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Citation suggérée : C. Audet, P. Hansen, D. Svrtan (Août 2019).
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recherche du Québec – Nature et technologies.
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b Département de mathématiques et génie indus-
triel, Polytechnique Montréal (Québec) Canada,
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Abstract: A small polygon is a polygon of unit diameter. The question of finding the largest area
of small n−gons has been answered for some values of n. Regular n−gons are optimal when n is odd
and kites with unit length diagonals are optimal when n = 4. For n = 6, the largest area is a root
of a degree 10 polynomial with integer coefficient having 4 to 6 digits. This polynomial was obtained
through factorizations of a degree 40 polynomial with integer coefficients.

The present paper analyses the hexagonal and octogonal cases. For n = 6, we propose a new
formulation which involves the factorization of a polynomial with integer coefficients of degree 14
rather than 40. And for n = 8, under an axial symmetry conjecture, we propose a methodology that
leads to a polynomial of degree 344 with integer coefficients that factorizes into a polynomial of degree
42 with integer coefficients having 21 to 32 digits. A root of this last polynomial corresponds to the
area of the largest small axially symmetrical octagon.

Keywords: Small polygons, planar geometry, disciminant
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1 Introduction

The diameter of a polygon is the largest Euclidean distance between pairs of its vertices. A polygon

is said to be small if its diameter equals one. The present work studies the problem of finding for a

fixed value of n ≥ 3, the small n-gon whose area is maximal. Regular polygons are optimal in the case

where the n-gon is required to be equilateral [1], but are not always optimal in the non-equilateral case.

Reinhard [11] showed almost 100 years ago that when n is odd, the regular polygon is optimal but the

situation gets more complicated when n is even. For n = 4, any small quadrilateral for which both

of its diagonals are unit-lenght and perpendicular are optimal with an area equal to 1
2 . In particular,

the square with side length 1√
2

is optimal. However, when n ≥ 6 is even, the optimal n-gon is not

the regular polygon as the area of the small regular (n − 1)-sided polygon is larger than that of the

small regular n-sided polygon [3]. The survey [2] presents a collection of similar extremal problems for

polygons.

The diameter graph of a small n-gon is the graph composed of its n vertices, and its edges connect

pairs of vertices that are at unit-distance from each other. The diameter graph of the largest small

hexagon was shown in 1975 by Graham [6] to be composed of a cycle of length 5 with a pending edge.

The optimal hexagon has an axis of symmetry. In order to find its area, Jonhson and Graham [8] factor

a polynomial of degree 40 into four irreducible polynomial of degree 10. On of these polynomials, say p6,

is such that one of its root is the value of the area of the largest small hexagon. Lazard [9] proposes

alternate approaches, including two of them that factorize a polynomial of degree 24. One of its factor

is the polynomial p6 found by Johnson and Graham. In the present work, we use a complex-plane

formulate the problem, which leads to a polynomial of degree 14 that factors into two irreducible

polynomials: p6 and another polynomial of degree 4.

For even values of n ≥ 6, it was shown [5] that the diameter graph of the optimal polygon is

composed of a cycle of length n − 1 with a pending edge. Numerical solutions with 4 and 7 exact

digits are proposed in [4] and [7] for the octagon. It has been conjectured [6, 7] that the optimal

polygon has an axis of symmetry corresponding to the pending edge. This conjecture is verified for

the quadrilateral [11], for the hexagon [12] and supported numerically for the octagon, decagon and

dodecagon [7]. Lower and upper upper bounds on the optimal area are presented in [10] for larger

values of n. The present work studies the octagon under the assumption of an axis of symmetry with

respect to the pending edge of the diameter graph. Using symbolic calculations, we propose a way to

derive a polynomial of degree 344, whose factorization produces a polynomial p8 of degree 42 and for

which one of its root is the largest small octagon with an axis of symmetry. The value of the optimal

area is coherent with the bounds of Henrion and Messine [7].

The present paper is divided into two main sections. Section 2 is devoted to the hexagon, and

Section 3 to the symmetrical octagon. A final section concludes with comments on larger n-gons.

2 The largest small hexagon

Symmetry of the largest small hexagon was proved by Yuan [12]. We show the same result using

a different approach using a complex-plane representation, which is then used to find the optimal

hexagon.

Theorem 2.1 The diameter graph of the largest small hexagon consists of a cycle of length 5 with one

pending edge, and is axially symmetrical with respect to that edge.

Proof. Foster and Szabo show that the diameter graph of largest small n-gon, where n ≥ 6 is even,

consists of a cycle of length n − 1 with a pending edge. Let P be the optimal small hexagon with

diameter graph composed of a cycle of length 5 with one pending edge, and whose consecutive vertices

in the complex plane are z1, z3, z5, z2, z4 and z6 as illustrated in Figure 1. Without any loss of generality,

we fix the endpoints of the pending edge z5 = 0 and z6 = i on the imaginary axis. Reinhardt showed
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that the pending edge is perpendicular to the line segment joining its neighboring vertices z1 and z4,

which implies that z4 = −z̄1. The area A(P ) of the hexagon can be decomposed as the sum of the

areas of the triangle z5z2z4, the quadrilateral z5z4z6z1 and the triangle z5z1z3:

A(P ) =
1

2
Im(z̄4z2) + Re(z1) +

1

2
Im(z̄3z1) = Re(z1) +

1

2
Im (z1(z̄3 − z2)) .

•

•

•◦
◦

◦

◦

••
• z1

z2 −z̄2

z3−z̄3

z4 = −z̄1

z5 = 0

z6 = i
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Figure 1: Complex plane representation of cycle of length 5 with a pending edge

Let α and β denote the angles ∠z4z1z2 and ∠z1z4z3, respectively, as show in the figure. By

contradiction, suppose that the polygon P is not symmetrical with respect to the pending edge, i.e.,

suppose that α 6= β. Consider a second hexagon Q whose vertices are z1, z0, z5,−z̄0, z4 and z6 where z0
is the vertex at unit distance from z4 such that the angle ∠z1z4z0 is equal to α+β

2 . The diameter of

this second hexagon is also equal to 1 because

(|z0 + z̄0|)2 = (2 Re(z0))2

= 4

(
Re(−z1) + cos

α+ β

2

)2

= 4

(
Re(−z1)2 − 2 Re(z1) cos

α+ β

2
+ cos2

α+ β

2

)
≤ 4

(
Re(−z1)2 − Re(z1)(cosα+ cosβ) + cos2

α+ β

2

)
= 4 Re(−z1)2 − 4 Re(z1)(cosα+ cosβ) + 2(1 + cosα cosβ − sinα sinβ)

= (2 Re(−z1) + cosα+ cosβ)2 + (sinα− sinβ)2

= (| − 2 Re(z1) + cosα+ cosβ + i(sinα− sinβ)|)2

= (|z3 − z2|)2 = 1.

The area A(Q) of this second polygon is A(Q) = Re(z1) + Im (z1z̄0) and satisfies

A(Q)−A(P ) =
1

2
Im (z1(2z̄0 − z̄3 + z2)) =

1

2
Im(z1w̄)

where w = (z0 − z3) + (z0 − (−z2)). The value 1
2 Im(z1w̄) is strictly positive because it corresponds to

the area of the triangle z5wz1 which leads to the contradiction that A(P ) < A(Q). 2
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The next theorem shows a result of Graham, but with a different proof that uses the discriminant

of a polynomial. Recall that the discriminant of a polynomial p(x) is a polynomial function of the

coefficients of p(x), and the discriminant equals 0 if and only if p(x) has a multiple root. In an

optimization context, let A be a critical value of a polynomial function t(x) and let x∗ be a solution

such that A = f(x∗). Then x∗ is also a root of the polynomial function t(x)−A and consequently, the

discriminant of t(x)−A is 0.

Theorem 2.2 The area A of the largest small hexagon is the root of the polynomial

p6(A) = 8
(
512A10 + 1024A9 − 376A8 − 3856A7 + 2632A6 + 18312A5

−27670A4 + 154A3 + 18058A2 − 9811A+ 1499
)

+ 1

that belongs to the interval [0.6, π4 ].

Proof. The proof of Theorem 2.1 shows that the optimal hexagon is axially symmetrical with respect

to the pending edge. The ordered vertices may be written as z1 = z, z4 = −z̄, z2 = z + u, z3 =

−z̄ − ū, z5 = 0 and z6 = i, where z and u are complex numbers such that zz̄ = uū = 1. It follows that

the following equation holds

0 = (z1 − z5) +(z2 − z1) +(z3 − z2) +(z4 − z3) +(z5 − z4)
= z +u +1 +ū +z̄.

(1)

The area A of the optimal hexagon may be written as

A = Re(z)− Im (z(z + u))

=
1

2
(z + z̄) +

1

2i
(z(z + u)− z̄(z̄ + ū)) .

Substituting z̄ from (1) into the previous equation, multiplying both sides by 2iu, and multiplying (1)

by zu leads to the equivalent question of finding the common roots of the pair of polynomial equations

pA,z(u) = −i
(
1 + u+ u2

)
+ (u+ 1)

(
(1 + u)z + u2 + u+ 1)

)
− 2iuA

pz(u) = z2u+ zu2 + zu+ z + u.

The variable u is eliminated by finding the resultant rA(z) of the two polynomials pA,z(u) and

pz(u), i.e., a polynomial on their coefficient which equals zero at the roots of both polynomials:

rA(z) = (−1− i) z6 + (2 iA− 1 + i) z5 + (−2 iA+ 4A− 1− i) z4

+
(
−4A2 − 3

)
z3 + (4A+ 2 iA− 1 + i) z2 + (−2 iA− 1− i) z − 1 + i

Finally, factoring the discriminant of rA(z) gives the polynomial of degree 14:1

d(A) = 4
(
4096A10 + 8192A9 − 3008A8 − 30848A7 + 21056A6 + 146496A5

−221360A4 + 1232A3 + 144464A2 − 78488A+ 11993
)

(2A− 1)
2

(2A+ 1)
2
.

The main term of this polynomial is precisely the polynomial p6 of degree 10 proposed by Graham,

whose unique root contained in the interval [0.6, π4 ] (0.6 is a lower bound on the area of the small

regular hexagon and π
4 is the area of the small circle) coincides with the area of the largest small

hexagon: A ≈ 0.67498144293010470369. 2

1 These polynomials were obtained using the Maple symbolic calculation commands factor(resultant(PAz(u),

Pz(u), u)) and factor(discrim(RA(z),z)).
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3 The largest small axially symmetrical small octagon

For the optimal axially symmetrical octagon, we use once again a complex plane formulation. Figure 2
illustrates the vertices of a small octagon, with a symmetry axis about the pending edge on the

imaginary axis. The three complex numbers z, u and v satisfy zz̄ = uū = vv̄ = 1. With this notation

we can prove our main result.

•

• •

•

•

•

•

•

0

z + u

−z̄ − ū− v̄

−z̄

i

z

z + u + v

−z̄ − ū

Figure 2: Complex plane representation of a symmetrical cycle of length 7 with a pending edge

Theorem 3.1 The area A of the largest small axially symmetrical octagon is the root of the polynomial

p8(x) = 147573952589676412928A42 − 442721857769029238784A41

+ 2605602600411474165760A40 + 7670386770149352931328A39

− 19803120195082488119296A38 − 90234644551552032833536A37

− 5317091837915248694657024A36 − 17594041430635084655886336A35

+ 29758395462703081578299392A34 + 282207246119748476170403840A33

+ 335103297887714904283021312A32 − 1917928307706587784371240960A31

− 5240302758882335722850746368A30 + 4631615507099121446555746304A29

+ 30114159874526648530622218240A28 − 7175008161182179668028030976A27

− 148064818635686576530703515648A26 − 42551878829792132053254275072A25

+ 601318123428810231261639475200A24 + 332708870397989105275274002432A23

− 2358897389358876839124819509248A22 − 680235061366055307103034146816A21

+ 7452392569346922858753860567040A20 − 1491865144134539091913264332800A19

− 15455347946546823025854527832064A18 + 9574865040443004381891485761536A17

+ 20104198057699941048810876698624A16 − 20027080947914571766986403610624A15

− 16192270866005062836001824866304A14 + 23588130061203336356460301369344A13

+ 8009206689639186621822611818496A12 − 17935820857956814364517526943744A11

− 2370238736752843325635609948160A10 + 9147034213711759916391887323136A9

+ 367361764236902187872898865664A8 − 3078428637636379850280988117504A7

+ 10555168880874361068013425792A6 + 647330513128418259524157203072A5

− 23523528029439955698746202488A4 − 76143004877906320975709476552A3

+ 5833707081723328603647313856A2 + 3773041038347596515021000956A

− 478425365462547737405343343

that belongs to the interval [0.7, π
4 ].
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Proof. Under the notation of Figure 2, the area A of the optimal small octagon may be written as

A = Re(z)− Im ((z + u)(z + u+ v))) + Im ((z̄ + ū+ v̄)z)

=
1

2
(z + z̄) +

1

2i
((z̄ + ū+ z)(z̄ + ū+ v̄)− (z + u+ z̄)(z + u+ v)) .

For the octagon, the equivalent of Equation (1) is

0 = z + u+ v − 1 + v̄ + ū+ z̄. (2)

Substituting z̄ from (2) into the equation for the area, and multiplying it by the value 2izu, and

multiplying (2) by zuv gives the equivalent system of polynomial equations:

pA,z,u(v) = iu
(
z2 + 1

)
+ (u+ z + z2u)(1− z − u− v)− (z2u+ zu2 + u)(z + u+ v)− 2izuA

pz,u(v) = z2uv + zu2v + zuv2 − zuv + zu+ zv + uv.

In order to find the common roots, the first step consists in eliminating v by finding the resultant

rA,z(u) of the two polynomials pA,z,u(v) and pz,u(v):

rA,z(u) =
(
−z2 + z3

)
u6 +

(
−iz4 + 2 iz3A− iz2 − 5 z3 + 4 z4 + 3 z2 − 4 z

)
u5

+
(
−iz + 2 iz3A− 3 iz5 + 6 iz4A− iz2 + 9 z3 + 3 z − 15 z2 − iz4 − 4 iz3

−10 z4 + 2 iz2A+ 5 z5 − 4
)
u4

+
(
−4 izA− 4 z3A2 + 4 iz5A− 2 iz6 + 9 z2 − 10 z + 9 z4 + 2 iz2 − 10 z5

+2 z6 + 4 z2A− 23 z3 − 2 iz4 + 4 z4A+ 2 + 2 i
)
u3

+
(
5 z − 6 iz2A+ 9 z3 + 4 iz3 − 4 z6 + 3 iz − 10 z2 − 15 z4 − 2 iz3A+ iz4

−2 iz4A+ iz5 + iz2 + 3 z5
)
u2

+
(
4 z2 − 2 iz3A− 4 z5 + iz2 − 5 z3 + iz4 + 3 z4

)
u+ z3 − z4.

Vanishing of this resultant leads to an unconstrained implicit equation for the area function of z

and u. The second step eliminates u by finding the discriminant dA(z) with respect to u of rA,z(u).

The polynomials (2z4−4Az3+4A2z2+3z2−4Az+2)2 and z10 can be factored out of the discriminant,

resulting in a polynomial d′A(z) of degree 32 with respect to z and of degree 10 with respect to A.

Finally, the last step consists in eliminating the variable z by finding the discriminant with respect

to z of d′A(z). This leads to a polynomial of degree 344 with integer coefficients. One of the factors

of this discriminant is the the polynomial p8 in A given in the statement of the theorem, whose single

root in the interval [0.7, π
4 ] (0.7 is a lower bound on the area of the small regular octagon) is the area

of the optimal symmetrical small octagon

A ≈ 0.72686848275162676684.

2

4 Discussion

Using a complex-plane representation and using discriminants and resultants, we have found the same

polynomial of degree 10 as Graham [6], but through the factorization of polynomial of lesser degree,

and we have found a polynomial of degree 42 for the symmetrical octagon. The latter is the first

analytical solution for the octagon, as only numerical approximations of the optimal area were known.

Computing time was negligible for the hexagon, and approximately 90 seconds for the octagon on a

standard desktop computer, and 100 megabytes of storage was sufficient to perform the computations.

We have applied the same methodology to the symmetrical decagon using a larger computer, but 100

gygabytes of memory was insufficient to compute the discriminant.
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