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recherche du Québec – Nature et technologies.
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Legal deposit – Bibliothèque et Archives nationales du Québec, 2019
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3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2019-42
https://www.gerad.ca/en/papers/G-2019-42
https://www.gerad.ca/en/papers/G-2019-42




Data association via set packing for computer vision ap-
plications

Julian Yarkony a

Yossiri Adulyasak b,c

Maneesh Singh a

Guy Desaulniers b,d

a Verisk AI, Jersey City, New Jersey, USA, 07310–
1686
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Abstract: Significant progress has been made in the field of computer vision, due to the development
of supervised machine learning algorithms, which efficiently extract information from high-dimensional
data such as images and videos. Such techniques are particularly effective at recognizing the presence
or absence of entities in the domains, where labeled data is abundant. However, supervised learning
is not sufficient in applications where one needs to annotate each unique entity in crowded scenes re-
specting known domain specific structures of those entities. This problem, known as data association,
provides fertile ground for the application of combinatorial optimization. In this paper, we present
the computer vision applications, namely, multi-person tracking, multi-person pose estimation, and
multi-cell segmentation, which can be formulated as integer linear programs with a massive number
of variables. In order to solve this problem, column generation algorithms are applied to circumvent
the need to enumerate all variables explicitly. To enhance the solution process, we provide a general
approach for applying subset-row inequalities to tighten the formulations, and introduce novel dual
optimal inequalities to reduce the dual search space. The proposed algorithms and their enhance-
ments are successfully applied to solve the three aforementioned computer vision problems and achieve
superior performance compared to benchmark approaches.

Keywords: Data association, computer vision, set packing, column generation

Acknowledgments: We would like to thank the stockholders of Verisk for supporting this work.
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1 Introduction

Artificial neural networks (ANN) (Rumelhart et al., 1985) excel at learning functions that map input

data vectors (e.g., images of objects and living beings) to output semantic labels (dog, horse, car, etc.)

using large amounts of labeled training data. An ANN learns a function, that generalizes beyond the

training data set, so as to produce the correct label as output, on test data not part of the training

data set. One popular application of ANNs is object recognition in which an ANN learns to recognize

the presence of objects in images. Large data sets facilitate learning such functions and include the

image-net data set (Deng et al., 2009), which provides fourteen million training images, each associated

with the labels of the objects present in the image.

Localizing each unique instance of objects, which is called instance segmentation (Silberman et al.,

2014), in crowded images is an important related task to object recognition. The naive approach to

instance segmentation iterates over all possible rectangles of pixels (also called bounding boxes) in the

image, and predicts the presence of each object in that rectangle. However, combining the hypothe-

ses generated in each rectangle to describe each unique instance of objects, which we refer as data

association, is challenging as the hypotheses need not be mutually consistent. For example, multiple

predicted hypotheses may share a common pixel but clearly multiple objects can not be associated

with the same pixel in the ground truth. Heuristics called non-max suppression (Dalal and Triggs,

2005) are often used to remove conflicts between predicted hypotheses. Non-max suppression removes

from consideration all but one of each set of “similar” and/or overlapping predictions. Combinatorial

optimization provides a principled alternative to non-max suppression heuristics (Desai et al., 2011).

Data association can use combinatorial optimization to partition the observations in a data set

(e.g., pixels in an image) into a set of hypotheses (e.g., unique instances of objects or background),

each associated with a subset of the observations, that are consistent with the statistical properties

of the known structure of hypothesis. We motivate the use of data association with the examples

of multi-person tracking and pose estimation, which are important for self-driving car and personal

robot assistant applications. Here the set of observations is the set of all pixels, and the set of

possible hypotheses is the power set of pixels. The statistical support for a hypothesis is defined in

terms of how well a classifier (such as an ANN) scores the quality of a single person dominating the

corresponding pixels.

The use of combinatorial optimization in computer vision/machine learning has developed largely

without influence from the operations research community, and has focused on network flows (called

graph cuts (Boykov and Kolmogorov, 2004)), primal dual methods (the most prominent of which is

message passing (Sontag et al., 2008; Kolmogorov, 2006; Komodakis et al., 2007)), and compact linear

programming (LP) relaxations augmented with cutting planes (Andres et al., 2011; Pishchulin et al.,

2016; Insafutdinov et al., 2016). This often leads to less efficient solvers than desirable. However, and

perhaps more importantly, the capacity of the associated approaches is limited by ignoring decades of

research in combinatorial optimization in the operations research community.

Recently the operations research techniques of column generation (CG) (Gilmore and Gomory,

1961; Barnhart et al., 1996) and (nested) Benders decomposition ((N)BD) (Birge, 1985; Benders,

1962) have been introduced to the machine learning and computer vision communities (Yarkony and

Fowlkes, 2015; Wang et al., 2017b, 2018, 2017a; Yarkony et al., 2012; Wang et al., 2017c; Zhang et al.,

2017). However, the application of these techniques and the construction of models to support the

use of CG and (N)BD is in its infancy. The goal of this document is to introduce data association

problems from the computer vision community to the operations research community so as to catalyze

joint research efforts.

In this paper, we focus on the very flexible minimum weight set packing (MWSP) formulation

(Karp, 1972) of data association. A MWSP instance is parameterized by a set of possible hypotheses,

each of which is associated with a real valued cost that describes the sensibility of the belief that the

members of the hypothesis correspond to a common cause. MWSP then selects the least total cost set
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of hypotheses, such that no two selected hypotheses share a common observation. Observations that

are not included in any selected hypothesis define the set of false observations, which are observations

not-explained by our model, and can be thought of as noise.

This document makes the following contributions to research in combinatorial optimization for

computer vision. First, we introduce a common and comprehensive treatment of the literature on

MWSP formulations for computer vision problems, targeted to an operations research audience. Our

paper provides a framework and motivating examples to allow the combinatorial optimization com-

munity to apply their methodologies to these problems. Second, our paper extends the work of Wang

et al. (2017b) to produce a general approach for applying subset-row inequalities (Jepsen et al., 2008),

so as to exploit the initial structure of the pricing problem. Third, we introduce novel dual optimal

inequalities (DOIs, Ben Amor et al., 2006) that are tighter than the current baseline for MWSP formu-

lations in computer vision. These DOIs depend on the current set of columns in the restricted master

problem (RMP), and loosen with the addition of new columns to the RMP. They are easy to compute

and provably never looser than the baseline.

We outline our document as follows. In Section 2, we review the existing literature on combinatorial

optimization in the context of computer vision. In Section 3, we discuss compact and extended

formulations of MWSP problems, along with the solution of extended formulations via CG. In Section 4,

we describe the computer vision applications that we consider and provide application-specific MWSP

formulations for data association. In Section 5, we consider pricing for CG in the context of our

applications. In Section 6, we apply subset-row inequalities to tighten the LP relaxation of the MWSP

formulations. In Section 7, we consider the use of DOIs to bound the dual variables and accelerate

optimization. In Section 8, we provide computational results for our problem domains regarding

computation time, tightness of bounds, and accuracy relative to the ground truth. In Section 9, we

conclude and discuss extensions.

2 Literature review

The successful solution of large-scale integer linear programs (ILPs) requires solving LP relaxations

that give good approximations to the convex hull of feasible integer solutions. Compact relaxations

in terms of the number of variables/constraints of classic ILPs are often associated with extremely

loose relaxations and high levels of symmetry so that branch-and-bound operations do not tend to

rapidly tighten them (Barnhart et al., 1996). To attack such ILPs successfully, LP relaxations that a

have huge number of variables are employed. The cardinality of such variable sets is often too large

to enumerate them and, much less, to consider them in a linear program.

For certain problem classes, CG (Dantzig and Wolfe, 1960; Gilmore and Gomory, 1961; Desaulniers

et al., 2005) is used to solve to optimality the LP relaxation over a huge number of variables, without

explicitly enumerating most of them. The use of CG often leads to both fast optimization and (near)

tight relaxations. CG proceeds as follows. It iterates between solving an LP defined over a subset of

the variables (initialized heuristically or as empty) and adding variables with negative reduced costs

to that subset. This process iterates until no negative reduced cost variables exist. The identification

of negative reduced cost variables, which is called pricing, often corresponds to solving a dynamic

program or another tractable integer program. CG is commonly applied in diverse domains including:

vehicle routing (Desrochers et al., 1992; Desaulniers et al., 1998; Costa et al., 2019), crew scheduling

(Gamache et al., 1999; Kasirzadeh et al., 2017), material cutting (Gilmore and Gomory, 1961; Delorme

et al., 2016), and web search (Abrams et al., 2007).

More recently CG has been used in computer vision applications including: multi-object tracking

(Wang et al., 2017b; Leal-Taixe et al., 2012), multi-person pose estimation (Wang et al., 2017a,c),

multi-cell instance segmentation (Zhang et al., 2017), and (hierarchical) image segmentation (Yarkony

et al., 2012; Yarkony and Fowlkes, 2015; Zhang et al., 2014b). As in operations research domains, the

purpose of CG in computer vision is to circumvent the loose LP relaxations, which are often induced

by compact formulations.
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2.1 Mixed integer programming in computer vision/machine learning

Below, we provide a mapping from approaches in operations research to applications of those ap-

proaches in computer vision.

2.1.1 Network flows

Network flow techniques (Boykov and Kolmogorov, 2004) are used to solve ILP formulations of the

task of providing each pixel in an image with a semantic label (dog, horse, car, etc.). The underlying

model exploits the statistical observation that pixels in close proximity tend to share the same label.

The use of network flow techniques is not restricted to pixel labeling. Indeed, they have been used for

tasks including multi-object tracking (Zhang et al., 2008; Butt and Collins, 2013).

2.1.2 Dual ascent methods

Many tasks in machine learning, including protein structure prediction, are formulated as ILPs where

the objective consists of minimizing the sum of functions over pairs of variables (Sontag et al., 2008).

The set of functions is enumerable (though large), but the ILP has no easily exploitable special struc-

ture to facilitate optimization. To attack these problems, coordinate/sub-gradient ascent methods

in the Lagrangian dual (Kolmogorov, 2006; Komodakis et al., 2007) are used. The corresponding

LP relaxation can be tightened using cutting planes (Sontag et al., 2008) that facilitate the use of

coordinate/sub-gradient ascent methods.

2.1.3 Correlation clustering methods with cutting planes

Many problems in computer vision can be formulated as correlation clustering problems, including

image segmentation (breaking an image into semantically meaningful parts) (Andres et al., 2011),

and connectomics (producing the wiring diagram of the brain) (Andres et al., 2012). Optimization is

attacked using a linear programming/cutting plane method.

2.1.4 Column generation

In Wang et al. (2017b), CG is applied to the problem of tracking many people (or objects) as they

move in video. CG is employed to solve a MWSP formulation, where elements correspond to detections

of people in frames of video, and sets correspond to complete tracks of people moving across time.

The cost of a set is real valued and is produced using a K-th order Markov model of the person as

he moves across space-time. Pricing is solved by dynamic programming. The LP relaxation of the

MWSP formulation is not tighter than that of a compact formulation. However, the former formulation

permits the use of subset-row inequalities (Jepsen et al., 2008) to tighten the relaxation. Wang et al.

(2017b) solves a tighter relaxation than the baseline dual-decomposition approach of Butt and Collins

(2013), yielding faster computational times. In Leal-Taixe et al. (2012), CG is employed in a branch-

and-price framework for tracking objects across multiple cameras. The corresponding pricing problem

is an unstructured ILP.

In Yarkony et al. (2012) and Yarkony and Fowlkes (2015), CG is applied to image segmentation, on

the planar problems found commonly in computer vision. In Yarkony et al. (2012), image segmentation

is formulated as correlation clustering on a planar graph, where nodes correspond to (super) pixels

(Ren and Malik, 2003) and edges indicate adjacency. Correlation clustering is described by a super-

position of 2-colorable partitions of the planar graph and optimization is attacked using CG. The

corresponding pricing problem is a max-cut problem on a planar graph, which is solved fast via a

reduction to minimum-cost perfect matching (Shih et al., 1990). In addition, Yarkony et al. (2012)

independently develop DOIs (though they are not referred to as such), which accelerate optimization

dramatically. In Wang et al. (2017c) an extended formulation of multi-person pose estimation solvable

by CG is presented. The skeletons of people and the descriptions of their body parts correspond to

separate sets of variables. Their corresponding pricing problems are dynamic programs and small-scale

ILPs, respectively.
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2.1.5 Benders decomposition

In Wang et al. (2017a), Benders decomposition is employed to solve the same problem as in Wang et al.

(2017c). The master problem corresponds to creating the skeletons of people, and is solved using CG.

There is one Benders subproblem for each body part, which provides the descriptions for that body

part to the skeletons assembled in the master problem. Because the subproblems are independent of

each other, Benders multicuts are added to the master problem. A variant of Magnanti and Wong

(1981)’s cuts is presented though not labeled as such.

In Wang et al. (2018), an extended formulation solved by CG is proposed for multi-person pose

estimation. This work improves on that of Wang et al. (2017c) by jointly modeling the skeletons of

people and the descriptions of their body parts. However, the corresponding pricing problem is a

dynamic program with a huge state space that is challenging to solve. To circumvent this difficulty,

Wang et al. (2018) solves the pricing problem using NBD and employs a variant of the Magnanti-Wong

cuts. The NBD algorithm exploits Benders cuts generated in previous calls to the pricing problem,

and is shown to accelerate CG substantially.

2.2 Learning cost terms

For the problems discussed in the preceding section, the cost coefficients in the objective functions

of the ILPs are often produced by training a standard linear classifier to determine the probability

that a variable/pair of variables takes on a given label/pair of labels (Wang et al., 2018; Zhang et al.,

2017). The output probabilities are converted to cost terms by taking the negative logarithm of the

probabilities (Insafutdinov et al., 2016). However, this is not a mathematically principled approach

since it does not consider the use of the ILP.

To correctly model the use of the ILP, structured support vector machines (SVM) are employed

(Tsochantaridis et al., 2005). A structured SVM learns a mechanism to produce cost terms for ILPs,

such that the optimal solution to that ILP is similar to the ground truth. The structured SVM takes

as input features selected according to a fixed recipe that does not learn, and has proven challenging

to integrate into ANN frameworks, which dominate modern machine learning. Learning a structured

SVM from large amounts of labeled data is modeled as a quadratic program and solved using a cutting

plane approach. It, thus, requires repeatedly solving ILPs (or LPs), making learning on large data sets

challenging.

Computing cost terms is, however, not the focus of this paper as we assume that they are provided.

For detailed studies on the calculation of cost terms, we refer the reader to Insafutdinov et al. (2016);

Pishchulin et al. (2016) and Wang and Fowlkes (2015).

3 Compact and extended formulations

This section introduces and motivates the use of extended representations for MWSP problems, and

their solution via CG. In Section 3.1, we describe the correlation clustering problem (Bansal et al.,

2004), which can be seen as a basic data association problem. In Section 3.2, we formulate correlation

clustering as a compact ILP with an easily enumerated set of variables and constraints. This ILP is

shown to have a very weak LP relaxation. In Section 3.3, we introduce an extended MWSP formulation

for correlation clustering. The LP relaxation of this formulation is tighter than that of the compact

formulation. In Section 3.4, we use CG to solve the extended formulation.

3.1 Correlation clustering

Consider a graph with node set D and edge set E , where edge (d1, d2) ∈ E has a weight θd1d2
∈ R.

Correlation clustering partitions the nodes in D into clusters so as to minimize the sum of the weights

of the intra-cluster edges, i.e., those linking nodes in a same cluster. Correlation clustering is known

to be NP-Hard (Bansal et al., 2004).
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3.2 Compact form of correlation clustering

Let us formulate correlation clustering as a compact ILP. Let J = {1, 2, . . . , |D|} be the set of possible

clusters. We use decision variables x ∈ {0, 1}|D|×|J |, where xdj = 1 if and only if node d ∈ D is in

cluster j ∈ J . To describe co-association, we use variables y ∈ {0, 1}|D|×|D|×|J |, where yd1d2j = 1 if

and only if nodes d1, d2 ∈ D are part of a common cluster j ∈ J . The proposed ILP is

min
x≥0
y≥0

∑

(d1,d2)∈E
j∈J

θd1d2
yd1d2j (1)

s.t.:
∑

j∈J
xdj = 1 ∀d ∈ D (2)

yd1d2j ≤ xd1j ∀(d1, d2) ∈ E , j ∈ J (3)

yd1d2j ≤ xd2j ∀(d1, d2) ∈ E , j ∈ J (4)

xd1j + xd2j − yd1d2j ≤ 1 ∀(d1, d2) ∈ E , j ∈ J (5)

xdj ∈ {0, 1} ∀d ∈ D, j ∈ J . (6)

The objective function (1) aims at minimizing the sum of the weights of the intra-cluster edges.

Constraints (2) ensure that each node is assigned to exactly one cluster. Constraints (3)–(5) collectively

enforce that yd1d2j = 1 if and only if xd1j = 1 and xd2j = 1. Constraints (6) express the binary

requirements on x, which also ensure that y is binary. Model (1)–(5) is referred to as the compact

relaxation of correlation clustering.

Let see why it is highly inefficient to solve (1)–(6) using a standard branch-and-bound algorithm,

where the LP relaxation provides a lower bound in any given branch. Observe that an optimal solution

to the compact relaxation is given by: xdj = 1
|D| for all d ∈ D, j ∈ J , and yd1d2j = | 1D | if θd1d2

< 0

and 0 otherwise, for all d1 ∈ D, d2 ∈ D, j ∈ J . The ensuing lower bound is equal to the sum of all

negative weights in θ; thus, (1)–(6) has a very loose LP relaxation. It is well established that using a

loose relaxation in a branch-and-bound algorithm yields a very slow solution process.

3.3 Extended formulation of correlation clustering

Now, let us present an extended formulation of correlation clustering that has a much tighter LP

relaxation than the compact formulation. Consider the power set of D denoted G. A set g ∈ G is

described using G ∈ {0, 1}|D|×|G|, where Gdg = 1 if and only if node d ∈ D is in g. Correlation

clustering corresponds to selecting a non-overlapping subset of G. Each selected member of G is a

cluster in our solution to correlation clustering and each node that is not part of a selected cluster is

in a cluster by itself.

The cost of cluster g ∈ G is denoted Γg and is defined as the sum of the weights of all edges between

the nodes it contains, i.e.,

Γg =
∑

(d1,d2)∈E
Gd1gGd2gθd1d2 . (7)

We represent a selection of sets in G using variables γ ∈ {0, 1}|G|, i.e., we set γg = 1 if cluster g ∈ G
is selected and γg = 0 otherwise. Below we frame correlation clustering as selecting the least cost

non-overlapping subset of G, or equivalently, as the MWSP problem

min
γ≥0

∑

g∈G
Γgγg (8)

s.t.:
∑

g∈G
Gdgγg ≤ 1 ∀d ∈ D (9)

γg ∈ {0, 1} ∀g ∈ G. (10)
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Objective function (8) consists of minimizing the sum of the costs of the selected clusters. Con-

straints (9) impose that every node is assigned to at most one cluster. If the solution γ does not select

a cluster that includes d ∈ D, then d is in a cluster by itself. Constraints (10) enforce that γ is binary.

Formulation (9)–(10) is referred to as the integer master problem (IMP). In addition, its LP relaxation

is called the MP.

We provide here an illustrative example in which the MP provides a tighter relaxation than the

compact relaxation. Let D = {d1, d2, d3} and θ be defined as θd1d2 = −1, θd1d3 = −2, θd2d3 = 10. The

optimal integer solution groups d1 and d3 together while d2 lies by itself. The MP optimal value is

equal to −2, which is the cost of the optimal integer solution. However, the compact relaxation has

the optimal solution described in Section 3.2, thus achieving a lower bound of −3.

3.4 Solving extended formulations via column generation

The most apparent difficulty in solving extended formulations is the potentially massive size of the set

of variables, which is G in (8)–(10). For the computer vision problems considered, it is not feasible to

enumerate, much less to consider in optimization all possible variables. Now, let us discuss CG in the

context of correlation clustering, which is used identically for our applications.

CG circumvents the problem of considering the entire set G by constructing a subset of G denoted Ĝ.

CG constructs Ĝ so that solving the MP over Ĝ provides the same optimal value as solving it over G.

Subset Ĝ is constructed iteratively. At each iteration, the MP restricted to the current subset Ĝ, i.e.,

min
γ≥0

∑

g∈Ĝ

Γgγg (11)

s.t.:
∑

g∈Ĝ

Gdgγg ≤ 1 ∀d ∈ D, (12)

is solved using a linear programming solver. This problem is called the restricted master problem

(RMP). Let λd ≤ 0, d ∈ D, be the dual variables associated with constraints (12).

Solving the RMP yields a primal solution γg, g ∈ Ĝ, and a dual solution λd, d ∈ D. This primal

solution, augmented with γg = 0 for all g ∈ G \ Ĝ, is also optimal for the MP if no non-generated

variable γg, g ∈ G \ Ĝ, has a negative reduced cost. This condition is verified by an oracle that

must provide a negative reduced cost variable if one exists. The task of finding a least reduced cost

variable γg is referred to as pricing and is modeled as

min
g∈G

Γg −
∑

d∈D
Gdgλd. (13)

The pricing problem (13) is not solved by explicitly considering each set g ∈ G, but rather as an

integer program, or very commonly a dynamic program. The CG process stops when no more negative

reduced cost variables exist.

A pseudo-code of the proposed CG algorithm is presented in Algorithm 1. The algorithm begins

with an empty set Ĝ. It then iterates between solving the RMP (11)–(12) and adding to Ĝ sets found by

solving the pricing problem (13). When no negative reduced cost variables exist, CG terminates. For

practical problems in our applications, the computed MP optimal solution is nearly always integral.

When this is not the case, an approximate integer solution is produced by solving the MWSP problem

over the set Ĝ instead of G using an ILP solver (Step 10).

Solving the MWSP problem restricted to Ĝ may not produce an optimal integer solution because

there is no guarantee that Ĝ contains all sets that are part of an optimal solution. Nevertheless, the

tight bound yielded by the MP usually leads to high-quality approximate solutions. Note that the MP

can still be tightened using valid inequalities such as the subset-row inequalities (Jepsen et al., 2008;

Wang et al., 2017b) which are described in Section 6.
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Algorithm 1 Basic column generation

1: Ĝ ← ∅
2: repeat
3: λ, γ ← Solve the RMP (11)–(12)
4: g∗ ← Solve the pricing problem (13)
5: if Γg∗ −

∑
d∈D Gdg∗λd < 0 then

6: Ĝ ← Ĝ ∪ {g∗}
7: end if
8: until Γg∗ −

∑
d∈D Gdg∗λd ≥ 0

9: if γ is not integer then
10: γ ← Solve MWSP (8)–(10) over Ĝ instead of G
11: end if
12: Return γ

4 MWSP formulations of problems in computer vision

In this section we provide a high-level discussion of some MWSP formulations of problems in computer

vision. In Sections 4.1, 4.2 and 4.3, we consider MWSP formulations of multi-person tracking, multi-

person pose estimation, and multi-cell segmentation, respectively. These applications are visualized in

Figure 1. In Section 4.4, we describe how MWSP complements supervised learning.

Figure 6: We illustrate a qualitative example of improvement as a result of increasing subtrack
length. Top row is detector output and associated confidence provided by [9]. Second row and third
row correspond to trackers of subtrack length K = 2 and K = 4 respectively. Notice that for K = 2
track 1 changes identity to 5, while with K = 4 the identity of track 1 does not change. Missing
detections in tracking results are interpolated linearly and tracks are smoothed after interpolation.

A Lower Bounds on the Optimal Tracking Cost

A.1 For Relaxation over ���

We now study lower bounds on the integer programming objective for tracking which we re-write
below using Lagrange multipliers ��� to enforce the constraints defining �̄��.

min
���2�̄��

⇥t��� = min
���2{0,1}|P|

max
����0

⇥t��� + ���t(X��� � 1) (18)

We now add the redundant constraint that no two tracks terminate at the same detection. We use Pd

to refer to the set of tracks terminating at detection d.

Eq 18 = min
���2{0,1}|P|

P
p2Pd ���p1 8d2D

max
����0

⇥t��� + ���t(X��� � 1) (19)

We now relax the optimization and consider any non-negative ���. Recall that every time dual opti-
mization (during Alg 1,3) is solved a non-negative ��� term is produced.

Eq 18 � min
���2{0,1}|P|

P
p2Pd ���p1 8d2D

⇥t��� + ���t(X��� � 1) (20)

= ����t1 + min
���2{0,1}|P|

P
p2Pd ���p1 8d2D

(⇥t + ���tX)���

= ����t1 +
X

d2D
min{0, min

p2Pd
⇥p +

X

d2D
Xdp���d}

= ����t1 +
X

d2D
min{0, min

s2S
sK=d

`s}
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(a) Multi-person tracking

(b) Multi-person pose estimation
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Figure 4: Left: Histogram of inference time for pose segmentation; Right: Histogram of inference
time for cell segmentation
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Figure 5: (left) Example cell segmentation results. Columns are (left to right): original image, super-
pixels, color map of segmentation, and enlarged views of the inset (white frame). (right) Precision-
Recall plot of the cell detection, compared with those using the planar correlation clustering (PCC)
and the non-planar correlation clustering (NPCC) techniques in [18]. We generate the precision-
recall plot by using various offsets to � to generate segmentations with more or less cells.

99.0800,98.8200,95.72)% had normalized gap under (0.16,0.1,0.01,0.001,.0001) respectively. We
tighten the bound using odd set inequalities of size three which are discussed in the supplement. We
plot a histogram of inference time in Fig 4.

8 Conclusion

We introduce new formulations of multi-person pose segmentation and cell instance segmentation.
Given these formulations we introduce novel inference algorithms designed to attack the problems.
Our algorithms use column generation and our models are structured so that generating columns can
be done efficiently. We compare our results to the state of the art algorithms on multi-person pose
segmentation and cell instance segmentation. We demonstrate that our algorithms rapidly produce
more accurate results than the baseline.
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(c) Multi-cell segmentation

Figure 1: 1(a): Observations correspond to detections of people and hypotheses to tracks of people moving across
time. Numbers denote the bounding boxes for a common person across frames. (Picture from Wang et al., 2017b).
1(b): Observations correspond to detections of body parts and hypotheses to people. Lines of a common color associate
a person to the average position of each body part. There is a surjection of body parts (head, neck, etc.) to colors for
dots that indicate the body part. 1(c): Observations correspond to super-pixels and hypotheses to complete biological
cells. Cells are color-coded arbitrarily, with each cell being provided a single color. (Picture from Zhang et al., 2017).

4.1 Multi-person tracking

Multi-person tracking is the task of identifying and tracking each unique person in video. This task is

motivated by security applications and autonomous vehicle applications. In multi-person tracking, the

specific identities of the people in the image are unspecified, as well as the number of people present.
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Combinatorial optimization has been applied to multi-person tracking in the form of minimum-cost

network flow techniques (Zhang et al., 2008; Butt and Collins, 2013) and a MWSP-based approach

(Wang et al., 2017b). We focus on multi-person tracking using MWSP, and describe the corresponding

workflow below.

1. First, a classifier (such as an ANN) identifies all candidate detections of people in each frame of

the video. Some of these detections are false detections.

2. Second, a classifier associates each group of K detections (for a single user-defined parameter K

that trades off modeling power and computation requirements) ordered in time, each on a separate

frame, with a real valued cost. This cost describes how plausible it is for those K detections

to follow each other directly in the track of a single person. These groups are called subtracks.

The set of subtracks is pruned by relying on the fact that most subsets of K detections are

non-sensible since the detections are not sufficiently visually similar to correspond to a common

person. Similarly, subtracks that do not follow the known statistics of human motion are removed;

e.g., humans cannot teleport across space within a few frames of video.

3. Finally, the packing of detections into sequences of subtracks forming complete tracks is formu-

lated as a MWSP problem, where the observations are the detections and the hypotheses are the

complete tracks.

The MWSP formulation proposed by Wang et al. (2017b) relies on the classic approach of using

a Markov model for scoring the quality of a track (Zhang et al., 2008; Butt and Collins, 2013). This

model incorporates scores corresponding to the statistical support for the subtracks within a track.

Let D be the set of detections of people in the video frames and S the set of subtracks. For a given

subtrack s ∈ S, let sk indicate the kth detection in the sequence s = {s1, ..., sK} ordered by time

from earliest to latest. Note that the detections that compose a subtrack need not be consecutive

in time, thus permitting a person to disappear and reappear in video. The set of potential tracks is

denoted G, where a track is a sequence of subtracks ordered in time. In any track, the latest K − 1

detections in time of any subtrack s1 in the sequence are the earliest K−1 detections of the subtrack s2

that immediately succeeds s1. Observe that a track can be equivalently described as a sequence of

detections ordered in time or a sequence of subtracks ordered in time. The mapping of subtracks to

tracks is described using T ∈ {0, 1}|S|×|G|, where Tsg = 1 indicates that track g contains subtrack s as

a subsequence. Subtracks are illustrated in Figure 2.

Track costs Γ are written in terms of the subtrack costs θ ∈ R|S|, where each subtrack s is associated

with a cost θs. Here, positive/negative values of θs discourage/encourage the use of the subtrack s.

We model a Bayesian prior belief on the number of people (tracks) in an image using θ0, which is the

cost for instancing a track. Positive/negative values of θ0 discourage/encourage the presence of more

tracks in the packing. Using θ, the cost of a track g ∈ G, denoted Γg, is defined as

Γg = θ0 +
∑

s∈S
Tsgθs. (14)

To permit the construction of tracks that have fewer detections than K, the set of subtracks is aug-

mented with subtracks padded with empty detections. Such subtracks have no possible predecessors

or successors.

4.2 Multi-person pose estimation

Multi-person pose estimation is the task of identifying each unique person in an image, and annotating

their body parts. As in tracking, one does not know the specific identities of the people in the image,

and the number of people present is unspecified. Multi-person pose estimation is relevant in multiple

domains including but not limited to personal robot assistant, rehabilitation, and security. We now

consider the workflow of the MWSP formulation of multi-person pose estimation (Wang et al., 2018),

which built off the seminal work of Pishchulin et al. (2016); Insafutdinov et al. (2016).
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Figure 2: Possible tracks and subtracks (boxes), where directed arrows indicate the valid successors of a given subtrack.
The subtracks are ordered by the time of their final detection. Note that a subtrack may skip some time steps, e.g.,
[d3a, d4a, d6b] skips time 5. Red lines highlight a single track containing detections d1a , d2a , d3a , d4a , d6b .

1. First, an ANN identifies all instances of each of fourteen human body parts (head, neck, and

left/right of the following: shoulder, elbow, wrist, hip, knee, ankle). Some of these detections are

false detections. Some sets of detections correspond to the same body part, but are separated in

pixel space.

2. Second, a classifier (such as an ANN) computes for each pair of detections the cost incurred if

they are associated with the same person. This cost is derived from the probability that the

two detections belong to a common person. Similarly, a cost associating each detection with a

person is computed. These classifiers take as input local statistics of the pixel values around

the detections, and or spatial, angular statistics concerning the relative location of the pairs of

detections. We refer to the cost terms over pairs of detections as pairwise, and those over a

single detection as unary (for details on the cost term generation, see Insafutdinov et al. (2016)

and Pishchulin et al. (2016)). Person detection in computer vision relies traditionally on tree

(pictorial) structured models (Felzenszwalb et al., 2008), which describe the feasibility of poses of

the human body. Feasibility is modeled according to a cost function defined on a graph (typically,

a tree), where nodes correspond to body parts and edges indicate adjacency. Thus, pairwise cost

terms may be non-zero only between detections corresponding to the same body part, or adjacent

body parts in the tree model. Such a model, augmented with additional connections, is drawn

in Figure 3. The use of connections outside the tree structure increases modeling power and

computational performance (as reported in Section 8.2) in the next step of this pipeline.

3. Finally, the body part detections (observations) are aggregated to form people (hypotheses) using

a MWSP formulation.

Figure 3: (Left) Augmented-tree model of a person as a stick figure. Each red node represents a body part, green
edges indicate connections in traditional pictorial structure, and red edges indicate augmented connections. (Right)
Augmented-tree model superimposed on an image of a person. (Picture from Wang et al., 2018).
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The MWSP formulation of multi-person pose estimation proposed by Wang et al. (2018) denotes by D
the set of body part detections. For each detection d ∈ D, parameter Rd indicates the body part

associated with d. The set of potential people G is defined as the power set of D. Observe that a

person can contain more than one detection of any given body part. This is a modeling choice and

a consequence of the body part detector firing at multiple places in close proximity, corresponding to

the same ground truth body part. Similarly, since human body parts can be occluded in real images,

it is possible for a hypothesis to contain zero detections of some body parts.

The cost of a person is defined using unary and pairwise terms θ1 ∈ R|D| and θ2 ∈ R|D|×|D|. For each

detection d ∈ D, θ1
d denotes the cost of including d in a person. Similarly, for each pair of detections

d1, d2 ∈ D, θ2
d1d2

is the cost of including d1 and d2 in a common person. Here positive/negative

values of θ1
d discourage/encourage the use of detection d in a person. Similarly, positive/negative

values of θ2
d1d2

discourage/encourage the presence of d1 and d2 jointly in a single person. Note that

θ2 respects the augmented tree structure used to model a person. Thus, θ2
d1d2

can only be non-zero if

Rd1
= Rd2

or if Rd2
is adjacent to Rd1

in this tree. Furthermore, for the sake of notational conciseness,

we assume that both θ2
d1d2

and θ2
d2d1

are defined and equal for each pair of distinct detections d1, d2 ∈ D,

and that θ2
dd = 0 for each detection d ∈ D. Finally, as for multi-person tracking, a constant cost θ0

is associated with instancing a person for which a positive/negative value discourages/encourages the

presence of more people in the packing. Given these cost terms, the cost of a person g ∈ G is defined as

Γg = θ0 +
∑

d∈D
θ1
dGdg +

∑

d1∈D
d2∈D

θ2
d1d2

Gd1gGd2g. (15)

4.3 Multi-cell segmentation

Multi-cell segmentation is the task of identifying each unique biological cell in an image, and identifying

the pixels associated with each cell. The number of cells present in a image is unspecified. Multi-cell

segmentation is useful in domains such as image microscopy, where characterizing the movements and

activities of cells is important, but the capacity of human annotators is limited. Multi-cell segmentation

can be cast as a correlation clustering problem (Zhang et al., 2014a) and formulated as a MWSP

problem (Zhang et al., 2017). The pipeline used by Zhang et al. (2017) is described below.

1. First, given a biological image, we apply dimensionality reduction by partitioning set of pixels

into subsets called super-pixels (Ren and Malik, 2003). This is done by aggregating pixels for

which a classifier is extremely confident that they correspond to the same cell or they are in the

background. This classifier uses local spatial and color statistics. This conversion reduces the

space of millions of pixels to thousands of super-pixels, but rarely meaningfully compromises the

boundaries of any cell in the ground truth.

2. Second, for each pair of adjacent super-pixels, a classifier is used to provide a cost for the pair

to be associated with a common cell. Similarly, a classifier generates a cost for each super-pixel

to be part of a cell. As above, we refer to these costs as pairwise and unary, respectively.

3. Third, we compute the maximum radius and area (volume in 3D images) of cells on the anno-

tated data.

4. Finally, identifying each cell in the image is formulated as a MWSP problem, where observations

are super-pixels and hypotheses are cells.

In their MWSP formulation of multi-cell segmentation, Zhang et al. (2017) denotes by D the set of

super-pixels and by G the set of potential biological cells. The quality of a cell is defined in terms of

obeying the known structural properties of a cell, which in this case describe the radius, area (volume

in 3D for supervoxels), and agreement with the local image statistics.

The constraint on the radius of a cell is defined as follows. For any cell g ∈ G, there exists a super-

pixel d∗, which we refer to as an anchor, such that all super-pixels in cell g are within a user-defined



Les Cahiers du GERAD G–2019–42 11

distance Rmax of d∗. Let Sd1d2
be the distance between the centers of super-pixels d1 and d2. We

use [...] to denote the binary indicator function, which takes value one if the statement inside is true

and zero otherwise. The radius constraint is satisfied for a given cell g ∈ G if

∃d∗ ∈ D such that [Gdg = 1]⇒ [Sd∗d ≤ Rmax] ∀d ∈ D. (16)

Optionally, the anchor can be required to be present in the cell, which we do in our experiments.

To define the constraint on the area of a cell, denote by Amax the upper bound on the area of a

cell and by Ad the area of a super-pixel d ∈ D. A cell g ∈ G satisfies the area constraint if
∑

d∈D
AdGdg ≤ Amax. (17)

The cost of a cell (reflecting the within-image evidence of its quality) is again defined using unary

and pairwise term costs θ1 ∈ R|D| and θ2 ∈ R|D|×|D|. For each super-pixel d ∈ D, θ1
d denotes the cost

for super-pixel d to be part of any cell. Similarly, for each super-pixel pair d1, d2 ∈ D, θ2
d1d2

is the

cost for d1 and d2 to belong to a common cell (as in the previous section, both θ2
d1d2

and θ2
d2d1

are

defined and equal for each pair d1, d2 ∈ D, and θ2
dd = 0 for each d ∈ D). Here, positive/negative values

of θ1
d discourage/encourage the use of the super-pixel d in a cell, whereas positive/negative values

of θ2
d1d2

discourage/encourage the presence of d1 and d2 jointly in a common cell. Furthermore, as in

the previous applications, a constant offset θ0 is added to the cost of a cell to penalize/reward having

additional cells in the image. Given these terms, the cost Γg of a potential cell g that satisfies the

maximum radius and area constraints is expressed as

Γg = θ0 +
∑

d∈D
θ1
dGdg +

∑

d1∈D
d2∈D

θ2
d1d2

Gd1gGd2g. (18)

Otherwise, we assume that Γg =∞.

4.4 Complementarity of MWSP and classifiers

MWSP is a natural complement to supervised learning methods such as ANNs. This is a consequence

of the following two properties of classifiers trained to indicate if two observations are associated with

a common hypothesis. (1) Classification may produce predictions that are inconsistent with regards to

transitivity. (2) Classification may produce predictions that are inconsistent with regards to domain

knowledge as illustrated in the following example.

Consider ten observations and that all hypotheses consist of exactly nine observations. Assume

that each observation and each pair of observations is equally likely to be part of the single hypothesis

which is known to exist. Thus, each observation is in the hypothesis with probability 9
10 , and each pair

with probability 4
5 . If we rely solely on these probabilities alone ignoring the fact that a hypothesis

contains exactly nine observations then the maximum likelihood solution predicts a single hypothesis

consisting of all ten observations. Below we list some real-world cases, where domain knowledge

provides structural requirements to hypotheses.

• Multi-person pose estimation: A person can contain no more than two legs and two arms;

• Neuron tracing: Each neuron is connected across space;

• Cell detection: Certain types of biological cells are convex.

5 Pricing problems for our applications

For the MWSP formulations of the applications considered in the previous section, we define the CG

pricing problem and, when necessary, briefly discuss how to solve it.
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5.1 Pricing for multi-person tracking

The task of identifying the least reduced cost track can be formulated as the following dynamic program.

A subtrack s ∈ S may be preceded by another subtrack ŝ if and only if the first K − 1 detections

in s correspond to the last K − 1 detections in ŝ. We denote by Πs the set of valid subtracks that

may precede a subtrack s. For each subtrack s ∈ S, let `s be the reduced cost of the least reduced

cost track that terminates at subtrack s. Ordering subtracks by the time of its last detection allows

efficient computation of the reduced costs `s, s ∈ S, using the dynamic program

`s = θs − λsK + min {min
ŝ∈Πs

`ŝ, θ
0 −

K−1∑

k=1

λsk}. (19)

We may choose to add not only the least reduced cost track to Ĝ, but other distinct negative reduced

cost tracks. This strategy can easily be implemented since the dynamic program produces a least

reduced cost track terminating at each subtrack. The strategy employed in Wang et al. (2017b) adds

to Ĝ the least reduced cost track terminating at each detection (excluding those with non-negative

reduced cost).

5.2 Pricing for multi-person pose estimation

Let us formulate the task of identifying the least reduced cost person as a set of dynamic programs.

Consider the subgraph of the graph in Figure 3 in which the neck is removed. It has a tree structure,

more precisely, it is composed of multiple disconnected trees where the nodes correspond to human

body parts and the edges indicate adjacency. Connecting the disconnected component trees with zero

valued pairwise terms produces a single tree.

During the pricing step, we iterate through the power set of neck detections, and compute the

least reduced cost person containing exactly those neck detections. We index the power set of neck

detections with D̆ and use [g ↔ D̆] = 1 to indicate that the neck detections in a hypothesis g ∈ G are

exactly those in D̆. The pricing problem for an arbitrary neck detection subset D̆ is

min
g∈G

[g↔D̆]=1

Γg −
∑

d∈D
Gdgλd. (20)

To solve model (20) as a dynamic program, we assume that we can enumerate the power set of

detections corresponding to pairs of adjacent parts in the augmented tree.

Let R be the set of human body parts. For each part r ∈ R, denote by Dr the set of its detections

and by Sr the power set of these detections. We describe Sr using Sr ∈ {0, 1}|Dr|×|Sr|, where Srds = 1

indicates that detection d ∈ Dr is in set s ∈ Sr. For convenience, we explicitly define the neck as

part 0 and thus the power set of neck detections is denoted S0.

Note that, when conditioned on a specific set s0 of neck detections, the pairwise costs from these

neck detections to all other detections can be added to unary costs of the other detections. Thus,

the augmented-tree structure becomes a typical tree structure, and exact inference can be done via

dynamic programming. We make this tree directed by choosing an arbitrary node to be the root, and

orienting the edges in the graph away from the root.

Let Υr be the set of children of a body part r ∈ R in the tree graph. Below we define µrŝ as the

reduced cost of the least reduced cost subtree rooted at r, given that its parent r̂ takes on state ŝ ∈ S r̂.
This reduced cost µrŝ includes the cost of the pairwise terms between the detections of parts r̂ and r,

and is written as

µrŝ = min
s∈Sr

∑

d̂∈Dr̂

d∈Dr

S r̂
d̂ŝ
Srdsθ

2
d̂d

+ νrs , (21)
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where νrs is the cost of the subtree rooted at part r with state s ∈ Sr:

νrs =
∑

d∈Dr

(θ1
d − λd)Srds +

∑

d1∈Dr

d2∈Dr

θ2
d1d2

Srd1sS
r
d2s + 2

∑

d1∈D0

d2∈Dr

θ2
d1d2

S0
d1s0S

r
d2s +

∑

r̄∈Υr

µr̄s. (22)

Observe that (21)–(22) describe a dynamic program.

To compute µrŝ for each ŝ ∈ S r̂, we need to iterate over all s ∈ Sr. For most, though not all problem

instances in Wang et al. (2018), this is feasible. However, observe that, if |Dr| = |Dr̂| = 15, then the

joint space of more than one billion configurations would have to be enumerated, which is prohibitively

expensive. This has motivated the use of NBD in Wang et al. (2018), which is able to solve the dynamic

program exactly with a practical computational complexity of O(|Dr|), not O(|Dr| × |Dr̂|).

Given that pricing is computationally expensive with respect to solving the RMP in each CG

iteration, all negative reduced cost hypotheses found when solving the dynamic programs are added

to Ĝ in each iteration.

5.3 Pricing for multi-cell segmentation

To find negative reduced cost cells, we exploit the fact that cells are small and compact. Recall that

every cell with a finite cost is associated with an anchor d∗ in close proximity to all other super-pixels

that compose the cell. Let Dd∗ ⊆ D be the subset of detections that may be in a cell with anchor

d∗ ∈ D, i.e.,

Dd∗ = {d ∈ D | Sd∗d ≤ Rmax}. (23)

We attack pricing by conditioning on the choice of the anchor d∗ and by finding for each possible

anchor d∗ ∈ D a least reduced cost cell gd∗ , that is,

gd∗ ∈ arg min
g∈G

Gdg=0,∀d/∈Dd∗

θ0 +
∑

d∈D
(θ1
d − λd)Gdg +

∑

d1,d2∈D
θ2
d1d2

Gd1gGd2g. (24)

This problem can be formulated as an ILP using the decision variables x ∈ {0, 1}|D| and y ∈
{0, 1}|D|×|D|, where xd = 1 if detection d ∈ D is selected to be part of the cell gd∗ and yd1,d2

= 1 if

both detections d1 ∈ D and d2 ∈ D are part of it. The ILP is:

min
x∈{0,1}|D|

y≥0

θ0 +
∑

d∈D
(θ1
d − λd)xd +

∑

d1,d2∈D
θ2
d1d2

yd1d2
(25)

s.t.: yd1d2
≤ xd1

∀d1, d2 ∈ D (26)

yd1d2
≤ xd2

∀d1, d2 ∈ D (27)

−yd1d2
+ xd1

+ xd2
≤ 1 ∀d1, d2 ∈ D (28)

∑

d∈D
xd ≥ 1 (29)

∑

d∈D
Adxd ≤ Amax (30)

xd = 0 ∀d ∈ D \ Dd∗ . (31)

The binary requirements on y are enforced through (26)–(28). Indeed, constraints (26)–(27) state

that yd1d2
cannot be set to one unless both detections d1 and d2 are included in the cell gd∗ , whereas (28)

ensures that yd1d2 is set to one if both d1 and d2 are included in gd∗ . Consequently, there is no need

to explicitly require y to be binary. Constraint (29) imposes that at least one super-pixel be included

in the cell. Constraints (30) enforces that the area of the cell does not exceed the maximum area.
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Constraints (31) ensure that all detections not respecting the maximum radius constraint from d∗ are

not selected in the cell. Recall from Section 4.3 that the anchor may be required to be included in the

cell. This condition is imposed by setting xd∗ to one.

Because ILP (24) is solved for different anchors d∗, many distinct hypotheses with a negative

reduced cost are often generated at each CG iteration. In this case, all these hypotheses are added to

the nascent set Ĝ.

6 Subset-row inequalities

In this section, we tighten the LP relaxation of the MWSP formulation (8)–(10). To motivate this, we

provide a case from Wang et al. (2017b) where the LP relaxation is loose. Consider four hypothesis G =

{g1, g2, g3, g4} over three observations D = {d1, d2, d3}, where the first three hypotheses each contain

two of the three observations {d1, d2}, {d1, d3}, {d2, d3}, respectively, and the fourth hypothesis con-

tains all three {d1, d2, d3}. Suppose that the costs of the hypotheses are given by Γg1
= Γg2

= Γg3
= −4

and Γg4
= −5. The optimal integer solution sets γg4

= 1, and has a cost of −5. However, the optimal

LP solution sets γg1 = γg2 = γg3 = 0.5 and γg4 = 0, and has a cost of −6. Hence, the LP relaxation

of (8)–(10) is loose in this case.

The LP relaxation of MWSP (8)–(10), or equivalently, the MP in the CG algorithm can be tightened

by employing the subset-row inequalities introduced by (Jepsen et al., 2008). They can be parameter-

ized by two integers m1 and m2, each greater than or equal to two, and a subset D̂ ⊆ D of cardinality

m1m2 − 1. A subset-row inequality requires that the number of selected hypotheses containing m1 or

more members of D̂ must not exceed m2 − 1. It writes (in a more generalized form) as

∑

g∈G
γg
⌊∑

d∈D̂ Gdg
m1

⌋
≤ m2 − 1. (32)

These inequalities are added to the MP but their dual variables need to be handled by the pricing

problem to compute the exact reduced costs of the hypotheses. Handling these dual values often

destroys the structure of the pricing problem. For the multi-person tracking problem, Wang et al.

(2017b) propose an elegant way to deal with them which relies on the original structure of the pricing

problem.

In this section, we focus on the subset-row inequalities with m1 = m2 = 2, which are referred to as

3-SRIs because |D̂| = m1m2 − 1 = 3. For any given subset D̂ of three observations, the corresponding

3-SRI enforces that the number of selected hypotheses, that include two or more of those observations,

can be no larger than one. Note, however, that all content of this section can be generalized to other

subset-row inequalities.

In Section 6.1, we present a MWSP formulation tightened using 3-SRIs and discuss how the CG

algorithm is modified to account for them. In Section 6.2, we discuss the application of the subset-

row inequalities to the multi-cell segmentation problem which preserves the structure of the pricing

problem. Finally, in Section 6.3, we present the procedure of Wang et al. (2017b) to solve the pricing

problem when the trivial use of subset-row inequalities destroys the structure of the pricing problem

as in the multi-person tracking and multi-person pose estimation applications.

6.1 Tightened MWSP formulation

Let C be the set of the subsets of three distinct observations in D. For a subset c ∈ C, denote

by Dc the set of observations in c. We describe the mapping of 3-SRIs to hypotheses using matrix

C ∈ {0, 1}|C|×|G|, where Ccg =
⌊∑

d∈Dc
Gdg

2

⌋
for each pair of set c ∈ C and hypothesis g ∈ G, i.e.,

Ccg = 1 if and only if hypothesis g contains at least two observations in c. With this notation, the
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MWSP MP tightened using 3-SRIs writes as

min
γ≥0

∑

g∈G
Γgγg (33)

s.t.:
∑

g∈G
Gdgγg ≤ 1 ∀d ∈ D (34)

∑

g∈G
Ccgγg ≤ 1 ∀c ∈ C. (35)

Given the relatively large size of C, the 3-SRIs are generated only as needed, i.e., the MP is solved

using a column/row generation (CRG) algorithm. It starts with an empty subset Ĉ of 3-SRIs and solve

MP (33)–(34) by CG, generating a subset Ĝ of columns. If the computed MP solution is not integer,

the CRG algorithm iterates over all sets c ∈ C to identify the set c∗ that maximizes
∑
g∈G γgCcg, given

the current fractional solution γ. If
∑
g∈G γgCc∗g > 1, then the corresponding 3-SRI is violated and c∗

is added to set Ĉ. CG is then re-started to solve the MP (33)–(35), where the constraint set (35) is

restricted to the subset Ĉ of the generated 3-SRIs. Once solved, we search for a violated 3-SRI again

and, if one is found, it is added to Ĉ. This process alternating between solving the MP and searching

for a violated 3-SRI is repeated until no violated 3-SRI is found. Note that more than one 3-SRI

can be added at once. Furthermore, note that the search for a violated 3-SRI can be limited to sets

c ∈ C for which each detection d ∈ Dc is included in a hypothesis g associated with a fractional-valued

variable γg (Wang et al., 2017b).

Let ψc ≤ 0, c ∈ Ĉ, be the dual variables associated with the generated 3-SRIs. To take these dual

variables into account, the CG pricing problem is redefined as

min
g∈G

Γg −
∑

d∈D
Gdgλd −

∑

c∈Ĉ

Ccgψc. (36)

Given that Ccg =
⌊∑

d∈Dc
Gdg

2

⌋
for each pair of set c ∈ Ĉ and g ∈ G, solving this pricing problem is

often more complex than solving the pricing problem without the ψc dual values. Below, we discuss

how this can be done for the three applications considered.

6.2 Pricing without modifying the structure of the pricing problem

In some cases, the pricing problem can preserve the same structure and computational complexity

while dealing with the 3-SRI dual variables. One such example is multi-cell segmentation, where the

pricing problem remains an ILP. Let zc ∈ {0, 1}, c ∈ Ĉ, be a binary variable that is equal to one if and

only if two or more detections in Dc are included in the cell. The ILP is given by

min
x≥0
y≥0
z≥0

θ0 +
∑

d∈D
(θ1
d − λd)xd +

∑

d1,d2∈D
θ2
d1d2

yd1d2
−
∑

c∈Ĉ

ψczz (37)

s.t.: yd1d2 ≤ xd1 ∀d1, d2 ∈ D (38)

yd1d2
≤ xd2

∀d1, d2 ∈ D (39)

xd1
+ xd2

− yd1d2
≤ 1 ∀d1, d2 ∈ D (40)

xd ∈ {0, 1} ∀d ∈ D (41)
∑

d∈D
xd ≥ 1 (42)

∑

d∈D
Adxd ≤ Amax (43)

xd = 0 ∀d ∈ D \ Dd∗ (44)

xd3
+ xd4

− zc ≤ 1 ∀c ∈ Ĉ, d3, d4 ∈ Dc | d3 6= d4 (45)
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This pricing model is identical to model (25)–(31) except that the last term of the objective function

is added to take into account the dual variables ψ in the cell reduced cost, and the constraints (45)

are required to set the values of the z variables. Observe that, for every c ∈ Ĉ, zc is set to its smallest

possible value at optimality because ψc is non-positive. Thus, zc is not explicitly required to be integer,

since its integrality is assured when x is integral. Finally, note that all constraints (45) for which ψc = 0

can be ignored.

6.3 Pricing while modifying the structure of the pricing problem

Let us consider the problem of finding negative reduced cost variables when the dual variables ψ cannot

be handled directly by the specialized solver used for pricing without them. This case often emerges

in problems such as multi-person tracking and multi-person pose estimation that rely on dynamic

programming as a specialized pricing solver. Given that ψ ≤ 0, solving a so-called ψ-independent

pricing problem where these dual variables are ignored provides a lower bound on the optimal value

of the pricing problem. Based on this observation, Wang et al. (2017b) introduce a branch-and-bound

algorithm for solving the pricing problem, where the lower bound at each node of the search tree is

computed using the specialized solver. Let us describe this algorithm, where each branching decision

imposes that an observation d ∈ D is included or not in the hypothesis.

Let B be the set of nodes in the search tree. For each node b ∈ B, denote by D+
b and D−b the

subsets of observations that must be included in the hypothesis according to the branching decisions

and that must be excluded from it, respectively. The set of all hypotheses that are consistent with

both sets D+
b and D−b is denoted as G±b . At the root node b0 of the search tree, we have D+

b0
= D−b0 = ∅

and G±b0 = G.

In Sections 6.3.1 and 6.3.2, we specify the bounding and branching operations, respectively.

6.3.1 Bounding

For every b ∈ B, let V ∗b = ming∈G±b
(
Γg −

∑
d∈D λdGdg −

∑
c∈Ĉ ψcCcg

)
be the optimal value of the

pricing problem over the hypotheses in G±b . Furthermore, denote by V ∗b the optimal value of the

corresponding ψ-independent pricing problem (i.e., restricted to G±b ). Obviously, V ∗b ≤ V ∗b . Wang

et al. (2017b) introduce the following stronger lower bound V lbb on V ∗b , which exploits the knowledge

stored in the subset D+
b .

Proposition 1 (from Wang et al., 2017b) Let b ∈ B. Then,

V lbb = V ∗b −
∑

c∈Ĉ

ψc
⌊ |Dc ∩ D+

b |
2

⌋
(46)

is a lower bound on V ∗b , i.e., V lbb ≤ V ∗b .

For multi-person tracking and multi-person pose estimation, the value of V ∗b can be computed by

solving the dynamic program presented in Sections 5.1 and 5.2, respectively. This program is, however,

modified as described below to enforce that g ∈ G±b .

Multi-person tracking: To discard the detections in D−b , we remove from S all subtracks that

include a detection in D−b . To impose that all detections in D+
b be part of the track, we first remove

all substracks that includes a detection d′ 6∈ D+
b or an occlusion co-occurring in time with any d ∈ D+

b .

Furthermore, we do not consider starting a track after the occurrence of the first member of D+
b in

time. Finally, after completing the dynamic program algorithm, we remove any generated track that

terminates prior to the point in time of the last member of D+
b .
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Multi-person pose estimation: In contrast to multi-person tracking, enforcing that g ∈ G±b in multi-

person pose estimation is simple. We force detections in D+
b and D−b to be active/inactive, respectively,

when generating a person. Specifically, for any given body part r ∈ R, we only consider detection

subsets s ∈ Sr that are consistent with node b when solving the dynamic program. Thus, a subset s

such that Srds = 1 for any d ∈ D−b or Srds = 0 for any d ∈ D+
b is ignored. Finally, in S0, we only consider

subsets that are consistent with b when iterating over the power set of neck detections during pricing.

6.3.2 Branching

Let V ∗ be the optimal value of the pricing problem. After computing a lower bound V lbb at a node

b ∈ B, an upper bound V ubb on V ∗ can easily be computed from the optimal hypothesis gb obtained by

solving the ψ-independent pricing problem at node b. Indeed, it suffices to compute its reduced cost

(taking into account the ψ values), i.e.,

V ubb = Γgb −
∑

d∈D
λdGdgb −

∑

c∈Ĉ

ψcCcgb . (47)

When V lbb is less than the best upper bound found so far and V lbb < V ubb , branching is performed

as follows. First, observe that V ubb − V lbb = −∑c∈Ĉb ψc, where Ĉb = {c ∈ Ĉ | Ccgb −
⌊ |Dc∩D+

b |
2

⌋
= 1} is

the index set of the 3-SRIs whose duals were not considered in the computation of V lbb . Therefore, to

close the gap between V lbb and V ubb , we propose to branch on the observations in a subset Dcb , where

cb ∈ arg minc∈Ĉb ψc. Eight child nodes, denoted b1 to b8, are created, one for each way of splitting the

observations in Dcb between the include (D+) and exclude (D−) sets. Table 1 enumerates the splits

for a triplet of observations cb = {d1, d2, d3}.

Note that not all child nodes need to be created as some are guaranteed to be infeasible if some

observations in cb already belong to D−b or D+
b . For instance, if cb = {d1, d2, d3} and d1 ∈ D+

b , then

the nodes b2, b4, b6, and b8 will all be infeasible because d1 belongs to both D+ and D− sets.

Table 1: Eight different ways of splitting d1, d2, d3 between the D+ and D− sets, yielding eight child nodes b1 to b8 for
node b. For example, node b8 excludes d1 and d2 (D−b8

= D−b ∪ {d1, d2}) but includes d3 (D+
b8

= D+
b ∪ {d3}.

Child D− D+ Child D− D+ Child D− D+ Child D− D+

b1 d3 d1, d2 b2 d1, d3 d2 b3 d2, d3 d1 b4 d1, d2, d3 ∅
b5 ∅ d1, d2, d3 b6 d1 d2, d3 b7 d2 d1, d3 b8 d1, d2 d3

7 Dual optimal inequalities

In this section, we introduce DOIs (Ben Amor et al., 2006) that are expressed in the form of lower

bounds on the dual variables λ and do not remove all dual optimal solutions. DOIs decrease the dual

search space that CG (with or without 3-SRIs) needs to explore and, typically, the total number of

CG iterations. They have been successfully applied to various applications including stock cutting

(Ben Amor et al., 2006) and image segmentation (Yarkony et al., 2012; Yarkony and Fowlkes, 2015).

In this section, we introduce for the general MWSP formulation DOIs that do not vary with Ĝ, the

current set of columns in the RMP, (Subsection 7.1) and DOIs that vary as Ĝ changes (Subsection 7.2).

Finally, in Subsection 7.3, we describe how these DOIs can be defined for two of our applications.

7.1 Basic dual optimal inequalities

Recall that λd ≤ 0 for d ∈ D. For any observation d ∈ D, imposing a lower bound −Ξd on λd (with

Ξd ≥ 0) writes as λd ≥ −Ξd in the dual of the MP. In the MP (8)–(9), it corresponds to introducing
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a surplus variable ξd ≥ 0 in the corresponding constraint (9) that has a cost coefficient of Ξd in the

objective function (8). The modified MP is:

min
γ≥0
ξ≥0

∑

g∈G
Γgγg +

∑

d∈D
Ξdξd (48)

s.t.:
∑

g∈G
Gdgγg − ξd ≤ 1 ∀d ∈ D. (49)

This MP allows the inclusion of an observation in multiple selected hypotheses, which may facilitate

its solution by CG. However, to ensure that this MP is equivalent to the original one (8)–(9) and that

each inequality λd ≥ −Ξd is a DOI, the cost reduction induced by “over-including” an observation d

should be at least compensated by Ξd. Notice that, in (48)–(49), no upper bounds are imposed on

the variables.

For each observation d ∈ D, we propose to compute the value of Ξd as an upper bound on the cost

increase realized by removing d from a hypothesis that contains it. It must satisfy

Ξd ≥ ε+ max
g∈Gd

max{0,∆gd − Γg}, (50)

where Gd = {g ∈ G |Gdg = 1} is the subset of hypotheses including observation d, ε is a tiny positive

constant which ensures that the corresponding DOI is not active at termination of CG, and

∆gd = min
γ≥0

∑

h∈G\Gd
Γhγh (51)

s.t.:
∑

h∈G\Gd
Gd̄hγh ≤ Gd̄g ∀d̄ ∈ D \ {d} (52)

γh ∈ {0, 1} ∀h ∈ G \ Gd. (53)

This ILP allows the computation of a least-cost (possibly empty) subset of non-overlapping hypotheses,

denoted Hgd, that can feasibly replace hypothesis g in a solution but without including observation d.

Note that computing the value of the right-hand side of (50) may be computationally expensive and,

thus, we rather compute an upper bound on its value as discussed in Section 7.3.

The validity of these DOIs, that we call invariant DOIs, is stated in the following proposition.

Proposition 2 Let ζ∗ and ζ∗DOI be the optimal value of the MP (8)–(9) and the modified MP (48)–(49),

respectively. If Ξ satisfies (50), then ζ∗DOI = ζ∗.

Proof. Let (γ∗, ξ∗) be an optimal solution to (48)–(49). If ξ∗d = 0 for all observations d ∈ D, then

ζ∗DOI = ζ∗ because γ∗ is feasible and optimal for (8)–(9). Otherwise, there exists an observation d ∈ D
such that ξ∗d > 0 and, therefore, a hypothesis g ∈ Gd such that γ∗g > 0. Let α = min {γ∗g , ξ∗d}. Given

that Ξd > ∆gd − Γg according to (50) and α > 0, the solution obtained from (γ∗, ξ∗) by decreasing γg
and ξd by α and increasing γh by α for all h ∈ Hgd is feasible for (48)–(49) and has a cost that is less

than ζ∗DOI . This contradicts the optimality of (γ∗, ξ∗) and proves that there is no observation d ∈ D
such that ξ∗d > 0.

From this proposition, we can deduce that any RMP encountered during the solution of the modified

MP (48)–(49) by CG is bounded.

7.2 Dual optimal inequalities that vary with Ĝ
For a given CG iteration, let Ĝ be the set of generated hypotheses, i.e., those considered in the RMP.

In this section, we define DOIs that are not looser than the above invariant DOIs and are functions

of Ĝ.
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Let Ĝ∗ = {g ∈ G | ∃h ∈ Ĝ such that Ggd ≤ Ghd,∀d ∈ D} be the set of hypotheses that contain a

subset of the observations of a hypothesis g ∈ Ĝ. Note that Ĝ∗ ⊇ Ĝ. For d ∈ D, the parameter Ξd in

the proposed DOI λd ≥ −Ξd must satisfy

Ξd ≥ ε+ max
g∈Ĝ∗d

max{0,∆gd − Γg}, (54)

where ε and ∆gd are defined as in the previous section, and Ĝ∗d = {g ∈ Ĝ∗ |Gdg = 1} is the subset of hy-

potheses in Ĝ∗ that include observation d. Observe that the right-hand side of (54) may increase when

hypotheses are added to Ĝ but it is never greater than that of (50). As for (50), we do not necessarily

compute the right-hand side of (54), but rather an upper bound on its value (see Section 7.3).

With these DOIs that we call the varying DOIs, the modified RMP writes as

min
γ≥0
ξ≥0

∑

g∈Ĝ

Γgγg +
∑

d∈D
Ξdξd (55)

s.t.:
∑

g∈Ĝ

Gdgγg − ξd ≤ 1 ∀d ∈ D. (56)

The next proposition proves that it is always bounded. Its proof relies on the following lemma.

Lemma 1 If Ξ satisfies (54) and there exists a hypothesis g ∈ Ĝ with Γg+
∑
d∈D ΞdGdg < 0, then there

exists a hypothesis g∗ ∈ Ĝ∗ that includes an observation d∗ ∈ D such that Γg∗ +
∑
d∈D ΞdGdg∗ < 0 and∑

h∈Hg∗d∗

(
Γh +

∑
d∈D ΞdGdh

)
≥ 0.

Proof. By construction. Let g ∈ Ĝ be a hypothesis such that Γg +
∑
d∈D ΞdGdg < 0. If g includes an

observation d̄ ∈ D such that
∑
h∈Hgd̄

(
Γh +

∑
d∈D ΞdGdh

)
≥ 0, then g∗ = g and d∗ = d̄. Otherwise,

for any observation d̄ included in g, Hgd̄ 6= ∅ and
∑
h∈Hgd̄

(
Γh +

∑
d∈D ΞdGdh

)
< 0. In this case,

there exists a hypothesis h̄ ∈ Hgd̄ (that contains less observations than g and is, thus, in Ĝ∗) such

that Γh̄ +
∑
d∈D ΞdGdh̄ < 0. We can thus repeat the above process with g = h̄. This iterative process

is finite because the number of observations in the hypothesis g selected at each iteration is strictly

decreasing, ensuring that, at some point, there must exist an observation d̄ included in g such that

Hgd̄ = ∅ and, therefore,
∑
h∈Hgd̄

(
Γh +

∑
d∈D ΞdGdh

)
= 0.

Proposition 3 If Ξ satisfies (54), then the modified RMP (55)–(56) is bounded.

Proof. Assume that (55)–(56) is unbounded. In this case, there must exist at least one hypothesis g ∈ Ĝ
such that Γg+

∑
d∈D ΞdGdg < 0. According to Lemma 1, there also exists a hypothesis g∗ ∈ Ĝ∗ that in-

cludes an observation d∗ ∈ D such that Γg∗+
∑
d∈D ΞdGdg∗ < 0 and

∑
h∈Hg∗d∗

(
Γh+

∑
d∈D ΞdGdh

)
≥ 0.

These inequalities imply that
∑

h∈Hg∗d∗

(
Γh +

∑

d∈D
ΞdGdh

)
−
(
Γg∗ +

∑

d∈D
ΞdGdg∗

)
> 0, (57)

which rewrites as ∑

h∈Hg∗d∗

Γh − Γg∗ >
∑

d∈Dg∗d∗

Ξd, (58)

where Dg∗d∗ ⊇ {d∗} denotes the subset of observations that are included in g∗ but not in any hypothesis

of Hg∗d∗ .
Because

∑
d∈Dg∗d∗

Ξd > Ξd∗ ≥ ε+ ∆g∗d∗ − Γg∗ and ∆g∗d∗ =
∑
h∈Hg∗d∗

Γh, relation (58) implies

∑

h∈Hg∗d∗

Γh − Γg∗ > ε+
∑

h∈Hg∗d∗

Γh − Γg∗ , (59)

or equivalently, ε < 0. This contradicts the definition of ε and proves that (55)–(56) is never unbounded.
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The following proposition ensures the validity of the varying DOIs.

Proposition 4 Let ζ∗ and ζ̂∗DOI be the optimal value of the MP (8)–(9) and the modified

RMP (55)–(56), respectively. If Ξ satisfies (54), then ζ̂∗DOI = ζ∗ or there exists a (non-generated)

hypothesis with a negative reduced cost.

Proof. Let (γ̂∗, ξ̂∗) and λ̂∗ be optimal primal and dual solutions to the modified RMP (55)–(56),

respectively. The proof consists of showing that, if the reduced cost of each hypothesis g ∈ G is non-

negative, i.e., Γg −
∑
d∈D Gdgλ̂

∗
d ≥ 0, then ζ̂∗DOI = ζ∗. Assume that Γg −

∑
d∈D Gdgλ̂

∗
d ≥ 0 for all

g ∈ G. If ξ̂∗d = 0 for all d ∈ D, then ζ∗DOI = ζ∗ because γ̂∗ (augmented with λg = 0 for g ∈ G \ Ĝ) is

feasible and optimal for (8)–(9). Otherwise, there exists an observation d ∈ D such that ξ̂∗d > 0 and a

hypothesis g ∈ Ĝd such that γ̂∗g > 0. In this case, the reduced costs of ξd and γg are both equal to 0,

i.e., λ̂∗d + Ξd = 0 and Γg −
∑
e∈D Gegλ̂

∗
e = 0. Given that Γh−

∑
e∈D Gehλ̂

∗
e ≥ 0 for all h ∈ Hgd, λ̂∗e ≤ 0

for all e ∈ D and
∑
h∈Hgd

Γh = ∆gd, we find that

∑

h∈Hgd

(
Γh −

∑

e∈D
Gehλ̂

∗
e

)
−
(
Γg −

∑

e∈D
Gegλ̂

∗
e

)
≥ 0 (60)

⇒
∑

h∈Hgd

Γh − Γg ≥ −
∑

e∈Dgd

λ̂∗e ≥ −λ̂∗d (61)

⇒∆gd − Γg ≥ Ξd. (62)

This contradicts the definition (54) of Ξd which guarantees that Ξd > ∆gd − Γg. Consequently, this

case is not possible.

With these varying DOIs, the values of Ξ need to be re-computed at each CG iteration before

solving the modified RMP (55)–(56). Indeed, for an observation d ∈ D, the left-hand side of (54)

depends on Ĝ and may, thus, vary from one iteration to another.

7.3 Application-specific dual optimal inequalities

In this section, we present ways to compute Ξ values that yield valid DOIs for the multi-person pose

estimation application and the multi-cell segmentation application when the anchor is not required to

lie in the cell. In both cases (which are treated simultaneously below), removing any observation from

any hypothesis always yields a feasible hypothesis. This is not the case for the multi-cell segmentation

application when the anchor must be in the cell or for the multi-person tracking application where the

set of feasible hypotheses (tracks) is restricted by the subset of subtracks considered.

For the invariant DOIs based on (50), observe first that the right-hand side of (50)

ε+ max
g∈Gd

max{0,∆gd − Γg} ≤ ε+ max
g∈Gd

max{0,Γḡ(g,d) − Γg},

where ḡ(g, d) is the (possibly empty) hypothesis obtained by removing observation d from hypothesis g.

To find an upper bound on this expression, Wang et al. (2018) propose to evaluate the worst-case cost

difference Γḡ(g,d) − Γg over all hypotheses g ∈ G and all observations d ∈ D contained in the given g

as follows. The removal of an observation d ∈ D from an arbitrary hypothesis g ∈ G removes from its

cost Γg defined by (15) or (18) the associated cost θ1
d and any active pairwise costs θ2

dd̄
and θ2

d̄d
, d̄ ∈ D.

Moreover, if d is the only observation in g, then θ0 is also removed. Therefore, Γḡ(g,d) − Γg is upper

bounded by the negative of the sum of these terms by considering only the negative-valued θ2
dd̄

, θ2
d̄d

and θ0 terms. Consequently, Ξd can be set to

Ξd = ε+ max
{

0, −
(

min {0, θ0}+ θ1
d +

∑

d̄∈D
min {0, θ2

dd̄ + θ2
d̄d}
)}
. (63)
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For the varying DOIs based on (54), the values of Ξ are produced by using the same approach as

in (63), except that only the pairwise terms that could be removed when replacing members of Ĝ∗ with

other members of Ĝ∗ are considered. More precisely, Ξd is set to

Ξd = ε+ max
{

0, −
(

min {0, θ0}+ θ1
d + min

g∈Ĝd

∑

d̄∈D
Gd̄g min {0, θ2

dd̄ + θ2
d̄d}
)}
. (64)

8 Computational results

In this section we provide computational results on the multi-person tracking, multi-person pose esti-

mation and multi-cell segmentation applications in Sections 8.1, 8.2, and 8.3, respectively.

8.1 Multi-person tracking

We use a part of the MOT 2015 training set (Leal-Taixé et al., 2015) to train and evaluate multi-person

tracking in video. The structured SVM based learning approach of Wang and Fowlkes (2015) is used

to produce the cost terms, given the raw detector outputs provided by the MOT dataset generates the

set of detections D. The models are trained with varying subtrack lengths (K = 2, 3, 4), and allow

for occlusions of up to three frames. The experiments in this section employ the 3-SRIs but not the

DOIs. To assess CG convergence, lower bounds are computed throughout the solution process. At a

given CG iteration, the computed lower bound is given by

∑

d∈D
λd +

∑

d∈D
min {0, min

s∈S
sK=d

`s},

where the first term is equal to the optimal value of the current RMP and the second is the sum over

all detections d ∈ D of the least reduced cost of the tracks ending with detection d if negative (for

computational efficiency, the ψ terms are ignored in this computation). This bound is valid because,

in a feasible solution, at most one track can end with each detection.

In the problem instance that we use for testing, there are 71 frames and 322 detections in the video.

The numbers of subtracks considered are 1,068, 3,633 and 13,090 for K = 2, 3, 4, respectively. For

K = 2, we observe 48.5% “Multiple Object Tracking Accuracy” (Bernardin and Stiefelhagen, 2008), 11

identity switches, and 9 track fragments, which we write in short hand as (48.5,11,9). However, when

setting K = 3, 4, the performance is (49,10,7), and (49.9,9,7), respectively. Thus, increasing subtrack

length provides improvement on all metrics. The importance of this improvement is demonstrated

visually in Figure 4.

In Figure 5, we compare the timing/cost performance of our CG algorithm with the baseline dual

decomposition (DD) approach of Butt and Collins (2013) for K = 3, 4. These problem instances are

associated with a loose lower bound, which is tightened in the CG algorithm using 3-SRIs. For both

instances, CG achieves tight upper and lower bounds at termination while DD does not. Furthermore,

CG terminates much more rapidly than DD.

8.2 Multi-person pose estimation

We present the experimental results from Wang et al. (2018) on the MPII-multi-person dataset (An-

driluka et al., 2014), which consists of 418 images. Initially, the cost terms and problem structure are

provided by Insafutdinov et al. (2016). We modify them to improve modeling power and optimization

speed. Notably, we require that each selected person contains exactly one neck detection. Thus, during

pricing, we need only to iterate over selections of the neck detections containing one detection. We

also restrict the cardinality of Sr for each body part r ∈ R other than the neck to be no greater than

50,000. We detail all modifications below.
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Figure 4: Qualitative example of improvement as a result of increasing subtrack length. The first and second rows describe
tracks outputted when K = 2 and K = 4, respectively. Notice that, for K = 2, track 1 changes identity to track 5, while
with K = 4, the identity of track 1 does not change. (Picture from Wang et al., 2017b).
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Figure 5: Convergence of upper/lower bounds as a function of time, illustrated using plots of the absolute gap between
the bounds and the final lower bound. All plotted values are normalized by dividing each of them by the value of the
maximum lower bound multiplied by −1. The addition of a 3-SRI is indicated with a blue dot on the lower bound plot.

1. Pairwise cost terms between detections corresponding to different body parts that are not con-

nected in the augmented tree are ignored (set to zero).

2. Sets Dr, r ∈ R, are constructed as follows. Insafutdinov et al. (2016) provide a probability mdr

that each detection d ∈ D is associated with each body part r ∈ R. Each detection r is assigned

to a single set Dr, namely, that with the largest probability.

3. The size of Sr is limited to 50,000 for each r ∈ R other than the neck. To construct Sr, we

iterate over integer k from 1 to |Dr| and, at each iteration, add to Sr the group of configurations

containing exactly k detections in Dr. If adding a group would make |Sr| exceeds 50,000, then

the group is not added and the construction of Sr stops.

4. For each pair of neck detections d1, d2 ∈ D, cost θ2
d1d2

=∞ to enforce a single neck detection in

each person.

5. To model the prior on the number of people in the image, we assume that all persons have a

neck detection. This prior is modeled as follows.
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(a) Let θ̂0 be a desired value for θ0. Since Insafutdinov et al. (2016) does not model a prior on

the number of people, we hand set θ̂0 to a single value for the entire dataset.

(b) Set θ0 = θ̂0 − Ω, where Ω is such that subtracting it from the cost of any person makes

the cost of that person positive. Setting Ω to be less (by one) than the sum of all negative

valued cost terms achieves this, i.e.,

Ω = −1 + min {0, θ̂0}+
∑

d∈D
min {0, θ1

d}+
∑

d1∈D
d2∈D

min {0, θ2
d1d2
}. (65)

(c) For each neck detection d ∈ D, add Ω to θ1
d. Observe that the Ω terms cancel out in the

cost of a person if a single neck detection is included. However, if no neck detection is

included, then the cost of the person is positive. Similarly, if two or more neck detections

are included in a given person, then the cost of that person is infinite. Thus, no optimal

solution to the MWSP formulation selects a person containing a number of neck detections

not equal to one.

For the experiments in this section, the CG algorithm does not apply 3-SRIs. Furthermore, DOIs

are not applied for the results of Wang et al. (2018) that are reviewed in Table 2. However, we study

their impact of using them in Section 8.2.1.

The results of the experiments of Wang et al. (2018) show that the MWSP LP relaxation is tight

for more than 99% of tested instances, and in the remaining cases, the gap between the lower and

upper bounds is less than 1.5%. In Table 2, we compare the CG algorithm against the greedy heuristic

optimization procedure of Levinkov et al. (2017) in terms of the accuracy on standard computer vision

benchmarks. The approach of Levinkov et al. (2017) considers a distinct but related objective function

to our MWSP objective. The CG algorithm outperforms the heuristic of Levinkov et al. (2017) on

hard-to-localize body parts, such as wrists and ankles, but fails for body parts closer to the head.

This could be a side effect of the fact that costs from Insafutdinov et al. (2016) are trained on the

power set of all detections including neck, thus pose associated with multiple neck detections could

be a better choice for certain cases. In a more robust model, one could make a reliable head/neck

detector, restricting each person to have only one head/neck. Some sample outputs of our algorithm

can be visualized in Figure 6. Note that the dynamic programming pricing problems are solved using

the NBD technique of Wang et al. (2018), which provides a speedup factor of up to 500 times for

these instances.

Table 2: Average precision (in %) of the CG algorithm versus (Levinkov et al., 2017). Columns mAP and mAP(Ubody)
indicate the mean average precision across all body parts and across all upper body parts (excluding hips, knees and
ankles), respectively. Running times are measured on an Intel i7-6700k quad-core CPU.

Shoulder Elbow Head Wrist Hip Knee Ankle
mAP

(UBody)
mAP

time
(s/frame)

Levinkov et al. (2017) 88.2 78.2 93.0 68.4 78.9 70.0 64.3 81.9 77.6 0.136
CG 87.3 79.5 90.6 70.1 78.5 70.5 64.8 81.8 77.6 1.95

8.2.1 Value of dual optimal inequalities

In this section we aim at assessing the speedup that can be obtained by using DOIs. However, this

speedup varies with the “system” used to solve the RMP at each CG iteration, where a system is

defined by an LP toolbox (linprog, CPLEX, Gurobi), the toolbox options such as the algorithm used

(interior point, primal simplex, etc.), and the computer used. Indeed, different systems provide different

dual optimal solutions that might impact differently the number of CG iterations required to achieve

optimality. Using dual optimal solutions that are well centered in the optimal dual face is known to

yield faster CG convergence (Desrosiers and Lübbecke, 2005). Therefore, to establish the value of the

DOIs, we need to decouple the DOI value from that obtained by varying the “system” used to solve

the RMP.
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Figure 6: Output examples. For each person, the locations of the detections of each body part are averaged to produce
the corresponding colored dot, denoting the part position. (Picture from Wang et al., 2018).

For our test instances, the time spent solving the pricing problems vastly exceeds that for solving

the RMP. Thus, using high performance ILP solvers (such as CPLEX or Gurobi) to solve the RMP

adds little value if the resulting dual solution is not well centered. The systems we compared are as

follows.

System One: MATLAB 2016 linprog solver with default settings, on a 2014 Macbook Pro.

System Two: MATLAB 2017 with the interior point solver on a powerful workstation with Intel(R)

Core(TM) i7-6850K CPU @ 3.60GHz.

We also performed the experiments using Gurobi and CPLEX solvers. Interestingly, the Gurobi and

CPLEX solvers with default options perform worse on the workstation than the built-in MATLAB

solver when DOIs are not used. Thus we did not include those systems in the comparisons.

Table 3 compares the speedups obtained by the DOIs using the two systems, whereas Figure 7
provides a scatter plot of the time consumed using the DOIs for each system. Our experiments show

that varying DOIs outperform invariant DOIs. The use of DOIs provides a large speedup for System

Two (over ten times speedup), but limited speedup for System One (only 1.4-1.6 times speedup).

Interestingly, compared to System Two, System One is an older computer running an older version

of MATLAB, but the running times with System One are better than those with System Two when

no DOIs are used. This is a consequence of System One producing well centered dual solutions, and

System Two not doing so. The use of DOIs makes System Two perform better than System One,

demonstrating the value of DOIs when the system is poorly selected.

Table 3: Total computing times in seconds and comparative speedups (over no DOI) using DOIs on different systems.
For each system, the first three columns indicate the total time (summing over all problem instances) needed to solve
the MP for CG using no DOI, invariant DOIs, and varying DOIs, respectively. The last two columns display the speedup
factors achieved by using invariant and varying DOIs over not using DOIs.

Invariant Varying Speed Up Speed Up
System No DOI DOIs DOIs Invariant Varying

One 2092.6 1450.5 1290.5 1.44 1.62
Two 9821.2 937.6 860.2 10.47 11.42
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Figure 7: Relative computational time when using DOIs on System One (left) and System Two (right). Each data point
specifies the computing time to solve the MP with DOIs (vertical axis) relative to the computing time when not using
DOI (horizontal axis).

8.3 Multi-cell segmentation

In this section, CG is applied for multi-cell segmentation on three different datasets containing be-

tween 10 and 15 images each. These problem instances include challenging properties such as densely

packed and touching cells, out-of-focus artifacts, and variations in the shape/size of cells. To generate

cost terms, we use the open source toolbox of Sommer et al. (2011) to train a random forest classifier

to discriminate between: (1) boundaries of in-focus cells; (2) in-focus cells; (3) out-of-focus cells; and

(4) background. For training, we use less than 1% of the pixels per dataset with generic features, e.g.,

Gaussian, Laplacian, and structured tensor. The output of this random forest classifier is also used to

generate super-pixels.

For the experiments in this section, the CG algorithm is enhanced with the 3-SRIs, but not with

the DOIs. Note that, during pricing, we enforce the inclusion of the anchor in the cell produced.

8.3.1 Segmentation quality

In Figure 8, we display the output obtained by the CG algorithm for three images, one in each dataset.

For dataset two (the middle column), we observe that our approach successfully segments the cells in

a problem instance where there are large variations of cell shape/size.

Next, we compare the performance of our algorithm with state-of-the-art methods (Arteta et al.,

2012, 2016; Funke et al., 2015; Hilsenbeck et al., 2017; Dimopoulos et al., 2014; Ronneberger et al.,

2015; Zhang et al., 2014b) in terms of detection (precision, recall and F-score) and segmentation (Dice

coefficient and Jaccard index), which are common measures in bio-image analysis. The average results

of our experiments over all instances of each dataset are summarized in Table 4. In general, the CG

algorithm achieves or exceeds state-of-the-art performance. Additionally, it requires very little training

data compared to other methods, including those of Arteta et al. (2012, 2016) and Funke et al. (2015).

8.3.2 Optimization performance

To determine the best values of the parameters θ0, Rmax and Amax, a large number of problem

instances were generated by varying the values of these parameters. In this section, we report average

results over all these instances. For each instance, we computed the relative optimality gap between

the upper and lower bounds obtained at termination of CG. For the three datasets, the proportions of

instances that achieve an optimality gap of 10% or less are 99.3 %, 80 % and 100 % on datasets one,

two, and three, respectively, showing the high quality of the computed solutions.



26 G–2019–42 Les Cahiers du GERAD

Figure 8: Cell segmentation examples for datasets one to three (left to right). Rows are (top to bottom): original image,
cell boundary classifier prediction image, super-pixels, color map of segmentation, and enlarged views of the inset (black
square). (Picture from Zhang et al., 2017).

To illustrate the time required by the CG algorithm to solve these instances, we show in Figure 9 the

proportion of instances from dataset one for which the computational time exceeds a given amount of

time. We observe, for example, that around 50% of the instances are solved in less than 200 seconds.

Given that the computational time is dominated by pricing and there are many pricing problems,

parallelization can drastically accelerate CG.

Figure 9: Proportion of instances from dataset one that take a longer computational time than a given amount of time.
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Table 4: Comparative average results for datasets one to three on precision (P), recall (R), F-score (F), dice coefficient (D)
and Jaccard index (J) obtained by the CG algorithm and state-of-the-art methods. PCC and NPCC denote the planar
correlation clustering and non-planar correlation clustering algorithms of Zhang et al. (2014b). A ’-’ indicates that the
result is unreported in the cited paper.

Dataset 1 2 3

Metric P R F D J P R F D J P R F D J

Arteta et al. (2012) - - - - - - - - - - 0.89 0.86 0.87 - -
(Arteta et al., 2016) - - - - - - - - - - 0.99 0.96 0.97 - -
Funke et al. (2015) 0.93 0.89 0.91 0.90 0.82 0.99 0.90 0.94 0.90 0.83 0.95 0.98 0.97 0.84 0.73
Hilsenbeck et al. (2017) - - - - - - - - - - - - 0.97 - 0.75
Dimopoulos et al. (2014) - - - - 0.87 - - - - - - - - - -
Ronneberger et al. (2015) - - - - - - - - - - - - 0.97 - 0.74
PCC Zhang et al. (2014b) 0.95 0.86 0.90 0.87 0.84 0.80 0.75 0.76 0.91 0.85 0.92 0.92 0.92 0.79 0.72
NPCC Zhang et al. (2014b) 0.71 0.96 0.82 0.86 0.89 0.75 0.83 0.78 0.91 0.84 0.85 0.97 0.90 0.80 0.70
CG 0.99 0.97 0.98 0.91 0.90 1.00 0.94 0.97 0.90 0.83 1.00 0.97 0.99 0.82 0.71

9 Conclusion

In this paper, we introduced the problem of data association for computer vision to the operations

research community. Our aim is to create a platform from which operations research scientists, with

an expertise in integer programming, can apply their methodologies to machine learning and computer

vision problems. This paper is designed to be accessible to those familiar with the theory and use of

CG in typical operations research contexts such as vehicle routing, crew scheduling, and stock cutting.

This paper is devoted to the MWSP formulation of data association, where an instance is pa-

rameterized by a set of observations and a set of possible hypotheses that are each defined by a

subset of observations. The MWSP formulation searches for the least total cost set of hypotheses such

that no two selected hypotheses share a common observation. We modeled as a MWSP problem the

well-studied computer vision applications of multi-person tracking, multi-person pose estimation, and

multi-cell segmentation. Because the set of hypotheses in the MWSP model grows exponentially with

the size of the set of observations, we employed a CG algorithm to solve it. In our applications, the CG

pricing problems correspond to tractable optimization problems, that are either dynamic programs or

small-scale binary integer programs. To tighten the MP, we considered SRIs and demonstrated that

they can be used for our applications without destroying the structure of the pricing problem or while

exploiting its initial structure within a branch-and-bound framework. To accelerate CG, we introduced

new DOIs that depend on the set of columns in the current RMP. The computational results reported

showed the effectiveness of the proposed CG algorithms for our applications.

In future work, we recommend that the cost of hypotheses be dependent on a higher-level variable.

For example, in the context of multi-person pose estimation, the cost of a person could be conditioned

on the action (the higher-level variable) being taken by the person, e.g., standing, sitting, dancing,

etc. Each action would, then, be associated with a different tree structure and cost terms. A similar

approach can be applied for multi-cell segmentation where the higher-level variable could correspond

to the cell species or cell orientation (with regards to rotation). The higher level variable can be a

latent variable and the corresponding learning problem attacked using a latent structured SVM (Yu

and Joachims, 2009).
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