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• Peuvent télécharger et imprimer une copie de toute publica-

tion du portail public aux fins d’étude ou de recherche privée;

• Ne peuvent pas distribuer le matériel ou l’utiliser pour une
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Abstract: The determinantal point process (DPP) provides a promising and attractive alternative to simple random

sampling in cluster analysis or classification, for the initial random selection of points required by most algorithms. As

a probabilistic model of repulsion, the DPP elects which points are similar and have less probability to appear together,

favouring then more diverse subsets of points. After a short introduction to DPP, we show how its use for choosing ini-

tial subsets of points in a clustering algorithm run multiple times on large datasets can improve the quality of final results.

1 Introduction

A classical core procedure in fields such as biology, psychology, medicine, marketing, computer vision

and remote sensing is to group elements based on similar features (cluster analysis) [13], to provide a

framework for learning. Some clustering techniques, such as the standard k-means algorithm or the

partitioning around medoids (PAM) algorithm, are characterized by an initial choice of a subset of

random points. We find the same type of initial choice in some classification techniques, such as neural

networks or machine learning. However, selecting a simple random subset of points does not take

into account the diversity among the selected points. As this type of sampling gives to every point

an equal probability of being selected, a subset of points may include many similar points that carry

the same type of information and representability. In some domains of research, where the diversity

of elements is a major concern and ensures a better coverage of all its facets, single random sampling

can lack some of them. The determinantal point process settles which points are similar and therefore

have less probability to appear together, in contrast to simple random sampling. It intents to capture

negative correlations between n points and has been used in machine learning as a model for subset

selection [9]. Kulesza and Taskar [15] emphasize that the negative correlations are measured by a

n × n matrix whose entries represent a measure of similarity between each pair of points. Similar

elements have less probability to be co-selected, resulting in subsets that are more diverse. Clustering

techniques in particular seek to obtain a unique optimal partition of data, by maximizing both intra-

cluster similarity and inter-cluster dissimilarity. However, as stressed by [29], if different partitional

techniques are applied to the same data, they can produce very different clustering results, due to

the lack of an external objective and impartial criterion. The techniques’ dependency on the initial

choice of points can also explain those differences. To improve the quality and robustness of clustering

results, [28] proposed the cluster ensembles framework, which main objective is to combine different

clustering results into a single consolidated clustering. Monti et al. [21] introduced a cluster ensemble

method in genomic studies and gene expression: the consensus clustering. Based on resampling and

bootstrapping techniques, it seeks to attain a single consolidated clustering configuration from multiple

runs of the same clustering algorithm. For sampling the initial points of the algorithm, we used the

determinantal point process presented by [10, 15]. The paper is organized as follows: we present the

determinantal point process in Section 2; we explain our consensus clustering algorithm in Section 3; we

study the case of large datasets in Section 4; we present the quality measure for results in Section 5;

we refer algorithms taken as reference in Section 6; we show results on simulated and real data in

Section 7.

2 The determinantal point process (DPP)

Origins of DPP date back to [19] in quantum physics, known then as “fermion process”, intended

to model distributions of fermion systems at thermal equilibrium. The name “Determinantal Point

Process” is established, introduced and made accepted as standard in mathematics’ community by [3].

It also arises in studies of nonintersecting random paths, random spanning trees, and eigenvalues of

random matrices [8, 4, 10].
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Starting with a global overview of DPP, let S = {x1, . . . ,xn} be a discrete set of n elements, with

2 ≤ n < ∞ and where xi represents a p−dimensional vector, i.e. xi ∈ Rp,
i = 1, . . . , n. A point process on S is a probability measure on 2S , the set of all subsets of S. It

is called a DPP if, for a particular random subset Y ∈ 2S , its probability mass function is given by

P (Y = Y ) =
det(LY )

det(L+ In)
, (1)

where Y is a random variable representing the subset selected from 2S , L is a

n × n real, symmetric and positive semidefinite matrix measuring similarity between pair-wised el-

ements of S, LY is the submatrix of L with rows and columns indexed by Y , i.e., LY = [Lij ]i,j∈Y and

In is the n× n identity matrix.

Determinants have a well-known geometric interpretation. Let B be a m × n matrix such that

L = BTB. B can always be found for m < n due to positive semidefiniteness of L. Denoting the

columns of B by Bi, for i = 1, . . . , n, we have

P (Y = Y ) ∝ det (LY ) = Vol2
(
{Bi}i∈Y

)
, (2)

where Vol2 represents the squared volume of the parallelepiped spanned by the columns of B corre-

sponding to elements in Y . The columns of B can be interpreted as feature vectors describing the

elements of S and, therefore, L measures similarity using dot products between feature vectors. By

Equation (2), we can see the probability assigned by a DPP to a subset Y is related to the volume

spanned by its associated feature vectors: diverse sets have then a higher probability, because their

feature vectors are more orthogonal and hence span larger volumes.

3 Consensus clustering algorithm

Consider again the set S of n elements, and a particular partitional clustering technique run M times

over the set S. The agreement among the several runs of the algorithm is based on the consensus

matrix C, a n× n symmetric matrix where the entry Cij , i, j = 1, . . . , n represents the proportion of

runs in which two elements xi and xj of S belong to the same cluster, i.e.

Cij =

∑M
m=1 c

m
ij

M
, (3)

where cmij is an indicator of wether element xi belongs to the same cluster as xj in the m-th run. The

consensus clustering method was meant to attain a single consolidated clustering from multiple runs

of the same clustering algorithm. Any partitional clustering method can be chosen, then. However,

rather than using a well-known clustering method like k−means or PAM, we constructed our clustering

algorithm to obtain a consolidated consensus clustering configuration. At each run, we start the

algorithm with a Voronoi diagram on the set S, which partitions the space into several cells or regions,

based on a subset of points that are called generator points. These points will be sampled among the

elements of S using the DPP defined by (1) and the sampling algorithm developed by [10, 15]. For the

construction of the similarity matrix L, we will use kernel-based methods, which have been widely used

in recent research into pattern analysis, like classification, regression and clustering [11]. As kernels

are often considered measures of similarity, a higher kernel value represents a higher correlation in

a high-dimensional (possibly infinite) Hilbert space. A popular kernel choice is the Gaussian kernel,

which we will use to obtain the entries of L:

L =

[
exp

(
−‖xi − xj‖2

2σ2

)]n
i,j=1

, (4)

where the scale parameter σ represents the relative spread of the distances ‖xi − xj‖, the Euclidean

distance between xi and xj , a common choice for the Gaussian kernel.
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Finally, after M runs, we will obtain M Voronoi diagrams, from which we can compute the con-

sensus matrix C with entries defined by (3). Following [2], if Cij ≥ θ, with 0 ≤ θ ≤ 1, points xi

and xj are defined as “friends” and then included in the same final cluster. As θ is unknown, there

are several choices of final clusters, depending on the value of θ. Motivated then by [23] and [22],

we used the least-squares clustering (LSCLUST) procedure of [7] to choose the optimal final cluster

among the several choices: supposing we have B clusters, for each cluster c in c1, . . . , cB , a n × n
matrix δ(c) can be built. The (i, j) element of the matrix, δi,j(c), is an indicator of wether element i

of S belongs to the same cluster than j. Element-wise averaging of these association matrices yields a

pairwise probability matrix of clustering, denoted π̂. The least-squares clustering cLS is the observed

clustering c that solves the following minimization problem:

cLS = arg min
c∈{c1,...,cB}

n∑
i=1

n∑
j=1

[δi,j(c)− π̂i,j ]2 .

4 Case of large datasets

The eigendecomposition of the matrix L of DPP defined by (1) is a central step for obtaining the

generator points through the sampling algorithm of [10, 15]. It is well known that the computational

complexity of eigendecomposition of a n × n symmetric matrix is O
(
n3
)

and, as n grows larger,

the computation of the characteristic polynomial itself becomes expensive due to the computational

complexity of calculating determinants. Therefore, computing only the largest eigenvalues can sub-

stantially reduce the computational burden of obtaining all the eigenvalues. The literature points out

many references of well-known algorithms that can extract the t largest (or smallest) eigenvalues, with

their associated eigenvectors, of a n × n Hermitian matrix, where usually, we have t � n. One of

the most classical and used algorithms is the Lanczos algorithm [17] and its variations, such as the

implicitly restarted Lanczos method, proposed by [5], which we will use if the dimension of L is very

large. The Lanczos algorithm and its implicitly restarted variation were specially developed for large

sparse symmetric matrices. Consequently, when L is large, to implement the implicitly restarted Lanc-

zos method, it is necessary to find a good approximation of the dense matrix L by a sparse matrix.

Nevertheless, the large size of L can still be a computational burden for the implementation of the

algorithm, which motivated us to consider a special approach for dealing with large matrices, inspired

by dimension reduction techniques.

Let then L be a large kernel matrix, of size n × n, defined by (4) and let L1, L2, . . . , LR denote a

set of R submatrices of size r × r each, taken randomly from L, where r < n (ideally, r � n). We

apply the following methodology to the set of submatrices:

1. select randomly an index i1 from {1, 2, . . . , R} and consider the submatrix Li1 ;

2. find a sparse approximation of the submatrix Li1 considering the k-nearest neighbours of each

point of the submatrix, according to the k-nearest neighbours graph introduced by [25];

3. generate a sample Yi1 from Li1 through DPP, using the usual sampling algorithm of [10, 15] and

the Lanczos algorithm for extracting the t largest eigenvalues;

4. build a Voronoi diagram for the n points, using the generated sample Yi1 ;

5. repeat steps 1 to 4 for indexes i2, i3, . . . , iN , using always {1, 2, . . . , R} ;

6. apply the consensus clustering summarized in Section 3 to the set of N partitions obtained.

The number R of submatrices to be sampled must be chosen so that we get benefits from using the

submatrices to sample the generator sets through DPP rather using the whole kernel matrix L. We

know that the computational complexity of eigendecomposition of the n×n kernel matrix L is O
(
n3
)
,

employing n3 operations. But, if we have R submatrices of size r× r each, the eigendecompositions of

these submatrices employ Rr3 operations. To obtain benefits from the sampled submatrices, we must

guarantee that
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Rr3 < < n3 ⇔

⇔ R <
(n
r

)3
⇔

⇔ R <

(
1

γ

)3

,

where γ = r
n represents the proportions of points considered for the submatrices. As we want to take

advantage of dimension reduction and speed, we decided to choose R so that R�
(

1
γ

)3
, and then, we

decided to fix R =

⌊
( 1
γ )

3

2

⌋
, where bxc represents the floor function.

5 Clustering quality measure

As mentioned by [24], it is a common practice in the clustering literature to measure the goodness-of-fit

of the optimal final cluster. Among the many known measures of goodness-of-fit that can be found in

the literature, we will use the Adjusted Rand Index (ARI), first introduced by [26] and later adjusted

for randomness by [12]. The ARI is a measure of agreement between two clustering configurations.

The original Rand Index counts the proportion of elements that are either in the same clusters in both

clustering configurations or in different clusters in both configurations. The adjusted version of the

Rand Index corrected the calculus of the proportion, so its expected value is zero when the clustering

configurations are random. The larger the ARI, the more similar the two configurations are, with the

maximum ARI score of 1.0 indicating a perfect match.

6 Reference algorithms for comparison

To validate the performance of the consensus clustering summarized in Section 3 using DPP for choos-

ing an initial set of points, we decided to compare the final results to two traditional clustering

algorithms: PAM and k-means algorithms.

The PAM algorithm is a classical partitioning technique of clustering proposed by [14], which

chooses data points for centers by simple random sampling. As DPP selects also data points for

centers but based on diversity, the goal of comparing it with PAM method is to evaluate how the

quality results of clustering behave if we consider diversity as a sampling criterion. The k-means

algorithm was proposed by Stuart Lloyd in 1957, and later published in [18]. It starts with an initial

set of k means, representing k clusters, assigning then each observation to the cluster with the nearest

mean and proceeding with updating steps until convergence to a final optimal cluster configuration.

However, as argued by [6], the popular methods for choosing the initial set of k means, such as Forgy,

Random Partition and Maximin methods, result often in a final optimal cluster configuration with a

low clustering quality. We decided then to use the k-means++ algorithm of [1], a popular choice that

avoids the poor quality results of the traditional methods for choosing the initial means. Once more,

our goal is to evaluate how the quality results of clustering with DPP behave if we consider diversity

as a sampling criterion, when compared to the k-means algorithm that uses k-means++ for choosing

initial points.

7 Results

The consensus clustering algorithm presented in Section 3 was applied to the case of datasets with a

very large number of observations.
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7.1 Simulated data

Using the algorithm of [20], we simulated a dataset constituted by n = 10000 vectors of dimension

p = 15 grouped in 10 predefined clusters. As the dimension of the corresponding matrix L is very

large, we decided to use the methodology described in Section 4 for the eigendecomposition required

for the DPP sampling, adopting N = 1000. Prioritizing also a minimal computational time, we chose

γ = 0.1 (and consequently R = 500), k = 325 nearest neighbours (which results in sparse matrices

with approximately 60% of zeros) and the t = 25 largest eigenvalues of the sparse matrices. The

consensus clustering algorithm of Section 3 was then applied, performing M = 1000 runs, and the

quality of the optimal final cluster was assessed by the ARI described in Section 5. To ascertain the

ARI variability, we decided to repeat the whole procedure 5 times and obtain one Boxplot for the ARI

values. For comparisons, we also included the Boxplot resulting from the application of the clustering

algorithm with DPP to the dense matrix L, from which we extracted all the eigenvalues, and the

Boxplots resulting from k-means and PAM algorithms. All the comparing methods were also repeated

5 times for the construction of the Boxplots. Figure 1 presents the comparison of the four Boxplots.

0.87

0.90

0.93

0.96

method

A
R

I

method

DPP.dense

DPP.sparse

k.means

PAM

Figure 1: From left to right: Boxplots of the ARI for the DPP with dense matrix, DPP with sparse aproximations, k-means
and PAM, with the dashed line indicating the median value obtained with the dense matrix

We also adopted another analysis to evaluate the quality of the sparse approximation of L: we

obtain the kernel density estimation of the set of eigenvalues extracted from the sparse approximations
of L and check graphically how the estimated density concentrates around all true eigenvalues of the

dense kernel matrix L. We choose a Gaussian kernel for the density estimation and [27] rule for the

bandwidth of the kernel. Figure 2 shows the estimated density and the values of the true eigenvalues.

We also took advantage of the opportunity to obtain the kernel density estimation of the set of

the true eigenvalues extracted from the dense matrix L and measure its divergence from the kernel

density estimation of the set of eigenvalues extracted from the sparse approximations of L depicted in

Figure 2. The divergence will be measured through the Kullback-Leibler (KL) divergence, introduced

by [16]. As the KL divergence does not obey to the symmetry property of a metric, for each pair of

compared estimated densities, we will compute the KL divergence in both directions and compute the

average of the two divergences. We can find the result in Table 1.

Table 1: KL divergence between the kernel density estimation of the eigenvalues extracted from the sparse approximations
of L and the kernel density estimation of the true eigenvalues of L.

KL divergence

0.00005336

Additionally, we will also report and compare the elapsed time in seconds for eigenvalues compu-

tation using a sparse approximation of L or the original dense matrix L. The results are shown in

Table 2.
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Figure 2: Kernel estimated density of the set of eigenvalues extracted from the sparse approximations of the dense
matrix L, with the true eigenvalues marked on the abscissa axis

Table 2: Comparison of elapsed times (in seconds) for eigenvalues calculation.

Elapsed time

Sparse L 0.079
Dense L 0.216

Finally, to explain the differences between DPP and PAM, we also present in Figure 3 the histograms

of the logarithm of the probability mass function given by (1) for M = 1000 random subsets, using a

DPP sampling or the simple random sampling.
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400

−160 −120 −80 −40
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co
un

t method
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random

Figure 3: Histograms for the logarithm of the probability mass function (loglik) of M = 1000 random subsets using DPP
and random sampling.

7.2 Real data

In this subsection, we considered two real datasets:

1. A dataset about human activity recognition and postural transitions using smartphones, col-

lected from 30 subjects who performed six basic postures (downstairs, upstairs, walking, jogging,

sitting and standing), including also six transitional postures between static postures (stand-to-

sit, sit-to-stand, sit-to-lie, lie-to-sit, stand-to-lie and lie-to-stand), in the same environment and

conditions, while carrying a waist-mounted smartphone with embedded inertial sensors. The
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dataset consists of 10929 observations, with 561 time and frequency extracted features, which

are commonly used in the field of human activity recognition. The dataset has then n = 10929

observations, p = 561 variables and K = 12 classes. The dataset is available on the UCI Machine

Learning Repository, a well known database in the Machine Learning community for clustering

and classification problems.

2. The Modified National Institute of Standards and Technology (MNIST) dataset, one of the most

common datasets used for image classification. This dataset contains 60000 training images and

10000 testing images of handwritten digits, obtained from American Census Bureau employees

and American high school students. Each observation represents a 28×28 pixel gray-scale image

depicting a handwritten version of one of the ten possible digits (0 to 9). Pixels are organized

row-wise, so that each row of the dataset represents an image, where the first number of each

line is the label, i.e. the digit which is depicted in the image, and the remaining 784 numbers

are the pixels of the 28× 28 gray-scale image. The scale is available in two versions: the original

scale between 0 (background or white) and 255 (foreground or black), or scaled between 0 and 1.

For this section, we decided to use the testing set of 10000 images with the scaled pixels between

0 and 1. The dataset has then n = 10000 observations, p = 784 variables and K = 10 classes.

We applied the same strategy of Subsection 7.1 to each dataset, along with a comparison with

k-means (with k-means++ for initial points) and PAM algorithms: we decided to sample a proportion

γ = 0.1 of the points of the kernel matrix L (and consequently R = 500) and again obtain a sparse

approximation of the sampled submatrices with 60% of sparsity, choosing the appropriate number k of

nearest neighbours for each dataset. The Lanczos algorithm was then applied to extract the first t = 25

eigenvalues of the sparse approximated submatrices. The consensus clustering algorithm of Section 3

was then applied, performing M = 1000 runs, and the quality of the optimal final cluster was assessed

by the ARI described in Section 5. To ascertain the ARI variability, we decided to repeat the whole

procedure 5 times and obtain one Boxplot for the ARI values. For comparisons, we also included the

Boxplots resulting from k-means and PAM algorithms. All the comparing methods were also repeated

5 times for the construction of the Boxplots. Figure 4 presents the results for the smartphones dataset

and Figure 5 presents the results for the MNIST dataset.
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Figure 4: From left to right: Boxplots of the ARI for the
DPP, k-means and PAM consensus clustering, with the
dashed line indicating the median value obtained with
DPP, for the smartphones dataset
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Figure 5: From left to right: Boxplots of the ARI for the
DPP, k-means and PAM consensus clustering, with the
dashed line indicating the median value obtained with
DPP, for the MNIST dataset

8 Conclusion

The use of the sparse approximations is totally justified and has clear benefits, even with a low propor-

tion γ of points sampled. The k-nearest neighbour graph approach provides then a good alternative

to the use of the complete dense matrix L. Observing the results section, we present the following

conclusions:
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1. Simulated dataset: observing the Boxplots, we can see a lower quality of k-means and PAM results

when compared to DPP. We also note that the approaches with DPP achieve a higher stability of

the ARI, while the approaches with k-means and PAM give more heterogeneous results. Focusing

on the kernel estimated density of the eigenvalues extracted from the sparse approximations of L,

we can see a reasonably good concentration and fit around the true eigenvalues of L, supported

by a low value of KL divergence. In terms of the elapsed time for eigenvalues extraction, we

can see a clear time reduction, which becomes particularly important as the consensus clustering

implies a repetition of the clustering algorithm a large number of times. Finally, the histograms

of the logarithm of the probability mass function clearly show that DPP selects random subsets

with higher and less dispersed probability mass values than simple random sampling, explaining

a higher stability of the ARI.

2. Real datasets: observing the Boxplots, we can see a lower quality of k-means and PAM results

when compared to DPP. We also note that the approaches with DPP achieve a higher stability

of the ARI, while the approach with PAM give more heterogeneous results. Even if the k-means

algorithm ensures a higher ARI stability when compared to DPP, it provides lower quality results.

The higher likelihood of the random subsets sampled by DPP confirms the higher diversity of those

subsets, while the subsets sampled by random sampling can be highly or poorly diverse, with a very

high dispersion in terms of diversity. DPP tends then to select points that maintain a high level of

diversity at each sampling, proving then to be more consistent and stable than simple random sampling

in terms of ensuring the heterogeneity of elements forming the subset. Moreover, taking into account

the diversity of elements with DPP as a sampling method rather than simple random sampling, does

not harm the quality of results, since the level attained by simple random sampling is more or less

maintained, or even improved.
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