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• Peuvent télécharger et imprimer une copie de toute publica-

tion du portail public aux fins d’étude ou de recherche privée;

• Ne peuvent pas distribuer le matériel ou l’utiliser pour une
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Abstract: A new mathematical model for stochastic short-term optimization of mining complexes
is presented that simultaneously optimizes the short-term extraction sequence, shovel allocation in-
cluding costs of their relocation, stockpiling, and operational alternatives in processing streams. The
optimization formulation accounts for metal and material type uncertainty, stemming from the geolog-
ical reserve, as well as uncertain shovel production, reflecting the natural risk of underperformance of
mining equipment. The method has been applied to a real-world gold mining complex. The resulting
production schedule requires a minimum amount of shovel movements and shows an increased metal
production of +1.23%, leading to a higher expected profit of +0.77%.

Keywords: Simultaneous short-term production scheduling, fleet management, stockpiling, opera-
tional alternatives in processing streams
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1 Introduction

During the past years, methods for the simultaneous optimization of mining complexes have been

developed for strategic planning, which have shown to increase NPV and manage technical risk by

creating globally optimal solutions for long-term mine plans (Montiel and Dimitrakopoulos, 2015,

2018; Goodfellow and Dimitrakopoulos, 2016, 2017; Montiel et al., 2016). As a next step, the simul-

taneous optimization of mining complexes is also sought for short-term planning. However, different

operational components need to be integrated to create feasible short-term plans that meet production

targets. Firstly, decisions related to the mining equipment, such as shovel allocation and repositioning,

drilling and blasting activities, as well as the management of a heterogeneous truck fleet need to be

integrated. Furthermore, detailed material access constraints have to be addressed, considering limited

access from pit ramps and operational directions of mining. In addition, stockpiling and operational

alternatives in processing facilities need to be considered for simultaneous short-term planning. Next

to managing geological uncertainty, other pertinent sources of uncertainty stemming from these newly

linked decisions, such as equipment performance uncertainty, uncertain cycle times, and others must

be integrated to better meet production targets.

Short-term mine planning generally aims to make optimal decisions over a timeframe of days to

months to best meet annual production targets given by the long-term mine plan (Wilke and Reimer,

1977; Fytas et al., 1987; Hustrulid et al., 2013). This task is conventionally accomplished in two sepa-

rate steps, optimizing the physical short-term extraction sequence first, and then assigning the mining

equipment (shovels and trucks) afterwards, which is summarized under the term fleet management.

Recently, some effort has been made to combine these two planning aspects (Fioroni et al., 2008;

L’Heureux et al., 2013; Torkamani and Askari-Nasab, 2015; Mousavi et al., 2016; Villalba Matamoros

and Dimitrakopoulos, 2016; Quigley, 2016; Blom et al., 2017; Kozan and Liu, 2018; Upadhyay and

Askari-Nasab, 2018).

Matamoros and Dimitrakopoulos (2016) simultaneously optimize a short-term production sched-

ule of a single mine and a single processing facility next to truck-shovel allocation decisions while

integrating metal uncertainty and equipment performance uncertainty into their optimization formu-

lation. Several sets of equally likely uncertainty scenarios, including stochastic orebody simulations

(Goovaerts, 1997), shovel and truck availability scenarios, and cycle time scenarios serve as an input to

a stochastic integer programming (SIP) model, which is based on previous developments in stochastic

mine planning (Ramazan and Dimitrakopoulos, 2005, 2013). Results show that the optimized short-

term extraction sequence and equipment allocation decisions reduce costs and are more likely to meet

planned production targets using stochastic inputs compared to average-type inputs. Quigley (2016)

extends the formulation from Matamoros and Dimitrakopoulos (2016) by considering multiple pits,

multiple processing streams, and access constraints related to hauling ramps inside the pits. Further-

more, availability scenarios of shovels and trucks are co-simulated, honoring historical data that show

correlations of availability and utilization among shovel types and truck types.

A major limitation of the described approach of Matamoros and Dimitrakopoulos (2016) and

Quigley (2016) is that they do not optimize a mining complex as a whole. Rather than solely mini-

mizing costs, metal production and profit should be maximized, which honours the fact that material

can be blended and possibly be sent to different available processing streams that are operated in

different ways. Stockpiling should be included in the optimization and operational alternatives in

processing streams should be considered, such as choosing the optimal mill performance of alternat-

ing throughput-recovery behavior (Wooller, 1999). The integration of operational alternatives into

long-term planning has been discussed by Whittle (2014), who suggests that optimizers should include

the natural flexibility of processing circuits to adapt their performance (e.g., throughput), leading to

optimized metal production. Integrating this line of research can also help maximize metal production

for short-term planning.

The newly developed optimization model herein aims to overcome the above-mentioned shortcom-

ings by holistically optimizing a mining complex for short-term planning, while maximizing metal and
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profits. To date, the optimization model optimizes the short-term extraction sequence, destination

of materials, shovel relocation, stockpiling, and the option of operational alternatives in processing

streams. The optimization formulation takes into account geological uncertainty and uncertain shovel

production, reflecting the natural risk of underperformance of mining equipment. Being part of the

bigger picture, other pertinent components of short-term planning such as optimal allocation of a

heterogeneous truck fleet, including their stochastic availabilities and cycle times, will be added later

on. This is achieved by building upon previous advancements in simultaneous stochastic optimization

of mining complexes (Goodfellow and Dimitrakopoulos, 2016) and extending their formulations for

short-term planning.

In the following sections, the mathematical formulation of the developed stochastic programming

model for short-term planning is presented first. A case study at a gold mining complex is presented

afterwards to demonstrate the capability of the presented optimization framework for short-term mine

planning, followed by conclusions and future work.

2 Method

The mathematical model for simultaneous stochastic short-term optimization of mining complexes

is formulated as a stochastic integer programming model with fixed recourse (Birge and Louveaux,

2011). The formulation models a mining complex as a mineral value chain, where material is extracted

from a set of mining areas J and sent to a set of destinations D= P∪S∪W, consisting of processors P,

stockpiles S or waste dumpsW. All blocks belonging to one area of the mining complex are summarised

in the set Ij , whereas the set N comprises all blocks b that are to be extracted within the annual horizon

of this optimization. The stochasticity of inputs is accounted for in different sets of scenarios. Orebody

scenarios s ∈ S quantify geological uncertainty. Equipment performance scenarios se ∈ SE quantify

the uncertainty related to shovel production. Individual shovels are modelled with the index l ∈ L.

2.1 Decision variables

Mine extraction variables (xtb,d ∈ {0, 1}) define whether a block b is mined in period t and sent to des-

tination d. Equipment-related decision variables are implemented in this model, which simultaneously

allow for fleet management decisions in mining complexes. Shovel allocation variables (λ
t
l,j ∈ {0, 1}) de-

fine if a shovel l is allocated to mining area j in period t. The shovel-movement variable (ωt
l,j,j′

∈ {0, 1})
will be equal to 1 if a shovel l moved from area j to area j’ between period t−1 and t, and 0 otherwise.

An additional binary variable is added, which allows the integration and simultaneous optimization of

operational alternatives for various processing streams within the mining complex. The binary decision

variable ytd ∈ {0, 1} is equal to 1 if destination d in period t is active.

Several recourse or second-stage variables are in place. Target deviation variables (dGrade−d,e,t,s , dGrade+d,e,t,s )

will be penalized in the objective function if grade targets of element e are violated in a period t in

a scenario s in destination d. An additional recourse variable is defined for equipment-related con-

straints. Shovel production deviations f tj,se reflect the shortfall of shovel production in a mining area j

for a period t, depending on equipment performance scenario se.

Table 1: Notations for indices in the mathematical model

Indices and sets

t ∈ T Index of a period (bi-monthly) within the planning horizon (year)
s ∈ S Index of an orebody scenario

se ∈ SE Index of an equipment performance scenario
d ∈ D Index of the set of destinations D

D= P∪S∪W The set of Destinations consists of Processors P, Stockpiles S and Waste dumps W
j ∈ J Index of a distinct area located at any pit of the mining complex among a set of areas
i ∈ Ij Index of a block i within area j among the set of blocks Ij belonging to the same area j
b ∈ N Index of block b in the set of all enumerated blocks N .
l ∈ L Index of a loading equipment (shovel) l in the mining complex
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Table 2: Notations for variables in the mathematical model

Variables

xtb,d ∈ {0, 1} This binary decision variable is equal 1 if block b mined in period t and sent to destination d
and 0 otherwise.

λtl,j ∈ {0, 1} This binary decision variable is equal to 1 if shovel l is located at area j in period t and 0
otherwise

ytd ∈ {0, 1} This binary decision variable is equal to 1 if destination d in period t is chosen (representing
one operational alternative)

ωt
l,j,j

′ ∈ {0, 1} This binary variable is equal to 1 if a shovel l has moved from area j to a different area j′

between period t − 1 and t and 0 otherwise. Associated movement costs are penalized in
the objective function.

f tj,se∈ R This continuous variable defines the deviation from expected shovel production in area j
for equipment scenario se in period t. It is a recourse variable.

dGrade−
d,e,t,s , dGrade+

d,e,t,s ∈ R These continuous variables represent excess and shortage of element e in destination d at
time t in scenario s. They are recourse variables.

Table 3: Notations for parameters in the mathematical model

Parameters

pd The unit selling price of the metal product in destination d
(e.g., no smelting fees occur for heap leaching operation)

cprocd The unit cost of processing material in destination d ($/t)

cTransport
d Transportation cost from the excavation point to destination d ($/t)

cGrade+
d,e,t , cGrade−

d,e,t Cost for the excess/shortage of metal or deleterious element e in destination d at
period t

gmetal
b,s Metal grade of block b in geological scenario s

gmetal
s Average metal grade of stockpiled material in scenario s (approximated)

PMin
t,d PMax

t,d Minimum and maximum processing capacity in destination d for period t

GMin
e,d , GMax

e,d Minimum and maximum grade of metal or deleterious element e in destination d

recd Recovery (%) in destination d
if d is a waste dump d ∈W : recd= 0%
if d is a processor d ∈ P : recd > 0%

ge,s Average grade of element e of stockpiled material in scenario s (approximated)
CostTonnesNotProduced Cost for tonnage not produced regarding the expected shovel production

CostMove
l,j,j

′ Cost (Matrix) of moving a shovel l from area j to area j’ in period t

Tonb The tonnage of block b
LMax
j Maximum number of shovels l allowed in area j per period t

Ht Scheduled working hours per period t
Qt

l,j,se
Effective shovel production (t/h) of shovel l in area j for equipment scenario se in
period t.

Ub = Vb ∪ Hb Predecessor sets of block b unifying the vertical direction Vb and horizontal direc-
tion Hb

2.2 Objective function

Other than most short-term optimization formulations, the goal is not only to minimize operational

costs but to maximize the profit of the entire mining complex as a whole. The minimization of

costs alone neglects the fact that material can be blended and possibly be sent to different available

processing streams, which affects generated revenues from metal products, which should be maximized.

The objective function (1) of the proposed mathematical model is shown.
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Maximize
1

‖ S ‖
∑
t∈T

∑
s∈S

∑
d∈D

vt,s,d︸ ︷︷ ︸
All revenues and costs in the mining complex (I)

− 1

‖ S ‖
∑
t∈T

∑
s∈S

∑
d∈D

∑
e∈E

(
cGrade+d,e,t ·dGrade+d,e,t,s +cGrade−d,e,t ·dGrade−d,e,t,s

)
︸ ︷︷ ︸

Penalty term for shortfall or surplus of elements in processors (II)

− 1

‖ SE ‖
∑
t∈T

∑
se ∈ SE

∑
j∈J

CostTonnesNotProduced ∗ f tj,se︸ ︷︷ ︸
Penalty for not achieving production target per shovel (III)

−
∑
t∈T

∑
l∈L

∑
j∈J

∑
j′∈J\{j}

CostMovel,j,j′ ∗ ω
t
l,j,j′︸ ︷︷ ︸

Shovel movement cost (IV )

(1)

Part (I) of the objective function summarizes revenues and costs that are generated in all modelled

locations in the mining complex. Penalties for positive or negative deviations from production targets

are accounted for in part (II). Parts (III) to (VI) are equipment-related, aiming to reduce the risk

of not meeting short-term production targets that are related to the mining fleet. Stochastic shovel

production targets are controlled in (III), whereas Part (IV) sums the cost related to move a shovel

from one area to another. All constraints, including equipment constraints and constraints related to

stockpiling and operational alternatives are listed in the appendix in the way they were implemented

in the following case study.

3 Case study – Application at a gold mining complex

The gold mining complex considered comprises four spatially distinct mining areas (A1–A4) that can be

accessed by specific ramp access points, which are depicted in Figure 1. This mining complex operates

with a shared mining fleet, where material is excavated and hauled either to a mill, constrained by a

maximum capacity of 116 kt per period, a stockpile connected to the mill, a heap leach facility or a

single waste dump bearing unlimited capacity for the considered short-term planning horizon.

Figure 1: Mining areas and other components in the mining complex

The annual production horizon, to be scheduled in six bi-monthly periods, comprises 4,876 blocks
(30x30x20 ft3). Uncertainty of metal grade (Au) is accounted for by utilizing fifteen equally probable

orebody scenarios using geostatistical simulation techniques (Goovaerts, 1997; Rossi and Deutsch,
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2014). Economic and operational parameters for each destination in the mining complex are given in

Table 4. The material to be scheduled equals to one year’s planned production taken from a previously

optimized life-of-mine production schedule. Other optimization parameters of the mining complex are

summarized in Table 5. The expected production rates of the three shovels in the mining complex

and their standard deviation are presented in Table 6. Costs due to shovel movements are provided

in Table 7, which are calculated based on the expected travel time of shovels between areas and the

associated operational costs of moving a shovel. The given mining directions per mining area, which

have to be followed by the mining operation, are provided in Table 8.

Table 4: Economic and operational parameters for each destination in the mining complex

Parameter Destination

Waste Dump Mill
(Operational
Alternative 1)

Mill
(Operational
Alternative 2)

Heap Leach

Unit selling price of metal (Au) in
destination

0$ 1237 $/oz 1237 $/oz 1250 $/oz
(no smelting fees paid
for leaching operation)

Transportation cost to destination 0.05$/t 0.09 $/t 0.09$/t 0.14$/t
Processing cost of ore in destination 0$/t 7.84 $/t 8.84 $/t 2.30 $/t
Upper and lower limits of processing
capacity for a 2-month period

Unlimited
PMin = 1.0 Mt
PMax = 1.3 Mt

PMin = 0.5 Mt
PMax = 0.8 Mt

PMin = 0.0 Mt
PMax = 2.0 Mt

Table 5: Optimization parameters for the mining complex

Parameter Value

Number of shovels 3
Number of areas 4
Number of blocks 4876
Number of equipment performance scenarios 10
Number of orebody scenarios 15
Hours per period (one period = 2 months) 1440 h
Mining cost 1.10 $/t
Cost for scheduled tons of production that cannot be mined because of shortfall of shovel capacity 1.00 $/t
All-in costs that occur for relocating a shovel 950 $/h

Table 6: Expected production rate and standard deviation for loading equipment

Loading Equipment
Production

Mean (t/h) Standard deviation (t/h)

Shovel 1 (large) 2240 145.5
Shovel 2 (small) 1120 61.5
Shovel 3 (small) 1120 113.0

Table 7: Costs caused by shovel movement

in ‘000 $ toArea1 toArea2 toArea3 toArea4

fromArea1 0.0 5.7 8.6 6.7
fromArea2 6.7 0.0 10.5 10.5
fromArea3 9.5 8.6 0.0 3.8
fromArea4 7.6 9.5 2.9 0.0

Table 8: Given mining directions for short-term planning per area

toArea1 toArea2 toArea3 toArea4

Mining direction North North South West

Figure 2 shows the optimized extraction sequence that is obtained as a result of the simultaneous

optimization of short-term production and fleet management. Figure 3 shows the simultaneously
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optimized shovel allocation decisions. It can be seen that the optimized extraction sequence follows

the given mining directions, starting from the given ramp access points that are indicated for every area

by white arrows in Figure 2. This shows the ability of the method to create well mineable sequences

in the short-term. Furthermore, Figure 3 reveals that only two shovel moves are necessary to extract

the annual scheduled production, a result of simultaneously matching shovel capacities and volumes

of material by the optimization formulation. Logically, the largest shovel (shovel 1) is allocated to the

largest mining volumes of area 4, whereas the smaller shovels will be located to area 2 first, before

splitting to area 1 and area 3 respectively.

Figure 2: Extraction sequence obtained by simultaneous optimization of production schedule and fleet management

Figure 3: Shovel allocations obtained by simultaneous optimization of production schedule and fleet management
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3.1 Stockpiling

As an additional result of simultaneous optimization, the amount of stockpiled material that is fed

to the mill is included as well. Table 9 presents the optimized tonnages that are (i) sent to the

stockpile (first column), (ii) sent from the stockpile to the mill (last column), and (iii) its resulting net

inventory after each period (second column). It can be seen that mined material is mostly sent to the

stockpile in period 4. The stockpiled material will then be sent to the mill in period 6. The reason

for this is because a large amount of high-grade ore is extracted in period 4, mostly originating from

mining area 1, which can be seen by observing the optimized destinations of material in Figure 4. The

optimizer decided to stockpile 10 kt of ore until period 6 because the mill capacity would be exceeded

otherwise. This surplus ore is thus stored for two periods and then fed to the mill in period 6 to fill

this processing stream to full capacity when it is needed.

Figure 4: Destination of material obtained by simultaneous optimization of production schedule and fleet management

Table 9: Stockpile tonnages for mill stockpile

Mill Stockpile
Period Sent to Stock (t) Mill Stockpile Inventory (t) Sent to Mill (t)

P1 0 0 0
P2 170 170 0
P3 190 360 0
P4 10,430 10,790 0
P5 0 10,790 0
P6 0 470 10,320

3.2 Operational alternatives

The introduction of operational alternatives for processing streams for simultaneous short-term plan-

ning of mining complexes is discussed herein. Rather than giving a continuous spectrum of mill

throughput/recovery options, as presented by Wooller (1999), this optimization considers two distinct
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operational alternatives of how to operate the milling and grinding circuit. The changed parame-

ter targets between both operational alternatives are noted in Table 4 and Table 10. Additional

constraints ensure that only one operational alternative can be chosen per time period and that the

concurrent alternative must receive no material, which is described in the appendix of this article. Note

that operational alternative one was used as the default for all optimized results above (simultaneous

optimization including stockpiling but excluding operational alternatives). The resulting optimized

tonnages for including operational alternatives are presented in Table 10. The optimizer decided to

operate the mill with maximized throughput (alternative two) in three out of six cases, whereas the

concurrent alternative receives no material in these periods.

Table 10: Optimized tonnages sent to destinations, including an operational alternative for milling circuit

Period Waste (kt) Mill (Operational alternative 1) (kt) Mill (Operational alternative 2) (kt) Leach (kt)

P1 489 117 0 360
P2 590 0 150 360
P3 628 0 149 360
P4 366 0 150 359
P5 272 116 0 360
P6 400 117 0 359

Total 2,745 350 450 2,158

Alternative 1 (OA1): optimized recovery 95% , throughput 116kt
Alternative 2 (OA2): maximized throughput 150kt (+30%), recovery 90% (-5%)

Further insight on the optimizer’s choice can be obtained by comparing the optimized production

schedule when operational alternatives are given with the previously optimized production schedule.

It can be noticed by comparing the schedule on the upper left to the lower left that the extraction

sequence changes significantly. This is especially the case for areas of high-grade material, such as

area 1. Here, the optimizer opted for the alternative of maximized recovery, seen in the lower right

(destinations of material with operational alternatives) to benefit from additional produced metal.

Medium grade material in areas two and four will be preferably mined by the alternative of maximized

throughput (operational alternative one) to give way for the above-mentioned high-grade material.

Figure 5: Comparison of optimized production schedules when operational alternatives are included (lower left) vs. no
operational alternatives given (upper left)

The financial benefits of this method are given in Table 11, showing a higher expected metal

production of 1.23% and higher expected profit of 0.77%. This result is due to the better utilization of

the mill by balancing optimized throughput and optimized recovery for the received material, which

is given by the simultaneously optimized production schedule.
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Table 11: Financial comparison of including operational alternatives vs. no operational alternatives given

No operational
alternatives given

Operational alternatives are included
into simultaneous optimization

P50 Cum. Cash Flow (M$) 44,30 44.64
100% + 0.77%

P50 Gold Produced (Oz) 51,376 52,010
100% +1.23%

4 Conclusions and future work

A mathematical formulation for stochastic short-term optimization has been developed, which simul-

taneously optimizes short-term extraction sequence, shovel relocation, stockpiling, and operational

alternatives in mining complexes. Several sources of uncertainty are integrated into the mathematical

optimization formulation, including metal uncertainty stemming from the geological reserve and un-

certainty in shovel production. The presented case study shows how simultaneous optimization can

result in production schedules that require (i) a minimum amount of shovels relocation, (ii) optimize

short-term stockpiling, and (iii) generate higher profit through increased metal production.

Future research aims to include additional aspects of the mining fleet, i.e., the truck hauling fleet

and truck cycle times into the framework of simultaneous stochastic short-term optimization. Con-

sidering the large size of the stochastic integer programming model, a metaheuristic solution method

will be developed that has potential to decrease runtime, overcome linear assumptions, and opens

the possibility to include more complex geometallurgical considerations into short-term production

scheduling.

5 Appendix

Detailed mathematical model, including calculation of revenues and costs in objective function part (I)

and constraints used for the linear program.

5.1 Objective function, part (I)

vt,s,d =
∑
b∈N

xtb,d ∗ Tonb ∗
(
pd ∗ gmetalb,s ∗ recd − cprocd − cTransportd

)
︸ ︷︷ ︸

Mined material sent to processor d

+ (kt+d − k
t−
d

) ∗
(
pd ∗ gmetals ∗ recd − cprocd − crehandled

)
︸ ︷︷ ︸

rehandled material sent to and received from stockpile

5.2 Constraints for multiple destinations

The reserve constraint (2) ensures that a block needs to be mined once (need to mine all scheduled

blocks), and sent only to one destination. Constraint (3) is a predecessor constraint that ensures that

preceding blocks Ub have been extracted before not only in vertical direction Vb, but also in horizontal

direction Hb so that full access can be guaranteed for shovels from the ramp in a certain mining

direction. ∑
d∈D

∑
t∈T

xtb,d = 1 ∀ b ∈ N (2)

∑
d∈D

xτb,d ≤
∑
d∈D

τ∑
t=1

xtk,d ∀ k ∈ Ub, t ∈ T, b ∈ N (3)
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The tonnage constraints (4) and (5) ensure that the minimum and maximum processing capacities

are not exceeded in any processing destination d ∈ P in period t. The stockpile variables kt−d kt+d
consider material sent to and from the corresponding stockpile of destination d. The maximum pro-

cessing capacity PMax
t,d varies with the operational alternative implemented in processing destination d

in period t. ∑
b∈N

xtb,d ∗ Tonb − kt+d + kt−d ≤ P
Max
t,d ∗ ytd ∀t∈T,d∈D (4)∑

b∈N

xtb,d ∗ Tonb − kt+d + kt−d ≥ P
Min
t,d ∗ ytd ∀t∈T,d∈D (5)

Constraints (6) and (7) impose lower and upper grade limits on several elements for every processing

destination d∈P in the mining complex. The reason for these constraints is twofold. First, it is ensured

that processing facilities can process the material. Second, the quality of the products is ensured this

way. The grade limits for each element e in each destination d∈P are defined a priori by GMin
e,d

and GMax
e,d . Surplus dGrade+d,e,t,s , or shortage dGrade−d,e,t,s respectively, is penalized in the second term of the

objective function.∑
b∈N

xtb,d ∗ Tonb ∗
(
ge,b,s −GMin

e,d

)
+ (k

t+
d − k

t−
d ) ∗

(
ge,s −GMin

e,d

)
+ dGrade−d,e,t,s ≥ 0

∀t∈T, s∈S, d∈P, e ∈ E (6)∑
b∈N

xtb,d ∗ Tonb ∗
(
ge,b,s −GMax

e,d

)
+ (k

t+
d − k

t−
d ) ∗

(
ge,s −GMin

e,d

)
− dGrade+d,e,t,s ≤ 0

∀t ∈ T, s ∈ S, d ∈ D, e ∈ E (7)

5.3 Equipment-related constraints

Constraint (9) ensures that shovel l ∈ L can only be assigned at most to one area in period t. However,

it is still possible that two or more shovels can operate in the same area. Constraint (9) guarantees

that a mining block in sector j is mined only if a shovel is allocated to area j.∑
j∈J

λtl,j ≤ 1 ∀t ∈ T, l ∈ L (8)

xtb,d −
∑
l∈L

λtl,j ≤ 0 ∀t ∈ T, b ∈ Ij , d ∈ D, j ∈ J (9)

Constraint (10) links the theoretical shovel capacity allocated to an area to the scheduled production

in that area. If shovel capacity is less than the scheduled production, the shortage is stored by the

variable f tj,se for every stochastic equipment performance scenario se ∈ SE , which is penalized in the

objective function. Surplus shovel capacity remains feasible. The recourse variable f tj,se is utilized in

such a way that first stage shovel allocation decisions shall be found to minimize production losses

with respect to every equipment performance scenario, i.e. the more reliable shovels will be allocated

to strategically important excavation points.∑
l∈L

Qtl,j,se ∗ λ
t
lj ∗Ht

︸ ︷︷ ︸
Effective shovel
capacity per area

−
∑
b∈Ij

∑
d∈D

xtb,d ∗ Tonb︸ ︷︷ ︸
Scheduled production

per area

+f tj,se ≥ 0 ∀t ∈ T, j ∈ J,se ∈ SE

(10)

Constraint (11) ensures that, in every period, the maximum available number of shovels in any

area j cannot be exceeded. The shovel-movement variable ωt
l,j,j′

is thus a direct result of shovel
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allocation variables λtl,j . Constraints (12) ensure the correct calculation of movement costs.

∑
l∈L

λtl,j ≤ LMax
j ∀t ∈ T, j ∈ J (11)

λt+1
l,j′ + λtl,j − ωtl,j,j′ ≤ 1 ∀t ∈ T, l ∈ L, j ∈ J, j

′
∈ J, j

′
6= j (12)

5.4 Stockpile constraints

All modelled stockpiles in this linear programming model are strictly bound to their respective process-

ing stream. This means that each processing stream can have exactly one stockpile. This modelling

approach has also been applied by Lamghari and Dimitrakopoulos (2016, 2018). Constraints (13)

ensure the mass balance in the stockpile at the end of each period by balancing incoming and outgoing

material.

ht−1
d︸︷︷︸

Tonnage of
stockpile d

in previous period

− kt+d︸︷︷︸
Tonnage sent

from stockpile d to
processor in
current perod

+ kt−d︸︷︷︸
Tonnage sent
to stockpile d

in current period

= htd︸︷︷︸
Tonnage of
stockpile d

in current period

∀t ∈ T,d∈D (13)

The capacity of the stockpile may be limited for each stockpile in stockpile destination d∈S by

the stockpile capacity StockMax
d (14). An initial amount of stockpiled material StockInitd is defined

in (15).

htd ≤ Stock
Max
d ∀t ∈ T,d∈D (14)

h0
d = StockInitd ∀t = 0,d∈D (15)

The amount of material that can be taken from the stockpile cannot be more than the available

amount at the stockpile at the end of the previous period. If constraint (16) is not imposed, material

that has been sent to the stockpile in period t might be sent to processing in the same period. This

shall not happen since material might not be available yet when scheduled.

kt+d − h
t−1
d ≤ 0 ∀t ∈ T,d∈D (16)

5.5 Integration of operational alternatives in destinations

For modelling operational alternatives for processors in the mining complex, several additional con-

straints are introduced. To demonstrate an example of operational alternatives, destinations d=1 and

d=2 can be considered the same processing facility, e.g., a mill that can be operated in two different

ways bearing different throughput, recovery, and costs. The binary variable ytd must be set to 1 for

destinations bearing only one operational alternative. However, for destinations bearing two or more

operational alternatives, constraints (17) are imposed Subsets Λ⊆D represent destinations d that can

be operated using different operational alternatives.∑
d∈Λ

ytd ≤ 1 ∀t ∈ T (17)

All extraction variables of blocks that are sent to ambiguous destinations need to be forced to zero if

the operational alternative is not chosen. The following constraints (18) realize this requirement.

xtb,d ≤ ytd ∀t ∈ T, b ∈ N , d∈Λ (18)
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