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recherche du Québec – Nature et technologies.
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Abstract: Array-RQMC has been proposed as a way to effectively apply randomized quasi-Monte Carlo
(RQMC) when simulating a Markov chain over a large number of steps to estimate an expected cost or reward.
The method can be very effective when the state of the chain has low dimension. For pricing an Asian option
under an ordinary geometric Brownian motion model, for example, Array-RQMC can reduce the variance by
factors in the millions. In this paper, we show how to apply this method and we study its effectiveness in case
the underlying process has stochastic volatility. We show that Array-RQMC can also work very well for these
models, even if it requires RQMC points in larger dimension. We examine in particular the variance-gamma,
Heston, and Ornstein-Uhlenbeck stochastic volatility models, and we provide numerical results.

Acknowledgments: This work has been supported by a discovery grant from NSERC-Canada, a Canada
Research Chair, and a Grant from the IVADO Fundamental Research Program, to P. L’Ecuyer.
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1 Introduction

Quasi-Monte Carlo (QMC) and randomized QMC (RQMC) methods can improve efficiency significantly when
estimating an integral in a moderate number of dimensions, but their use for simulating Markov chains over
a large number of steps has been limited so far. The array-RQMC method, developed for that purpose, has
been shown to work well for some chains having a low-dimensional state. It simulates an array of n copies
of the Markov chain so that each chain follows its exact distribution, but the copies are not independent, and
the empirical distribution of the states at any given step of the chain is a “low-discrepancy” approximation
of the exact distribution. At each step, the n chains (or states) are matched one-to-one to a set of n RQMC
points whose dimension is the dimension of the state plus the number of uniform random numbers required
to advance the chain by one more step. The first coordinates of the points are used to match the states to the
points and the other coordinates provide the random numbers needed to determine the next state. When the
chains have a large-dimensional state, the dimension used for the match can be reduced via a mapping to a
lower-dimensional space. Then the matching is performed by sorting both the points and the chains. When the
dimension of the state exceeds 1, this matching is done via a multivariate sort. The main idea is to evolve the
array of chains in a way that from step to step, the empirical distribution of the states keeps its low discrepancy.
For further details on the methodology, sorting strategies, convergence analysis, applications, and empirical
results, we refer the reader to Lécot and Tuffin (2004); Demers, L’Ecuyer, and Tuffin (2005); L’Ecuyer, Lécot,
and Tuffin (2006); L’Ecuyer, Demers, and Tuffin (2007); L’Ecuyer, Lécot, and Tuffin (2008); El Haddad, Lécot,
and L’Ecuyer (2008); L’Ecuyer, Lécot, and L’Archevêque-Gaudet (2009); El Haddad, Lécot, L’Ecuyer, and
Nassif (2010); Dion and L’Ecuyer (2010); L’Ecuyer and Sanvido (2010); Gerber and Chopin (2015); L’Ecuyer,
Munger, Lécot, and Tuffin (2018), and the other references given there.

The aim of this paper is to examine how Array-RQMC can be applied for option pricing under a stochas-
tic volatility process such as the variance gamma, Heston, and Ornstein-Uhlenbeck models. We explain and
compare various implementation alternatives, and report empirical experiments to assess the (possible) gain in
efficiency and convergence rate. A second objective is for the WSC community to become better aware of this
method, which can have numerous other applications.

Array-RQMC has already been applied for pricing Asian options when the underlying process evolves as a
geometric Brownian motion (GBM) with fixed volatility L’Ecuyer et al. (2009, 2018). In that case, the state is
two-dimensional (it contains the current value of the GBM and its running average) and a single random number
is needed at each step, so the required RQMC points are three-dimensional. In their experiments, L’Ecuyer et al.
(2018) observed an empirical variance of the average payoff that decreased approximately as O(n−2) for Array-
RQMC, in a range of reasonable values of n, compared with O(n−1) for independent random points (Monte
Carlo). For n = 220 (about one million chains), the variance ratio between Monte Carlo and Array-RQMC was
around 2 to 4 millions.

In view of this spectacular success, one wonders how well the method would perform when the underlying
process is more involved, e.g., when it has stochastic volatility. This is relevant because stochastic volatility
models are more realistic than the plain GBM model (Madan and Seneta, 1990; Madan, Carr, and Chang,
1998). Success is not guaranteed because the dimension of the required RQMC points is larger. For the Heston
model, for example, the RQMC points must be five-dimensional instead of three-dimensional, because the state
has three dimensions and we need two uniform random numbers at each step. It is unclear a priori if there will
be any significant variance reduction for reasonable values of n.

The remainder is organized as follows. In Section 2, we state our general Markov chain model and provide
background on the Array-RQMC algorithm, including matching and sorting strategies. In Section 3, we describe
our experimental setting, and the types of RQMC point sets that we consider. Then we study the application of
Array-RQMC under the variance-gamma model in Section 4, the Heston model in Section 5, and the Ornstein-
Uhlenbeck model in Section 6. We end with a conclusion.
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2 Background: Markov chain model, RQMC, and Array-RQMC

The option pricing models considered in this paper fit the following framework, which we use to summarize the
Array-RQMC algorithm. We have a discrete-time Markov chain {X j, j ≥ 0} defined by a stochastic recurrence
over a measurable state space X :

X0 = x0, and X j = ϕ j(X j−1,U j), j = 1, . . . ,τ. (1)

where x0 ∈X is a deterministic initial state, U1,U2, ... are independent random vectors uniformly distributed
over the d-dimensional unit cube (0,1)d , the functions ϕ j : X × (0,1)d →X are measurable, and τ is a fixed
positive integer (the time horizon). The goal is:

Estimate µy = E[Y ], where Y = g(Xτ)

and g : X → R is a cost (or reward) function. Here we have a cost only at the last step but in general there can
be a cost function for each step and Y would be the sum of these costs (L’Ecuyer et al., 2008).

Crude Monte Carlo estimates µ by the average Ȳn = 1
n ∑

n−1
i=0 Yi, where Y0, . . . ,Yn−1 are n independent re-

alizations of Y . One has E[Ȳn] = µy and Var[Ȳn] = Var[Y ]/n, assuming that E[Y 2] = σ2
y < ∞. Note that the

simulation of each realization of Y requires a vector V = (U1, . . . ,Uτ) of dτ independent uniform random vari-
ables over (0,1), and crude Monte Carlo produces n independent replicates of this random vector.

Randomized quasi-Monte Carlo (RQMC) replaces the n independent realizations of V by n dependent re-
alizations, which form an RQMC point set in dτ dimensions. That is, each Vi has the uniform distribution
over [0,1)dτ , and the point set Pn = {V0, ...,Vn−1} covers [0,1)dτ more evenly than typical independent random
points. With RQMC, Ȳn remains an unbiased estimator of µ , but its variance can be much smaller, and can
converge faster than O(1/n) under certain conditions. For more details, see Dick and Pillichshammer (2010);
L’Ecuyer and Lemieux (2000); L’Ecuyer (2009, 2018), for example. However, when dτ is large, standard
RQMC typically becomes ineffective, in the sense that it does not bring much variance reduction unless the
problem has special structure.

Array-RQMC is an alternative approach developed specifically for Markov chains (L’Ecuyer et al., 2006,
2008, 2018). To explain how it works, let us first suppose for simplicity (we will relax it later) that there is a
mapping h : X →R, that assigns to each state a value (or score) which summarizes in a single real number the
most important information that we should retain from that state (like the value function in stochastic dynamic
programming). This h is called the sorting function. The algorithm simulates n (dependent) realizations of the
chain “in parallel”. Let Xi, j denote the state of chain i at step j, for i = 0, . . . ,n−1 and j = 0, . . . ,τ . At step j,
the n chains are sorted by increasing order of their values of h(Xi, j−1), the n points of an RQMC point set in
d + 1 dimensions are sorted by their first coordinate, and each point is matched to the chain having the same
position in this ordering. Each chain i is then moved forward by one step, from state Xi, j−1 to state Xi, j, using
the d other coordinates of its assigned RQMC point. Then we move on to the next step, the chains are sorted
again, and so on.

The sorting function can in fact be more general and have the form h : X →Rc for some small integer c≥ 1.
Then the mapping between the chains and the points must be realized in a c-dimensional space, i.e., via some
kind of c-dimensional multivariate sort. The RQMC points then have c+d coordinates, and are sorted with the
same c-dimensional multivariate sort based on their first c coordinates, and mapped to the corresponding chains.
The other d coordinates are used to move the chains ahead by one step. In practice, the first c coordinates of
the RQMC points do not have to be randomized at each step; they are usually fixed and the points are already
sorted in the correct order based on these coordinates.

Some multivariate sorts are described and compared by El Haddad et al. (2008); L’Ecuyer et al. (2009);
L’Ecuyer (2018). For example, in a multivariate batch sort, we select positive integers n1, . . . ,nc such that
n = n1 . . .nc. The states are first sorted by their first coordinate in n1 packets of size n/n1, then each packet
is sorted by the second coordinate into n2 packets of size n/n1n2, and so on. The RQMC points are sorted in
exactly the same way, based on their first c coordinates. In the multivariate split sort, we assume that n = 2e
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and we take n1 = n2 = · · ·= ne = 2. That is, we first split the points in 2 packets based on the first coordinate,
then split each packet in two by the second coordinate, and so on. If e > c, after c splits we get back to the first
coordinate and continue.

Examples of heuristic sorting functions h : X → R are given in (L’Ecuyer et al., 2008, 2018). Wächter and
Keller (2008) and Gerber and Chopin (2015) suggested to first map the c-dimensional states to [0,1]c and then
use a space filling curve in [0,1]c to map them to [0,1], which provides a total order. Gerber and Chopin (2015)
proposed to map the states to [0,1]c via a component-wise rescaled logistic transformation, then order them
with a Hilbert space-filling curve. See L’Ecuyer et al. (2018) for a more detailed discussion. Under smoothness
conditions, they proved that the resulting unbiased Array-RQMC estimator has o(1/n) variance, which beats
the O(1/n) Monte Carlo rate.

Algorithm 1 states the Array-RQMC procedure in our setting. Indentation delimits the scope of the for
loops. For any choice of sorting function h, the average µ̂arqmc,n = Ȳn returned by this algorithm is always
an unbiased estimator of µ . An unbiased estimator of Var[Ȳn] can be obtained by making m independent
realizations of µ̂arqmc,n and computing their empirical variance.

Algorithm 1 : Array-RQMC Algorithm for Our Setting
for i = 0, . . . ,n−1 do Xi,0← x0;
for j = 1,2, . . . ,τ do

Sorting: Compute an appropriate permutation π j of the n chains, based on
the h(Xi, j−1), to match the n states with the RQMC points;

Randomize afresh the RQMC points {U0, j, . . . ,Un−1, j};
for i = 0, . . . ,n−1 do Xi, j = ϕ j(Xπ j(i), j−1,Ui, j);

return the average µ̂arqmc,n = Ȳn = (1/n)∑
n−1
i=0 g(Xi,τ ) as an estimate of µy.

3 Experimental setting

For all the option pricing examples in this paper, we have an asset price that evolves as a stochastic process
{S(t), t ≥ 0} and a payoff that depends on the values of this process at fixed observation times 0 = t0 < t1 <

t2 < ... < tc = T . More specifically, for given constants r (the interest rate) and K (the strike price), we consider
an European option whose payoff is

Y = Ye = g(S(T )) = e−rT max(S(T )−K,0)

and a discretely-observed Asian option whose payoff is

Y = Ya = g(S̄) = e−rT max(S̄−K,0)

where S̄ = (1/c)∑
c
j=1 S(t j). In this second case, the running average S̄ j = (1/ j)∑

j
`=1 S(t`) must be kept in the

state of the Markov chain. The information required for the evolution of S(t) depends on the model and is given
for each model in forthcoming sections. It must be maintained in the state. For the case where S is a plain GBM,
the state of the Markov chain at step j can be taken as X j = (S(t j), S̄ j), a two-dimensional state, as was done in
L’Ecuyer et al. (2009) and L’Ecuyer et al. (2018).

In our examples, the states are always multidimensional. To match them with the RQMC points, we will
use a split sort, a batch sort, and a Hilbert-curve sort, and compare these alternatives. The Hilbert sort requires a
transformation of the `-dimensional states to the unit hypercube [0,1]`. For this, we use a logistic transformation
defined by ψ(x) = (ψ1(x1), ...,ψ`(x`)) ∈ [0,1]` for all x = (x1, . . . ,x`) ∈X , where

ψ j(x j) =

[
1+ exp

(
−

x j− x j

x̄ j− x j

)]−1

, j = 1, ..., `, (2)

with constants x̄ j = µ j +2σ j and x j = µ j−2σ j in which µ j and σ j are estimates of the mean and the variance
of the distribution of the jth coordinate of the state. In Section 4, we will also consider just taking a linear
combination of the two coordinates, to map a two-dimensional state to one dimension.
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For RQMC, we consider

(1) Independent points, which corresponds to crude Monte Carlo (MC);

(2) Stratified sampling over the unit hypercube (Stratif);

(3) Sobol’ points with a random linear matrix scrambling and a digital random shift (Sobol’+LMS);

(4) Sobol’ points with nested uniform scrambling (Sobol’+NUS);

(5) A rank-1 lattice rule with a random shift modulo 1 followed by a baker’s transformation (Lattice+baker).

The first two are not really RQMC points, but we use them for comparison. For stratified sampling, we divide
the unit hypercube into n = k`+d congruent subcubes for some integer k > 1, and we draw one point randomly
in each subcube. For a given target n, we take k as the integer for which k`+d is closest to this target n. For
the Sobol’ points, we took the default direction numbers in SSJ, which are from Lemieux, Cieslak, and Luttmer
(2004). The LMS and NUS randomizations are explained in Owen (2003) and L’Ecuyer (2009). For the rank-1
lattice rules, we used generating vectors found by Lattice Builder (L’Ecuyer and Munger, 2016), using the P2
criterion with order-dependent weights (0.8)k for projections of order k.

For each example, each sorting method, each type of point set, and each selected value of n, we ran sim-
ulations to estimate Var[Ȳn]. For the stratified and RQMC points, this variance was estimated by replicating
the RQMC scheme m = 100 times independently. For a fair comparison with the MC variance σ2

y = Var[Y ],
for these point sets we used the variance per run, defined as nVar[Ȳn]. We define the variance reduction fac-
tor (VRF) for a given method compared with MC by σ2

y /(nVar[Ȳn]). In each case, we fitted a linear regression
model for the variance per run as a function of n, in log-log scale. We denote by β̂ the regression slope estimated
by this linear model.

In the remaining sections, we explain how the process {S(t), t ≥ 0} is defined in each case, how it is
simulated. We show how we can apply Array-RQMC and we provide numerical results. All the experiments
were done in Java using the SSJ library L’Ecuyer and Buist (2005); L’Ecuyer (2016).

4 Option pricing under a variance-gamma process

The variance-gamma (VG) model was proposed for option pricing by Madan and Seneta (1990) and Madan
et al. (1998), and further studied by Fu, Madan, and Wang (1998); Avramidis, L’Ecuyer, and Tremblay (2003);
Avramidis and L’Ecuyer (2006), for example. A VG process is essentially a Brownian process for which the
time clock runs at random and time-varying speed driven by a gamma process. The VG process with parameters
(θ ,σ2,ν) is defined as Y = {Y (t) = X(G(t)), t ≥ 0} where X = {X(t), t ≥ 0} is a Brownian motion with drift
and variance parameters θ and σ2, and G= {G(t), t ≥ 0} is a gamma process with drift and volatility parameters
1 and ν , independent of X . This means that X(0) = 0, G(0) = 0, both B and G have independent increments,
and for all t ≥ 0 and δ > 0, we have X(t + δ )−X(t) ∼ Normal(δθ ,δσ2), a normal random variable with
mean δθ and variance δσ2, and G(t + δ )−G(t) ∼ Gamma(δ/ν ,ν), a gamma random variable with mean δ

and variance δν . The gamma process is always non-decreasing, which ensures that the time clock never goes
backward. In the VG model for option pricing, the asset value follows the geometric variance-gamma (GVG)
process S = {S(t), t ≥ 0} defined by

S(t) = S(0)exp [(r+ω)t +X(G(t))] ,

where ω = ln(1−θν−σ2ν/2)/ν .

To generate realizations of S̄ for this process, we must generate S(t1), . . . ,S(tτ), and there are many ways of
doing this. With Array-RQMC, we want to do it via a Markov chain with a low-dimensional state. The running
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average S̄ j must be part of the state, as well as sufficient information to generate the future of the path. A simple
procedure for generating the path is to sample sequentially G(t1), then Y (t1) = X(G(t1)) conditional on G(t1),
then G(t2) conditional on G(t1), then Y (t2) = X(G(t2)) conditional on (G(t1),G(t2),Y (t1)), and so on. We can
then compute any S(t j) directly from Y (t j).

It is convenient to view the sampling of (G(t j), Y (t j)) conditional on (G(t j−1), Y (t j−1)) as one step (step j)
of the Markov chain. The state of the chain at step j− 1 can be taken as X j−1 = (G(t j−1), Y (t j−1), S̄ j−1), so
we have a three-dimensional state, and we need two independent uniform random numbers at each step, one
to generate G(t j) and the other to generate Y (t j) = X(G(t j)) given (G(t j−1),G(t j),Y (t j−1)), both by inversion.
Applying Array-RQMC with this setting would require a five-dimensional RQMC point set at each step, unless
we can map the state to a lower-dimensional representation.

However, a key observation here is that the distribution of the increment ∆Yj = Y (t j)−Y (t j−1) depends
only on the increment ∆ j = G(t j)−G(t j−1) and not on G(t j−1). This means that there is no need to memorize
the latter in the state! Thus, we can define the state at step j as the two-dimensional vector X j = (Y (t j), S̄ j),
or equivalently X j = (S(t j), S̄ j), and apply Array-RQMC with a four-dimensional RQMC point set if we use
a two-dimensional sort for the states, and a three-dimensional RQMC point set if we map the states to a one-
dimensional representation (using a Hilbert curve or a linear combination of the coordinates, for example). At
step j, we generate ∆ j ∼ Gamma((t j− t j−1)/ν ,ν) by inversion using a uniform random variate U j,1, i.e., via
∆ j = F−1

j (U j,1) where Fj is the cdf of the Gamma((t j − t j−1)/ν ,ν) distribution, then ∆Yj by inversion from
the normal distribution with mean θ∆ j and variance σ2∆ j, using a uniform random variate U j,2. Algorithm 2
summarizes this procedure. The symbol Φ denotes the standard normal cdf. We have

X j = (Y (t j), S̄ j) = ϕ j(Y (t j−1), S̄ j−1,U j,1,U j,2)

where ϕ j is defined by the algorithm. The payoff function is g(Xc) = S̄c = S̄.

Algorithm 2 Computing X j = (Y (t j), S̄ j) given (Y (t j−1), S̄ j−1), for 1≤ j ≤ τ .
Generate U j,1,U j,2 ∼ Uniform(0,1), independent;
∆ j = F−1

j (U j,1)∼ Gamma((t j− t j−1)/ν ,ν);
Z j = Φ−1(U j,2)∼ Normal(0,1);
Y (t j)← Y (t j−1)+θ∆ j +σ

√
∆ jZ j;

S(t j)← S(0)exp[(r+ω)t j +Y (t j)];
S̄ j = [( j−1)S̄ j−1 +S(t j)]/ j;

With this two-dimensional state representation, if we use a split sort or batch, we need four-dimensional
RQMC points. With the Hilbert-curve sort, we only need three-dimensional RQMC points. We also tried a
simple linear mapping h j : R2→ R defined by h j(S(t j), S̄ j) = b jS̄ j +(1−b j)S(t j) where b j = ( j−1)/(τ−1).
At each step j, this h j maps the state X j to a real number h j(X j), and we sort the states by increasing order of
their value of h j(X j). It uses a convex linear combination of S(t j) and S̄ j whose coefficients depend on j. The
rationale for the (heuristic) choice of b j is that in the late steps (when j is near τ), the current average S̄ j is more
important (has more predictive power for the final payoff) than the current S(t j), whereas in the early steps, the
opposite is true.

We made an experiment with the following model parameters, taken from Avramidis and L’Ecuyer (2006):
θ = −0.1436, σ = 0.12136, ν = 0.3, r = 0.1, T = 240/365, τ = 10, t j = 24 j/365 for j = 1, . . . ,τ , K = 100,
and S(0) = 100. The time unit is one year, the horizon is 240 days, and there is an observation time every 24
days. The exact value of the expected payoff for the Asian option is µ ≈ 8.36, and the MC variance per run is
σ2

y = Var[Ya]≈ 59.40.

Table 1 summarizes the results. For each selected sorting method and point set, we report the estimated
slope β̂ for the linear regression model of log2 Var[µ̂arqmc

n ] as a function of log2(n) obtained from m = 100
independent replications with n = 2e for e = 16, ...,20, as well as the variance reduction factors (VRF) observed
for n = 220 (about one million samples), denoted VRF20. For MC, the exact slope (or convergence rate) β is
known to be β =−1. We see from the table that Array-RQMC provides much better convergence rates (at least
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Table 1: Regression slopes β̂ for log2 Var[µ̂arqmc
n ] vs log2(n), and VRF compared with MC for n = 220, denoted VRF20, for

the Asian option under the VG model.

Sort Point sets β̂ VRF20

Split sort

MC -1 1
Stratif -1.17 42

Sobol’+LMS -1.77 91550
Sobol’+NUS -1.80 106965

Lattice+baker -1.83 32812

Batch sort
(n1 = n2)

MC -1 1
Stratif -1 42

Sobol’+LMS -1.71 100104
Sobol’+NUS -1.54 90168

Lattice+baker -1.95 58737

Hilbert sort
(with logistic map)

MC -1 1
Stratif -1.43 204

Sobol’+LMS -1.59 68297
Sobol’+NUS -1.67 79869

Lattice+baker -1.55 45854

Linear map sort

MC -1 1
Stratif -1.35 192

Sobol’+LMS -1.64 115216
Sobol’+NUS -1.75 166541

Lattice+baker -1.72 68739

empirically), and reduces the variance by very large factors for n = 220. Interestingly, the largest factors are
obtained with the Sobol’ points combined with our heuristic linear map sort, although the other sorts are also
doing quite well. Figure 1 shows plots of log2 Var[µ̂arqmc

n ] vs log2(n) for selected sorts. It gives an idea of how
well the linear model fits in each case.
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Figure 1: Plots of empirical log2 Var[µ̂arqmc
n ] vs log2(n) for various sorts and point sets, based on m = 100 independent

replications. Left to right: split sort, batch sort, Hilbert sort, linear map sort.

There are other ways of defining the steps of the Markov chain for this example. For example, one can
have one step for each Uniform(0,1) random number that is generated. This would double the number of steps,
from c to 2c. We generate ∆1 in the first step, Y (t1) in the second step, ∆2 in the third step, Y (t2) in the fourth
step, and so on. Generating a single uniform per step instead of two reduces by 1 the dimension of the required
RQMC point set. At odd step numbers, when we generate a ∆ j, the state can still be taken as (Y (t j−1), S̄ j−1)

and we only need three-dimensional RQMC points, so we save one dimension. But at even step numbers, we
need ∆ j to generate Y (t j), so we need a three-dimensional state (Y (t j−1),∆ j, S̄ j−1) and four-dimensional RQMC
points. We tried this approach and it did not perform better than the one described earlier, with two uniforms
per step. It is also more complicated to implement.
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Avramidis et al. (2003); Avramidis and L’Ecuyer (2006) describe other ways of simulating the VG process,
for instance Brownian and gamma bridge sampling (BGBS) and difference of gammas bridge sampling (DGBS).
BGBS generates first G(tc) then Y (tc), then conditional on this it generates G(tc/2) then Y (tc/2) (assuming that c
is even), and so on. DGBS writes the VG process Y as a difference of two independent gamma processes
and simulate both using the bridge idea just described: first generate the values of the two gamma processes
at tc, then at tc/2, etc. When using classical RQMC, these sampling methods brings an important variance
reduction compared with the sequential one we use here for our Markov chain. Combining them with Array-
RQMC is impractical, however, because the dimension of the state (the number of values that we need to
remember and use for the sorting) grows up to about c, which is much to high, and the implementation is
much more complicated. Also, these methods are effective when c is a power or 2 and t j = jT/c, because then
the conditional sampling for the gamma process is always from a symmetrical beta distribution and there is
an efficient inversion method for that L’Ecuyer and Simard (2006), but they are less effective otherwise. For
comparison, we made an experiment using classical RQMC with these methods for the same numerical example
as given here, but with c = 8 and c = 16 instead of c = 10, to have powers of 2, and t j = jT/c. For Sobol’+LMS
with n = 220, for d = 16, the values of VRF20 for BGSS, BGBS, and DGBS were 85, 895, 550, respectively.
For d = 8, these values were 183, 1258, and 3405. The VRF20 values for Sobol’+LMS in table 1 and are much
larger that these, showing that Array-RQMC can provide much larger variance reductions.

For this VG model, we do not report results on the European option with Array-RQMC, because the Markov
chain would have only one step: We can generate directly G(tc) and then Y (tc). For this, ordinary RQMC works
well enough (L’Ecuyer, 2018).

5 Option pricing under the Heston volatility model

The Heston volatility model is defined by the following two-dimensional stochastic differential equation:

dS(t) = rS(t)dt +V (t)1/2S(t)dB1(t),

dV (t) = λ (σ2−V (t))dt +ξV (t)1/2dB2(t),

for t ≥ 0, where (B1,B2) is a pair of standard Brownian motions with correlation ρ between them, r is the risk-
free rate, σ2 is the long-term average variance parameter, λ is the rate of return to the mean for the variance,
and ξ is a volatility parameter for the variance. The processes S = {S(t), t ≥ 0} and V = {V (t), t ≥ 0} represent
the asset price and the volatility, respectively, as a function of time. We will examine how to estimate the price
of European and Asian options with Array-RQMC under this model. Since we do not know how to generate
(S(t+δ ),V (t+δ )) exactly from its conditional distribution given (S(t),V (t)) in this case, we have to discretize
the time. For this, we use the Euler method with τ time steps of length δ = T/τ to generate a skeleton of the
process at times w j = jδ for j = 1, . . . ,τ , over [0,T ]. For the Asian option, we assume for simplicity that the
observation times t1, . . . , tc used for the payoff are all multiples of δ , so each of them is equal to some w j.

Following Giles (2008), to reduce the bias due to the discretization, we make the change of variable
W (t)= eλ t(V (t)−σ2), with dW (t)= eλ tξV (t)1/2dB2(t), and apply the Euler method to (S,W ) instead of (S,V ).
The Euler approximation scheme with step size δ applied to W gives

W̃ ( jδ ) = W̃ (( j−1)δ )+ eλ ( j−1)δ
ξ (Ṽ (( j−1)δ )δ )1/2Z j,2.

Rewriting it in terms of V by using the reverse identity V (t) = σ2 + e−λ tW (t), and after some manipulations,
we obtain the following discrete-time stochastic recurrence, which we will simulate by Array-RQMC:

Ṽ ( jδ ) = max
[
0, σ

2 + e−λδ

(
Ṽ (( j−1)δ )−σ

2 +ξ (Ṽ (( j−1)δ )δ )1/2Z j,2

)]
,

S̃( jδ ) = (1+ rδ )S̃(( j−1)δ )+(Ṽ (( j−1)δ )δ )1/2S̃(( j−1)δ )Z j,1,

where (Z j,1,Z j,2) is a pair of standard normals with correlation ρ . We generate this pair from a pair (U j,1,U j,2)

of independent Uniform(0,1) variables via Z j,1 = Φ−1(U j,1) and Z j,2 = ρZ j,1 +
√

1−ρ2 Φ−1(U j,2). We then
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approximate each S( jδ ) by S̃( jδ ). The running average S̄ j at step j must be the average of the S(tk) at the
observation times tk ≤ w j = jδ . If we denote N j = ∑

c
k=1 I[tk ≤ jδ ], we have S̄ j = (1/N j)∑

N j
k=1 S(tk), which

we approximate by S̄ j = (1/N j)∑
N j
k=1 S̃(tk). Here, the state of the chain is X j = (S̃( jδ ),Ṽ ( jδ )) when pricing

the European option and X j = (S̃( jδ ),Ṽ ( jδ ), S̄ j) when pricing the Asian option. And two uniform random
numbers, (U j,1,U j,2), are required at each step of the chain. We thus need four-dimensional RQMC point sets
for the European option and five-dimensional RQMC point sets for the Asian option, if we do not map the state
to a lower-dimensional representation. If we map the state to one dimension, as in the Hilbert curve sort, then
we only need three-dimensional RQMC points for both option types.

We tried an alternative Markov chain definition in which the chain advances by one step each time a uniform
random number is used, as in the VG example, to reduce the dimension of the RQMC points, but this gave no
improvement.

We ran experiments with T = 1 (one year), K = 100, S(0) = 100, V (0) = 0.04, r = 0.05, σ = 0.2, λ = 5,
ξ = 0.25, ρ = −0.5, and c = τ = 16. This gives δ = 1/16, so the time discretization for Euler is very coarse,
but a smaller δ gives similar results in terms of variance reduction by Array-RQMC. For example, we ran
experiments with τ = 256 instead of τ = 16 and the VRF20’s had approximately the same sizes. Table 2 reports
the estimated slopes β̂ and VRF20, as in Table 1. Again, we observe large variance reductions and improved
convergence rates from Array-RQMC. The best results are obtained with the split sort. Figure 2 shows plots of
log2 Var[µ̂arqmc

n ] vs log2(n) for selected sorts.

Table 2: Regression slopes β̂ for log2 Var[µ̂arqmc
n ] vs log2(n), and VRF compared with MC for n = 220, denoted VRF20, for

the Asian option under the Heston model.

European Asian

Sort Point sets β̂ VRF20 β̂ VRF20

Split sort

MC -1 1 -1 1
Stratif -1.26 103 -1.29 38

Sobol’+LMS -1.59 44188 -1.48 6684
Sobol’+NUS -1.46 30616 -1.46 5755

Lattice+baker -1.50 26772 -1.55 5140

Batch sort

MC -1 1 -1 1
Stratif -1.24 91 -1.25 33

Sobol’+LMS -1.66 22873 -1.23 815
Sobol’+NUS -1.72 30832 -1.38 1022

Lattice+baker -1.75 12562 -1.22 762

Hilbert sort
(with logistic map)

MC -1 1 -1 1
Stratif -1.26 43 -1.05 29

Sobol’+LMS -1.14 368 -0.87 39
Sobol’+NUS -1.06 277 -1.11 49

Lattice+baker -1.12 250 -0.89 42

6 Option pricing under the Ornstein-Uhlenbeck volatility model

The Ornstein-Uhlenbeck volatility model is defined by the following stochastic differential equations:

dS(t) = rS(t)dt + eV (t)S(t)dB1(t),

dV (t) = α(b−V (t))dt +σdB2(t),

for t ≥ 0, where (B1,B2) is a pair of standard Brownian motions with correlation ρ between them, r is the
risk-free rate, b is the long-term average volatility, α is the rate of return to the average volatility, and is σ a
variance parameter for the volatility process. The processes S = {S(t), t ≥ 0} and V = {V (t), t ≥ 0} represent
the asset price and the volatility process. We simulate these processes using Euler’s method with τ time steps
of length δ , as we did for the Heston model, but without a change of variable. The discrete-time approximation
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of the stochastic recurrence is

S̃( jδ ) = S̃(( j−1)δ )+ rδ S̃(( j−1)δ )+ exp
[
Ṽ (( j−1)δ )

]√
δZ j,1,

Ṽ ( jδ ) = αδb+(1−αδ )Ṽ (( j−1)δ )+σ
√

δZ j,2,

where (Z j,1,Z j,2) is a pair of standard normals with correlation ρ . To generate this pair, we generate independent
Uniform(0,1) variables (U j,1,U j,2), and put Z j,1 =Φ−1(U j,1) and Z j,2 = ρZ j,1+

√
1−ρ2 Φ−1(U j,2). For either

the European or Asian option, the state of the Markov chain and the dimension of the RQMC points are the
same as for the Heston model.

We ran a numerical experiment with T = 1, K = 100, S(0) = 100, V (0) = 0.04, r = 0.05, b = 0.4, α = 5,
σ = 0.2, ρ =−0.5, and c = τ = 16 (so δ = 1/16). Table 3 reports the estimated regression slopes β̂ and VRF2.
With τ = 256 instead of τ = 16, the VRF20’s have about the same sizes.
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Figure 2: Plots of empirical log2 Var[µ̂arqmc
n ] vs log2(n) for various sorts and point sets, based on m = 100 independent

replications, for the Heston model. Asian option (above) and European option (below), with split sort (left), batch sort
(middle), and Hilbert sort (right).

Conclusion

We have shown how Array-RQMC can be applied for pricing options under stochastic volatility models, and
gave detailed examples with the VG, Heston, and Ornstein-Uhlenbeck models. With the models, the method
requires higher-dimensional RQMC points than with the simpler GBM model studied previously, and when
time has to be discretized to apply Euler’s method, the number of steps of the Markov chain is much larger. For
these reasons, it was not clear a priori if Array-RQMC would be effective. Our empirical results show that it
brings very significant variance reductions compared with crude Monte Carlo.
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Table 3: Regression slopes β̂ for log2 Var[µ̂arqmc
n ] vs log2(n), and VRF compared with MC for n = 220, denoted VRF20, for

the European and Asian options under the Ornstein-Uhlenbeck model.

European Asian

Sort Point sets β̂ VRF20 β̂ VRF20

Batch sort

MC -1 1 -1 1
Stratif -1.28 111 -1.23 29.

Sobol’+LMS -1.35 61516 -1.22 4558
Sobol’+NUS -1.31 56235 -1.22 5789

Lattice+baker -1.37 61318 -1.20 5511

Hilbert sort (with
logistic map)

MC -1 1 -1 1
Stratif -1.40 440 -1.37 250

Sobol’+LMS -1.52 194895 -1.40 41100
Sobol’+NUS -1.68 191516 -1.37 39861

Lattice+baker -1.59 165351 -1.47 37185
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