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légales associées à ces droits. Ainsi, les utilisateurs:
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tivité à but lucratif ou pour un gain commercial;

• Peuvent distribuer gratuitement l’URL identifiant la publication.
Si vous pensez que ce document enfreint le droit d’auteur, contactez-
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The authors are exclusively responsible for the content of their research
papers published in the series Les Cahiers du GERAD. Copyright and
moral rights for the publications are retained by the authors and the users
must commit themselves to recognize and abide the legal requirements
associated with these rights. Thus, users:
• May download and print one copy of any publication from the

public portal for the purpose of private study or research;

• May not further distribute the material or use it for any profit-
making activity or commercial gain;

• May freely distribute the URL identifying the publication.
If you believe that this document breaches copyright please contact us
providing details, and we will remove access to the work immediately
and investigate your claim.



ii G–2019–29 Les Cahiers du GERAD

Abstract: This paper studies the Dynamic Facility Location Problem with Modular Capacities (DFLPM).
We propose a linear relaxation based heuristic (LRH) and an evolutionary heuristic that hybridizes a genetic
algorithm with a variable neighborhood descent (GA+VND) to solve it. The problem is a generalization
of several facility location problems and consists in determining locations and sizes of facilities to minimize
location and demand allocation costs with decisions taken periodically over a planning horizon. The DFLPM
is solved using two heuristics tailored for different network configurations and cost structures. Experiments
are reported comparing them to a state-of-the-art mixed integer programming (MIP) formulation for the
problem from the literature solved by CPLEX. For the existing benchmark instances, the solution generated
by LRH improved by VND finds solutions within 0.03% of the optimal ones in less than half of the computation
time of the state-of-the-art method from the literature. In order to yield a better representation of real-life
scenarios, we introduce a new set of instances for which GA+VND proved to be an effective approach to
solve the problem, outperforming both CPLEX and LRH methods.

Keywords: Location, modular capacity, hybrid metaheuristic, genetic algorithm, variable neighborhood
descent
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1 Introduction

Facility location is an important strategic decision which impacts the whole supply chain. Facilities have

to be installed to support the operation of a distribution network in order to meet customer demands. To

efficiently determine where to locate facilities, decision makers should balance allocation and location costs,

usually associated with transporting goods towards demand points and construction and operating costs of

facilities, respectively.

Facility Location Problems (FLPs) cover a well-established body of research with a wide range of applica-

tions in many economic sectors (see Arabani and Farahani [4], Klose and Drexl [27] and Owen and Daskin [34]

for reviews). The common decisions related to FLPs are where to locate facilities among the potential sites

where they could be installed, and how to allocate demands to them. Furthermore, other properties can be

considered, e.g., capacitated FLPs consider a limit on the maximum demand they can satisfy.

A variant of the problem allows capacity dimensioning at facilities [38, 40]. In this case, one also decides

what is the capacity installed at an open facility. Capacity levels are commonly defined in discrete intervals,

like in a staircase function [15]. Models that consider such feature represent capacities as modular struc-

tures [3]. A module is a block of capacity associated with an installation cost. The sum of the capacities of

all modules installed on a site defines the total capacity of that facility. Modular facilities increase the flexi-

bility of the network substantially when compared to centralized production in large facilities [8]. Dynamic,

or multi-period, FLPs consider that costs or demands change over the planning horizon [10, 13], reviewing

facility location decisions periodically in order to adapt the distribution network to the new parameters,

improving demand satisfaction [22, 32] and decreasing costs [35]. Thus, for dynamic problems one also has

to determine when to open, close or move a facility.

These features give rise to the Dynamic Facility Location Problem with Modular Capacities

(DFLPM), as introduced by Jena et al. [23, 24]. The authors modelled the problem as a mixed-integer

programming (MIP) formulation allowing several ways to adjust facility capacities within a planning horizon

by opening and closing modules. They use a detailed cost structure based on a matrix describing the costs

for capacity changes between the pairs of modules. The model was designed inspired by an application in

the forestry industry [24].

Capacitated location problems and their variants belong to the class of NP-hard problems [12], which

means there is no known polynomial time algorithm to solve them to optimality. Several heuristics have been

developed to solve them. Recent and relevant ones are reviewed next. An et al. [2]

present relax-and-round heuristics. Arya et al. [6] and Chudak and Williamson [11] adapt local search

heuristics for different versions of such problem. The heuristic of Zhang et al. [44] allows to simulteneously

exchange multiple facilities in order to improve solutions. Lagrangean heuristics are used to find bounds

in Jena et al. [25] to a capacitated, dynamic and multi-commodity FLP, and in Rafie-Majd et al. [36] to

a multi-level inventory-location-routing problem. Lee and Dong [31] combine Lagrangean relaxation and

Benders decomposition to create a cross decomposition technique. Several metaheuristics were also pro-

posed to solve FLPs. Arostegui et al. [5] implement and compare a tabu search, a simulated annealing and

a genetic algorithm (GA) to solve different FLPs. Basu et al. [7] review other heuristics such as particle

swarm optimization and scatter search. Greedy Randomized Adaptive Search Procedure (GRASP) [14] and

variable neighborhood search (VNS) [42] are also proposed in literature. The number of published methods

is an indication that the algorithm performance is situational, thus the choice of the most appropriate one

depends on the characteristics of the problem. When one procedure does not provide efficient solutions for

specific cases, authors exploit the hybridization of methods. Wollenweber [42] hybridizes a linear relaxation

with a VNS with several local searches to improve the solution. Fernandes et al. [18] use a similar structure

but with a GA to diversify the solutions.
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In this paper, we consider the DFLPM as presented in Jena et al. [23] and develop a linear relaxation based

heuristic (LRH) and an evolutionary algorithm as alternative methods to the state-of-the-art MIP to solve

the problem. The first heuristic generates a feasible solution for the problem from the linear relaxation of the

MIP formulation. The second algorithm hybridizes a GA structure with periodical applications of a variable

neighborhood descent (VND) applied to solutions selected from the GA population. The neighborhoods

explored within our VND are designed by extending successful local searches applied to simpler FLPs and

constitute another contribution of this work. The performance of all local searches are tested by performing

experiments with combinations of them for randomly generated solutions. We show that the use of all local

searches defined in a VND framework is very effective for this problem. We solve benchmark instances using

LRH and compare it to the state-of-the-art method from the literature. The instances are then adapted to

better represent facility location costs in real-life scenarios. Finally, we show that our GA+VND is better

than the other approaches for these new instances.

This paper is organized as follows. In Section 2 the problem is described and detailed by presenting

its mathematical model. Section 3 introduces the linear relaxation heuristic and how a solution generated

by the heuristics is evaluated. In Section 4 we describe the VND method used in this work. The hybrid

evolutionary heuristic is described in Section 5. Section 6 presents the experiments to tune the algorithm and

the comparison against the exact method from the literature. Finally, our conclusions are given in Section 7.

2 Problem description and mathematical model

The DFLPM is a discrete network location problem [16] derived from median problems. This means that

demands exist and facilities should be located on a network of discrete nodes and arcs. The discrete points

where facilities can be located are called candidates [37]. The problem can also be classified as a location-

allocation problem, in which customers can be served by multiple facilities [33]. Facilities have capacity

constraints and are located on a single stage of the network [27, 33]. Capacities can be dimensioned from

a domain defined in discrete points, also called modules. Capacity expansions are made via a finite set of

projects, and modules are represented as capacity blocks [23]. The problem is also a dynamic, or multi-period,

location problem, where decisions are made in discrete periods [30, 34].

Let graph G = (V,A) represent the network where V is the node set and A is the arc set. The set I ⊂ V
represents the customers and J ⊂ V represents the candidates. Directed arcs represent the links between

candidate and customer nodes. Let L be the maximum number of modules that can be installed in j ∈ J ,

and L = {0, . . . , L} be the set of these modules. A facility j is said to be operating with module l when

all modules up to l are installed in j. The set T = {1, . . . , T} represents the periods of a planning horizon

when location decisions are made. Finally, consider that the beginning of the time interval represented by

the period t+ 1 corresponds to the end of the time interval represented by the period t.

The problem is composed of the following parameters. Customer i has a demand dti in period t. The

unit cost to serve customer i from facility j operating with module l in period t is represented by ctijl. A

facility j operating with module l has capacity ujl. The parameter etjl1l2 represents the cost matrix of facility j

operating with module l1 in period t− 1 changing to module l2 in period t. We consider that the functions

defining costs e and capacities u are monotonically increasing in l. A facility operating with module l = 0

has capacity uj0 = 0 for all candidates j. Finally, lj represents the module installed at j at the beginning of

the planning horizon.

Two types of decisions have to be made: location and allocation decisions. Location decisions are rep-

resented by binary decision variables y. Let ytjl1l2 be equal to one if facility j changes its module from l1
to l2 and operates with l2 in period t. Note that when l1 = l2 and ytjl1l2 = 1, the capacity has not changed

in t. Yet, operation costs can occur if l > 0. Capacity expansions occur when ytjl1l2 = 1 for l1 < l2, and

capacity reductions when l1 > l2. Allocation decisions are represented by xtijl, where x represents the fraction

of demand of customer i in period t served by facility j with module l. The resulting MIP formulation, as

modelled by Jena et al. [23], is defined as follows.
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min
∑
i∈I

∑
j∈J

∑
l∈L

∑
t∈T

ctijld
t
ix

t
ijl +

∑
j∈J

∑
l1∈L

∑
l2∈L

∑
t∈T

etjl1l2y
t
jl1l2 (1)

subject to ∑
j∈J

∑
l∈L

xtijl = 1, ∀i ∈ I, t ∈ T (2)

∑
i∈I

dtix
t
ijl ≤

∑
l1∈L

ujly
t
jl1l, ∀j ∈ J , l ∈ L, t ∈ T (3)

∑
l1∈L

yt−1jl1l
=

∑
l2∈L

ytjll2 , ∀j ∈ J , l ∈ L, t ∈ T \ {1} (4)

∑
l2∈L

y1jlj l2 = 1, ∀j ∈ J (5)

xtijl ≥ 0, ∀i ∈ I, j ∈ J , l ∈ L, t ∈ T (6)

ytjl1l2 ∈ B, ∀j ∈ J , l1 ∈ L, l2 ∈ L, t ∈ T . (7)

The objective function (1) minimizes the total costs composed of demand allocation and facility location

costs. Constraints (2) ensure that all demands are served in each time interval. Constraints (3) guarantee

that demands allocated to the facilities do not violate capacity constraints. Constraints (4) link the variables

of module changes in subsequent periods ensuring that at each period a decision is made regarding the next

state of the facility. Constraints (5) ensure that one module is chosen to operate at the beginning of the

planning horizon. Constraints (6) define the transportation variables domain and (7) the module change

variables domain. For a detailed analysis of this formulation, as well as effective valid inequalities that can

be used with it, the interested reader is referred to Jena et al. [23].

3 Linear relaxation heuristic

A lower bound for the DFLPM can be obtained by relaxing integrality constraints (7) for variable y in the

MIP formulation, transforming it into an easier to solve linear programming model. The solution obtained

by the relaxed problem can either be a feasible solution for the original problem or an unfeasible solution in

case there exist any non-integer value for y. In the first case, the solution is a guaranteed optimum for the

original problem. If the second case happens, the relaxed solution can be used to build a feasible solution for

the problem using the following linear relaxation heuristic (LRH).

A typical way to create a feasible solution from the relaxed problem solution in FLPs is using a relax-

round approach [2]. When the location variables indicate if a facility is open or closed, the relaxed variables

with non-integer values in the linear relaxation solution can be either rounded up to open such facility or

rounded down to close it, for example, using the round to the nearest integer approach. On the DFLPM,

location variables represent a more complex decision structure. If variables y are rounded to the nearest

integer, the solution may violate the constraint that guarantees that at least one decision is made regarding

module changes in subsequent time intervals.

Consider an example of a relaxed solution obtained for the module decisions through the planning horizon

for a given facility j as shown in Figure 1(a). The arcs in the graph represent the ytjl1l2 variables with the

value obtained in the relaxed problem solution, where l1 is the origin node and l2 the destination node. Each

level on the graph represents a period (t = 1 to 3) and each node label can be understood as the number of

modules that are located in the facility during the time interval represented by that period if an arc connected

to it is equal to one. In this example, if a round to the nearest integer approach is used, all variables y are

rounded to zero since they are all lower than 0.5. This would violate constraints (5) for facility j since no

decision on the first period is made.

A very simple way to prevent all variables being rounded to zero is by guaranteeing that one of them

is rounded to one, for example, selecting the highest y on that period. In Figure 1(a) this method results
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Figure 1: Example of a relaxed solution and the module decisions taken using the LRH

in the choice of the arc y1jlj1 for t = 1, one of the arcs y2j01, y2j11 and y2j22 for t = 2, and the arc y3j22 for

t = 3. Although constraints (5) are satisfied using this approach, constraints (4) cannot be met regardless

on the choice for t = 2 since it is impossible to link decisions on subsequent periods using only these arcs.

To fix that, we can use the destination nodes of the arcs selected as being the module decision for each time

interval and then connecting the proper arcs to them following constraints (4) and (5). So, in the example

of Figure 1(a), considering that arcs y1jlj1, y2j01 and y3j22 are selected, their destination nodes are 1, 1 and 2

for each time interval. Given that these are the module decisions made at each period, we have to activate

arcs y1jlj1, y2j11 and y3j12 to meet the module decision constraints in each period since the destination node

of the activated arc in period t− 1 has to be the origin node of the activated arc in period t. Note that for

t = 3 the activated arc y3j12 is different than the arc with highest value y3j22 even though this arc was used to

select the module for this time interval.

The selection of the destination node of the best arc approach may be undesirable in certain cases.

When the module decisions are split between several arcs, the highest arc value may be too low and several

arcs may have equal values in such a way that the greedy decision of selecting the highest arc would have

several candidates as in t = 2 in the example of Figure 1(a). We circumvent this situation by suggesting

another approach in which instead of looking only for single arc values, we consider the set of arcs connected

to destination nodes. In Figure 1(b), we show the decisions made when considering the sum of the arcs

connected to each node. The sum values are shown above the nodes. For each period the chosen node is the

one with the highest sum highlighted in the figure. Then, we activate the proper arcs to connect them. We

use this selection of the node with the highest sum approach in the LRH to make the decisions on facility

location and capacity dimensioning for the DFLPM.

Formally, a solution generated by the LRH is represented by a J × T matrix L, where Lj,t represents the

module opened at facility j in period t. Thus Lj,t is given as

Lj,t = arg max
l2∈L

∑
l1∈L

ytjl1l2 . (8)

Ignoring the module installed at the beginning of the planning horizon, this matrix can be visualized as being

composed by the chosen nodes on the graphs representing the module decisions for each facility, as shown in

Figure 1(b).

The approach described can still generate an unfeasible solution due to violation of demand constraints.

A simple way to verify the feasibility of a solution is to check whether∑
j∈J

ujLj,t
≥

∑
i∈I

dit, ∀t ∈ T , (9)
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is true. If enough capacity is available to meet all demands in each time interval, we can obtain feasible

allocations for all customers. Otherwise, more capacity is required in the time intervals with demands that

could not be satisfied. In such periods, we open one module in the facility whose next module has the highest

sum on Equation (8). Ties are decided randomly. The process is repeated until a feasible solution is obtained.

If all modules are open in all facilities and the solution is still unfeasible, we conclude that no feasible solution

for the original problem exists.

From the MIP formulation, we note that a solution is evaluated in two parts, i.e., the facility locations

and the demand allocations. LRH is designed to determine only facility locations and sizes. Location costs

can be calculated straightforwardly from the solution matrix generated by the heuristic. When the facility

locations and sizes are known, demand allocations are obtained optimally by solving a minimum-cost flow

problem (MCF) [1] for each period, represented by a column in L. The MCF problem can be solved by

specialized algorithms with complexity O(|V||A| log |V| log(|V|C)), where |V| is the number of nodes in the

network, |A| is the number of arcs and C is the maximum absolute value of an arc cost [26, 39]. The sum of

location costs and each allocation cost is the objective function value of the solution generated by LRH.

4 Local search heuristics

Local search heuristics aim to improve an initial solution by performing a sequence of small changes in

its structure and moving it towards a solution with a better objective function each time until a local

optimum is found. The neighborhood of a solution x is described as a set of neighbor solutions defined

by a neighborhood function N . Thus, every solution in N (x) is said to be a neighbor of x. The lo-

cal optimum x∗ is such that x∗ ≤ x,∀x ∈ N (x∗). Several local search heuristics were developed and

applied to FLPs. The most effective ones are based on: opening facilities; closing facilities; and swap-

ing open with closed facilities. Studies that use such local searches can be found in Arya et al. [6],

Chudak and Williamson [11], Korupolu et al. [28], Zhang et al. [44], among others.

A local search can be created for the DFLPM from operations adapted from the classical local searches

used in simpler FLPs. We define two basic operations based on the representation of how long a module

stays open at a facility. In dynamic location problems it is common that a module stays open at a facility

for a long time span due to the high costs involved in constructing new modules. We represent a module

opened at facility j from period ti to tf by Sj
titf

. So, for example, if facility j has only one module opened

between periods 1 to 5, the configuration of this facility can be translated to one element Sj
15 active. In the

case that two modules are open between the same periods, then we have two elements Sj
15 active to represent

this facility, and so on. The set representation is an alternative way to represent a solution for the DFLPM.

It consists of a set containing all elements active for all facilities in the solution. Consider the following

solution x in the matrix representation form as introduced in Section 3:

x =


0 0 0 0
1 1 1 0
0 0 1 1
3 2 3 2


The matrix representation can be converted to the set representation following the next steps. Each line

of the matrix represents the configuration of one facility through the planning horizon. On facility 1 (line 1),

since there is no open module, no element is active. On facility 2 there is only one module open from periods

one to three. Then, the element S2
13 is active. Similarly, at facility 3 the element active is S3

34 representing the

only module opened in that facility. On facility 4 we have four different elements active. The first element S4
14

represents module 1, which is open in all four periods. Another element S4
14 is active to represent module 2.

Module 3 is open in periods 1 and 3. Since there is no continuity on the time it remains open, two elements are

active to represent both periods. They are S4
11 and S4

33. Hence, solution x can assume the set representation

form as x = {S2
13, S

3
34, S

4
14, S

4
14, S

4
11, S

4
33}.

We now describe four types of operations performed on a solution. From an initial solution x, we can

generate a neighbor solution x′ by doing the set operations of union (Op(∪)) and minus (Op(\)) defined as
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Op(∪): x′ = x ∪ {Sj
titf
}: Open one module in facility j from period ti to tf in x;

Op(\): x′ = x \ {Sj
titf
}: Close one module in facility j from period ti to tf in x.

Note that when adding modules to a facility, the elements in the set can change. So, for example, an

operation {Sj
13}∪{S

j
24} has to be transformed to {Sj

14, S
j
23} to fit the set representation definition. Similarly,

an operation {Sj
24} \ {S

j
33} change the elements on this facility to {Sj

22, S
j
44} since one module is closed in

period 3.

The movement of modules between facilities is represented by a closing followed by an opening of these

modules in an origin and a destination facility, respectively. Since this is a recurring operation, we define the

movement of modules by the operator Op(⇒) as

Op(⇒): x′ = x⇒ Sjo⇒jd

titf
= (x \ {Sjo

titf
}) ∪ {Sjd

titf
}: Move one module from jo to jd from period ti to tf in

x.

An operation of splitting one element into two complementary elements is also defined. This operation

does not modify an existing solution and, therefore, must be used with other operations to generate a new

solution. The split operator Op(|) is defined as

Op(|): Sj
titf
|c = {Sj

tic} ∪ {S
j
(c+1)tf

}: Split Sj
titf

at time c resulting in Sj
tic and Sj

(c+1)tf
.

A countless number of neighborhoods can be defined using different combinations of these four operators.

The challenge is to define efficient ones, leading to good local optima without requiring too much process-

ing time. From preliminary experiments we create three local search algorithms for the DFLPM. Table 1
summarizes what types of operations are performed for each one of them.

Table 1: Operations used in the local searches

Local search
Operations

∪ \ ⇒ |

1 X X
2 X X X X
3 X X

4.1 Hashing

A local search can be greatly speed up by caching solutions for MCF problems [29]. Given the facilities

configuration for a time interval, its MCF solution is always the same since optimal allocations are independent

of configurations from other intervals. This is an important characteristic of the DFLPM because it allows

the evaluation of new solutions from an initial one without the need to recalculate the allocation costs for all

periods individually, but only for those whose facility configurations have changed.

In our algorithm, we save solutions obtained in every run of the MCF algorithm in a hash table. Hash

tables are data structures that associate a key to a value. In the table created, the key indicates all facilities

configuration and the value is the allocation cost obtained from the MCF. Computationally, the search for

an element in a hash table is quickly performed in O(log n), where n is the number of keys contained in

the table. Thus, when the facility configurations repeat during the execution of the algorithm, the optimal

allocation cost is easily retrieved from the table. This process is significantly faster than solving the MCF.

4.2 Local search 1: Solutions at a distance of one element

The first local search (LS1) performs all possible moves of opening and closing one module for all combinations

of duration from the current solution. The module opening neighborhood is defined as

N∪(x) = x ∪ {Sj
titf
},∀j ∈ J, ti = {0, . . . , T}, tf = {ti, . . . , T}.
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Similarly, the module closing neighborhood is defined as

N \(x) = x \ {Sj
titf
},∀j ∈ J, ti = {0, . . . , T}, tf = {ti, . . . , T}.

Thus, we define LS1 neighborhood as

N1(x) = N∪(x) +N \(x).

LS1 procedure is described in Algorithm 1. The algorithm starts the search in a randomly defined fa-

cility to avoid bias. The neighborhood N \(x) is always searched first for a given facility (lines 3–10).

Since we use a first improvement strategy, the exploration order matters and we observe that closing modules

is a preferable neighborhood to be explored before the opening modules neighborhood, especially because

it quickly improves bad initial solutions. If no improvement is found in these neighborhoods, the search

continues on another facility. When all facilities have been explored and no improving solution is found, the

local optimum is reached.

Algorithm 1 Local search 1

1: x: initial solution;
2: for all j ∈ J do
3: for ti = 1 to T do
4: for tf = ti to T do

5: x′ ← x \ {Sj
titf
};

6: if f(x′) < f(x) then
7: return x′;
8: end if
9: end for

10: end for
11: for ti = 1 to T do
12: for tf = ti to T do

13: x′ ← x ∪ {Sj
titf
};

14: if f(x′) < f(x) then
15: return x′;
16: end if
17: end for
18: end for
19: end for
20: return x;

LS1 neighborhood contains at most J(T 2 + T ) solutions. In terms of the MCF algorithm, due to caching

the maximum number of calls is 2JT , i.e., once for each module opened or closed in a facility and a pe-

riod, whenever possible. That means LS1 explores a neighborhood of size O(JT 2) with a running time of

only O(JT ).

4.3 Local search 2: Move one module between facilities and slightly change a split
element of the set

The second local search (LS2) explores a neighborhood where modules are moved between facilities and a

change in their opening and closing periods is performed. Algorithm 2 shows the steps of LS2. Let an

element Sjo

titf
being contained in the current solution (line 2). LS2 splits it by all possible means, i.e.,

Sjo

titf
|c,∀c = {ti, . . . , tf −1}. For example, from Sjo

14 we generate the splits Sjo

11 and Sjo

24 for c = 1, Sjo

12 and Sjo

34

for c = 2, and Sjo

13 and Sjo

44 for c = 3. All split elements and the original one constitute the set of elements

that are moved by LS2. In the example, the set T = {Sjo

11, S
jo

12, S
jo

13, S
jo

14, S
jo

24, S
jo

34, S
jo

44} is generated (line

3). Then, for each element in T , LS2 performs Sjo⇒jd

t′it
′
f

, i.e., moves this element from facility jo to jd from

periods t′i to t′f (line 6). For each element moved, the new solution is evaluated and compared to the current

solution (lines 7–8). If the new solution is not better, LS2 performs its last step. This step acts as a very

small neighborhood search, containing only eight solutions. They are: early opening (open Sjd

(ti−1)(ti−1)), late

opening (close Sjd

titi), early closing (close Sjd

tf tf
), late closing (open Sjd

(tf+1)(tf+1)), and all four combinations
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Algorithm 2 Local search 2

1: S: set of active elements in the initial solution x;

2: for all Sjo

titf
∈ S do

3: Generate set T = {Sjo

titf
} ∪ {Sjo

titf
|c, ∀c = {ti, . . . , tf − 1}};

4: for all jd ∈ J \ {jo} do
5: for all Sjo

t′it
′
f
∈ T do

6: x′ ← x⇒ Sjo⇒jd

t′it
′
f

;

7: if f(x′) < f(x) then
8: return x′;
9: else

10: x′′ ← x′ ∪ {Sjd

(t′i−1)(t′i−1)
}, if f(x′′) < f(x) then return x′′;

11: x′′ ← x′ \ {Sjd

t′it
′
i
}, if f(x′′) < f(x) then return x′′;

12: x′′ ← x′ \ {Sjd

t′
f
t′
f
}, if f(x′′) < f(x) then return x′′;

13: x′′ ← x′ ∪ {Sjd

(t′
f
+1)(t′

f
+1)
}, if f(x′′) < f(x) then return x′′;

14: x′′ ← x′ ∪ {Sjd

(t′i−1)(t′i−1)
} \ {Sjd

t′it
′
i
}, if f(x′′) < f(x) then return x′′;

15: x′′ ← x′ ∪ {Sjd

(t′i−1)(t′i−1)
} \ {Sjd

t′
f
t′
f
}, if f(x′′) < f(x) then return x′′;

16: x′′ ← x′ ∪ {Sjd

(t′
f
+1)(t′

f
+1)
} \ {Sjd

t′it
′
i
}, if f(x′′) < f(x) then return x′′;

17: x′′ ← x′ ∪ {Sjd

(t′
f
+1)(t′

f
+1)
} \ {Sjd

t′it
′
i
}, if f(x′′) < f(x) then return x′′;

18: end if
19: end for
20: end for
21: end for
22: return x;

of opening or closing both extremities simultaneously (lines 10–17). LS2 ends when no improving solution is

obtained for all possible moves.

LS2 neighborhood size depends on the length and the number of existing elements in the original solution

set of elements and the number of destination facilities, which is usually J − 1. Equal elements in a same

origin facility generate the same solutions when moved. Similarly, splits that result in the same sets are

also redundant. So, what matters is the number of distinct elements that splits are able to create. In

the worst case scenario it is O(T 2) for every origin facility J . Therefore, also considering the number of

destinations, this neighborhood has size O(J2T 2) in the worst case. As in LS1, the number of calls to the

MCF algorithm is reduced due to the repetition of facilities configurations. It is required only once per move

of a module between two facilities. So, to evaluate the O(T 2) distinct elements, it is enough to solve T

MCFs. In conclusion, LS2 solves O(J2T ) MCFs to explore O(J2T 2) neighbor solutions. Since LS2 searches

into a neighborhood where modules are moved between facilities, and its complexity is not influenced by the

maximum number of modules L in a facility, it is a good local search for instances with large values of L.

4.4 Local search 3: Split and move multiple modules from the same facility

The third local search (LS3) moves multiple modules simultaneously from one facility to another following

a scheme with coordinated split operations. LS3 has split, move and return phases. Algorithm 3 details the

steps of LS3. It begins selecting an origin facility jo that has a module open and identifies all its modules

using the set representation in Sjo (line 3). Then, for a destination facility jd LS3 starts the selection of

modules to be moved from jo to jd using the following rules.

Consider the example in Figure 2 to illustrate LS3 iterations. An origin jo has the elements Sjo = {Sjo

14,

Sjo

11, Sjo

44} activated, resulting in the matrix representation [2 1 1 2] as shown in the figure. A destination

facility jd is chosen and has the configuration [1 1 0 0]. LS3 split phase sets a time interval starting at

time c1 and ending at time c2 (lines 5–6). On the first split, the time interval is set to c1 = 1 and c2 = 1,

i.e., only modules in period 1 are moved. In Figure 2 the dashed lines represent the split operations done for

the elements of jo. In Algorithm 3 the modules from the splits belong to the set Sjoc1c2 (line 7). In its move
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phase, LS3 applies the move operator for all elements in this set (line 9), moving all modules within the time

interval from the origin facility to the destination. Then, the return phase (lines 13–19) iteratively brings the

modules back to their original positions. The number of return iterations is equal to the maximum number

of modules moved in a period within the time interval. In the example of Figure 2, the maximum number of

modules moved is two, so only two iterations are necessary to return the solution to its original setting. The

example demonstrates all iterations performed for c1 = 1. Following Algorithm 3, the next iteration would

be for c1 = 2 and c2 = 2. After all combinations of splits are checked, the local search changes the destination

facility and the search scheme is repeated. LS3 stops when all combinations of origin and destination facilities

are explored or any improving solution is found.

Split Move Return 1 Return 2

c1 = 1, c2 = 1
jo 2 1 1 2 0 1 1 2 1 1 1 2 2 1 1 2
jd 1 1 0 0 3 1 0 0 2 1 0 0 1 1 0 0

c1 = 1, c2 = 2
jo 2 1 1 2 0 0 1 2 1 1 1 2 2 1 1 2
jd 1 1 0 0 3 2 0 0 2 1 0 0 1 1 0 0

c1 = 1, c2 = 3
jo 2 1 1 2 0 0 0 2 1 1 1 2 2 1 1 2
jd 1 1 0 0 3 2 1 0 2 1 0 0 1 1 0 0

c1 = 1, c2 = 4
jo 2 1 1 2 0 0 0 0 1 1 1 1 2 1 1 2
jd 1 1 0 0 3 2 1 2 2 1 0 1 1 1 0 0

Figure 2: Example of LS3 iterations

Algorithm 3 Local search 3

1: S: set of active elements in the initial solution x;
2: for all jo ∈ J do
3: Create Sjo ⊂ S containing all elements Sj

titf
with j = jo;

4: for all jd ∈ J \ {jo} do
5: for all c1 = 1 to T do
6: for all c2 = c1 to T do

7: Create set Sj
o

c1c2 containing all elements from Sjo resulting from a split at c1 − 1 and then at c2;
8: x′ ← x;

9: x′ ← x′ ⇒ Sjo⇒jd

c′1c
′
2

, ∀Sjo

c′1c
′
2
∈ Sj

o

c1c2 , where c′1 and c′2 represent the initial and final period of each element and

are bounded by c1 and c2;
10: if f(x′) < f(x) then
11: return x′;
12: end if
13: while Sj

o

c1c2 6= ∅ do
14: x′ ← x′ ⇒ {Sjd⇒jo

c1c2 }
15: if f(x′) < f(x) then
16: return x′;
17: end if
18: Sj

o

c1c2 ← S
jo

c1c2 \ {S
jo

c1c2};
19: end while
20: end for
21: end for
22: end for
23: end for
24: return x;

The number of iterations on LS3 in the reverting step is O(L), while the two splits on the split step can

generate O(T 2) new elements for each element moved from an origin. Considering yet each pair of facilities

origin-destination, the neighborhood size of LS3 is O(J2T 2L). Like for the other local searches, the number

of times the MCF is solved is reduced by a factor of T due to caching solutions in the hash table with MCF

solutions.
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4.5 Variable neighborhood descent

The variable neighborhood descent (VND) is a framework that systematically explores distinct neighbor-

hoods by changing local search algorithms [20]. Hansen and Mladenović [20] state that a local optimum in

a neighborhood is not necessarily a local optimum in another, such that the use of several local searches,

even with simple neighborhood structures, can lead to high quality solutions. A VND structure is shown in

Algorithm 4. There, N neighborhoods are defined and their exploration order is known a priori (line 2).

Improving solutions replace the current one by exhaustion in each neighborhood. When the first improving so-

lution replaces the current one in lines 4–6, we call first improvement strategy. When the whole neighborhood

is explored before replacing current solution by the best found one, the strategy is called best improvement.

The search returns to the first neighborhood when an improving solution is found after the exhaustive search

of any other (line 8). Otherwise, it continues the search for the next neighborhood (line 10). The structure

presented in Algorithm 4 with first improvement strategy is used in the VND of this work along with the

three neighborhoods introduced before.

Algorithm 4 VND basic structure

1: Initial solution: x;
2: Neighborhoods Nn(x), n = {1, . . . , N};
3: for n = 1 to N do
4: while there is a x′ ∈ Nn(x)|f(x′) < f(x) do
5: x← x′;
6: end while
7: if f(x) < f(xi) then
8: n = 1;
9: else

10: n = n+ 1;
11: end if
12: end for
13: return x.

5 Hybrid evolutionary heuristic

Metaheuristics are frameworks that sequentially use stochastically chosen heuristics. Metaheuristics often

perform better than simple heuristics [43] by alternating diversification and intensification phases during the

search for new solutions. In the former, one is interested in finding “different” solutions, i.e., solutions located

in unexplored regions of the solutions space. Then, the use of intensification heuristics, such as local searches,

helps reach local optima in such a region.

Metaheuristics are classified by Gendreau and Potvin [19] according to the number of solutions considered

at a time. Single-solution metaheuristics, such as Simulated Annealing, Tabu Search and Variable Neighbor-

hood Search, consider one solution at a time and have a single search trajectory. In population metaheuristics,

such as evolutionary algorithms, multiple solutions evolve concurrently. GA is an example of an evolutionary

algorithm.

Compared to other metaheuristics, the convergence in pure GA is slow [5]. A common intensification

strategy is the hybridization with local searches applied to solutions in the population. The evolutionary

metaheuristic developed in this study uses the structure of a GA as a diversification strategy on the search to

generate feasible solutions. Periodically, an intensification phase is applied to one of these solutions by using

sequential local search heuristics organized in a VND framework. The resulting algorithm is the GA+VND:

a population-based iterated local search heuristic with a VND local search phase.

5.1 Genetic algorithm

GAs are nature-inspired metaheuristics based on the mechanisms of natural selection and evolution. These

concepts were popularized by Holland [21] and details of its structure are found in Whitley [41].
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Algorithm 5 introduces the pseudocode of a general GA. Chromosomes, or individuals, representing so-

lutions for the problem form a population P. The fitness of each chromosome is evaluated according to the

solution’s quality, usually measured by its objective function value (line 9). Individuals evolve through succes-

sive iterations called generations. At every generation, individuals from the current population are combined

to generate new individuals forming an offspring. The new chromosomes are formed by a crossover operator

between parents selected by a selection operator (lines 4–5). The new solution should have characteristics,

or genes, inherited from its parents. Furthermore, an offspring can have its genes slightly modified by a mu-

tation operator (lines 6–8). A new generation is formed selecting the best chromosomes among the existing

ones and the offspring created by crossover using an acceptance operator. After successive generations, the

solutions tend to converge to better results. The stopping criterion of the algorithm is usually related to a

maximum number of generations or search time.

Algorithm 5 General GA structure

1: P0: Initial population created by constructive heuristics in generation g = 0;
2: while stopping criteria are not satisfied do
3: repeat
4: Selection: Selects parents in Pg ;
5: Crossover : Generates offspring using selected parents;
6: if mutation condition satisfied then
7: Mutation: Modifies offspring generated;
8: end if
9: Fitness Evaluation: Calculate the fitness of offspring;

10: Acceptance: Accepts or rejects offspring to Pg+1;
11: until sufficient offspring created
12: g ← g + 1;
13: end while
14: return the best individual found.

5.1.1 Chromosome Representation

In Sections 3 and 4 we presented two ways to represent a solution for the DFLPM. The matrix representation

shows the number of modules opened for each facility and each period. The set representation shows the

initial and final periods that each module is opened in a given facility. While the set representation is better fit

to perform the operations in the local searches presented in Section 4, the matrix representation helps in the

understanding and the implementation of the GA operators for this problem. The exception is the mutation

operator, which is based on the operations performed on the local searches. In the set representation, a gene

is associated to an element in the set, while in the matrix representation a gene is each value of the matrix

representing the number of modules opened in each facility at each period.

5.1.2 Initial Population

The population in a generation of GA has a fixed size of P chromosomes. The first P chromosomes created

form the initial population of the evolutionary process. These chromosomes are created by heuristic meth-

ods. LRH is capable of generating only one solution and therefore cannot be used to generate the whole

population. Therefore, we propose two other heuristics to generate feasible solutions. Both heuristics use the

set representation of the chromosome to open new modules starting from an empty solution. Constructive

Heuristic 1 (CH1) randomly selects one facility j and performs x ∪ {Sj
1T } until a feasible chromosome is

reached. Constructive Heuristic 2 (CH2) randomly selects all three parameters (j, ti and tf ) and performs

x∪{Sj
titf
} until feasibility is achieved in all periods. It is easy to note that the domain of possible individuals

formed by CH1 is a subset of that of the CH2 domain. CH1 creates a solution without any changing in the

number of modules in a facility avoiding construction costs in the planning horizon. However, CH2 generates

more diversified solutions, which are useful for the crossing over of solutions. CH2 is also used in other parts

of the GA+VND algorithm when it is necessary to create new random solutions.
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5.1.3 GA Operators

As an evolutionary algorithm, the GA+VND performs crossovers between existing individuals to generate

new solutions. The evolutionary process is done in four steps: selection, crossover, mutation and acceptance.

Selection

The selection operator combines family selection and individual selection methods [17]. At each generation,

the population is divided into classes based on fitness: A (high), B (middle) and C (low). The number of

individuals of each class is controlled by parameters α and β. As in Ericsson et al. [17], the next generation is

formed by the automatic promotion of all αP class A individuals, by (β − α)P individuals generated by the

crossover and the mutation operators and accepted by the acceptance operator, and by (1−β)P new random

individuals generated by CH2. The proportion of each family size in relation to the population size P is

shown in Figure 3. The crossover input is formed by two parents selected from the current population, one

from class A and another from any class. At every generation all individuals are sorted by their fitness to

determine to which class they belong to.

Figure 3: Selection operator and family sizes

Crossover

The crossover operator is performed between the two individuals selected to generate an offspring. As in

Fernandes et al. [18], the operator randomly determines for each facility which parental configuration is

passed to the new solution. Figure 4 shows the selection process of the genes when facilities 1 and 4 are

inherited from parent 1 and facilities 2 and 3 from parent 2.

Parent 1 Offspring Parent 2
0 0 0 0
1 1 1 0
0 0 1 1
2 2 3 2


→

→


0 0 0 0
2 2 2 2
0 1 1 0
2 2 3 2

 ←
←


0 0 1 1
2 2 2 2
0 1 1 0
2 2 1 1


Figure 4: Crossover Operator

The tendency is that, after some generations, the population becomes homogeneous and stabilizes in a

very tight class A. On the one hand, this reduces the time spent in the evaluation process of new individuals

thanks to repetitions of facilities configurations. On the other hand, a homogeneous population reduces the

probability to escape from local optima. However, the GA+VND has some diversification tools to keep a

reasonable level of heterogeneity in the population. One of them is the generation of random individuals that

substitutes class C at every generation. Others, as the mutation operator, are explained in the following.

Mutation

In biology, mutation is a process that randomly modifies the genes of an organism. In our GA+VND, the

mutation operator combines some of the neighborhoods explored by the local searches to modify a chromosome
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generated in the crossover. A chromosome has a probability M to be mutated. The operator is designed to

move open modules to new locations following these steps:

1. Draw origin facility : Select a random origin facility that has open modules, i.e., the set representation

of elements in the origin Sjo 6= ∅;
2. Draw modules to be moved : Select the number of elements (genes) in Sjo to be moved with 50%

probability of moving only one element and 50% probability of moving more than one element. The

number of elements in the latter case is determined randomly in the interval [2, |Sjo |]. We draw from

Sjo the corresponding number of elements selected and define M ⊂ Sjo as the subset containing the

selected elements to be moved;

3. Split decision: Either all elements in M are completely or partially closed in jo, both decisions with

equal probability. If partially, a split operator for a random period c is applied to all elements in M.

Since the split of an element results in two elements, one ending in c and another beginning in c+1, the

mutation operator decides if the elements moved are those with final period below c or initial period

above c+ 1. The set M keeps only the elements to be closed in jo;

4. Close modules in origin: Close in jo the modules in M;

5. Draw destination facility : Select a random destination facility jd 6= jo;

6. Single element change decision: Select the element inM that has the highest time span, i.e., max(tf −
ti). As in the first four operations of the last step of LS2, we now decide if we change this element by

opening the module one period earlier (ti − 1) or one period later (ti + 1), or closing the module one

period earlier (tf − 1) or one period later (tf + 1). All four options together with the option to keep

the time span as is have equal probabilities of being chosen;

7. Open modules in destination: Open in jd the modules in M, considering the single element time span

change decision.

The use of predefined criteria instead of random moves allows the mutation to perform potentially good

modifications generating new individuals with a reasonable chance of being accepted by the acceptance

operator presented next.

Acceptance

The acceptance operator determines whether an offspring created survives for the next generation. The

individual is accepted if it meets all the following criteria:

• is feasible;

• has location costs no more than 10% higher than the worst current class A individual;

• and is different than any individual in the current generation or those already accepted to the next one.

The order of verification is important since the evaluation cost increases for the proposed order. The first

criterion avoids that infeasible solutions are part of the evolutionary process. The second discards potentially

bad solutions before their fitness evaluation. The third prevents identical individuals being part of the same

population, which reduces diversity.

The GA operators repeat until (β − α)P individuals are accepted. When the process is finished, class A

and B individuals are sorted to define the new generation classes. To save time, class C individuals do not

have their fitness evaluated, since it is unlikely that CH2 generates class A solutions.

5.2 Elitism via variable neighborhood descent

The elitism is the intensification phase of the hybrid evolutionary heuristic. It consists in applying the VND

in one chromosome of the population to improve it to the local optima of the neighborhoods designed. The

elitism is applied:
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• to the best individual generated in the initial population;

• to a new best solution generated by the GA operators;

• to a random individual that was not in an elitism before from class A or B at every G generations;

• and to a random individual, except the best, after the population mutation phase described next.

The population mutation is a diversification strategy that changes all individuals, except the best one

found so far, using the mutation operator at every R generations without improvement in the best solution.

The objective is to modify the population, usually slightly worsening the fitness of all individuals, improving

the chance of new chromosomes entering class A especially at a point of near convergence of solutions in this

class. To increase diversification level over time, the number of mutations performed in each chromosome

increases by one every time the population mutation is invoked. The GA+VND stops when no improving

solution is found after N cycles.

Algorithm 6 shows how the GA of Algorithm 5 is modified to the application of elitism for the situations

where it is applied (lines 3, 10, 12 and 21). Three stopping criteria exist. The time limit, the maximum

number of cycles, or the memory limit, whichever happens first (line 4). The last condition is especially

important since the use of a hash table to save solutions from the FCM algorithm can consume too much

memory for very large instances.

6 Computational experiments

Computational experiments were performed on a single Intel Xeon X5650 processor with a 2.67 GHz clock and

24 GB of RAM. LRH and GA+VND were implemented in C++ and compiled by gcc 5.4.0. The MIP model,

and its linear relaxation, were solved using the CPLEX optimization studio version 12.5. The minimum-

cost flow problem was implemented and optimized using the CPLEX network optimizer. We enhanced its

performance by using a warm start from the previous solution calculated on the network for the same period.

The running time was measured using the CPU time obtained by the time library of the C language.

We used the benchmarking instances provided by Jena et al. [23] to their ER-GMC formulation. The

instances are grouped by size regarding the combinations facilities/customers (10/20, 10/50, 50/50, 50/100,

50/250, 100/250, 100/500 and 100/1000) and maximum number of modules L by facility (3, 5 and 10). The

number of periods is fixed at ten for all instances. Each group contains 12 instances according to the network

topology (three scenarios), the demand distribution (one stable and one unstable scenarios) and the cost

proportion (a regular and a 500% raised allocation costs scenarios). A total of 288 original instances were

tested with graphs varying from 30 nodes and 200 arcs for the smallest (10/20 ) to 1100 nodes and 100,000

arcs for the biggest (100/1000 ) in each period of the planning horizon.

On the original instances, we observed that module sizes vary according to the number of customers on

the instance while location costs are fixed to the number of modules installed on a potential site. We believe

this is not a good representation of real cases since module sizes available to construction usually remain

the same regardless of the number of customers a company has. An alternative is to consider that module

sizes increase but construction costs also increase proportionally maintaining their ratio cost per capacity

unit, which is reduced not by the instance size but by economies of scale when locating multiple modules on

the same site. So, we adapted Jena et al. [23] instances to consider these cost structures. From the original

288 instances, we considered only those with the regular cost proportion. Then, these 144 instances were

modified in two distinct ways. The first fixes the size of each module so that build one module in any instance

will add the same capacity no matter how many customers the instance has. So, for example, in the original

instances when L = 3 the module size is 150 for instances with 20 customers, 300 for 50 customers, etc.

Now, we fixed to 150 independent on the number of customers. The second modification changes only the

construction costs, keeping original capacities as they are. Construction costs are increased proportionally

to keep marginal costs of building one module fix for all instance sizes. Considering the same example for

L = 3, when module size is 150, the construction cost of the first module is 150,000 (subsequent modules are

less expensive due to economies of scale). However, when module size is 300 instead of using the same cost,
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Algorithm 6 GA+VND for DFLPM

1: Create initial population P0 = {x10, . . . , xP0 } using LRH and/or CH1 and CH2;
2: Evaluate and sort individuals in P0;
3: Apply Elitism for best individual x10;
4: Set n = 1;
5: while stopping condition not met do
6: for g = 1 to R do
7: Apply GA Operators;
8: Sort Pg ;
9: if x1g 6= x1g−1 then

10: Apply Elitism for x1g ;
11: else if g % G = 0 then
12: Apply Elitism for xpg where p = RAND{1, βP};
13: end if
14: if f(x1g) < f(x1g−1) then
15: g = 1;
16: else
17: g = g + 1;
18: end if
19: end for
20: Apply Mutation n times to the whole population except the best individual creating a new P0;
21: Apply Elitism for xp0 where p = RAND{2, P};
22: Evaluate and sort P0;
23: n = n+ 1;
24: end while
25: return the best individual found;

we raise proportionally to the module capacity, going to 300,000 now. These two modifications result in two

instance sets with 144 instances each.

Finally, two new maximum number of modules scenarios were created for the new instances. They are

for L equal 15 and 30. Module sizes and installation costs were calculated in the same way as for L equals

to 3, 5 and 10. The implication is that each module will have proportionally lower capacity when L is larger.

6.1 Order of neighborhoods exploration

The first set of experiments aims to determine the best sequence of neighborhoods to explore in the VND.

Each experiment consists in exploring different neighborhoods starting at the same random solutions to verify

the effectiveness of local searches when applied individually and in combination with other ones. One hundred

feasible solutions were generated using CH1 and CH2 with equal proportion for smaller instances (10/20,

10/50 and 50/50) and L = {3, 5, 10}. On the first round of experiments, we test the use of each neighborhood

individually, as a simple exhaustive neighborhood search. Table 2 presents the results for these experiments.

The first column refers to the instance group and the others to the LSs. The relative gap between a solution x

and the best solution x∗ obtained by the MIP in Jena et al. [23] is calculated as gap(x) =
f̄(x)− f(x∗)

f̄(x)
.

Results are shown for the best solution generated by each local search and the average solution of all 100

local optima.

Table 2: Results for the application of single neighborhoods

Inst
LS1 LS2 LS3

Best gap
(%)

Avg gap
(%)

Time (s) Best gap
(%)

Avg gap
(%)

Time (s) Best gap
(%)

Avg gap
(%)

Time (s)

10/20 1.29 4.63 1.5 0.17 1.40 9.8 4.02 20.11 8.1
10/50 0.33 1.71 2.5 0.13 0.81 21.6 2.53 13.18 14.7
50/50 2.19 5.97 25.8 0.39 1.47 999.4 5.81 22.33 638.0

Avg 1.27 4.10 9.9 0.23 1.23 343.6 4.12 18.54 220.3

We note from Table 2 that LS1 is the fastest and LS2 is the most effective searches. This is an expected

behavior because LS1 has the smallest time complexity as discussed before, since it does not move modules
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between facilities. This leads to local optima with a nearly optimal number of open modules but located at

non-optimal facilities. LS3 is the opposite since it only modifies positions of existing modules without closing

modules with too much idle capacity, common in solutions generated by the CHs. LS2 is the middle ground

that performs both types of operations. Thus, it is more effective but at an additional computational cost.

A new round of experiments is then performed to assess the performance of these neighborhoods in pairs

using the VND structure. Table 3 shows these results, that confirm the analysis on the previous round. When

LS1 is performed first it better prepares the solution so that the other heuristics reach good local optima

faster. This is evident when we compare the experiments with the pairs LS1 → LS2 and LS1 → LS3 with

their inverse order. Both local searches achieve similar results, but when LS1 is searched first the running

time is around a quarter of that of the other way around. The average gap of using LS2 instead of LS3 with

LS1 is better but running time is higher, which makes the results regarding which is the best neighborhood

inconclusive.

Table 3: Results for the application of pairs of neighborhoods in a VND

Inst
LS1→ LS2 LS2→ LS1 LS1→ LS3

Best gap
(%)

Avg gap
(%)

Time (s) Best gap
(%)

Avg gap
(%)

Time (s) Best gap
(%)

Avg gap
(%)

Time (s)

10/20 0.01 0.21 2.8 0.01 0.20 10.4 0.01 0.40 2.8
10/50 0.00 0.04 3.6 0.00 0.03 22.2 0.00 0.12 3.6
50/50 0.01 0.33 218.0 0.01 0.29 969.2 0.02 0.70 165.9

Avg 0.01 0.20 74.8 0.01 0.18 333.9 0.01 0.41 57.4

Inst
LS3→ LS1 LS2→ LS3 LS3→ LS2

Best gap
(%)

Avg gap
(%)

Time (s) Best gap
(%)

Avg gap
(%)

Time (s) Best gap
(%)

Avg gap
(%)

Time (s)

10/20 0.01 0.34 9.4 0.15 1.24 9.9 0.23 2.09 13.1
10/50 0.00 0.09 16.4 0.12 0.77 21.8 0.14 1.47 24.8
50/50 0.03 0.67 654.3 0.36 1.41 875.6 0.23 1.66 859.2

Avg 0.01 0.37 226.7 0.21 1.14 302.4 0.20 1.74 299.0

A third round of experiments is performed to identify whether the exploration of the three neighborhoods

is more effective than using only two. Table 4 shows the results of the application of the VND with the three
LSs. We fixed LS1 to always be performed first.

Table 4: Results for the application of all neighborhoods in a VND

Inst
LS1→ LS2→ LS3 LS1→ LS3→ LS2

Best gap (%) Avg gap (%) Time (s) Best gap (%) Avg gap (%) Time (s)

10/20 0.01 0.14 3.0 0.00 0.13 3.2
10/50 0.00 0.04 3.8 0.00 0.04 3.9
50/50 0.01 0.32 191.3 0.00 0.35 162.2

Avg 0.01 0.17 66.0 0.00 0.17 56.4

Comparing the best pairs from Table 3 and the results in Table 4 we note that the addition of the third

neighborhood improves solution quality and speeds up the search in both scenarios. When compared to the

exploration of single neighborhoods, the multiple neighborhood approach is much more efficient. Since both

orders provided almost identical solutions, we decided to switch priorities between LS2 and LS3 randomly at

every VND call as a search strategy.
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6.2 Linear relaxation heuristic comparison with the exact method from the literature
for the benchmark instances of Jena et al. [23]

Jena et al. [23] showed that the integrality gap of the linear relaxation problem using the MIP model described

in Section 2 provides a strong lower bound when applied to the benchmark instances. We tested the capacity

of LRH to generate near-optimal solutions from the relaxed solutions improved by VND. Table 5 shows for

each group of instances the number of instances with proven optimality within a time limit of three hours

using Jena et al. [23] MIP model (column #Opt in ER-GMC ), the average time to prove optimality (column

Time(s) in ER-GMC ), the average lower bound gap of the solution found by the linear relaxation described

in Jena et al. [23], where the linear relaxation gap of a solution is calculated as
f(x)− f ′(x)

f(x)
for the linear

relaxation solution f ′(x) and the optimal solution f(x) (column LR Gap), and the average gap to the optimal

solution and time for the solution found by LRH improved by VND (columns in LRH ). Instances without

an optimal solution are removed from these statistics.

Table 5: Results for the comparison of the proposed linear relaxation heuristic with the MIP model of Jena et al. [23] for the
benchmark instances solved to optimality

L Inst
ER-GMC LR LRH

#Opt Time (s) Gap (%) Gap (%) Time (s)

3

10/20 12 0.3 0.45 0.02 0.1
10/50 12 0.4 0.17 0.00 0.1
50/50 12 3.1 0.12 0.10 0.7
50/100 12 2.9 0.00 0.00 1.0
50/250 12 6.6 0.00 0.00 2.1
100/250 12 17.9 0.01 0.01 8.3
100/500 12 51.6 0.02 0.02 35.0
100/1000 12 88.2 0.00 0.01 81.9

5

10/20 12 0.9 0.59 0.06 0.2
10/50 12 2.4 0.39 0.08 0.3
50/50 12 512.9 0.36 0.06 3.0
50/100 12 9.3 0.06 0.02 3.1
50/250 12 14.6 0.00 0.00 4.7
100/250 12 42.0 0.01 0.01 16.7
100/500 12 93.0 0.02 0.02 48.0
100/1000 12 164.3 0.00 0.01 109.4

10

10/20 12 27.2 0.65 0.06 1.7
10/50 12 45.0 0.47 0.03 2.4
50/50 5 306.4 0.64 0.09 7.5
50/100 9 194.1 0.32 0.03 13.0
50/250 12 402.5 0.16 0.01 34.9
100/250 11 591.9 0.11 0.03 128.0
100/500 12 391.2 0.04 0.01 170.2
100/1000 12 451.4 0.00 0.01 206.0

Avg 136.2 0.18 0.03 37.3

We see that linear relaxation gap tends to decrease when instance sizes increase. The heuristic results

follow a similar pattern. The longest gaps are observed on smaller instances (10/20, 10/50 and 50/50). A

possible explanation lies on instance’s structure. The ratio module capacity/total demand is approximately

constant in all instances. As a consequence, the minimum number of modules that have to be open to satisfy

feasibility is around the same. When location costs have a greater impact than allocation costs on objective

function, one implication on the optimum solution is that the number of modules opened tends to be reduced,

since construction of excess capacity is too costly. On the other hand, if construction costs are low, more

facilities can be opened closer to customers to reduce allocation costs. Mathematically, the reduction of

location costs turns the problem easier to be solved. One example is when all location costs are zero. The

dynamic location problem for T periods would be reduced to T min-cost flow problems where all facilities

could be opened since no penalties are incurred, turning into a relatively easy problem to solve with existing

methods. In fact, we observed that the number of modules opened in smaller instances is smaller than in

bigger instances at optimal solutions. Also, the proportion of location costs on total costs decrease from

around 60–70% on 10/20 instances to 20–30% on 100/1000 instances. This is even more noticeable when we
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analyze separately the two types of instances according to allocation cost proportion. The average time to

solve the regular scenario instances is 4.5 times higher than when allocation costs are raised 500%. From the

11 instances not solved to optimality within three hours, nine are in the first scenario, and the two that are

in the second are derived from instances not solved in the first one as well.

LRH solutions are on average only 0.03% from optimal and obtained 3.7 times faster than what CPLEX

takes to prove optimality. Considering only the worst instances (10/20, 10/50 and 50/50), the average gap

increases to 0.05%. In Section 6.1 we showed that it is possible to obtain an average gap of 0.00% on the

same instances when initializing several random solutions and improving them with VND. However, the

neighborhood exploration is costly in terms of time. So, a random approach is undesirable when instance size

grows. We consider that on the benchmark instances from Jena et al. [23] the multiple application of VND

on randomly generated solutions is enough when instances are small. For bigger instances, LRH could solve

them efficiently since the observed gap is on average only 0.01% and it takes less than half of CPLEX time.

The evolutionary heuristic, however, is more useful for the modified instances with the new construction cost

structures.

6.3 Parameter setting of the evolutionary algorithm

The proposed evolutionary algorithm requires the definition of several parameters. The size of each class

of individuals was chosen as in Buriol et al. [9], being α = 25% and β = 95%. The number of individuals

generated by each constructive heuristic at the beginning of the algorithm was split in half for each heuristic.

We also set the mutation rate M at a fixed value equal to 20%. Another four parameters were set empirically

through the results of experiments using a grid search method of parameterization. They are: the population

size (P ), the interval of generations to apply the elitism process (G), the cycle size (number of generations)

to mutate population (R), and the total number of cycles (N).

The experiments were conducted on the following combinations of settings: (i) P = {50, 200, 500}; (ii)

G = {5, 10, 20}; (iii) R = {5, 20, 50}; and (iv) N = {0, 1, 5, 10}. Table 6 reports average results of dominant

combinations of parameters in terms of quality and time for 10 distinct runs of the GA+VND regarding all

modified instances from sets 10/20, 10/50 and 50/50 and L = {3, 5, 10}. The first four columns refer to the

respective parameters (i), (ii), (iii) and (iv). The average gap in the fifth column was determined as before.

The running time in the sixth column is the average for all instances.

Table 6: Dominant set of parameter combinations for the GA+VND

P G R N Gap (%) Time (s)

50 5 20 10 0.00 15.9
50 5 50 1 0.01 9.2
50 10 20 5 0.02 8.2
50 5 50 0 0.03 6.5
50 20 20 5 0.04 6.3
50 5 20 0 0.06 4.6
50 10 50 0 0.07 4.2
50 20 20 1 0.10 3.5
50 10 20 0 0.12 3.0
50 20 50 0 0.13 2.8
50 20 20 0 0.17 2.3
50 20 5 0 0.25 1.6

Any combination of parameters from Table 6 could be chosen since we cannot claim that one clearly

outperforms another. In common, they all have the same population size. As we want to focus on solution

quality, we choose the combination that generates the best gap, which is: population composed by 50

chromosomes each generation; elitism (VND) is applied at every 5 generations to a random individual from

class A or B; the entire population except the best chromosome is mutated at every 20 generations without

improvement in the best solution; and 10 population mutations are done at maximum before algorithm stops.

This was not the sole combination that resulted in a gap of 0.00%, but it was the one with the lowest running

time. For the next experiments, we keep the settings with the best performance observed.
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6.4 Heuristics comparison against the exact method for the new instances

These experiments compare the efficiency of the evolutionary algorithm GA+VND and the relaxation-based

heuristic LRH to the state-of-the-art method ER-GMC of Jena et al. [23] to solve the DFLPM and, thus,

determine the advantages of using the heuristic methods. The comparison is made for the instances where

a feasible solution could be found in all three methods. Although GA+VND is capable of finding feasible

solutions in all instances easily, for some of them either the linear relaxation or the exact approach was not

able to and a comparison was not possible.

Table 7 shows the results of experiments for 10 distinct runs of the GA+VND, compared to the LRH

improved by VND, and the ER-GMC formulation for all modified instances. Results are divided into instances

with optimality proven within three hours (column Optimal) and instances that a feasible solution is found

but optimality is not guaranteed (column Feasible). Column No solution shows the number of instances that

a feasible solution was not found by LRH or ER-GMC. We highlight that in all these instances the GA+VND

finds feasible solutions. However, as there is no solution from either the ER-GMC or the LRH to compare

to, we cannot provide gaps for them. Some rows are omitted from the table since all 12 instances are in No

solution column. All gaps shown are relative to the best solution provided by ER-GMC.

Several conclusions can be obtained from Table 7. We highlight the following:

• GA+VND is better than LRH in most scenarios. On average it provides better results in less time either

when solutions have optimality proven by ER-GMC or when only a feasible solution without optimality

proof is known. In the former, the quality of solutions is better for the GA+VND in under half of the

runtime of LRH; in the latter, GA+VND presents solutions 0.43% better than the state-of-the-art MIP

in less than 15% of the runtime;

• On the Optimal instances the average gap of GA+VND is considerable (0.11%), mostly because the

heuristic has some difficulty on instances when the number of modules L equals to 15 and 30. Without

these instances, the gap falls to less than 0.01%;

• On instances with unproven optimality by ER-GMC, GA+VND finds on average better solutions than

the exact method (gap -0.43%) spending only one eighth of the maximum time for CPLEX. The gain

is even higher when considering instances with no solution provided by ER-GMC that GA+VND is

capable of finding a feasible solution;

• Time complexity in terms of L is much smaller for GA+VND than ER-GMC. For L = 3 and 5,

considering instances with optimality proven, ER-GMC time is comparable to GA+VND. For a bigger L

the time differences between both methods are evident, favorably to GA+VND.

The modified instances greatly increase the impact of module construction costs on total costs. We

observed that this makes them harder to solve using an exact approach. For instances with a bigger number

of modules per facility the MIP modeled in CPLEX with default settings is a useless tool for most instances

with as little as 50 facilities. In most of them, the memory required by CPLEX is too large to store its

branch-and-bound tree in such way that we run out of memory before a feasible solution could be found. The

large number of variables for a bigger L makes a linear relaxation approach also impossible to be used due to

the time required to finish the linear relaxation problem optimization. It is important to note that in some

runs, specifically when the instance size grows, the heuristic stopped due to maximum memory limitation.

On these particular experiments this did not represent a problem since the available memory was enough to

the heuristic generate satisfactory solutions before stopping. In case of bigger instances or in environments

with limited memory, some memory management should be required on the hash table that stores FCM

results. Finally, although we cannot guarantee solution quality provided by GA+VND on bigger instances,

its good performance on the instances that could be compared in these experiments is a good indicator that

the proposed heuristic is a reliable tool to deal with this problem.



20 G–2019–29 Les Cahiers du GERAD

T
a

b
le

7
:

R
esu

lts
fo

r
th

e
co

m
p

ariso
n

w
ith

th
e

sta
te-o

f-th
e-art

m
eth

o
d

o
f

[2
3

]
(E

R
-G

M
C

)
w

ith
th

e
lin

ear
rela

xa
tio

n
h

eu
ristic

(L
R

H
)

a
n

d
th

e
evo

lu
tio

n
ary

h
eu

ristic
(G

A
+

V
N

D
)

L
In

st
O
p
tim

a
l

F
ea
sible

N
o
so
lu
tio

n

#
In

st
G
A
+
V
N
D

L
R
H

E
R
-G

M
C

#
In

st
G
A
+
V
N
D

L
R
H

E
R
-G

M
C

#
In

st
G

a
p

(%
)

T
im

e
(s)

G
a
p

(%
)

T
im

e
(s)

T
im

e
(s)

G
a
p

(%
)

T
im

e
(s)

G
a
p

(%
)

T
im

e
(s)

T
im

e
(s)

3

1
0
/
2
0

1
2

0
.0

0
0
.9

0
.0

4
0
.1

0
.4

-
-

-
-

-
-

-
1
0
/
5
0

1
2

0
.0

0
1
.5

0
.0

0
0
.4

6
.3

-
-

-
-

-
-

-
5
0
/
5
0

1
0

0
.0

1
2
9
.2

0
.0

8
2
.5

1
1
8
5
.4

2
0
.0

2
3
6
.0

0
.4

2
8
.6

1
0
8
0
0
.2

-
5
0
/
1
0
0

7
0
.0

1
5
3
.5

0
.0

7
4
.5

2
5
5
.1

5
0
.0

1
1
8
9
.7

0
.1

8
2
4
.1

1
0
8
0
0
.3

-
5
0
/
2
5
0

6
0
.0

0
1
4
0
.7

0
.0

0
1
5
.7

1
5
.2

6
-0

.0
5

1
3
9
1
.0

0
.1

7
2
7
4
.0

1
0
8
0
0
.7

-
1
0
0
/
2
5
0

6
0
.0

1
4
0
0
.6

0
.0

0
1
0
1
.8

6
9
.1

6
-0

.2
8

6
3
9
7
.6

-0
.1

0
1
4
3
9
.0

1
0
8
0
1
.3

-
1
0
0
/
5
0
0

6
0
.0

0
1
1
5
2
.4

0
.0

0
4
7
3
.8

2
8
3
.5

4
-0

.8
9

4
9
8
7
.9

-0
.7

4
6
7
3
3
.2

1
0
8
0
3
.2

2
1
0
0
/
1
0
0
0

6
0
.0

3
2
0
7
5
.5

0
.0

4
2
8
9
0
.2

1
5
8
2
.8

-
-

-
-

-
-

6

5

1
0
/
2
0

1
2

0
.0

0
1
.0

0
.0

8
0
.3

2
.1

-
-

-
-

-
-

-
1
0
/
5
0

1
2

0
.0

0
2
.1

0
.0

3
1
.1

2
4
.7

-
-

-
-

-
-

-
5
0
/
5
0

7
0
.0

0
3
0
.1

0
.1

8
9
.3

6
2
0
.7

5
0
.0

1
6
2
.7

0
.2

1
3
2
.6

1
0
8
0
0
.2

-
5
0
/
1
0
0

6
0
.0

0
4
1
.6

0
.0

9
2
1
.3

3
7
.2

6
0
.0

0
3
4
4
.5

0
.3

0
1
8
1
.7

1
0
8
0
0
.5

-
5
0
/
2
5
0

6
0
.0

1
1
4
1
.6

0
.0

0
1
1
6
.5

1
1
4
.4

6
-0

.2
3

2
3
2
3
.9

-0
.0

5
1
8
6
1
.8

1
0
8
0
1
.3

-
1
0
0
/
2
5
0

6
0
.0

1
3
9
1
.6

0
.0

5
3
6
5
.8

4
9
7
.5

4
-2

.6
2

6
1
9
3
.3

-2
.3

9
7
2
1
6
.2

1
0
8
0
2
.6

2
1
0
0
/
5
0
0

6
0
.0

0
1
0
3
7
.1

0
.0

0
1
2
4
5
.0

9
0
2
.8

-
-

-
-

-
-

6
1
0
0
/
1
0
0
0

4
0
.0

8
2
1
7
2
.4

0
.1

0
2
7
5
9
.0

2
8
5
6
.8

-
-

-
-

-
-

8

1
0

1
0
/
2
0

1
2

0
.0

1
1
.7

0
.1

1
2
.9

4
0
.6

-
-

-
-

-
-

-
1
0
/
5
0

1
2

0
.0

1
4
.0

0
.2

1
9
.8

2
2
7
.8

-
-

-
-

-
-

-
5
0
/
5
0

4
0
.0

0
6
3
.8

0
.1

2
2
1
8
.3

2
9
8
3
.7

8
-0

.1
3

1
3
0
.8

0
.3

3
4
4
4
.8

1
0
8
0
0
.6

-
5
0
/
1
0
0

5
0
.0

0
9
3
.9

0
.2

4
5
3
4
.8

1
8
9
5
.2

7
-0

.3
8

4
4
7
.4

-0
.0

3
1
7
9
6
.3

1
0
8
0
1
.2

-
5
0
/
2
5
0

4
0
.0

1
2
7
4
.4

0
.1

3
7
5
8
.2

3
4
1
8
.4

5
-3

.0
6

1
2
0
0
.4

-3
.1

6
4
8
8
6
.3

1
0
8
0
3
.4

3
1
0
0
/
2
5
0

1
0
.0

0
1
2
8
2
.9

0
.0

4
8
1
3
3
.8

8
5
8
2
.6

2
-0

.0
2

1
7
0
8
.7

0
.2

0
3
7
9
0
.1

1
0
8
0
8
.3

9
1
0
0
/
5
0
0

1
0
.0

2
1
9
7
9
.8

0
.0

0
6
6
4
9
.4

8
7
2
2
.2

-
-

-
-

-
-

1
1

1
5

1
0
/
2
0

1
2

0
.2

5
2
.2

0
.2

5
8
.5

3
5
4
.5

-
-

-
-

-
-

-
1
0
/
5
0

1
1

0
.0

6
6
.2

0
.3

1
2
9
.1

1
0
4
9
.6

1
-0

.0
3

9
.4

0
.2

7
2
9
.7

1
0
8
0
0
.2

-
5
0
/
5
0

4
0
.1

6
5
1
.3

0
.3

2
1
1
3
7
.5

2
8
3
5
.3

8
-0

.0
2

1
5
0
.1

0
.4

4
1
2
1
0
.5

1
0
8
0
1
.4

-
5
0
/
1
0
0

5
0
.0

9
1
5
8
.9

0
.0

3
2
3
1
0
.4

5
6
1
7
.4

6
-0

.6
8

2
8
5
.3

-0
.6

1
3
1
7
0
.1

1
0
8
0
2
.6

1
5
0
/
2
5
0

1
0
.0

0
3
7
0
.2

0
.0

0
2
0
2
1
.5

7
2
4
5
.2

4
-0

.8
0

6
8
5
.4

-0
.7

5
5
1
2
2
.4

1
0
8
0
7
.2

7

3
0

1
0
/
2
0

1
2

1
.0

0
1
.9

0
.8

9
2
4
.2

2
2
.6

-
-

-
-

-
-

-
1
0
/
5
0

1
2

0
.3

2
6
.0

0
.7

5
1
4
4
.0

2
6
2
.8

-
-

-
-

-
-

-
5
0
/
5
0

8
0
.3

0
5
2
.9

0
.5

3
3
5
4
2
.4

4
5
4
3
.1

4
1
.1

7
8
7
.4

3
.3

1
4
7
6
0
.7

1
0
8
0
5
.0

-
5
0
/
1
0
0

1
0
.1

9
2
8
3
.5

0
.3

3
8
5
5
9
.5

8
6
7
3
.5

1
0
.4

3
1
8
7
.8

-0
.0

2
9
3
4
0
.5

1
0
8
0
9
.5

1
0

A
vg

0
.1
1

2
1
5
.6

0
.1
9

5
2
8
.4

9
4
8
.7

-0
.4
3

1
4
2
8
.9

-0
.1
2

2
2
7
1
.0

1
0
8
0
2
.0



Les Cahiers du GERAD G–2019–29 21

7 Conclusions

This paper presented some heuristics for the Dynamic Facility Location Problem with Modular Capacities

(DFLPM). The first one is based on the linear relaxation of a mixed integer programming formulation for

the problem with proven good results. The second is a hybrid evolutionary heuristic that uses the structure

of a genetic algorithm with a periodic intensification phase that explores several neighborhoods in a variable

neighborhood descent framework (GA+VND). The DFLPM is a relatively new problem in facility location

literature that generalizes several facility location problems allowing facilities to have their capacities adjusted

during a planning horizon using blocks of capacities, also called modules.

We adapted neighborhood exploration strategies typically applied to simpler FLPs to the DFLPM. Oper-

ations of adding new modules to facilities, closing existing modules and swapping modules between facilities

can be used separately or in combinations to design effective heuristics, such as local searches or mutation

operators, to improve solutions generated by other methods. For the GA+VND, three neighborhoods were

defined and explored exhaustively until reaching a common local optimum. We have also shown that the

same structure is very effective when improving the solution created based on the linear relaxation of the

MIP formulation.

The heuristics were tested for benchmark instances from the literature. We have shown that for the

existing instances, a simple approach as the linear relaxation heuristic followed by the proposed local searches

is capable of finding near optimal solutions quite faster than a state-of-the-art exact approach. We also

presented instances to better represent construction costs of modules in real cases. The adapted instances

were proven to be hard to solve by the exact approach. The evolutionary heuristic presented was capable

of solving them much faster and, in most scenarios, finding better solutions than the exact method and the

alternative heuristic based on linear relaxation.
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