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Abstract: Training large-scale deep neural networks is a long, time-consuming operation, often requiring many

GPUs to accelerate. In large models, the time spent loading data takes a significant portion of model training time. As

GPU servers are typically expensive, tricks that can save training time are valuable. Slow training is observed especially

on real-world applications where exhaustive data augmentation operations are required. Data augmentation techniques

include: padding, rotation, adding noise, down sampling, up sampling, etc. These additional operations increase the

need to build an efficient data loading pipeline, and to explore existing tools to speed up training time. We focus on

the comparison of two main tools designed for this task, namely binary data format to accelerate data reading, and

NVIDIA DALI to accelerate data augmentation. Our study shows improvement on the order of 20% to 40% if such

dedicated tools are used.

1 Introduction

Deep neural networks have achieved great successes in various domains such as computer vision [3, 2],

natural language processing [10, 9], and speech recognition [17] among others. This is a result of

deeper and wider models, which allow modeling large and complex data. As computing hardware

has improved, larger data sets are analyzed. It appears that processing power always falls behind

data volume and model size. In order to make the training process more efficient, several fields are

developing new techniques such as providing dedicated tools to accelerate training and inference, as

well as neural model compression to deploy a simpler model with comparable accuracy but fewer

operations.

Training acceleration is a difficult task. Let’s understand the core of the problem using an a very

simple neural network, e.g. logistic regression. Suppose N pairs of input features of dimension d,

say xi and binary output data, say yi are available (xi, yi), i = 1, . . . , N . A logistic regression model

is equivalent to a fully-connected network with a single hidden layer and a single neuron. As the data

size gets bigger in terms of N and d, training requires more computation.

A training process optimizes a loss function, here

L(w) =−
n∑

i=1

yi log σ(x>i w)

+ (1− yi) log(1− σ(x>i w)),

(1)

where

σ(x) = {1 + exp(−x)}−1

is the sigmoid activation. For the case of logistic regression iterative re-weighted least squares is often

used to optimize L, which is equivalent to Newton’s method. Newton’s method starts from an initial

estimate w0 and updates

wt+1 ← wt −H−1∇L(w) |w=wt (2)

where H is the d× d Hessian of L and ∇L =
∑n

i=1∇Li(w) is the sum of individual gradients, each of

length d. Computing the local approximation of H =
∑n

i=1 xix
>
i is of O(nd2) and factorizing it is of

O(nd3), if not impossible.

Increasing the number of data points N →∞ theoretically makes the optimization easier, because

L(w) has more curvature as N increases, a blessing. However, computation of L(w), ∇L(w), and

H becomes a curse since all of these quantities are in the form of a sum and their computation may

lead to memory overflow. Optimization using Newton’s method becomes increasingly hard with large

feature size d. Large features are common in almost all machine learning challenges. The remedy for

large N is to break computations into smaller sub-operations. The remedy for large d is to switch from
a second-order approximation, i.e., Newton’s method, to a first-order approximation, i.e., the gradient

method.



2 G–2020–23–EIW08 Les Cahiers du GERAD

Computing partial sums is a simple way to overcome the large N issue, so that each partial sum

remains within the memory resource constraints. Then the final quantity is computed by summing

the partial sums, perhaps with a proper re-scaling. The idea of partial sum is somehow a re-shape of

the mini batch training approach.

In neural networks with a large d and n, numerical optimization is simplified to gradient descent

in which the hessian H is replaced by the identity matrix with a positive scalar learning rate

H =
1

η
I, η > 0

so the weight update is simplified to

wt+1 ← wt − η∇L(w) |w=wt
. (3)

Furthermore, to benefit from parallel computation, N data points are arranged in n random mini

batches, each of size B, i.e. N = nB. Each batch has its own gradient

∇Lb(w) =

B∑
i=1

∇Lbi(w),

which is equivalent to scaling η by n, on average. This allows computations to be run in parallel for

each batch [4, 16].

Even if computations are run in parallel, all data still needs to be fed to the optimizer in several

rounds of epochs, similar to Newton’s method. Therefore, investing in an efficient data loading pipeline

plays an important role in training speed [18].

The rest of the paper focuses on clarifying the benefit of a dedicated tool such as DALI1 for

managing data loading implemented by NVIDIA in PyTorch, while a using a convenient data reading

format such as Hierarchical Data Format 5 (HDF5) [14] or TensorFlow Record [1] to accelerate file

reading.

Data loading is a crucial part of model training in neural networks. It begins by reading the data

from a secondary memory storage, such as Solid State Drive, then caches it into a primary memory

storage, such as Random Access Memory. This data transfer includes extra operations like data

augmentation to feed the data to the model. See Figure 1.

Read Preprocessing Data	
augmentation

	Training	
	operations

Open,	(seek),	read
and	(close)

Decode,	resize,	gray
scale	normalize,	etc.

Random	resize	and
crop,	color	jitter,	add

noise,	etc.

Forward	pass	and
backward	pass

Load	
on	GPU

Convert	to	tensor
and	put	the	data	on

GPU

Read Preprocessing Data	
augmentation

	Training	
	operations

Load	
on	GPU

Original	
Pipeline

DALI	
Pipeline

Data Loading Process Model Training

Figure 1: Batch training sequence performed on a GPU with and without DALI

There are two main issues in the data loading process i) reading data directly from files is inefficient

ii) resource allocation for extra operations on data overloads the CPU.

Reading data from individual files directly is slow. This happens when the entire data set is not

cached in the local memory. Every single file is opened, is read, and is closed sequentially. These

sequential operations add considerable overhead to the file retrieval time. One solution to prevent

1https://github.com/NVIDIA/DALI

https://github.com/NVIDIA/DALI
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this overhead is to use the Hierarchical Data Format version 5 (HDF5) [14], which has an open-source

library to store, manipulate, and manage the large data set. HDF5 format stores multiple data sets

in one file as a multidimensional array of binary data. It also groups storage layout by storing data

in fixed-size chunks on disk. Another alternative to HDF5 is the TensorFlow Record (TFRecord) [1],

which uses a sequence of binary strings to store data. It allows large data sets to be sequentially loaded

to the local memory.

The whole process of data loading is managed by CPU, which can create a bottleneck for model

training. This bottleneck happens normally in the case of multi-node-multi-GPU training, as loading

batches of data takes more time than forward-backward propagation. To prevent the CPU bottleneck

issue, NVIDIA Data Loading Library (DALI) helps by sharing some data loading tasks between the

CPU and GPU, to prevent the CPU bottleneck issue. Figure 2 shows how employing this library

improves the data loading process considerably. DALI is a collection of highly optimized building

blocks and execution engines which provides a full data accelerated pipeline: from reading the data to

preparing for training and inference.

Figure 2: Logarithmic scale of average time of data loading (in micro second) for ResNet-50 [12] on ImageNet data set
with batch-size B = 256

2 Data format

In order to explore the effect that data format and resource allocation has on data loading performance,

we present four pipelines for data loading: with/without dedicated reader, and with/without resource

allocation. We used PyTorch version 1.2.0 to implement these pipelines on a computer vision task.

The PyTorch file reader pipeline is the PyTorch DataLoader class which combines data set object

with a sampler object, to provide a single or multi-process iterators over the data set. This pipeline

reads data from individual JPEG files on the storage and uses the PyTorch Transforms class to chain

several image transformation operations together. This prepares the data for training by doing the

data augmentation. By default, all these operations are directed to the CPU.

The dedicated reader pipeline is also based on the PyTorch DATALOADER class. This pipeline

stores data differently, i.e. instead of reading data from individual JPEG files, the entire train and

validation data sets are stored as two HDF5 files.

3 Resource allocation

This pipeline uses the NVIDIA DALI library to read data from JPEG files, process and then feed

GPUs for training. In the DALI pipeline, the data loading process is shared between CPU and GPU.

This means that all operations on data, such as resizing, cropping and data augmentation can be run
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on CPU, GPU, or a mix of both. To measure the effect of file formatting, data file retrieval has been

done in two cases: reading directly from JPEG files and using a dedicated file reader to read data from

TFRecord data set.

4 Training time improvement

We summarize our experiments using four configurations, i.e., with/without a dedicated file reader,

and with/without DALI. In order to compare these pipelines, we performed several experiments in

two use cases: with few or with extensive data augmentation operations. By few operations, we mean

resize with random crop and random horizontal flip operations and by extensive, we mean resize with

random crop operation, random horizontal flip operation and random adjustment of the brightness,

contrast and saturation of an image. Simple data augmentation is applied in most deep learning

prototypes, while extensive data augmentation is very common in industry to ensure model robustness

in real products. Our experiments are run twice, once on small subset of InsightFace [6, 7, 8, 11] and

once on large ImageNet data set [5].

Figure 3 shows that a dedicated data reader is enough to improve epoch time, but only if data is

small. However, the DALI pipeline still is a winner for small data requiring extensive data augmenta-

tion. This is because DALI distributes the data augmentation operation between CPU and GPU to

avoid CPU overcharge. This can be seen by comparing the top left panel, with the top right panel.

If extensive data preprocessing operations are performed in a larger ImageNet data, CPU work-

load becomes the bottleneck even with few data augmentation operations. Consequently, epoch time

increases in data loading and DALI can avoid the CPU overcharge by performing some of these oper-

ations on GPU. Figure 3 (bottom right) shows that DALI improves data loading from 2200 seconds to

Figure 3: Epoch time for the small subset of InsightFace (top panels) and large ImageNet data (bottom panels), while
few data processing operations are performed (left panels) and while extensive preprocessing operations are performed
(right panel). The experiments in top panels were performed on 4 GPUs (NVIDIA TITAN 12 GB memory) and in bottom
panels on 8 GPUs (NVIDIA TESLA V100 32GB memory)
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1300 seconds, to gain performance benefit of about 40%. Using only a dedicated reader without DALI

improves the training time from 1800 seconds to 1300 seconds, giving a performance improvement of

30%. This effect is also visible in Figure 4 on a single epoch time. DALI fuses multiple operations such

as cropping and normalizing and run it on one GPU CUDA kernel. This speeds up data augmentation

process by reducing the number of memory access.

Figure 4: Time comparison for few (gray) and extensive (dark) data augmentations

5 Data loading improvement

Let’s move from epoch time to data loading time by removing forward and backward pass from training

time, see Figure 1. Data loading contributes about 40% to the epoch time, see Figure 5.

Figure 5: Percentage of data loading time (gray) added on top of training time (dark) in a single training epoch. Each
data loader test case has two bar charts for showing few and extensive data augmentations

Figure 6 confirms that the DALI pipeline considerably improves data loading by a factor of 100×.

However, for very large models, the GPU is only required to perform forward and backward passes,

so loading the CPU for data is wiser. Therefore, it is important to keep the CPU and GPU load

well balanced through DALI load option. Figure 7 confirms the same message when training time is

stacked on data loading time to measure the epoch time overall.

In Figure 7 data loading is stacked on training to reflect the epoch time overall. There is a small

difference between the common data loader pipeline and NVIDIA DALI data loader pipeline. Using
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the GPU resources for data loading may slow down the overall model training time if it fails to balance

CPU and GPU load.

Figure 6: Logarithmic scale plot of average data loading time (per epoch), four data loader pipelines: with/without DALI,
and with/without a dedicated reader. Time for few (gray) and extensive (dark) data augmentations

Figure 7: Training time on four data loader pipelines: with/without DALI, and with/without a dedicated reader. Each
data loader pipeline has two bar charts for showing few and extensive data augmentations

By default, DALI uses the first GPU slot to perform data loading process. However, the NVIDIA

APEX library uses multiple GPUs for this task. This flexibility becomes increasingly important for

large models while all data and models cannot be loaded into a single GPU and multi-GPU operation

becomes a necessity.

6 Conclusion

NVIDIA DALI provides an effective alternative to common data loading process. It provides a full

pipeline of optimizations including data readers and tools to accelerate training and inference. It

also enables most data augmentation operations to be performed on GPU and on CPU. In addition,

DALI prepared a full pipeline for common data sets like MS-COCO data set [15] as well as provides

a reader for TFRecord and CAFFE LMDB data formats [13]. DALI remains extremely flexible by

supporting ExternalSource operator so that implementation of unsupported readers such as HDF5

becomes feasible.
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Here, we focused on large models, in which DALI GPU improves training time. However, training

is faster with DALI CPU for small networks.
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