.

Si vous pensez que ce document enfreint le droit d’auteur, contactez-
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Abstract: In time-to-event data analysis, the main object of interest is the time elapsed between the occurrence of

two ordered events, say E1, E2. Sampling from the incident population, i.e., subjects who have experienced the incidence

of E1 before being sampled regardless of the occurrence of E2, is the gold standard in follow-up studies. Yet often in

practice, it is more feasible to sample from the prevalent population, i.e., subjects who have already experienced E1, but

not E2. It is well known that the prevalent sampling design induces sample selection bias. Moreover, time-to-event data

are usually subject to censoring which causes partial loss of information on a fraction of the subjects. Here, we discuss

the inefficiency of the conventional learning methods due to ignoring sample selection bias and show how this problem

can be avoided by properly incorporating the selection bias into the analysis. Arguments are backed by simulation studies.

1 Introduction

Time-to-event is the output of interest in numerous disciplines spanning epidemiology, economics,

econometrics, gerontology, and etc. It is defined as the amount of time elapsed from the occurrence of

an initiating event until that of a second event called terminating event. Both events are pre-defined.

For example, the initiating event might be birth, onset of a disease, or an aircraft’s release, while

the terminating event could be retirement, death, or the aircraft’s phase-out, respectively. Time-to-

event modelling is a ubiquitous problem, an evidence of which is the existence of multiple domains,

such as survival analysis, reliability theory, event history analysis, duration modelling, etc., all with

similar objectives. As a result, a vast variety of methods have been developed for this purpose.

Survival analysis alone hosts a great deal of theory, a big portion of which is related to modelling

potential associations between the time-to-event or an individual’s survival time and a set of observed

measurements for that individual. Naturally, any data-driven inference depends on characteristics of

the training data. That is, any quality of the data, potentially affecting the outcome of the analysis,

should be properly incorporated in the learning process; otherwise the algorithm’s learnability, i.e.,

the ability to extract relevant information might be influenced negatively. Regarding time-to-event

data, there are several points worth considering. One is that data may suffer from multiple types of

incompleteness, ignoring which may cause serious issues. The gold standard in time-to-event data is to

conduct follow-up studies on randomly selected cases from the incident population, i.e., subjects who

have not experienced the initiating event before the study starts. Logistic or other constraints may,

however, preclude the possibility of conducting incident cohort studies. A feasible alternative in such

cases is to conduct a cross-sectional prevalent cohort study for which one recruits prevalent cases, that

is, subjects who have already experienced the initiating event, but not the terminating event. When

the interest lies in estimating the lifespan between the initiating and the terminating event, subjects

may be followed prospectively either until the terminating event happens or they are lost to follow-up,

whichever occurs first. This study design gives rise to two types of incompleteness: First, the response

variable, being lifetime, is observed for some subjects while for others we only know that it is greater

than some observed period, called censoring time. This type of incompleteness due to censoring is

called right censoring. Learning from such data for prediction and generalization falls, roughly, into

the realm of semi-supervised learning with the difference that there is partial information on subjects

whose response is not observed, hence the name semi+-supervised learning. Second, it is well known

that prevalent cases have, on average, longer lifespans since longer survivors are more prone to be

selected at the recruitment time. As such, a prevalent cohort comprises a biased, and non-random

sample of the target population. An important feature of such data is that the response selection bias

induces a bias on the feature space’s sampling frame. This is so since certain feature values could be

preferentially selected into the sample, being linked to the long-term survivors, who themselves are

favored by the sampling mechanism. This systematically introduced bias comprises the second type

of incompleteness, called sample selection bias. Here, we discuss different challenges in analysing and

learning from such data. Particular attention is paid to the case where the chance of being selected into

the sample is proportional to the survival time, the so-called length-biased sampling. Especially, we



2 G–2020–23–EIW09 Les Cahiers du GERAD

consider the learning problem in (i) variable selection, and (ii) classification settings, and will conclude

that the conventional approach for learning lacks efficiency and describe how this can be fixed.

2 Training data

Throughout this note, uppercase letters denote one-dimensional random variables, while bold upper-

case denotes random vectors. For any subject i, we define the following: The response variable, i.e.,

time-to-event, represented by Ui. The length-biased variables will be marked with a tilde, e.g., Ũi refers

to the length-biased survival time. Naturally, we assume that Ui, Ũi ≥ 0. Also, Zi = (Zi1 , Zi2 , . . . , Zid),

with d ≥ 1, is a vector of covariates. To distinguish biased covariates, we shall use the superscript “∗”.

Realizations of random variables and vectors are shown via lowercase and bold lowercase, respectively.

To avoid cumbersome notation, no distinction between unbiased and biased realizations is made. When

applicable, regression coefficients are denoted by β = (β0, . . . , βd)>. Nevertheless, θ is used to indicate

the vector of all parameters to be estimated, including the regression ones. Define Ti as the current

lifetime, i.e., the time interval between the initiating event and sampling time. Similarly, the residual

lifetime, denoted by Ri, is defined to be the time interval from the sampling until the terminating

event. Therefore, Ui = Ti +Ri. Also, let Ci denote the censoring time, which is the time elapsed from

the sampling of the subject until its possible censoring. One may observe only Ri ∧ Ci = min(Ri, Ci)

due to possible censoring. Additionally, we define Xi := Ti + (Ri ∧ Ci). A failure indicator δi is

defined to be a Bernoulli random variable indicating whether a subject has failed or censored; that is,

δi = 1{R≤C}. Finally, the training data is assumed to be of the following form:

S̃c = {(T̃i, R̃i ∧ Ci, δi,Z
∗
i ) : i = 1, . . . , n},

with Z∗i = (Z∗i1 , . . . , Z
∗
id

). Recall that S̃c is length biased (see Figure 1).
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Figure 1: Prevalent vs. Incident Populations: The upper triangle depicts the prevalent population, while the incident
population consists of both upper and lower triangles

3 Conditional vs. joint approaches

Consider the regression problem

Ui = fβ(Zi) + εi, i = 1, . . . , n (1)

where Ui is the response, Zi ∈ Rd a vector of covariates, β ∈ Rd+1 vector of coefficients, fβ a real-

valued function of Zi, and εi a suitable error term independent from Zi. The core of the conventional

approach is utilizing the conditional distribution of Ui given Zi for estimation. Bergeron et al. [2]

showed that, with left truncation, the conditional likelihood LI yields biased estimation because it

ignores the information carried by the selection-biased covariates. Moreover, they established that, in

contrast, grounding the analysis in the joint distribution of the covariates and response incorporates
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this information into the analysis and, consequently, produces superior estimation. Let LJ denote the

joint likelihood. Note that LJ(θ) = LI(θ) pZ∗(z), with pZ∗(z) representing the distribution of the

biased covariate Z∗. Following the same view as Bergeron et al., we study the impact of the choice of

the likelihood function on variable selection and classification.

4 Variable selection

Suppose that in equation (1), fβ(Zi) = β0 + β1Z1 + · · ·+ βdZd. Although, training data S̃c contains

d-dimensional features Z∗i , not all of them are necessarily related to Ui. In other words, if β0 =

(β0
1 , . . . , β

0
d) is the true underlying regression coefficient, then there may exist some j’s with 1 ≤ j ≤ d

such that β0
j = 0. Variable selection in this setting involves finding truly non-zero entries of the

regression coefficient β in (1) using the train data S̃c. Let an arbitrary model M be denoted by the set

of indices of non-zero entries of the corresponding regression coefficient, i.e., for instance, M = {j1, j2}
is the model corresponding to the family of all β’s with their only βj1th and βj2th entries being non-

zero, where 1 ≤ j1, j2 ≤ d. (Note that such β is not unique.) Let M0 denote the true model, i.e., the

model corresponding to β0, and M be the set of all candidate models. M may or may not include

M0. Following [8], we define

• Mo := {M ∈M : M0 ⊆M}, called the set of correct models, and

• Mu :=M\Mo, set of incorrect models.

Correct models might be inefficient because of their superfluous complexity. The optimal candidate

model is the least complex model in Mo, denoted by M?. Selecting a model from Mu means missing

at least one of the true predictors and, hence, must be avoided. Particularly, as far as revealing the

true risk factors is the main interest, it is ultimately desirable for a learning algorithm whose purpose

is discovering the true non-zero coefficients not to choose an underfitted model, i.e., from Mu. In

the literature numerous likelihood-based criteria has been introduced for model selection (which is, in

the present setting, equivalent to variable selection). Examples include Akaike Information Criterion

(AIC) [1], Bayesian Information Criterion (BIC) [7], etc, among others. It can be shown that, under

length-biased and right-censored training data, employing LJ as the baseline likelihood function for

variable selection is more efficient compared to its counterpart LI . Roughly, a selection criterion based

on LJ takes less samples to find M? in comparison to it being based on LI . In addition to theoretical

justifications, simulation studies, presented in section Simulation Study, also supported this suggestion.

5 Classification

Recently, adopting machine learning techniques has attracted huge attention amongst researchers and

policy makers in health care related domains. To a considerable extent, this has been attributed to the

swiftly increasing availability of patient records through electronic health records data (EHR). EHR

provide access to a large amount of rich data extracted from clinical and administrative data bases. An

important question in patient care management is to predict the risk of experiencing a certain outcome,

e.g., recurring a health condition, within a particular time frame, say 1 year. However, due to the

specific properties of EHR, including length bias and censoring, most of well-known learning techniques

cannot be applied naively. Several ad hoc approaches have been tried previously to adapt some machine

learning techniques to EHR data but these methods either involve even further loss of information, e.g.,

by ignoring censored objects, or require the data to be tweaked unnaturally (see [10]). On the other

hand, there have been several successful treatments of right-censored data using, for instance, support

vector machines, decision trees, and random forests (see, e.g., [3, 4, 5, 6, 9], among others). What is

mostly missing in the literature is difficulties induced by left-truncation. This is another problem that

we try to address appropriately when it comes to the aforementioned classification question. That is,

in presence of length bias how one may correctly model the occurrence of the terminating event in a

certain time interval, especially, we focus on the selection bias imposed to the covariates. This may

play an important role in methods that rely essentially on the characteristics of the covariate or input

space such as tree-based methods.
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6 Simulation study

Figure 2 demonstrates the results obtained from BIC variable selection, based on LI and LJ (BICI ,

BICj), on simulated, length-biased data generated as follows: (1) Fix λ > 0,β, and sample size n; (2)

generate Z ∈ Z := {0, 1}2 according to discrete uniform distribution over Z; (3) generate U such that

U |Z ∼ Exp(λeZβ); and (4) truncate and censor the data based on pre-decided criteria.
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Figure 2: As n increases, underfitting percentage for both BICI and BICj approaches 0 (consistency)

Size n has been gradually increased from n = 50 to 1000 by steps of 25. For each size, 50 different

datasets were randomly generated. Figure 2 compares the estimated probability of selecting an under-

fitted model, i.e., a model containing either Z1 or Z2, applying BICI and BICJ . As depicted, BICJ

constantly exhibits a slightly superior performance.
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