
Les Cahiers du GERAD ISSN: 0711–2440

Pruning for efficient hardware
implementations of deep neural networks

G. Boukli Hacene, V. Gripon,
M. Arzel, N. Farrugia, Y. Bengio

G–2020–23–EIW02

April 2020

La collection Les Cahiers du GERAD est constituée des travaux de
recherche menés par nos membres. La plupart de ces documents de
travail a été soumis à des revues avec comité de révision. Lorsqu’un
document est accepté et publié, le pdf original est retiré si c’est
nécessaire et un lien vers l’article publié est ajouté.

Citation suggérée : G. Boukli Hacene, V. Gripon, M. Arzel,
N. Farrugia, Y. Bengio (Avril 2020). Pruning for efficient hardware
implementations of deep neural networks, In C. Audet, S. Le Digabel,
A. Lodi, D. Orban and V. Partovi Nia, (Eds.). Proceedings of the
Edge Intelligence Workshop 2020, Montréal, Canada, 2–3 Mars,
2020, pages 10–14. Les Cahiers du GERAD G–2020–23, GERAD,
HEC Montréal, Canada.

Avant de citer ce rapport technique, veuillez visiter notre site
Web (https://www.gerad.ca/fr/papers/G-2020-23-EIW02) afin
de mettre à jour vos données de référence, s’il a été publié dans une
revue scientifique.

The series Les Cahiers du GERAD consists of working papers
carried out by our members. Most of these pre-prints have been
submitted to peer-reviewed journals. When accepted and published,
if necessary, the original pdf is removed and a link to the published
article is added.

Suggested citation: G. Boukli Hacene, V. Gripon, M. Arzel,
N. Farrugia, Y. Bengio (April 2020). Pruning for efficient hardware
implementations of deep neural networks, In C. Audet, S. Le Digabel,
A. Lodi, D. Orban and V. Partovi Nia, (Eds.). Proceedings of the
Edge Intelligence Workshop 2020, Montreal, Canada, March 2–3,
2020, pages 10–14. Les Cahiers du GERAD G–2020–23, GERAD,
HEC Montréal, Canada.

Before citing this technical report, please visit our website (https:
//www.gerad.ca/en/papers/G-2020-23-EIW02) to update your ref-
erence data, if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grâce
au soutien de HEC Montréal, Polytechnique Montréal, Université
McGill, Université du Québec à Montréal, ainsi que du Fonds de
recherche du Québec – Nature et technologies.

Dépôt légal – Bibliothèque et Archives nationales du Québec, 2020
– Bibliothèque et Archives Canada, 2020

The publication of these research reports is made possible thanks
to the support of HEC Montréal, Polytechnique Montréal, McGill
University, Université du Québec à Montréal, as well as the Fonds de
recherche du Québec – Nature et technologies.

Legal deposit – Bibliothèque et Archives nationales du Québec, 2020
– Library and Archives Canada, 2020

GERAD HEC Montréal
3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2020-23-EIW02
https://www.gerad.ca/en/papers/G-2020-23-EIW02
https://www.gerad.ca/en/papers/G-2020-23-EIW02




Pruning for efficient hardware implementations of deep
neural networks

Ghouthi Boukli Hacene

Vincent Gripon

Matthieu Arzel

Nicolas Farrugia

Yoshua Bengio

MILA/IMT Atlantique, Montréal (Québec),
Canada, H2S 3H1

bouklihg@mila.quebec

April 2020
Les Cahiers du GERAD
G–2020–23–EIW02
Copyright c© 2020 GERAD, Boukli Hacene, Gripon, Arzel, Farrugia, Bengio

Les textes publiés dans la série des rapports de recherche Les Cahiers
du GERAD n’engagent que la responsabilité de leurs auteurs. Les
auteurs conservent leur droit d’auteur et leurs droits moraux sur leurs
publications et les utilisateurs s’engagent à reconnâıtre et respecter
les exigences légales associées à ces droits. Ainsi, les utilisateurs:

• Peuvent télécharger et imprimer une copie de toute publica-
tion du portail public aux fins d’étude ou de recherche privée;

• Ne peuvent pas distribuer le matériel ou l’utiliser pour une
activité à but lucratif ou pour un gain commercial;

• Peuvent distribuer gratuitement l’URL identifiant la publica-
tion.

Si vous pensez que ce document enfreint le droit d’auteur, contactez-
nous en fournissant des détails. Nous supprimerons immédiatement
l’accès au travail et enquêterons sur votre demande.

The authors are exclusively responsible for the content of their re-
search papers published in the series Les Cahiers du GERAD. Copy-
right and moral rights for the publications are retained by the authors
and the users must commit themselves to recognize and abide the
legal requirements associated with these rights. Thus, users:

• May download and print one copy of any publication from the
public portal for the purpose of private study or research;

• May not further distribute the material or use it for any profit-
making activity or commercial gain;

• May freely distribute the URL identifying the publication.
If you believe that this document breaches copyright please contact us
providing details, and we will remove access to the work immediately
and investigate your claim.



Les Cahiers du GERAD G–2020–23–EIW02 1

Abstract: Convolutional Neural Networks (CNNs) are state-of-the-art in numerous computer vision tasks such as

object classification and detection. However, the large amount of parameters they contain leads to a high computa-

tional complexity and strongly limits their usability in budget-constrained mobile devices. In this paper, we propose a

combination of a pruning technique and a quantization scheme that reduces complexity and memory of convolutional

layers of CNNs, by replacing the complex convolutional operation by a low-cost multiplexer. We perform experiments on

CIFAR10, CIFAR100, and SVHN and show that the proposed method achieves almost state-of-the-art accuracy, while

drastically reducing the computational and memory footprint. We also propose an efficient hardware architecture to

accelerate inference, which works as a pipeline and accommodates multiple layers working at the same time. In contrast

with most proposed approaches that have used external memory or software defined memory controllers, our work is

based on algorithmic optimization and full-hardware design.

1 Introduction

For the past few years, Deep Neural Networks (DNNs), and especially Convolutional Neural Networks

(CNNs) [7], have received considerable attention thanks to their remarkable accuracy in computer

vision tasks [6, 8, 2, 9]. However, the need for intensive computations and memory leaded to the

fact most DNN implementations are based on GPUs. Consequently, providing efficient hardware

implementations is a very active and prospective field of research. Therefore, the deployment of CNNs

in embedded systems is complex and potentially blocking for many applications.

In this paper, we propose to combine Shift Attention Layer (SAL) [3] a substitution to convolu-

tional layers, in which the complex convolution operation is replaced by a shift operation followed by

a multiplication with binary quantization of weights using Binary Weight Network (BWN), resulting

in very lightweight DNNs in which complex convolution operations are replaced by low cost multi-

plexers that considerably eases hardware implementation on FPGA. We show in the following that

such a combination approaches state-of-art accuracy while reducing computational and memory foot-

print. We also propose a hardware architecture in which we consider all processing blocks, memory

blocks and controllers required, and implement such an architecture which uses very few resources

and computational power on an FPGA, without using any external resources. This implementation

can compute more than one layer at a time and uses a simple multiplexer to replace convolutional

operations and process data through DNN layers. As such, it provides significantly smaller latency

than existing counterparts, as shown in Section 3.

2 Shift layers and Shift Attention Layers

Let us denote by x (resp. y or w) the input (resp. output or kernel) tensor of a given convolutional

layer. We index x (resp. y) using three indices i, j, k (resp. `), where 0 ≤ i < imax and 0 ≤ j < jmax

correspond to 2D coordinates and 0 ≤ k < kmax (rsp. 0 ≤ ` < `max) indexes a feature map. Similarly,

we index w using four indices: 0 ≤ ι ≤ ιmax and 0 ≤ λ ≤ λmax correspond to 2D coordinates, and k

and ` are as introduced above. So, an element of the input tensor is written xi,j,k, an element of the

kernel tensor is written wι,λ,k,l and an element of the output tensor is written yi,j,l.

To obtain a Shift Layer (SL) instead of a Convolutional Layer (CL), the authors in [11] propose

to remove most of the connections in each slice w·,·,k,` of the kernel tensor at the initialisation. The

connections to be kept are chosen according to a deterministic rule agnostic of the initialization and

of the training dataset. Namely, the authors choose to only keep the connections wι,λ,k,` for which

ι+ λιmax = k (mod ιmaxλmax). (1)

When considering 3×3 kernels for example, 89% of the connections are pruned in the convolutional

layer. Then, the training process is performed on remaining connections, disregarding the other ones.



2 G–2020–23–EIW02 Les Cahiers du GERAD

Using such a configuration, all connections in a 3×3 kernel are pruned but one, and thus the convolution

of each slice of the kernel tensor is replaced by a simple multiplication.

Contrary to SL where the kept connection is predetermined, SAL uses an attention mechanism [10]

that selects the most relevant connection for each kernel and prunes the others. This process is per-

formed during training, so that at the end of the training phase, the network configuration corresponds

exactly to one obtained using SL.

To further benefit from the reduced complexity of the SAL method, we combine it with a weight

binarization method such as binary weight network (BWN). Once remaining connections have been

binarized, it is possible to replace the multiplication operation by a multiplexer, and thus, such a

combination requires only low cost multiplexers to process data during inference.

Results

To evaluate the performance of our proposed combination, we use the CIFAR10 dataset. We compare

various modern CNN architectures such as Resnet [4], Wide-Resnet [12] and Densenet [5]. Note that

these architectures contain 1 × 1 and 3 × 3 convolutional kernels only. Thus we apply the proposed

method on the 3 × 3 kernels.

We report in Table 1 the obtained results when using Equation (1) to remove kernels connec-

tions (SL), when applying SAL, and when combining SAL with BWN, and compare the accuracy ob-

tained with baseline architectures. Note that BWN offers a 32 compression factor in terms of memory

used, and SL or SAL method roughly multiply this factor by 9, achieving an almost 300 factor compres-

sion in total. Interstingly, we observe that when using SAL with BWN, the obtained accuracy remains

at most 1% away to that of the baseline. We also perform experiments on SVHN (resp. CIFAR100)

on Resnet18 and obtain 97%/96% (resp. 78%/75.2%) accuracy for Full-precision/SAL+BWN.

Table 1: Comparison of accuracy between baseline architectures, pruned ones, binarized ones, and the proposed method
on CIFAR10.

Resnet18 Resnet34 WideResnet-28-10 Densenet121

Full-precision 94.5% 95% 96.2% 95%
SL 93.5% 93.8% 95% 94.3%
SAL 94.2% 94.9% 96% 94.8%
SAL + BWN 93.5% 94.6% 95.4% 94.6%

3 Hardware implementation

The processing unit uses X (a feature vector, corrsponding to a row in a feature map) and a vector W

made of P values coded on 1 bit each corresponding to weights. It thus computes in parallel P feature

vectors (cf. Figure 1). The First-Input signal (FI) is set to 1 when the first feature vector is read from

the BRAM to initialise registers by 0. To compute each feature vector p where 1 ≤ p ≤ P , we use the

corresponding Wp to add either X or -X to the content of register p. Once all input feature vectors

have been read from the BRAM , the signal Enable s is set to 1, and the content of registers is written

one by one into the BRAM of the next layer. At the end of this process, the Itter done signal is set

to 1 in the processing unit block, so new data can be read to process other feature vectors.

To compute inference, kmaxjmax clock cycles (CCs) are required to copy all contents from a first

layer’s BRAM to a second layer’s BRAM, jmaxkmax`max/P CCs to compute all output feature vectors

of one layer, and jmax`max CCs to write all computed feature vectors into the BRAM of a third layer.

Thus the total number of CCs required is:

CCs = jmaxkmax +
jmaxkmax`max

P
+ jmax`max. (2)



Les Cahiers du GERAD G–2020–23–EIW02 3

nR′nR′

0
Register

1

MUXFI

add
nR′

MUXW1

nR′nR′

X −X

nR′nR′

0
Register

2

MUXFI

add
nR′

MUXW2

nR′nR′

X −X

nR′nR′

0
Register

P

MUXFI

add
nR′

MUXWP

nR′nR′

X −X

CounterEnable s
Itter done

DEMUX Relu

nR′

Y

Figure 1: Hardware architecture of a processing unit block.

When comparing the total number of CCs of the proposed method with those obtained in [1], that

are introduced by the following equation:

CCs =
3j2maxkmax`max

P
, (3)

we observe that the proposed architecture is 3jmax faster than [1], which can be significant when jmax
is big. For instance with the CIFAR10 dataset, at the input layer of a CNN jmax = 32, and thus the

proposed method is 96 times faster. In addition it is a pipeline architecture, so it can be 3Ljmax faster

where L is the total number of layer blocks that fit in an FPGA.

Hardware results

We implemented one/few layers of Resnet18 on Xilinx Ultra Scale Vu13p (xcvu13p-figd2104-1-e) FPGA

(c.f. Table 2). The implemented layers are arranged in a pipeline, and their functionality has been

verified comparing the output of each layer block with the ones obtained by software simulation over

a batch of examples.

Table 2: FPGA results for the proposed architecture on vu13p (xcvu13p-figd2104-1-e).

P LUT FF BRAMs Frequency Processing outflow Power

Conv64 − 64 16 22424 22424 114 240MHz 19230 images/s 3.7W
4×Conv64 − 64 16 89746 75235 456 240MHz 19230 images/s 6.5W
3×Conv128 − 128 64 134090 102552 171 240MHz 29069 images/s 7.8W
3×Conv256 − 256 128 154599 102723 87 218MHz 26595 images/s 7.8W
3×Conv512 − 512 128 132155 52151 45 208MHz 16949 images/s 7.9W

4 Conclusion

In this paper, we proposed to reconsider the hardware implementation and acceleration of DNNs on

limited resources embedded systems such as FPGA. We proposed to use lightweight DNNs architectures

based on shift attention layers, and to combine them with weight binarization to reduce both complexity

and memory usage. The resulting architecture almost matches the accuracy of considered baselines

and only requires multiplexers, easing hardware implementation.



4 G–2020–23–EIW02 Les Cahiers du GERAD

We implemented the proposed scheme using a low cost hardware architecture in which complex

convolution operations are replaced by multiplexers. Thus, we were able to implement a considerable

part of a complex CNNs (Resnet18). Moreover, the architecture only consumes a few watts and does

not use any external ressources, making it a good solution for embedded applications.

References

[1] Arash Ardakani, Carlo Condo, and Warren J Gross. A convolutional accelerator for neural networks with
binary weights. In Circuits and Systems (ISCAS), 2018 IEEE International Symposium on, pages 1–5.
IEEE, 2018.

[2] Benjamin Graham. Fractional max-pooling. CoRR, abs/1412.6071, 2014.

[3] Ghouthi Boukli Hacene, Carlos Lassance, Vincent Gripon, Matthieu Courbariaux, and Yoshua Bengio.
Attention based pruning for shift networks. arXiv preprint arXiv:1905.12300, 2019.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[5] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected convo-
lutional networks. In CVPR, volume 1, page 3, 2017.

[6] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt Keutzer.
Squeezenet: Alexnet-level accuracy with 50x fewer parameters and < 0.5 mb model size. arXiv preprint
arXiv:1602.07360, 2016.

[7] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[8] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. CoRR, abs/1409.1556, 2014.

[9] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. arXiv preprint arXiv:1512.00567, 2015.

[10] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,  Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing
Systems, pages 5998–6008, 2017.

[11] Bichen Wu, Alvin Wan, Xiangyu Yue, Peter Jin, Sicheng Zhao, Noah Golmant, Amir Gholaminejad,
Joseph Gonzalez, and Kurt Keutzer. Shift: A zero flop, zero parameter alternative to spatial convolutions.
arXiv preprint arXiv:1711.08141, 2017.

[12] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146, 2016.


	Introduction
	Shift layers and Shift Attention Layers
	Hardware implementation
	Conclusion

