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Abstract: Implementation of quantized neural networks on computing hardware leads to considerable speed up and

memory saving. However, quantized deep networks are difficult to train and batch normalization (BatchNorm) layer

plays an important role in training full-precision and quantized networks. Most studies on BatchNorm are focused

on full-precision networks, and there is little research in understanding BatchNorm affect in quantized training which

we address here. We show BatchNorm avoids gradient explosion which is counter-intuitive and recently observed in

numerical experiments by other researchers.

1 Introduction

Deep Neural Networks (DNNs) compression through quantization is a recent direction in edge im-

plementation of deep networks. Quantized networks are simple to deploy on hardware devices with

constrained resources such as cell phones and IoT equipment. Quantized networks not only consume

less memory and simplify computation, it also yields energy saving. Two well-known extreme quanti-

zation schemes are binary (one bit) and and ternary (two bit) networks, which allow up to 32× and

16× computation speed up, respectively. Binary quantization only keep track of the sign {−1,+1}
and ignores the magnitude, and ternary quantization extends the binary case to {−1, 0,+1} to allow

for sparse representation. BatchNorm facilitates neural networks training as a known fact. A common

intuition suggests BatchNorm matches input and output first and second moments. There are two

other clues among others: [4] claim that BatchNorm corrects covariate shift, and [6] show BatchNorm

bounds the gradient and makes the optimization smoother in full-precision networks. None of these

arguments work for quantized networks! The role of BatchNorm is to prevent exploding gradient

empirically observed in [1] and [3].

2 Full-precision Network

Suppose a mini batch of size B for a given neuron k. Let µ̂k, σ̂k be the mean and the standard deviation

of the dot product, between inputs and weights, sbk, b = 1, . . . B. For a given layer l, BatchNorm is

defined as BN(sbk) ≡ zbk = γkŝbk + βk, where ŝbk = sbk−µ̂k

σ̂k
is the standardized dot product and the

pair (γk, βk) is trainable, initialized with (1, 0).

Given the objective function L(.), BatchNorm parameters are trained in backpropagation

∂L
∂βk

=

B∑
b=1

∂L
∂zbk

,
∂L
∂γk

=

B∑
b=1

∂L
∂zbk

ŝbk,

For a given layer l, it is easy to prove ∂L
∂sbk

equals

γk
σ̂k

(
− 1

B

B∑
b′=1

∂L
∂zb′k

− ŝbk
B

B∑
b′=1

∂L
∂zb′k

ŝb′k +
∂L
∂zbk

)
. (1)

Assume weights and activations are independent, and identically distributed (iid) and centred about

zero. Formally, denote the dot product vector slb ∈ IRKl of sample b in layer l, with Kl neurons. Let

f be the element-wise activation function, xb be the input vector, Wl ∈ IRKl−1×Kl with elements

Wl = [wlkk′ ] be the weights matrix; one may use wl to denote an identically distributed elements of

layer l. It is easy to verify

∂L
∂slbk

= f ′(slbk)

Kl+1∑
k′=1

wl+1
kk′

∂L
∂sl+1
bk′

,
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∂L
∂wlk′k

=

B∑
b=1

sl−1bk′
∂L
∂slbk

.

Assume that the feature element x and the weight element w are centred and iid. Reserve k to

index the current neuron and use k′ for the previous or the next layer neuron and where V(wl
′
) is the

variance of the weight in layer l′ V(slbk) = V(x)
∏l−1
l′=1Kl′ V(wl

′
),

V(
∂L
∂slbk

) = V(
∂L
∂sL

)

L∏
l′=l+1

Kl′ V(wl
′
),

which explodes or vanishes depending on V(wl
′
). This is the main reason common full-precision

initialization methods suggest V(wl) = 1
Kl

. For any full-precision network, BatchNorm affects back-

propagation as

V
( ∂L
∂slbk

)
=

( γlk
Bσ̂lk

)2
{B2 + 2B − 1 + V(ŝl

2

bk)}

Kl+1 V(wl+1)V
( ∂L
∂sl+1

)
. (2)

3 Binary network

Controlling the variance has no fundamental effect on forward propagation if sbk is symmetric about

zero as the sign function filters the magnitude and only keeps the sign of the dot product. The term

bk = µk − σ̂k

γk
βk can be regarded as as a new trainable parameter, thus BatchNorm layer can be

replaced by adding biases to the network to compensate. [7] shows that the gradient variance for

binary quantized networks without BatchNorm is

V
( ∂L
∂slbk

)
= V

( ∂L
∂sL

) L∏
l′=l+1

Kl′ ,

and with BatchNorm is

V
( ∂L
∂slbk

)
=

L−1∏
l′=l

Kl′+1

Kl′−1
V
( ∂L
∂sL

)
+ o

(
1

B1−ε

)
,

for an arbitrary 0 < ε < 1.

Gradients are stabilized only if
(
γl
k

B

)2
{B2 + 2B − 1 + V(ŝl

2

bk)} ≈ 1. Moving from full-precision

weight w to binary weight w̃ = sign(w) changes the situation dramatically: i) BatchNorm corrects

exploding gradients in BNNs as the layer width ratio Kl+1

Kl−1
≈ 1 in common neural models. If this ratio

diverges from unity binary training is problematic even with BatchNorm.

4 Ternary network

Ternary neural networks (TNNs) are studied in [8] and the BatchNorm effect is detailed there. Full-

precision weights during training are ternarized during forward propagation. Given a threshold ∆

ternary quantization function is

tern(x) =


−1 if x < −∆

+1 if x > ∆

0 if −∆ ≤ x ≤ ∆

(3)
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Let’s suppose the threshold is given so that the learning is feasible, for instance ∆ is tuned so that

< 50% of ternary weights are set to zero

V(w̃lt) = 2p1 = 1− ∆√
6
Kl

. (4)

In the literature [5] suggests to set ∆l = 0.7E(|wl|). Under simplified assumptions of iid weight and

activation

∆l =
0.7

2

√
6

Kl
(5)

and (4) reduces to V(w̃lt) = 1− 0.7
2 = 0.65. In this setting, variance is bigger than 2

Kl
which produces

exploding gradients similar to the binary case. Suppose weights and activation are iid and weights are

centred about zero, for a layer l,

σ̂2
k = Kl−1

1

2
V(ŝl−1b )V(w̃lt) = Kl−1

1

2
V(w̃lt). (6)

Therefore (2) reduces to

V
( ∂L
∂slbk

)
=

{
1 + o

(
1

B1−ε

)}
(7)

Kl+1

Kl−1
V
( ∂L
∂sl+1

)
, (8)

see [8] for details. Similar to the binary case, in most deep architectures Kl+1 ≈ Kl−1 or equivalently
Kl+1

Kl−1
≈ 1, so the variance would not explode for networks with BatchNorm layer.

5 Conclusion

We derived the analytical expression for full-precision network under assumptions of [2] and extended

it for binary and ternary case. Our study shows that the real effect of BatchNorm is played in scaling.

The main role of BatchNorm in quantized training is to adjust gradient explosion.
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