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Abstract: A small polygon is a polygon of unit diameter. The question of finding the largest area
of small n—gons has been answered for some values of n. Regular n—gons are optimal when n is odd
and kites with unit length diagonals are optimal when n = 4. For n = 6, the largest area is a root
of a degree 10 polynomial with integer coefficient having 4 to 6 digits. This polynomial was obtained
through factorizations of a degree 40 polynomial with integer coefficients.

The present paper analyses the hexagonal and octogonal cases. For n = 6, we propose a new
formulation which involves the factorization of a polynomial with integer coefficients of degree 14
rather than 40. And for n = 8, under an axial symmetry conjecture, we propose a methodology that
leads to a polynomial of degree 344 with integer coefficients that factorizes into a polynomial of degree
42 with integer coefficients having 21 to 32 digits. A root of this last polynomial corresponds to the
area of the largest small axially symmetrical octagon.

Keywords: Small polygons, planar geometry, disciminant
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1 Introduction

The diameter of a polygon is the largest Euclidean distance between pairs of its vertices. A polygon
is said to be small if its diameter equals one. The present work studies the problem of finding for a
fixed value of n > 3, the small n-gon whose area is maximal. Regular polygons are optimal in the case
where the n-gon is required to be equilateral [1], but are not always optimal in the non-equilateral case.
Reinhard [11] showed almost 100 years ago that when n is odd, the regular polygon is optimal but the
situation gets more complicated when n is even. For n = 4, any small quadrilateral for which both
of its diagonals are unit-lenght and perpendicular are optimal with an area equal to % In particular,
the square with side length % is optimal. However, when n > 6 is even, the optimal n-gon is not
the regular polygon as the area of the small regular (n — 1)-sided polygon is larger than that of the
small regular n-sided polygon [3]. The survey [2] presents a collection of similar extremal problems for
polygons.

The diameter graph of a small n-gon is the graph composed of its n vertices, and its edges connect
pairs of vertices that are at unit-distance from each other. The diameter graph of the largest small
hexagon was shown in 1975 by Graham [6] to be composed of a cycle of length 5 with a pending edge.
The optimal hexagon has an axis of symmetry. In order to find its area, Jonhson and Graham [8] factor
a polynomial of degree 40 into four irreducible polynomial of degree 10. On of these polynomials, say pg,
is such that one of its root is the value of the area of the largest small hexagon. Lazard [9] proposes
alternate approaches, including two of them that factorize a polynomial of degree 24. One of its factor
is the polynomial pg found by Johnson and Graham. In the present work, we use a complex-plane
formulate the problem, which leads to a polynomial of degree 14 that factors into two irreducible
polynomials: pg and another polynomial of degree 4.

For even values of n > 6, it was shown [5] that the diameter graph of the optimal polygon is
composed of a cycle of length n — 1 with a pending edge. Numerical solutions with 4 and 7 exact
digits are proposed in [4] and [7] for the octagon. It has been conjectured [6, 7] that the optimal
polygon has an axis of symmetry corresponding to the pending edge. This conjecture is verified for
the quadrilateral [11], for the hexagon [12] and supported numerically for the octagon, decagon and
dodecagon [7]. Lower and upper upper bounds on the optimal area are presented in [10] for larger
values of n. The present work studies the octagon under the assumption of an axis of symmetry with
respect to the pending edge of the diameter graph. Using symbolic calculations, we propose a way to
derive a polynomial of degree 344, whose factorization produces a polynomial pg of degree 42 and for
which one of its root is the largest small octagon with an axis of symmetry. The value of the optimal
area is coherent with the bounds of Henrion and Messine [7].

The present paper is divided into two main sections. Section 2 is devoted to the hexagon, and
Section 3 to the symmetrical octagon. A final section concludes with comments on larger n-gons.

2 The largest small hexagon

Symmetry of the largest small hexagon was proved by Yuan [12]. We show the same result using
a different approach using a complex-plane representation, which is then used to find the optimal
hexagon.

Theorem 2.1 The diameter graph of the largest small hexagon consists of a cycle of length 5 with one
pending edge, and is azxially symmetrical with respect to that edge.

Proof. Foster and Szabo show that the diameter graph of largest small n-gon, where n > 6 is even,
consists of a cycle of length n — 1 with a pending edge. Let P be the optimal small hexagon with
diameter graph composed of a cycle of length 5 with one pending edge, and whose consecutive vertices
in the complex plane are 21, z3, 25, 22, 24 and zg as illustrated in Figure 1. Without any loss of generality,
we fix the endpoints of the pending edge z; = 0 and zg = 7 on the imaginary axis. Reinhardt showed
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that the pending edge is perpendicular to the line segment joining its neighboring vertices z; and z4,
which implies that z4 = —z;. The area A(P) of the hexagon can be decomposed as the sum of the
areas of the triangle z52024, the quadrilateral z52z42621 and the triangle 25z z3:

A(P) = %Im(,&zz) + Re(z) + %Im(igzl) = Re(z1) + %Im (#1(Z3 — 22)) -

Z5:0

Figure 1: Complex plane representation of cycle of length 5 with a pending edge

Let a and 8 denote the angles Zz42120 and Zz1z423, respectively, as show in the figure. By
contradiction, suppose that the polygon P is not symmetrical with respect to the pending edge, i.e.,
suppose that o # . Consider a second hexagon ) whose vertices are 21, zg, 25, —Z0, 24 and zg where zg
is the vertex at unit distance from z4 such that the angle £z12z42¢ is equal to O‘;B . The diameter of
this second hexagon is also equal to 1 because

(Iz0 + Z0])* = (2Re(20))”

2
=4 (Re(—21) +cos & —; ﬁ)

=4 (Re(—zl)2 — 2Re(z1) cos L—;B + cos? a—;—ﬁ)

<4 (Re(zl)2 — Re(z1)(cos o 4 cos ) + cos? a;ﬁ)

= 4Re(—21)? — 4Re(21)(cos a + cos 3) + 2(1 + cos a cos 3 — sin asin 3)
= (2Re(—21) + cosa + cos ) + (sin o — sin 5)?
= (| = 2Re(z1) + cosa + cos 3 + i(sin o — sin ) |)?

= (|Zg — 22|)2 = 1.
The area A(Q) of this second polygon is A(Q) = Re(z1) + Im (2129) and satisfies

A(Q) — A(P) = %Im (Zl (220 — 23 + 2:2)) = %Im(zlu_))

where w = (2o — 23) + (20 — (—22)). The value 3 Im(z,w) is strictly positive because it corresponds to
the area of the triangle zswz; which leads to the contradiction that A(P) < A(Q). ad
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The next theorem shows a result of Graham, but with a different proof that uses the discriminant
of a polynomial. Recall that the discriminant of a polynomial p(z) is a polynomial function of the
coefficients of p(z), and the discriminant equals 0 if and only if p(z) has a multiple root. In an
optimization context, let A be a critical value of a polynomial function t(x) and let z* be a solution
such that A = f(2*). Then z* is also a root of the polynomial function ¢(x) — A and consequently, the
discriminant of ¢(x) — A is 0.

Theorem 2.2 The area A of the largest small hexagon is the root of the polynomial

pe(A) = 8 (512 A" +1024 A7 — 376 A® — 3856 A7 + 2632 A® + 18312 A°
—27670 A* + 154 A® + 18058 A® — 9811 A + 1499) + 1

that belongs to the interval [0.6, §].

Proof. The proof of Theorem 2.1 shows that the optimal hexagon is axially symmetrical with respect
to the pending edge. The ordered vertices may be written as 21 = 2,24 = —2,29 = 2z + u,23 =
—Z— 1,25 = 0 and zg = i, where z and u are complex numbers such that zZ = uu = 1. It follows that
the following equation holds

0 = (21—25) H(22—21) H(23—22) +(z4—23) +(z5 —24) (1)
=z +u +1 +i +2.

The area A of the optimal hexagon may be written as

A =Re(z) —Im (2(z +u))
1

_ 1 P
:§(z+z)—|—g(z(z+u)—z(z—|—u)).

Substituting z from (1) into the previous equation, multiplying both sides by 2iu, and multiplying (1)
by zu leads to the equivalent question of finding the common roots of the pair of polynomial equations
pa-(u)=—i(1+u+u®) +(u+1)((1+u)z+u*+u+1)) —2iud

p.(u) = 22u + 2u® + 2u + 2 + u.

The variable u is eliminated by finding the resultant 74(z) of the two polynomials p4 ,(u) and
p.(u), i.e., a polynomial on their coefficient which equals zero at the roots of both polynomials:
ra(z) =(—1—14)2°+ (26iA - 1+4)2° + (—2iA+4A—-1—4) 2"
+(—4A?-3) 2 + (4A+2iA—1+i) 2"+ (—2iA—1—di)z— 1+

Finally, factoring the discriminant of r4(z) gives the polynomial of degree 14:!

d(A) = 4 (4096 A'® + 8192 A7 — 3008 A® — 30848 A7 + 21056 A® + 146496 A°
—221360 A* + 1232 A% + 144464 A> — 78488 A + 11993) (24— 1)* (2 A + 1)°.

The main term of this polynomial is precisely the polynomial pg of degree 10 proposed by Graham,
whose unique root contained in the interval [0.6, ] (0.6 is a lower bound on the area of the small
regular hexagon and 7 is the area of the small circle) coincides with the area of the largest small
hexagon: A ~ 0.67498144293010470369. g

I These polynomials were obtained using the Maple symbolic calculation commands factor(resultant (PAz(u),
Pz(u), u)) and factor(discrim(RA(z),z)).
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3 The largest small axially symmetrical small octagon

For the optimal axially symmetrical octagon, we use once again a complex plane formulation. Figure 2
illustrates the vertices of a small octagon, with a symmetry axis about the pending edge on the
imaginary axis. The three complex numbers z,u and v satisfy 2z = uu = vvo = 1. With this notation
we can prove our main result.

Figure 2: Complex plane representation of a symmetrical cycle of length 7 with a pending edge

Theorem 3.1 The area A of the largest small axially symmetrical octagon is the root of the polynomial

ps(z) = 147573952589676412928 A1? — 442721857769029238784 A
+ 2605602600411474165760 A*° + 7670386770149352931328 A3
— 19803120195082488119296 A3® — 90234644551552032833536 A37
— 5317091837915248694657024 A3¢ — 17594041430635084655886336 A3°
+ 29758395462703081578299392 A>* + 282207246119748476170403840 A3
+ 335103297887714904283021312 A%? — 1917928307706587784371240960 A3
— 5240302758882335722850746368 A% + 4631615507099121446555746304 A%°
+ 30114159874526648530622218240 A% — 7175008161182179668028030976 A"
— 148064818635686576530703515648 A%6 — 42551878829792132053254275072 A%
+ 601318123428810231261639475200 A** 4 332708870397989105275274002432 A%
— 2358897389358876839124819509248 A?% — 680235061366055307103034146816 A2
+ 7452392569346922858753860567040 A2° — 1491865144134539091913264332800 A*°
— 15455347946546823025854527832064 A'® + 9574865040443004381891485761536 A7
+ 20104198057699941048810876698624 A® — 20027080947914571766986403610624 A*®
— 16192270866005062836001824866304 A'* + 23588130061203336356460301369344 A3
+ 8009206689639186621822611818496 A'? — 17935820857956814364517526943744 A
— 2370238736752843325635609948160 A0 + 9147034213711759916391887323136 A°
+ 367361764236902187872898865664 A% — 3078428637636379850280988117504 A7
+ 10555168880874361068013425792 AS + 647330513128418259524157203072 A®
— 23523528029439955698746202488 A* — 76143004877906320975709476552 A3
+ 5833707081723328603647313856 A% + 3773041038347596515021000956 A
— 478425365462547737405343343

that belongs to the interval [0.7, F].
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Proof. Under the notation of Figure 2, the area A of the optimal small octagon may be written as
A=Re(z) —Im((z+u)(z+u+v))) +Im((Z+ 0+ 0)z)

=%(Z+5)+%((2+ﬂ+z)(z+a+ﬁ)—(z+u+2)(z+u+u)).

For the octagon, the equivalent of Equation (1) is
O=z4+ut+v—-1+0+u+ 2z (2)

Substituting z from (2) into the equation for the area, and multiplying it by the value 2izu, and
multiplying (2) by zuv gives the equivalent system of polynomial equations:

Pazu(®) =iu (22 +1) + (u+z+22u)(1— 2z —u—v) — (ZPu+ 20 + u)(z + u+v) — 2izuA

2—zuv—|—zu—|—zv+uv.

Pau(v) = 22uv + 2uv + zuv
In order to find the common roots, the first step consists in eliminating v by finding the resultant
74,2 (u) of the two polynomials py .., (v) and p, ,(v):

raz(u) = (=22 4+ 2°)ul + (—iz* + 2i2°A — iz = 52° +4z4 +32% —dz) P

+ (—iz+2i2°A—3i2° + 642" A —i2> +92° + 32— 152> —i2" — 4i2°
—102" +2i2°A +52° — 4) u*

+ (—4izA —42°A% + 4i2°A - 2i2° + 92 =102+ 92* + 242> = 102°
+220 44224 -232° — 202" + 420 A4+ 2+ 20)W?

+(52—6i2"A+ 92> +4i2° — 4204+ 3i2— 102" — 152" — 24z A + 2"
—2iz A 02 +i2? +3z5) u?

+ (4z2—2iz3A—4z5—|—i22 —5z3+iz4+324)u+z3—z4.

Vanishing of this resultant leads to an unconstrained implicit equation for the area function of z
and u. The second step eliminates u by finding the discriminant d(z) with respect to u of ra ,(u).
The polynomials (22% —4A423 +4A4222 4322 —4A42+2)? and z'° can be factored out of the discriminant,
resulting in a polynomial d’4(z) of degree 32 with respect to z and of degree 10 with respect to A.
Finally, the last step consists in eliminating the variable z by finding the discriminant with respect
to z of d;(z). This leads to a polynomial of degree 344 with integer coefficients. One of the factors
of this discriminant is the the polynomial pg in A given in the statement of the theorem, whose single
root in the interval [0.7, 7] (0.7 is a lower bound on the area of the small regular octagon) is the area
of the optimal symmetrical small octagon

A~ 0.72686848275162676684.

4 Discussion

Using a complex-plane representation and using discriminants and resultants, we have found the same
polynomial of degree 10 as Graham [6], but through the factorization of polynomial of lesser degree,
and we have found a polynomial of degree 42 for the symmetrical octagon. The latter is the first
analytical solution for the octagon, as only numerical approximations of the optimal area were known.

Computing time was negligible for the hexagon, and approximately 90 seconds for the octagon on a
standard desktop computer, and 100 megabytes of storage was sufficient to perform the computations.
We have applied the same methodology to the symmetrical decagon using a larger computer, but 100
gygabytes of memory was insufficient to compute the discriminant.
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