
Les Cahiers du GERAD ISSN: 0711–2440

Importance of data loading pipeline
in training deep neural networks

M. Zolnouri,
X. Li, V. Partovi Nia

G–2020–23–EIW08

April 2020

La collection Les Cahiers du GERAD est constituée des travaux de
recherche menés par nos membres. La plupart de ces documents de
travail a été soumis à des revues avec comité de révision. Lorsqu’un
document est accepté et publié, le pdf original est retiré si c’est
nécessaire et un lien vers l’article publié est ajouté.

Citation suggérée : M. Zolnouri, X. Li, V. Partovi Nia (Avril
2020). Importance of data loading pipeline in training deep neural
networks, In C. Audet, S. Le Digabel, A. Lodi, D. Orban and
V. Partovi Nia, (Eds.). Proceedings of the Edge Intelligence
Workshop 2020, Montréal, Canada, 2–3 Mars, 2020, pages 51–58.
Les Cahiers du GERAD G–2020–23, GERAD, HEC Montréal, Canada.

Avant de citer ce rapport technique, veuillez visiter notre site
Web (https://www.gerad.ca/fr/papers/G-2020-23-EIW08) afin
de mettre à jour vos données de référence, s’il a été publié dans une
revue scientifique.

The series Les Cahiers du GERAD consists of working papers
carried out by our members. Most of these pre-prints have been
submitted to peer-reviewed journals. When accepted and published,
if necessary, the original pdf is removed and a link to the published
article is added.

Suggested citation: M. Zolnouri, X. Li, V. Partovi Nia (April
2020). Importance of data loading pipeline in training deep neural
networks, In C. Audet, S. Le Digabel, A. Lodi, D. Orban and
V. Partovi Nia, (Eds.). Proceedings of the Edge Intelligence
Workshop 2020, Montreal, Canada, March 2–3, 2020, pages 51–58.
Les Cahiers du GERAD G–2020–23, GERAD, HEC Montréal, Canada.

Before citing this technical report, please visit our website (https:
//www.gerad.ca/en/papers/G-2020-23-EIW08) to update your ref-
erence data, if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grâce
au soutien de HEC Montréal, Polytechnique Montréal, Université
McGill, Université du Québec à Montréal, ainsi que du Fonds de
recherche du Québec – Nature et technologies.

Dépôt légal – Bibliothèque et Archives nationales du Québec, 2020
– Bibliothèque et Archives Canada, 2020

The publication of these research reports is made possible thanks
to the support of HEC Montréal, Polytechnique Montréal, McGill
University, Université du Québec à Montréal, as well as the Fonds de
recherche du Québec – Nature et technologies.

Legal deposit – Bibliothèque et Archives nationales du Québec, 2020
– Library and Archives Canada, 2020

GERAD HEC Montréal
3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2020-23-EIW08
https://www.gerad.ca/en/papers/G-2020-23-EIW08
https://www.gerad.ca/en/papers/G-2020-23-EIW08




Importance of data loading pipeline in training deep neu-
ral networks

Mahdi Zolnouri a

Xinlin Li a

Vahid Partovi Nia a,b

a Huawei Noah’s Ark Lab, Montréal (Québec),
Canada, H3N 1X9

b GERAD, HEC Montréal, Montréal (Québec),
Canada, H3T 2A7

mahdi.zolnouri@huawei.com

xinlin.li1@huawei.com

vahid.partovinia@huawei.com

April 2020
Les Cahiers du GERAD
G–2020–23–EIW08
Copyright c© 2020 GERAD, Zolnouri, Li, Partovi Nia

Les textes publiés dans la série des rapports de recherche Les Cahiers
du GERAD n’engagent que la responsabilité de leurs auteurs. Les
auteurs conservent leur droit d’auteur et leurs droits moraux sur leurs
publications et les utilisateurs s’engagent à reconnâıtre et respecter
les exigences légales associées à ces droits. Ainsi, les utilisateurs:
• Peuvent télécharger et imprimer une copie de toute publica-

tion du portail public aux fins d’étude ou de recherche privée;

• Ne peuvent pas distribuer le matériel ou l’utiliser pour une
activité à but lucratif ou pour un gain commercial;

• Peuvent distribuer gratuitement l’URL identifiant la publica-
tion.

Si vous pensez que ce document enfreint le droit d’auteur, contactez-
nous en fournissant des détails. Nous supprimerons immédiatement
l’accès au travail et enquêterons sur votre demande.

The authors are exclusively responsible for the content of their re-
search papers published in the series Les Cahiers du GERAD. Copy-
right and moral rights for the publications are retained by the authors
and the users must commit themselves to recognize and abide the
legal requirements associated with these rights. Thus, users:
• May download and print one copy of any publication from the

public portal for the purpose of private study or research;

• May not further distribute the material or use it for any profit-
making activity or commercial gain;

• May freely distribute the URL identifying the publication.
If you believe that this document breaches copyright please contact us
providing details, and we will remove access to the work immediately
and investigate your claim.



Les Cahiers du GERAD G–2020–23–EIW08 1

Abstract: Training large-scale deep neural networks is a long, time-consuming operation, often requiring many

GPUs to accelerate. In large models, the time spent loading data takes a significant portion of model training time. As

GPU servers are typically expensive, tricks that can save training time are valuable. Slow training is observed especially

on real-world applications where exhaustive data augmentation operations are required. Data augmentation techniques

include: padding, rotation, adding noise, down sampling, up sampling, etc. These additional operations increase the

need to build an efficient data loading pipeline, and to explore existing tools to speed up training time. We focus on

the comparison of two main tools designed for this task, namely binary data format to accelerate data reading, and

NVIDIA DALI to accelerate data augmentation. Our study shows improvement on the order of 20% to 40% if such

dedicated tools are used.

1 Introduction

Deep neural networks have achieved great successes in various domains such as computer vision [3, 2],

natural language processing [10, 9], and speech recognition [17] among others. This is a result of

deeper and wider models, which allow modeling large and complex data. As computing hardware

has improved, larger data sets are analyzed. It appears that processing power always falls behind

data volume and model size. In order to make the training process more efficient, several fields are

developing new techniques such as providing dedicated tools to accelerate training and inference, as

well as neural model compression to deploy a simpler model with comparable accuracy but fewer

operations.

Training acceleration is a difficult task. Let’s understand the core of the problem using an a very

simple neural network, e.g. logistic regression. Suppose N pairs of input features of dimension d,

say xi and binary output data, say yi are available (xi, yi), i = 1, . . . , N . A logistic regression model

is equivalent to a fully-connected network with a single hidden layer and a single neuron. As the data

size gets bigger in terms of N and d, training requires more computation.

A training process optimizes a loss function, here

L(w) =−
n∑

i=1

yi log σ(x>i w)

+ (1− yi) log(1− σ(x>i w)),

(1)

where

σ(x) = {1 + exp(−x)}−1

is the sigmoid activation. For the case of logistic regression iterative re-weighted least squares is often

used to optimize L, which is equivalent to Newton’s method. Newton’s method starts from an initial

estimate w0 and updates

wt+1 ← wt −H−1∇L(w) |w=wt (2)

where H is the d× d Hessian of L and ∇L =
∑n

i=1∇Li(w) is the sum of individual gradients, each of

length d. Computing the local approximation of H =
∑n

i=1 xix
>
i is of O(nd2) and factorizing it is of

O(nd3), if not impossible.

Increasing the number of data points N →∞ theoretically makes the optimization easier, because

L(w) has more curvature as N increases, a blessing. However, computation of L(w), ∇L(w), and

H becomes a curse since all of these quantities are in the form of a sum and their computation may

lead to memory overflow. Optimization using Newton’s method becomes increasingly hard with large

feature size d. Large features are common in almost all machine learning challenges. The remedy for

large N is to break computations into smaller sub-operations. The remedy for large d is to switch from
a second-order approximation, i.e., Newton’s method, to a first-order approximation, i.e., the gradient

method.



2 G–2020–23–EIW08 Les Cahiers du GERAD

Computing partial sums is a simple way to overcome the large N issue, so that each partial sum

remains within the memory resource constraints. Then the final quantity is computed by summing

the partial sums, perhaps with a proper re-scaling. The idea of partial sum is somehow a re-shape of

the mini batch training approach.

In neural networks with a large d and n, numerical optimization is simplified to gradient descent

in which the hessian H is replaced by the identity matrix with a positive scalar learning rate

H =
1

η
I, η > 0

so the weight update is simplified to

wt+1 ← wt − η∇L(w) |w=wt
. (3)

Furthermore, to benefit from parallel computation, N data points are arranged in n random mini

batches, each of size B, i.e. N = nB. Each batch has its own gradient

∇Lb(w) =

B∑
i=1

∇Lbi(w),

which is equivalent to scaling η by n, on average. This allows computations to be run in parallel for

each batch [4, 16].

Even if computations are run in parallel, all data still needs to be fed to the optimizer in several

rounds of epochs, similar to Newton’s method. Therefore, investing in an efficient data loading pipeline

plays an important role in training speed [18].

The rest of the paper focuses on clarifying the benefit of a dedicated tool such as DALI1 for

managing data loading implemented by NVIDIA in PyTorch, while a using a convenient data reading

format such as Hierarchical Data Format 5 (HDF5) [14] or TensorFlow Record [1] to accelerate file

reading.

Data loading is a crucial part of model training in neural networks. It begins by reading the data

from a secondary memory storage, such as Solid State Drive, then caches it into a primary memory

storage, such as Random Access Memory. This data transfer includes extra operations like data

augmentation to feed the data to the model. See Figure 1.

Read Preprocessing Data	
augmentation

	Training	
	operations

Open,	(seek),	read
and	(close)

Decode,	resize,	gray
scale	normalize,	etc.

Random	resize	and
crop,	color	jitter,	add

noise,	etc.

Forward	pass	and
backward	pass

Load	
on	GPU

Convert	to	tensor
and	put	the	data	on

GPU

Read Preprocessing Data	
augmentation

	Training	
	operations

Load	
on	GPU

Original	
Pipeline

DALI	
Pipeline

Data Loading Process Model Training

Figure 1: Batch training sequence performed on a GPU with and without DALI

There are two main issues in the data loading process i) reading data directly from files is inefficient

ii) resource allocation for extra operations on data overloads the CPU.

Reading data from individual files directly is slow. This happens when the entire data set is not

cached in the local memory. Every single file is opened, is read, and is closed sequentially. These

sequential operations add considerable overhead to the file retrieval time. One solution to prevent

1https://github.com/NVIDIA/DALI

https://github.com/NVIDIA/DALI


Les Cahiers du GERAD G–2020–23–EIW08 3

this overhead is to use the Hierarchical Data Format version 5 (HDF5) [14], which has an open-source

library to store, manipulate, and manage the large data set. HDF5 format stores multiple data sets

in one file as a multidimensional array of binary data. It also groups storage layout by storing data

in fixed-size chunks on disk. Another alternative to HDF5 is the TensorFlow Record (TFRecord) [1],

which uses a sequence of binary strings to store data. It allows large data sets to be sequentially loaded

to the local memory.

The whole process of data loading is managed by CPU, which can create a bottleneck for model

training. This bottleneck happens normally in the case of multi-node-multi-GPU training, as loading

batches of data takes more time than forward-backward propagation. To prevent the CPU bottleneck

issue, NVIDIA Data Loading Library (DALI) helps by sharing some data loading tasks between the

CPU and GPU, to prevent the CPU bottleneck issue. Figure 2 shows how employing this library

improves the data loading process considerably. DALI is a collection of highly optimized building

blocks and execution engines which provides a full data accelerated pipeline: from reading the data to

preparing for training and inference.

Figure 2: Logarithmic scale of average time of data loading (in micro second) for ResNet-50 [12] on ImageNet data set
with batch-size B = 256

2 Data format

In order to explore the effect that data format and resource allocation has on data loading performance,

we present four pipelines for data loading: with/without dedicated reader, and with/without resource

allocation. We used PyTorch version 1.2.0 to implement these pipelines on a computer vision task.

The PyTorch file reader pipeline is the PyTorch DataLoader class which combines data set object

with a sampler object, to provide a single or multi-process iterators over the data set. This pipeline

reads data from individual JPEG files on the storage and uses the PyTorch Transforms class to chain

several image transformation operations together. This prepares the data for training by doing the

data augmentation. By default, all these operations are directed to the CPU.

The dedicated reader pipeline is also based on the PyTorch DATALOADER class. This pipeline

stores data differently, i.e. instead of reading data from individual JPEG files, the entire train and

validation data sets are stored as two HDF5 files.

3 Resource allocation

This pipeline uses the NVIDIA DALI library to read data from JPEG files, process and then feed

GPUs for training. In the DALI pipeline, the data loading process is shared between CPU and GPU.

This means that all operations on data, such as resizing, cropping and data augmentation can be run



4 G–2020–23–EIW08 Les Cahiers du GERAD

on CPU, GPU, or a mix of both. To measure the effect of file formatting, data file retrieval has been

done in two cases: reading directly from JPEG files and using a dedicated file reader to read data from

TFRecord data set.

4 Training time improvement

We summarize our experiments using four configurations, i.e., with/without a dedicated file reader,

and with/without DALI. In order to compare these pipelines, we performed several experiments in

two use cases: with few or with extensive data augmentation operations. By few operations, we mean

resize with random crop and random horizontal flip operations and by extensive, we mean resize with

random crop operation, random horizontal flip operation and random adjustment of the brightness,

contrast and saturation of an image. Simple data augmentation is applied in most deep learning

prototypes, while extensive data augmentation is very common in industry to ensure model robustness

in real products. Our experiments are run twice, once on small subset of InsightFace [6, 7, 8, 11] and

once on large ImageNet data set [5].

Figure 3 shows that a dedicated data reader is enough to improve epoch time, but only if data is

small. However, the DALI pipeline still is a winner for small data requiring extensive data augmenta-

tion. This is because DALI distributes the data augmentation operation between CPU and GPU to

avoid CPU overcharge. This can be seen by comparing the top left panel, with the top right panel.

If extensive data preprocessing operations are performed in a larger ImageNet data, CPU work-

load becomes the bottleneck even with few data augmentation operations. Consequently, epoch time

increases in data loading and DALI can avoid the CPU overcharge by performing some of these oper-

ations on GPU. Figure 3 (bottom right) shows that DALI improves data loading from 2200 seconds to

Figure 3: Epoch time for the small subset of InsightFace (top panels) and large ImageNet data (bottom panels), while
few data processing operations are performed (left panels) and while extensive preprocessing operations are performed
(right panel). The experiments in top panels were performed on 4 GPUs (NVIDIA TITAN 12 GB memory) and in bottom
panels on 8 GPUs (NVIDIA TESLA V100 32GB memory)



Les Cahiers du GERAD G–2020–23–EIW08 5

1300 seconds, to gain performance benefit of about 40%. Using only a dedicated reader without DALI

improves the training time from 1800 seconds to 1300 seconds, giving a performance improvement of

30%. This effect is also visible in Figure 4 on a single epoch time. DALI fuses multiple operations such

as cropping and normalizing and run it on one GPU CUDA kernel. This speeds up data augmentation

process by reducing the number of memory access.

Figure 4: Time comparison for few (gray) and extensive (dark) data augmentations

5 Data loading improvement

Let’s move from epoch time to data loading time by removing forward and backward pass from training

time, see Figure 1. Data loading contributes about 40% to the epoch time, see Figure 5.

Figure 5: Percentage of data loading time (gray) added on top of training time (dark) in a single training epoch. Each
data loader test case has two bar charts for showing few and extensive data augmentations

Figure 6 confirms that the DALI pipeline considerably improves data loading by a factor of 100×.

However, for very large models, the GPU is only required to perform forward and backward passes,

so loading the CPU for data is wiser. Therefore, it is important to keep the CPU and GPU load

well balanced through DALI load option. Figure 7 confirms the same message when training time is

stacked on data loading time to measure the epoch time overall.

In Figure 7 data loading is stacked on training to reflect the epoch time overall. There is a small

difference between the common data loader pipeline and NVIDIA DALI data loader pipeline. Using



6 G–2020–23–EIW08 Les Cahiers du GERAD

the GPU resources for data loading may slow down the overall model training time if it fails to balance

CPU and GPU load.

Figure 6: Logarithmic scale plot of average data loading time (per epoch), four data loader pipelines: with/without DALI,
and with/without a dedicated reader. Time for few (gray) and extensive (dark) data augmentations

Figure 7: Training time on four data loader pipelines: with/without DALI, and with/without a dedicated reader. Each
data loader pipeline has two bar charts for showing few and extensive data augmentations

By default, DALI uses the first GPU slot to perform data loading process. However, the NVIDIA

APEX library uses multiple GPUs for this task. This flexibility becomes increasingly important for

large models while all data and models cannot be loaded into a single GPU and multi-GPU operation

becomes a necessity.

6 Conclusion

NVIDIA DALI provides an effective alternative to common data loading process. It provides a full

pipeline of optimizations including data readers and tools to accelerate training and inference. It

also enables most data augmentation operations to be performed on GPU and on CPU. In addition,

DALI prepared a full pipeline for common data sets like MS-COCO data set [15] as well as provides

a reader for TFRecord and CAFFE LMDB data formats [13]. DALI remains extremely flexible by

supporting ExternalSource operator so that implementation of unsupported readers such as HDF5

becomes feasible.



Les Cahiers du GERAD G–2020–23–EIW08 7

Here, we focused on large models, in which DALI GPU improves training time. However, training

is faster with DALI CPU for small networks.

Acknowledgment

The authors would like to thank Eyyüb Sari and Vanessa Courville for their assistance in this project.

We appreciate fruitful technical discussions with Huawei Cloud Core Shanghai Gang Chi and

Pengcheng Tang as well as Jiajin Zhang from Noah’s Ark Shenzhen engineering team.

References

[1] Mart́ın Abadi. Tensorflow: learning functions at scale. In Proceedings of the 21st ACM SIGPLAN
International Conference on Functional Programming, pages 1–1, 2016.

[2] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convolutional encoder-decoder
architecture for image segmentation. IEEE transactions on pattern analysis and machine intelligence,
39(12):2481–2495, 2017.

[3] François Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 1251–1258, 2017.

[4] Andrew Cotter, Ohad Shamir, Nati Srebro, and Karthik Sridharan. Better mini-batch algorithms via ac-
celerated gradient methods. In Advances in neural information processing systems, pages 1647–1655, 2011.

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255.
Ieee, 2009.

[6] Jiankang Deng, Jia Guo, Xue Niannan, and Stefanos Zafeiriou. Arcface: Additive angular margin loss for
deep face recognition. In CVPR, 2019.

[7] Jiankang Deng, Jia Guo, Zhou Yuxiang, Jinke Yu, Irene Kotsia, and Stefanos Zafeiriou. Retinaface:
Single-stage dense face localisation in the wild. In arxiv, 2019.

[8] Jiankang Deng, Anastasios Roussos, Grigorios Chrysos, Evangelos Ververas, Irene Kotsia, Jie Shen, and
Stefanos Zafeiriou. The menpo benchmark for multi-pose 2d and 3d facial landmark localisation and
tracking. IJCV, 2018.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[10] Yoav Goldberg. A primer on neural network models for natural language processing. Journal of Artificial
Intelligence Research, 57:345–420, 2016.

[11] Jia Guo, Jiankang Deng, Niannan Xue, and Stefanos Zafeiriou. Stacked dense u-nets with dual trans-
formers for robust face alignment. In BMVC, 2018.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[13] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio
Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature embedding. In
Proceedings of the 22nd ACM international conference on Multimedia, pages 675–678, 2014.

[14] Sandeep Koranne. Hierarchical data format 5: Hdf5. In Handbook of Open Source Tools, pages 191–200.
Springer, 2011.

[15] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European conference on computer
vision, pages 740–755. Springer, 2014.

[16] Krishnamurty Muralidhar and Rathindra Sarathy. Data shuffling—a new masking approach for numerical
data. Management Science, 52(5):658–670, 2006.

[17] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej Glembek, Nagendra Goel, Mirko
Hannemann, Petr Motlicek, Yanmin Qian, Petr Schwarz, et al. The kaldi speech recognition toolkit. In
IEEE 2011 workshop on automatic speech recognition and understanding, number CONF. IEEE Signal
Processing Society, 2011.

[18] Chih-Chieh Yang and Guojing Cong. Accelerating data loading in deep neural network training. arXiv
preprint arXiv:1910.01196, 2019.


	Introduction
	Data format
	Resource allocation
	Training time improvement
	Data loading improvement
	Conclusion

