
Les Cahiers du GERAD ISSN: 0711–2440

Low-power deployment of many-process
applications on multiple clouds

B. Singh, R. Kaur,
M. Woodside, J.W. Chinneck

G–2019–101

December 2019

La collection Les Cahiers du GERAD est constituée des travaux de
recherche menés par nos membres. La plupart de ces documents de
travail a été soumis à des revues avec comité de révision. Lorsqu’un
document est accepté et publié, le pdf original est retiré si c’est
nécessaire et un lien vers l’article publié est ajouté.

Citation suggérée : B. Singh, R. Kaur, M. Woodside, J.W. Chin-
neck (Décembre 2019). Low-power deployment of many-process
applications on multiple clouds, Rapport technique, Les Cahiers du
GERAD G–2019–101, GERAD, HEC Montréal, Canada.

Avant de citer ce rapport technique, veuillez visiter notre site Web
(https://www.gerad.ca/fr/papers/G-2019-101) afin de mettre à
jour vos données de référence, s’il a été publié dans une revue scien-
tifique.

The series Les Cahiers du GERAD consists of working papers
carried out by our members. Most of these pre-prints have been
submitted to peer-reviewed journals. When accepted and published,
if necessary, the original pdf is removed and a link to the published
article is added.

Suggested citation: B. Singh, R. Kaur, M. Woodside, J.W. Chin-
neck (December 2019). Low-power deployment of many-process
applications on multiple clouds, Technical report, Les Cahiers du
GERAD G–2019–101, GERAD, HEC Montréal, Canada.

Before citing this technical report, please visit our website (https:
//www.gerad.ca/en/papers/G-2019-101) to update your reference
data, if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grâce
au soutien de HEC Montréal, Polytechnique Montréal, Université
McGill, Université du Québec à Montréal, ainsi que du Fonds de
recherche du Québec – Nature et technologies.

Dépôt légal – Bibliothèque et Archives nationales du Québec, 2019
– Bibliothèque et Archives Canada, 2019

The publication of these research reports is made possible thanks
to the support of HEC Montréal, Polytechnique Montréal, McGill
University, Université du Québec à Montréal, as well as the Fonds de
recherche du Québec – Nature et technologies.

Legal deposit – Bibliothèque et Archives nationales du Québec, 2019
– Library and Archives Canada, 2019

GERAD HEC Montréal
3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2019-101
https://www.gerad.ca/en/papers/G-2019-101
https://www.gerad.ca/en/papers/G-2019-101

Low-power deployment of many-process applications on
multiple clouds

Babneet Singh a

Ravneet Kaur a

Murray Woodside a

John W. Chinneck a,b

a Systems and Computer Engineering, Carleton
University, Ottawa (Ontario), Canada K1S 5B6

b GERAD, HEC Montréal, Montréal (Québec),
Canada, H3T 2A7

babneetsingh@cmail.carleton.ca

dhindsa.ravneet@gmail.com

cmw@sce.carleton.ca

chinneck@sce.carleton.ca

December 2019
Les Cahiers du GERAD
G–2019–101
Copyright c© 2019 GERAD, Singh, Kaur, Woodside, Chinneck

Les textes publiés dans la série des rapports de recherche Les Cahiers
du GERAD n’engagent que la responsabilité de leurs auteurs. Les
auteurs conservent leur droit d’auteur et leurs droits moraux sur leurs
publications et les utilisateurs s’engagent à reconnâıtre et respecter
les exigences légales associées à ces droits. Ainsi, les utilisateurs:
• Peuvent télécharger et imprimer une copie de toute publica-

tion du portail public aux fins d’étude ou de recherche privée;

• Ne peuvent pas distribuer le matériel ou l’utiliser pour une
activité à but lucratif ou pour un gain commercial;

• Peuvent distribuer gratuitement l’URL identifiant la publica-
tion.

Si vous pensez que ce document enfreint le droit d’auteur, contactez-
nous en fournissant des détails. Nous supprimerons immédiatement
l’accès au travail et enquêterons sur votre demande.

The authors are exclusively responsible for the content of their re-
search papers published in the series Les Cahiers du GERAD. Copy-
right and moral rights for the publications are retained by the authors
and the users must commit themselves to recognize and abide the
legal requirements associated with these rights. Thus, users:
• May download and print one copy of any publication from the

public portal for the purpose of private study or research;

• May not further distribute the material or use it for any profit-
making activity or commercial gain;

• May freely distribute the URL identifying the publication.
If you believe that this document breaches copyright please contact us
providing details, and we will remove access to the work immediately
and investigate your claim.

ii G–2019–101 Les Cahiers du GERAD

Abstract: Deploying applications having many processes in a multi-cloud environment is challenging.
The cloud manager has goals such as minimizing power consumption, while the application manager
must reserve processing and memory resources sufficient to satisfy user constraints on throughput
and response time. These challenges must be addressed together. We describe an algorithm for this
purpose, intended for use by cloud managers who must simultaneously manage hosts and application
deployments, and plan capacity in order to offer services such as Serverless Computing. The algorithm
combines queueing theory, clustering, graph partitioning and bin-packing strategies to solve the low-
power many-process multi-cloud application deployment problem. It produces a solution within 20
seconds in 90% of the test scenarios, which is quick enough for use in practice. The algorithm is
extremely effective: in 77% of the test scenarios the solution power consumption is within 10% of an
unachievable theoretical lower bound.

Keywords: Multi-cloud, software, performance, layered queueing network, graph partitioning, bin
packing, green computing

Acknowledgments: We acknowledge the support of the Natural Sciences and Engineering Research
Council of Canada (NSERC). Grant numbers (RGPIN): 06274–2016 and 2014–04056.

Les Cahiers du GERAD G–2019–101 1

1 Introduction

Many-process applications with several or many communicating concurrent services are increasingly

common (e.g., systems with containers such as Docker may have dozens of these). While it may be

preferable to deploy such an application in a single cloud, it may be necessary to use multiple clouds

to obtain sufficient processing resources, or to access data sets located on different clouds.

Deploying across multiple clouds is challenging for the following reasons:

1. Network latencies: Inter-cloud network latencies are significant and the number of network hops

in a single response depends on the deployment. This can severely impact the response time.

2. Heterogeneous clouds: Clouds have different total capacities and hosts with different power and

speed characteristics.

3. Performance requirements: Throughput and response time have nonlinear dependencies on the

allocation. For example, a network delay is part of the response time only if the sender and

receiver are deployed in different clouds.

The goal of this work is an algorithm for generating power-efficient multi-cloud deployments that

satisfy cloud capacity and space constraints and throughput and response time constraints that are

typical of service level agreement (SLA) performance requirements. The Low Power Multi-Cloud

Application Deployment (LPMCAD) algorithm takes an application in the form of a directed graph

(Figure 1a) as input, and outputs a power-efficient deployment (Figure 1b) of application components

to hosts on clouds. It is quick enough for use in practice and effective in finding a low power deployment.

LPMCAD is the first algorithm to solve the LPMCAD problem (see Section 1.2). This algorithm

has a novel heuristic optimization procedure which combines a bin-packing and graph partitioning

algorithm to satisfy the SLA and reduce power consumption in the same step (see Section 3.5). Another

novelty is the response time approximation which allows the algorithm to quickly generate a solution

(see Section 2.6).

(a) Application (b) Deployment

Figure 1: Example of an application and deployment

1.1 Background: Graph partitioning, bin packing and layered queueing networks
(LQN)

LPMCAD uses K -way graph partitioning to reduce network hops, two-dimensional bin packing to

ensure capacity constraints, and queueing models to ensure performance constraints.

In K -way graph partitioning, a graph is divided into K parts, where each part is a subset of the

graph node set, and the parts are non-intersecting and cover the entire node set. A common objective

is to minimize the sum of the edge weights that connect nodes in different parts. Graph partitioning is

NP-hard [1], so it is difficult to find optimum solutions in a reasonable amount of time. Approximate

solutions are provided more quickly by heuristics. Menegola et al. [1] survey K -way graph partitioning

2 G–2019–101 Les Cahiers du GERAD

techniques including integer programming, heuristic techniques, multilevel techniques and multi-start

techniques.

Two-dimensional (2-D) bin packing tries to pack a set of 2-D items into a minimum number of

2-D bins. It is also NP-hard [2] and has applications in cutting stock, vehicle loading, pallet packing,

memory allocation, and several other logistics and robotics related problems [2]. Surveys of 2-D bin

packing algorithms are given in [2] and [3].

We model the software application via a layered queueing network (LQN) [4] which combines

a high-level model of the software architecture with deployment and performance information. Its

parameters capture the workload executed by the system in terms of CPU and I/O demands and

network messaging. The LQN solution estimates the queuing delays due to congestion in both hardware

and software resources, statistics that are vital to accurate prediction of system performance. LQN

modeling allows the study of throughput, response times, wait times, resource utilization and other

performance characteristics of software systems. Results are representative of real-world statistics.

1.2 Related work

There is a host of work on cloud deployment, indicated by keywords such as resource allocation,

host assignment, task scheduling, host consolidation, virtual machine (VM) placement and resource

provisioning. Different approaches emphasize different concerns, but no existing work addresses all

these concerns simultaneously:

1. Can it handle multiple clouds of different sizes?

2. Can it handle hosts with different processing and memory capacities?

3. Does it account for the network latencies between the clouds?

4. Does it handle distributed applications with communication between application components?

5. Does it satisfy the application’s processing and memory requirements?

6. Does it enforce performance requirements (throughput or response time) as constraints?

7. Does it minimize power consumption?

8. Is the solution time small enough to be useful in practice? For example, can the algorithm find

a solution in less than two minutes?

Verba [5] proposes a framework for large-scale fog computing which allocates highly connected

applications to a set of “gateway”, devices having computing and networking capabilities. It uses

graph clustering methods to allocate while maximizing a utility function which has components for

delay, reliability and constraint violations. It does not address power consumption.

Molka and Casale [6] allocate resources and hosts in a single cloud while satisfying the response

time for a given set of in-memory databases using an efficient hybrid genetic algorithm, bin-packing

and nonlinear optimization. They do not address multiple clouds, inter-cloud network delays or power.

Tunc et al [7] address most of the concerns, but only for a single cloud. They use a real-time control

rule based on performance monitoring and a Value of Service metric that enforces the response time

constraint as a deadline, while accounting for energy consumption.

Wang et al. [8] propose an energy-optimizing strategy for VM placement in the cloud. VMs are

considered components of an application or independent tasks. A cubic power function is used to

evaluate the power consumption of VMs: P (f) = α+βf3, where α is the static power consumption of

the CPU, β is a constant coefficient, and f is the operating frequency of the CPU. In their solution, the

processing and memory constraints are satisfied. The problem is modelled as a mixed integer program.

Panda et al. [9] propose three task scheduling algorithms for a heterogeneous multi-cloud envi-

ronment. The task scheduling algorithms aim to minimize the makespan and maximize the average

cloud utilization. Minimizing the makespan means minimizing the overall completion time needed to

Les Cahiers du GERAD G–2019–101 3

execute all the application tasks on the available clouds. The solution depends on the cloud manager

to handle the computation resources for the application.

Kaur [10] describes the HASRUT algorithm, which addresses all the concerns above but for only two

clouds. It uses a combination of multi-level, multi-start and local search graph partitioning techniques.

The work described here is a modification and extension of HASRUT.

Frincu et al. [11] propose a multi-cloud resource provisioning algorithm to maximize resource usage,

minimize application run-time, and maximize application availability and fault-tolerance. The solution

uses a genetic algorithm, which can be slow, to satisfy multiple objectives when finding a deployment

in a multi-cloud environment. Network latencies and energy consumption are ignored.

Table 1 shows which concerns are addressed by each of these methods. No method covers all

concerns.

Table 1: Summary of related work

Concern
Verba
2019

Molka
2017

Tunc
2016

Wang
2016

Panda
2015

Kaur
2015

Frincu
2011

1. Multiple (>2) heterogeneous clouds Y N N N Y N Y
2. Heterogeneous hosts Y U U Y U N N
3. Network latencies Y N N N N Y N
4. Distributed applications Y N N N Y Y Y
5. Processing and memoryrequirements Y Y Y Y N Y Y
6.Performance requirements Y Y Y N Y Y Y
7. Reduce power consumption N N Y Y N Y N
8. Small solution time Y N Y Y U Y N

“Y”: covered. “N”: not covered. “U”: uncertain.

2 Modelling multi-cloud application deployments

2.1 Multi-cloud model

A cloud is a group of hosts with a connecting internal network and peripherals. Different clouds usually

have different amounts and types of computing resources. In the multi-cloud model, there are multiple

heterogeneous clouds having varying computing resources. Each cloud has different network latencies

with respect to a group of users and to the other clouds. Figure 2 shows a multi-cloud environment.

It consists of two types of entities: a cloud and user. It also specifies the cloud properties and the

network latency between the entities. We ignore the intra-cloud networking delays and cloud disk

storage capacity and delays. The labels on the cloud model are defined in Section 2.5.

2.2 AppModel: The application Model

Each application is represented by a model called (for brevity) an AppModel, which describes the

components and their interactions using the notation of layered queueing models [12] as illustrated in

Figure 3.

The AppModel in Figure 3 shows the components (including the group of users) as rectangles

(e.g. t1) with their interface operations as attached rectangles (e.g. e2601). In LQN components are

called tasks and operations are called entries. The entry is labelled by its mean CPU demand per

invocation, for example 7.31 msec for entry e2604. Calls to entries are shown as arrows, labeled by the

mean calls per invocation of the calling entry, for example 2.31 calls from entry e2601 to e2607. The

CPU demand is the time in msec as calibrated on a particular reference host type and is scaled for a

faster or slower host by a speed factor for the host. One or more replicas of each application task will

be deployed, each with its own VM.

We attach two parameters to the users (userTask): a rate τ for the total requests per second, and
a required maximum mean response time Rconstraint.

4 G–2019–101 Les Cahiers du GERAD

Figure 2: Multi-cloud model

Figure 3: An example AppModel

2.3 Application graph

The deployment algorithm operates on a graph model G which can be derived from the AppModel, or

directly from the system data. Each vertex in G represents a deployable unit (corresponding to a VM

in the software and to a task x in the AppModel), and each edge in G represents all the interactions

between a pair of tasks x and y (corresponding to the set of interactions between the task entries).

Each vertex has the properties ptask(x), the total average processing capacity requirement of that task

converted to units of ssj ops (java operations per second defined by the SPECPower benchmark, and

m(x), its memory requirement for deployment on a host, and each edge has a property c(x, y) for the

mean number of interactions between entries x and y, during one user response.

Les Cahiers du GERAD G–2019–101 5

The graph G can be derived from an AppModel by a process described in Chapters 3 and 4 of [13].

For each entry the mean invocations per user response is found by analyzing the calling rates between

tasks in the AppModel, and for each task the CPU time d is the weighted sum of the entry demands,

as calibrated on the reference host type. Then, for user throughput τ ,

ptask (x) = τ × (CPU time d for task x)× (ssj ops for the reference host type) (1)

In the same way c(x, y) is the weighted sum of the calls from each entry of x to all the entries of y,

weighted by the invocations of x per user response.

2.4 Power model

Power consumption is modelled as a function of the host’s throughput using the SPECpower benchmark

results. In the power model shown in Figure 4 [14], the y-axis represents the average active power in

Watts (W) and the x -axis represents the SPECpower benchmark throughput in workload operations

per second (ssj ops). A polynomial regression model of degree three is applied to the SPECpower

benchmark results.

Figure 4: Power versus throughput for Fujitsu Server PRIMERGY TX1320 M2

Power Usage Effectiveness (PUE) relates host power to cloud power. It is the ratio between the

total power consumed by a cloud and power consumed by the cloud’s hosts [15]. We assume a constant

PUE of 1 across all clouds for simplicity, so the power consumed by a cloud’s hosts is equal to the

total power consumed by a cloud.

2.5 Notation

2.5.1 Application graph

1. V : set of all application tasks (vertices in the application graph).

2. E: set of all calls between the application tasks (edges in the application graph).

3. X = {x1, x2, . . .}: set of application tasks.

4. ptask(x): processing requirement of application task x in operations/sec as defined for ssj ops, at

user throughput τ responses/sec. (see Section 2.3).

5. mtask(x): memory requirement of application task x in megabytes (MB).

6. e(x): total processing (execution) time of application task x on a standard processor in msec,

including waiting for the processor.

7. c(x, y): mean number of calls of calling application task x to application task y, per user response.

8. G = (V, E, ptask, mtask, c): application modelled as a directed graph.

6 G–2019–101 Les Cahiers du GERAD

2.5.2 Clouds and hosts

1. C = {C0, C1, C2, . . . , CK}: set of K clouds in the multi-cloud environment, where C0 represents

the user(s).

2. hkl: host l on cloud k. Unsubscripted h is an unspecified host.

3. Hk = {hk1, hk2, . . . hkLk}: set of hosts in cloud Ck, which has Lk hosts.

4. pused(h) and ptotal(h): used and total processing capacity of host h in ssj ops respectively.

5. mused(h) and mtotal(h): used and total memory capacity of host h in MB respectively.

6. sh: speed factor for host h, defined as the ratio of its speed in ssj ops, relative to the reference

host type. Then the processing requirement of task x deployed on host h is ptask(x)/sh.

7. µ(k): total processing capacity of the cloud Ck in ssj ops.

8. β(k): total memory capacity of the cloud Ck in MB.

9. δ(r, q): delay between two cloud-entities r and q in msec.

2.5.3 Deployment

1. Xkl: set of tasks deployed to host l on cloud k, a partition of X.

2. Dk = {Xk1, Xk2, . . . , Xk,Lk}: deployment to cloud Ck .

3. D = {D0, D1, D2, . . . , DK}: deployment to K clouds, C1, C2, . . . , CK , where D0 contains

only the pre-assigned userTask.

4. pwr(hkl): power consumed by host hkl when it is assigned a set of tasks Xkl.

5. ψD: cut-set of deployment D.

6. ωD: total power consumption of deployment D in Watts (W).

7. f(x): cloud-entity to which application task x is assigned. The cloud-entity can be a cloud or

the set of users.

8. RptD : total processing time of deployment D in msec.

9. RnetD : total network delay due to inter-cloud communication of deployment D in msec.

10. RtotalD : response time of deployment D in msec.

11. τ : throughput constraint in requests per millisecond (req/msec).

12. Rconstraint: response time constraint in milliseconds (msec).

13. Unom: nominal resource utilization applied to all hosts for the response time approximation (see

next).

2.6 Response time approximation

A simplifying assumption avoids solving the LQN model for every trial deployment. It has two parts:

1. It is assumed that the deployment has a target utilization for all hosts, set at Unom, equal to

the fraction of the resource that is utilized. This is a reasonable assumption since one goal of

deployment is efficient use of the processors, and their power efficiency is usually better at higher

utilization, thus the optimization will tend to pack the processors to give this utilization.

2. The queueing delay at each host processor h is approximated by a simple processor-sharing

calculation for a single processor with the total capacity of the host and with this utilization.

The execution time (waiting plus execution) per user response is then [16]:

e(x) =

(
d

1 – Unom

)
(2)

Service time of task x per user response,

d =

(
ptask (x)

τ × Speed of host in ssj ops

)
(3)

Les Cahiers du GERAD G–2019–101 7

This quick calculation is used during optimization to approximately enforce the response time

constraint. It tends to understate the delay, so a solution may give a response time (found by LQNS)

greater than Rconstraint. This can be corrected by setting a factor αwait to their ratio, reducing

Rconstraint by the factor αwait, and re-optimizing. Alternatively, our experience with response-time

accuracy, reported in Section 4.7.4 below, suggests that a fixed value αwait = 1.10 applied to all cases

would eliminate this problem in most cases.

2.7 Optimization model

A mathematical model of the power-efficient multi-cloud application deployment problem follows:

1. The tasks assigned to a host should not exceed a host’s processing and memory capacities, so

for each host h: ∑
x ∈ Xh

ptask (x) ≤ ptotal(h) (4)

∑
x ∈ Xh

mtask (x) ≤ mtotal(h) (5)

2. A deployment is a partition of G, that is every task is assigned to exactly one cloud. Equation 6

requires that all the tasks have been assigned to a host in the deployment. Equation 7 requires

that a task is assigned to only one cloud i.e. there is no overlap between the deployment subsets.⋃
1 ≤ k ≤ K

Dk = V (6)

Di ∩Dj = ∅, ∀i 6= j (7)

3. A deployment D to the multi-cloud C is a collection of K subsets of V : D = {D0, D1, D2, . . . ,

DK}, where each subset is the set of tasks assigned to a cloud. The cut-set of a deployment D

is the set of edges that connect between clouds or users via a network:

ψD = {{x, y} ∈ E | x ∈ Di, y ∈ Dj , i 6= j, ∀i ∈ [0,K] , ∀j ∈ [0,K]} (8)

4. The total network delay (ignoring delays within each cloud) is the cut-weight or cut-size [1] for

a deployment D:

RnetD =
∑

{x,y} ∈ ψD

c(x, y)δ
(
f (x) , f (y)

)
(9)

5. The total power consumption for a deployment D is:

ωD =

K∑
k = 1

Lk∑
l=1

pwr (hkl) (10)

6. The total processing time for a deployment D is (using e(x) from Equation 2):

RptD = αwait
∑
x ε V

e (x) (11)

7. The total response time for a deployment D is taken to be:

RtotalD = RptD +RnetD (12)

The optimization problem follows below. Equation 13 specifies the minimum power objective function

for the multi-cloud application deployment problem. Equation 14 ensures that the deployment satisfies

8 G–2019–101 Les Cahiers du GERAD

the response time constraint. Equations 4 and 5 indirectly ensure that the total processing and memory

capacities of a cloud are not exceeded.

Find D to minimize: ωD (13)

Subject to: Rtotal
D ≤ Rconstraint (14)

Equations (2) through (12)

3 Low-power multi-cloud application deployment (LPMCAD) al-
gorithm

Algorithm 1 provides an overview of the LPMCAD algorithm. It uses a combination of clustering,

multi-level graph partitioning, multi-start graph partitioning, graph partitioning local search and bin-

packing techniques. It has six core stages and two enhancements, described next. Figure 5 provides a

visual aid to illustrate each stage and the transition between stages.

Algorithm 1 Overview of the low-power multi-cloud application deployment (LPMCAD) algorithm

INPUTS: clouds, hosts, users, application, control parameters, delays (δ).
Stage 1: Select a subset of clouds (C) which could host the application.
Stage 2: Generate a graph for the application (G) from the architecture model.
Stage 3: Scale the application to the workload and generate a graph for the scaled application (Gscaled).
Enhancement 1: Coarsen Gscaled and generate a graph of the coarsened application (Gcoarse).
for i ← 1 to number of initial deployments (Ninit depl), do

Stage 4: Generate an initial deployment (Dinit).
Stage 5: Partition Gcoarse using Dinit.
If the partitioned deployment (Dpartition) does not satisfy Rconstraint, then record Dpartition and go to the next
iteration in the loop.
Enhancement 1 : Perform uncoarsening on Dpartition.
for each bin packing algorithm {HBF-Proc, HBF-Mem}, do

Enhancement 2 : Perform bin packing on the uncoarsened partitioned deployment (Dpartition’) and record the
deployment (DHBF-Proc or DHBF-Mem).

end for
end for

OUTPUTS: (Stage 6): D that satisfies Rconstraint and consumes the least power, or null on failure.

3.1 Stage 1: Cloud selection

When there are many clouds, a preliminary choice of which clouds to consider for deployment must

be made. It is straightforward to eliminate from consideration clouds that are at capacity or that

have latencies to the user that are beyond the permitted maximum. We defer the details of the cloud

selection process to future work. Without loss of generality, the algorithm is tested against a four-

cloud configuration of an edge, small, medium and large cloud, which vary in computing resources.

The clouds are positioned such that the largest cloud has the greatest network delay to the user and

smallest cloud has the least network delay to the user. This is similar to a fog computing environment

since it employs a multi-cloud architecture where the clouds are tiered based on size.

3.2 Stage 2: Generating the application graph

Refer to Section 2.3.

3.3 Stage 3: Scaling the application

The application is scaled by adding enough replicas to satisfy the throughput requirement using pro-

cessors whose utilization is bounded at Unom. For each task x the number of replicas, Nreplicas, is

calculated so that the task can be executed on the slowest host found across all clouds (with speed

smin). This gives for task x:

Nreplicas =

⌈
τYxp(x)

Unomsmin

⌉
(15)

Les Cahiers du GERAD G–2019–101 9

Stage 2: Generate the application graph. Refer to Figure 1a

Stage 3: Scale the application Enhancement 1: Coarsening

Stage 4: Generate the initial deployments Stage 5: Partition to satisfy the constraints

Uncoarsen and apply 2D bin-packing. Refer to
Figure 1b.

Stage 6: Select the deployment solution

Figure 5: Visual summary of each stage of the LPMCAD algorithm

The mean number of calls to x per user request (Yx) is distributed equally among the replicas (this is

done in practice by a load balancer). In the model the call from any task to a set of replicas is replaced

by a set of calls to replicas with the number of calls divided equally among them. A new application

graph Gscaled is created for the replicas. This graph is then optionally coarsened (see Section 3.6.1) to

reduce the number of nodes.

3.4 Stage 4: Initial deployments

An initial deployment assigns the tasks to the hosts on the clouds as a starting point for the partitioning

stage. It is not required to be power efficient nor to satisfy the response time constraint, but it

must satisfy the processing and memory limits on each host. Three initial deployment strategies are

employed: deploy on the power efficient hosts first (power-sensitive, Algorithm 2), deploy on the next

closest cloud first (delay-sensitive, Algorithm 3) and deploy randomly on clouds (random, Algorithm 4).

The first two strategies generate one initial deployment each while the third strategy generates multiple

initial deployments. All three strategies take a directed graph and a list of clouds as the input, and

deploy to the most power-efficient hosts first. The output initial deployment is a list of entries for each

cloud; each entry lists the task, host, and power consumed. When a task is assigned to a cloud, a host

is allocated, and the power consumption is calculated for the task.

3.4.1 Find the most power efficient host for a task in a cloud

The hosts in each cloud are pre-sorted in decreasing order of the overall score of the SPECPower

benchmark, which is the ratio of throughput and power, representing the power efficiency [17]. First-
Fit-Decreasing-Height (FFDH) bin packing [3] is used to find a host for a task in a cloud, where the

10 G–2019–101 Les Cahiers du GERAD

Algorithm 2 Power-sensitive initial deployment

INPUTS: G, C.
Instantiate D with no elements.
Sort the tasks in G in decreasing order of processing requirement.
for each task in the sorted set, do

Find the most power efficient host that can accept the task and its associated cloud.
if a host is found, then

add the task to Xhost, Xhost to Dcloud and Dcloud to D if not already present.
else

fail since no host with enough resources was found to allocate the task.
end if

end for
OUTPUTS: D on success and null on failure.

Algorithm 3 Delay-sensitive initial deployment

INPUTS: G, C, δ.
Instantiate D with no entries.
Cto ← Ø. // next cloud to use
Sort the tasks in G in decreasing order of processing requirement.
for each task in the sorted set, do

if Cto is Ø, then: then
Find the cloud with least delay to the user that can accept the task; set as Cto.

else
if Cto cannot accept the task then

Find the cloud with least delay to Cto that can accept the task, and update Cto.
if Cto is Ø, then

fail (no host has enough resources to accept the task).
end if

end if
end if
Find the most power efficient host in Cto that can accept the task.
Add the task to Xhost, Xhost to DCto and DCto to D if not already present.

end for
OUTPUTS: D on success and null on failure.

Algorithm 4 Random initial deployment

INPUTS: G, C.
Instantiate D with no entries.
Shuffle list of tasks in G to generate a randomly ordered list.
for each task in the list, do

Find the most power efficient host in a randomly selected cloud that can accept the task.
if a host is found, then

add the task to Xhost, Xhost to Dcloud and Dcloud to D if not already present.
else

fail since no host with enough resources was found to accept the task.
end if

end for
OUTPUTS: D on success and null on failure.

“height” is the processing requirement of the task. The combination of pre-sorting the hosts in a

cloud based upon power efficiency and utilizing the FFDH bin packing to fit tasks to hosts is a fast

method for host allocation that improves the power efficiency of the deployment while satisfying the

task processing and memory requirements.

3.5 Stage 5: Partition to satisfy the response time and bin-pack to minimize
the power consumption

The goal in Stage 5 is to find a more power efficient deployment that satisfies Rconstraint by moving

tasks from one cloud to another. Moves are evaluated by the amount of reduction in RnetD and ωD.

The K-way variant of the Fiduccia-Mattheyses (FM) graph partitioning refinement heuristic [1] is

employed for satisfying Rconstraint since Kaur [10] achieved the best results with it while solving the

edge-core (two-way) cloud deployment problem. The FM heuristic primarily reduces the cut-weight of

Les Cahiers du GERAD G–2019–101 11

a graph, which is equivalent to RnetD in this context. Ultimately, RtotalD is lowered due to the reduction

in RnetD . Further, the techniques in section 3.4.1 reduce ωD by selecting the most power efficient hosts

on a cloud during a move. The move selection process initially focusses on satisfying Rconstraint while

ignoring the changes to ωD. After Rconstraint is satisfied (Equation 14), then it prioritizes reducing ωD
while not violating Rconsraint. The detailed process for stage 5 is shown in Algorithm 5. Key symbols

and phrases used in this stage:

1. Latency reduction: the difference between Rnet before a move and Rnet after a move.

2. Power reduction: the difference between ωD before a move and ωD after a move.

3. Stopping condition: stop partitioning if no inter-cloud moves with positive latency or power

reductions are found after evaluating all the tasks in the graph.

Algorithm 5 Partition to satisfy the response time and bin-pack to minimize the power consumption

INPUTS: G, D, C, δ, Rpt, Rconstraint, user, root task.
Accepted moves ← Ø, Attempted moves ← Ø.
Calculate Rnet

D and ωD for D.
Sort the tasks in G in decreasing order of processing requirement.
repeat

Best power reduction move {Cfrom, Cto, task, host, power reduction, latency reduction} ← Ø.
Best latency reduction move {Cfrom, Cto, task, host, power reduction, latency reduction} ← Ø.
for each task in the sorted task list do

Cfrom ← the cloud where the task is currently assigned.
for each cloud (Cto) in clouds, where Cto is not equal to Cfrom, do

Find the most power efficient host in Cto to allocate the task (see Section 3.4.1).
Calculate the power and latency reductions for moving the task from Cfrom to Cto.
if this move has the largest power reduction that does not violate Rconstraint, then

record it as the best power reduction move.
end if
if this move has the largest latency reduction, then

record is as the best latency reduction move.
end if

end for
end for
Increment attempted moves by 1.
if a best power reduction move exists, then

Increment accepted moves by 1, and subtract the latency reduction from Rnet
D and power reduction from ωD.

Accept the best power reduction move. Task is moved from DCfrom to DCto in D.
else if Rconstraint is not met and a best latency reduction move exists then

Increment accepted moves by 1, and subtract the latency reduction from Rnet
D and power reduction from ωD.

Accept the best latency reduction move. Task is moved from DCfrom to DCto in D.
else

no move is found.
end if
if the stopping condition is true, then

exit.
end if

end repeat
OUTPUTS: D if Rconstraint is met or null on failure.

3.6 Enhancements

3.6.1 Enhancement 1: Coarsening and uncoarsening

Coarsening is the process of merging tasks that have a large amount of communication and is introduced

between stages 3 and 4. The edges are sorted in decreasing order of edge weight and the tasks they

connect are then merged recursively. The edge between two merged tasks disappears, so the merged

tasks are deployed together on the same host. This avoids the delay that would be incurred if the

tasks were deployed on hosts in different clouds. Coarsening is controlled by the following parameters:

1. Bcpu and Bmem represent the upper bounds on the processing and memory requirements of a

merged task, respectively. Merged tasks with a process capacity higher than Bcpu or a memory

capacity higher than Bmem are not allowed.

12 G–2019–101 Les Cahiers du GERAD

2. Bedge factor: only edges with an edge weight higher than
(
Bedge factor

∑
x ε V Yx
|E|

)
are considered

for coarsening.

A record is created for each merge operation that contains the information about the two merged

tasks. These records are used to restore the merged tasks into the corresponding original tasks in the

uncoarsening stage.

Uncoarsening restores the merged tasks to their original state. Where a single coarse node comprises

several tasks, they are all deployed to the same cloud.

3.6.2 Enhancement 2: Apply 2D bin-packing

After uncoarsening, two bin packing strategies further reduce the power consumption by reducing the

number of active hosts. They reassign tasks to different hosts in the same cloud using variants of the

Hybrid-Best-Fit (HBF) bin packing approach [3]. HBF sorts the tasks in decreasing order of “height”,

and then assigns each task in order to the host with the least available “height” and “width” that can

accommodate it. Equation 16 describes the bin packing score for host x. A task is assigned to the

host with the highest bin packing score.

Bin packing score for host h =

(
pused(h)/ptotal (h)

)
+
(
mused(h)/mtotal (h)

)
2

(16)

In the HBF-Mem variant, the height is mtask(x), and the width is ptask(x), and in the HBF-Proc

variant, the height is ptask(x), and the width is mtask(x).

3.7 Stage 6: Selecting the deployment solution

Stages 4 and 5 and enhancement 2 are repeated for one power-sensitive initial deployment, one delay-

sensitive initial deployment, and 50 random initial deployments. Each initial deployment yields three

deployment candidates: Stage 5 provides one candidate, and enhancement 2 provides the other two.

With 52 initial deployments, there are 52 × 3 = 156 deployment candidates for the final solution. In

stage 6, the deployment that consumes the least power while satisfying the response time constraint

is chosen as the solution. RLPMCAD and PLPMCAD represent the response time per user request and

power consumption of the solution respectively.

4 Experiments

4.1 Experimental setup

4.1.1 Hardware details

The experiments are run on an Intel i5 3570 machine with 3.4 GHz processor, and 16 GB memory

(RAM).

4.1.2 Software details

1. The algorithm is implemented in Java.

2. The Java Universal Graph Framework (JUNG) v2.0.1 [18] is used for graph data structures.

3. JSON.simple v1.1.1 [19] is used for JSON processing.

4. Guava v19.0 [20], Google Core Libraries for Java, provide the Multimap data structure that is

used to represent the deployment. Multimap maps a key to multiple values. In the implemen-

tation, the key is the cloud, and the values are the {task, host, power} entries associated to

the cloud.

Les Cahiers du GERAD G–2019–101 13

5. The Apache Commons Mathematics Library v3.6.1 [21] generates the power versus throughput

regression model for the hosts.

6. The Eclipse IDE v4.6.3 [22] is used for development.

7. OpenJDK8 v1.8.0 222 [23], powered with OpenJ9 Java Virtual machine, runs the Eclipse IDE

and the algorithm.

8. Ubuntu v16.04 [24], a Linux operating system, is used.

4.1.3 Algorithm control parameters

1. Unom = 0.8.

2. Bedge factor = 1.

3. Refer to the next section for the values of Bmem and Bcpu.

4.1.4 Host parameters

1. Hosts have either 16 GB, 64 GB, 128 GB or 192 GB of memory capacity. For a merged task to

fit on all hosts, Bmem is chosen to be 16 GB.

2. Hosts have either 8 CPUs, 72 CPUs, 88 CPUs or 112 CPUs. For a merged task to fit on all

hosts, Bcpu is chosen to be the average throughput of 8 CPUs. Its unit are ssj ops.

3. Host speedup information (see Table 2) is derived from the SPECpower results.

Table 2: Host details sorted in decreasing order of speed and power efficiency [14]

Host Name (h)
Number of

Logical CPUs,
Ncpu

SPECpower
Throughput at

100% Host Load,
ptotal [ssj ops]

SPECpower
Throughput Per

Logical CPU,
ptotal

Ncpu
[ssj ops]

sh= ptotal

sminNcpu

Inspur Corporation NF5280 M4 88 3,561,599 40,473 (smin)
1.00

(slowest)
Dell Inc. PowerEdge R630 72 3,240,418 45,006 1.11
Dell Inc. PowerEdge R740 112 5,727,798 51,141 1.26
QuantaGrid S31A-1U 8 474,667 59,333 1.47
Fujitsu Server PRIMERGY TX1320 M2 8 478,512 59,814 1.48
Fujitsu Server PRIMERGY TX1330 M2 8 484,122 60,515 1.50
Fujitsu Server PRIMERGY RX1330 M1 8 508,013 63,502 1.57
Fujitsu Server PRIMERGY RX1330 M3 8 586,973 73,372 1.81

4.2 Solution bounds

There is no existing exact solution method for the K -cloud deployment problem defined in this pa-

per with which to compare the LPMCAD algorithm. Instead we looked for lower bounds on the

power consumption and response time per user request, the two most important characteristics of a

deployment.

4.2.1 Power consumption lower bound

A lower bound on an application’s power consumption (P bound) was estimated by allocating the total

workload to the most power-efficient hosts. The most power efficient hosts are assumed to operate at

the optimal utilization where the ratio of the throughput to power is the highest. The processing and

memory requirements are pooled and allocated in a fluid manner, to fill the most power efficient host

first and then overflow to the next most power efficient host and so on. Network delays are ignored.

For example, 40% of the resources for an application component can be allocated on one host and

the remaining 60% on another, so fractional resources for an application component can be allocated

on two different hosts, which can be located on two different clouds. This lower bound on power
consumption is unlikely to be attainable in practice.

14 G–2019–101 Les Cahiers du GERAD

4.2.2 Response time per user request: No lower bound

A lower bound on the response time per user request for an application could not be found. Two

approaches were considered. The first assigns tasks to the cloud with the least latency to the current

cloud if no resources are available on the current cloud. The first cloud chosen has the least latency to

the user. The second approach is similar to the partitioning stage, but the goal is to only minimize RnetD

for the deployment. Neither approach could guarantee a lower bound on the response time per user

request. We instead verified the response time using the Layered Queueing Network Solver software [4],

as described next.

4.3 Response time verification by layered queueing network solver (LQNS)

The goal of this step is to verify the response time per user request of the LPMCAD deployment

solution (RLPMCAD). As shown in Section 3.3, LPMCAD approximates the wait times and resource

contention in Rpt by using a nominal target utilization Unom=0.8 for the hosts. The LQNS evaluates

the wait times and resource contention more accurately, so its response time per user request (RLQNS)

is closer to the actual value that would be experienced by an application deployed in a real multi-cloud

environment. Comparing RLPMCAD and RLQNS evaluates the quality of the LPMCAD approximation

for the wait times and resource contention.

A new LQN model representing the LPMCAD deployment is generated using the details about

the replicas, inter-cloud delays and host assignments from the LPMCAD solution. The processor

sharing (PS) discipline is used in the new LQN model since it runs all the tasks simultaneously on

the processor. The LQNS solution provides a value for RLQNS . The use of this value is discussed in

Section 4.7.4 below.

4.4 Evaluation criteria

We compare two values using the relative error measure defined in Equation 17:

∆% (A,B) =

(
A−B
A

)
× 100% (17)

These criteria are used to evaluate a solution:

1. Is the response time constraint satisfied (RLPMCAD ≤ Rconstraint)?
2. How close is PLPMCAD to P bound, as measured by ∆%

(
PLPMCAD, P bound

)
?

3. LPMCAD algorithm runtime, TLPMCAD.

4. Does the deployment satisfy the application’s resource requirements?

5. How does the LQNS response time per user request compare to the LPMCAD response time per

user request, as measured by ∆%

(
RLPMCAD, RLQNS

)
?

4.5 Tuning and test models

Test models were generated as LQN AppModels via the random model generator lqngen, which is part

of the LQNS software package [4]. lqngen generated models with a random structure and parameters,

using a size parameter (option –A[size]) which governs the number of layers, clients, processors and

tasks.

4.6 Multi-cloud test environment

Figure 2 illustrates the abstract multi-cloud environment used for tuning (see Section 4.7) and eval-

uation (see Section 4.8). Table 3 shows the individual clouds total processing, memory and CPU

capacities. Table 4 shows the network delays in the test environment.

Les Cahiers du GERAD G–2019–101 15

Table 3: Cloud capacities in the multi-cloud test environment

Total memory
capacity, β [GB]

Total processing
capacity, µ [ssj ops]

Total number of
logical CPUs

Cloud Edge (C1) 64.0 1,669,696.80 32
Cloud Small (C2) 80.0 2,028,905.60 40
Cloud Medium (C3) 176.0 4,240,154.40 88
Cloud Large (C4) 272.0 7,467,443.20 200

Table 4: Network delays (in msec) in the multi-cloud test environment

δ(r, q) [msec] r
U C1 C2 C3 C4

q

U N/A 25 100 175 250
C1 25 N/A 75 150 225
C2 100 75 N/A 75 150
C3 175 150 75 N/A 75
C4 250 225 150 75 N/A

4.7 Tuning the LPMCAD algorithm

4.7.1 Tuning experiments

The tuning experiments study the impact of τ andRconstraint onRLPMCAD, PLPMCAD and TLPMCAD.

Five test models are generated for tuning using the lqngen tool with these values for -A: {4, 8, 18,

24, 30}. These models have different characteristics in terms of number of application components,

processing and memory requirements, number of calls per user request, and processing time [See Sec-

tion 4.8.1]. Two experiments are performed for each of the tuning test models with and without

coarsening:

1. Experiment 1 : The throughput requirement (τ) is varied with an easily achievable response time

constraint (Rconstraint).

2. Experiment 2 : The response time constraint (Rconstraint) is varied from an easy target to a hard

target. A use-case is taken from experiment 1 where Rconstraint is tightened until none of the

initial deployments can satisfy Rconstraint.

The two experiments provide 94 test cases, which are used to derive a good configuration for

the LPMCAD algorithm. Evaluation criteria 1–4 (see Section 4.3) are used to assess the LPMCAD

algorithm.

4.7.2 Summary of results

The tuning experiments show that:

1. Enabling coarsening helps in satisfying tighter response time constraints, achieving lower response

times, delivering deployments with lower power consumption, and reducing the LPMCAD algo-

rithm runtime.

2. In the 154 test cases, the power-sensitive initial deployment produced a deployment solution nine

times, delay-sensitive initial deployment produced a deployment solution one time, and random

initial deployment produced a deployment solution in the remaining successful test cases.

3. There is a negligible difference in the power consumption when the bin packing strategies in

enhancement 2 (see Section 3.6.2) are performed with or without uncoarsening.

4. In 85% of the test cases, the deployment solution from stage 5 has the least power consumption.

In 10% of the test cases, the deployment solution from the HBF-Mem strategy in enhancement 2

yields the lowest power consumption. In the remaining 5% of the test cases, the deployment

solution from the HBF-Proc strategy in enhancement 2 yields the lowest power consumption.

16 G–2019–101 Les Cahiers du GERAD

4.7.3 Tuned algorithm

In the tuned LPMCAD algorithm:

1. Coarsening (enhancement 1) is enabled due to its benefits.

2. All three initial deployment strategies are used since each produced a deployment solution at

least once.

3. The bin packing strategies in enhancement 2 are invoked once after uncoarsening.

4. Both HBF-Mem and HBF-Proc strategies are enabled since they yield a deployment solution

with least power consumption at least once.

4.8 Evaluation of the tuned LPMCAD algorithm

4.8.1 Test models and experiments

104 random AppModels were generated using the lqngen tool, with 20 or 21 models for each -A value:

{4, 8, 18, 24, 30}. The random generation process produced model parameters with these ranges:

1. Number of application components: 20 – 240.

2. Total processing requirement: 5 – 84% of the total multi-cloud capacity.

3. Total memory requirement: 5 – 87% of the total multi-cloud capacity.

4. Total number of calls per user request: 3 – 11050.

5. Total processing time: 8 msec – 65000 msec.

The tuned LPMCAD algorithm was invoked once for each of the 104 test models. The percentage

difference (see Equation 17) is used for comparison. All five evaluation criteria (see Section 4.4) are

used to assess the tuned LPMCAD algorithm.

Tuning experiments 1 and 2 (see Section 4.7) provide the boundary limits or failure points for the

throughput and response time constraints respectively. The 104 evaluation test models are related to

the five tuning test models due to the common -A value set. The boundary limits for the constraints

from the tuning experiments are used as a starting point to set the throughput and response time

constraints for the evaluation tests. If the boundary limits for the constraints were infeasible for

an evaluation test model, then the constraints were incrementally relaxed in order to obtain feasible

evaluation test cases. This section studies the LPMCAD algorithm only for feasible cases. Table 5

shows an example failure point of the response time constraint for tuning model 2.

Table 5: Tuning experiment 2 results for tuning test model 2

Rpt
D = 608 msec

P bound = 1107.1 W

Rconstraint [msec] RLPMCAD [msec] PLPMCAD [W]

Run 1 12500 12454 1155.19
Run 2 10000 9954 1158.57
Run 3 7500 7446 1151.83
Run 4 5000 4988 1160.44
Run 5 2500 Failed Failed

4.8.2 PLPMCAD versus Pbound

In the 104 test cases, PLPMCAD is within 10% of the unachievable lower bound P bound in 77% of

the test cases. In 21% of the test cases, PLPMCAD is within 10-20%; and for 2% of the test cases, it

is within 25-27% of P bound. These results are very satisfactory considering PLPMCAD is within 10%

of P bound for most test cases. PLPMCAD does poorly relative to P bound in two situations. First,

application components are unable to reach the optimal power efficient host state (the operating point

corresponding to the host’s highest throughput to power ratio) because the application has small

Les Cahiers du GERAD G–2019–101 17

resource requirements that are insufficient to reach the power efficient state. Second, tighter response

time constraints can lead to moves which primarily focus on reducing the total network delay (RnetD),

which prevents components from being deployed on the most power efficient machines across all the

clouds.

4.8.3 RLPMCAD versus Rconstraint

In the 104 test cases, the LPMCAD algorithm always satisfies the response time constraint:

∆%

(
Rconstraint, RLPMCAD

)
is always positive i.e. Rconstraint > RLPMCAD. RLPMCAD has two

components: RptD and RnetD . RptD is static, and it is not influenced in the LPMCAD algorithm, whereas

RnetD is reduced in stage 5. If RptD does not violate Rconstraint by itself, then RnetD determines the

quality of RLPMCAD relative to Rconstraint. RnetD depends on the application graph properties such

as the number of edges and edge weights, which represent the communication between the application

components. It is difficult to satisfy Rconstraint by reducing RnetD for relatively large values of total

number of calls per user request. In such cases, ∆%

(
Rconstraint, RLPMCAD

)
is closer to 0%. In con-

trast, it is easier to reduce RnetD for relatively small values of total number of calls per user request. In

such cases, RLPMCAD can be much lower than Rconstraint.

4.8.4 RLPMCAD versus RLQNS

To assess the response time approximation for the wait delays (see Section 2.5), RLPMCAD is compared

with RLQNS because the LQNS approximates the wait delays more accurately using nonlinear models.

Figure 6 summarizes the comparison between RLPMCAD and RLQNS . It only accounts for 82 test

cases. In 22 test cases, the LQNS failed to solve the LQN model. In 50% of the 82 test cases, the

wait delays were underestimated and in the other 50% of the 82 test scenarios, the wait delays were

overestimated i.e. ∆%

(
RLPMCAD, RLQNS

)
is positive. Overestimation of wait delays is acceptable

since Rconstraint will not be violated. Rconstraint may be violated in case of underestimation i.e.

∆%

(
RLPMCAD, RLQNS

)
is negative. So, a deflation factor (αwait) is proposed, which would scale

down Rconstraint in order to handle the underestimation errors.

Figure 6: LPMCAD’s response time vs. response time from the LQNS

The application’s resource requirements were compared with the cloud resources to explain the

∆%

(
RLPMCAD, RLQNS

)
values, but no patterns were found. The utilization of processors in the LQNS

solution did not exceed Unom = 0.8, so no hosts were overloaded. The differences between RLPMCAD

and RLQNS are approximation errors in Rpt. However, even when RLPMCAD is underestimated, it is

often still sufficiently smaller than R constraint that using the larger RLQNS still satisfies Rconstraint.

Rconstraint is compared to RLQNS to find the number of test cases that violate Rconstraint due to

underestimation of the wait delays, as shown in Figure 7. Just 16 of the 40 test cases with underesti-

mated wait delays violate Rconstraint with the largest error being 35 sec.

18 G–2019–101 Les Cahiers du GERAD

Figure 7: Response time constraint vs. response time from the LQNS

4.8.5 Algorithm runtime

Algorithm runtime determines how well the algorithm scales. Table 6 shows the impact of tighten-

ing Rconstraint on TLPMCAD. TLPMCAD increases and reaches an upper threshold as Rconstraint is

tightened. This happens because the number of initial deployments that do not converge to a solution

(blind alley deployments), increases as the throughput and response time constraints are set closer to

the boundary limits or failure points.

Table 6: Tuning experiment 2: results for tuning model 2

Rpt
D = 608 msec Rconstraint [msec] TLPMCAD [msec] Good Deployments Bad Deployments

Run 1 12500 6574 51 1
Run 2 10000 8655 51 1
Run 3 7500 16686 51 1
Run 4 5000 24718 14 38
Run 5 2500 25523 0 52

LPMCAD runtime depends on multiple factors such as the total number of tasks and calls in the

graph, number of clouds, number of hosts in each cloud, network latencies, constraints and capacities

of the hosts. It is challenging to study the algorithm runtime while accounting for all these factors. For

simplicity, runtime is studied as the number of tasks in the graph (problem size) is increased. Figure 8

summarizes the data for TLPMCAD (crosses) and the HASRUT algorithm runtime, THASRUT (circles).
In 77% of the test cases, TLPMCAD is below 10 seconds. In another 11% of the test cases it is 10 to

20 seconds. For the remaining test cases, TLPMCAD is between 20 and 70 seconds. LPMCAD, which

can support K -clouds, is faster and more scalable than HASRUT, which can support just two clouds.

These results are very good: TLPMCAD is below 20 seconds in 90% of the test cases and can be further

reduced by handling the many initial deployments concurrently.

5 Conclusions

The LPMCAD algorithm is very effective and is suitable for use in practice. Over the 104 test cases

with four clouds and up to 240 deployable units (tasks):

1. Power consumption is very low: it is within 10% of a theoretical lower bound (which is too low

to be feasible) in 77% of the cases.

2. Solution times are small: less than 20 sec in 82% of cases and less than 10 sec in 76% of cases.

These times make LPMCAD suitable for practical use.

3. The algorithm scales well: solution times increase roughly linearly with problem size (deployable

units, including replicas introduced by scaling out to handle high system loads), as shown in

Figure 8.

Les Cahiers du GERAD G–2019–101 19

Figure 8: Algorithm runtime versus problem size for the LPMCAD and HASRUT algorithms

Coarsening/uncoarsening of the application graph considerably improves the quality of the solutions

and reduces the time to obtain them. The two non-random initial deployment strategies (power-

sensitive and delay-sensitive) led to the final solution in relatively few cases.

The response time approximation used in the deployment calculations is essential to obtaining

small solution times, but it does lead to underestimated response times in some cases. In the 82 test

cases where the LQNS solved the model, 40 test cases (50%) returned a response time that exceeded

the time estimated by LQNS, but 66 test cases (80%) still satisfied the response time constraint and

another 10 test cases (93% in total) came within 20% of the response time limit. The violators can be

corrected by repeating the solution with an adjusted, tighter response time constraint.

Our application model does not describe components whose workload increases when they are

replicated, as often happens when replicated data must be synchronized. This limitation could be

addressed by iterating the solution and introducing the overhead once the number of replicas is known

at least roughly.

This work can be generalized by: 1) selecting the clouds and hosts in real-time using active learning,

2) employing a more accurate power model, 3) using an adaptive technique in the coarsening algorithm

instead of enforcing constant upper bounds on the processing and memory requirements of a merged

task, 4) accounting for cloud outages, 5) supporting models with multiple groups of users with different

locations and requirements, 6) modelling I/O delays and storage requirements, and 7) incorporating a

more real-time network model.

References

[1] Bruno Menegola. 2012. A study of the k-way graph partitioning problem. Master’s Thesis. Federal
University of Rio Grande do Sul, Rio Grande do Sul, Brazil.

[2] Henrik I. Christensena, Arindam Khan, Sebastian Pokutta, and Prasad Tetali. 2017. Approximation and
online algorithms for multidimensional bin packing: A survey. Computer Science Review, 24 (May 2017),
63–79. DOI: https://doi.org/10.1016/j.cosrev.2016.12.001

[3] British German Academic Research Collaboration Programme. 2006. Survey on two-dimensional packing.
(September 2006). Retrieved December 5, 2018 from http://cgi.csc.liv.ac.uk/~epa/surveyhtml.html

[4] Murray Woodside. 2013. Tutorial Introduction to Layered Modeling of Software Performance. (February
2013). Retrieved December 22, 2018 from http://www.sce.carleton.ca/rads/lqns/lqn-documentation/

tutorialh.pdf

[5] Nandor Verba. 2019. Application Deployment Framework for large-scale Fog Computing Environments.
Ph.D. Dissertation. Coventry University, Coventry, England. DOI: https://doi.org/10.13140/RG.2.2.

27166.79684

https://doi.org/10.1016/j.cosrev.2016.12.001
http://cgi.csc.liv.ac.uk/~epa/surveyhtml.html
http://www.sce.carleton.ca/rads/lqns/lqn-documentation/tutorialh.pdf
http://www.sce.carleton.ca/rads/lqns/lqn-documentation/tutorialh.pdf
https://doi.org/10.13140/RG.2.2.27166.79684
https://doi.org/10.13140/RG.2.2.27166.79684

20 G–2019–101 Les Cahiers du GERAD

[6] Karsten Molka and Giuliano Casale. 2017. Energy-efficient resource allocation and provisioning for in-
memory database clusters. IFIP/IEEE Symposium on Integrated Network and Service Management (IM)
(May 2017), 19–27. DOI: https://doi.org/10.23919/INM.2017.7987260

[7] Cihan Tunc, Nirmal Kumbhare, Ali Akoglu, Salim Hariri, Dylan Machovec, and Howard J. Siegel. 2016.
Value of Service Based Task Scheduling for Cloud Computing Systems. International Conference on Cloud
and Autonomic Computing (ICCAC) (Sept. 2016), 1–11. DOI: https://doi.org/10.1109/ICCAC.2016.22

[8] Yi Wang and Ye Xia. Energy Optimal VM Placement in the Cloud. IEEE 9th International Conference on
Cloud Computing (CLOUD) (June-July 2016), 84–91. DOI: https://doi.org/10.1109/CLOUD.2016.0021

[9] Sanjaya K. Panda and Prasanta K. Jana. 2015. Efficient task scheduling algorithms for heterogeneous
multi-cloud environment. The Journal of Supercomputing, 71, 4 (April 2015), 1505–1533. DOI: https:

//doi.org/10.1007/s11227-014-1376-6

[10] Ravneet Kaur. 2015. Lightweight Robust Optimizer for Distributed Application Deployment in Multi-
Clouds. Master’s Thesis. Carleton University, Ottawa, Canada.

[11] Marc E. Frincu and Ciprian Craciun. 2011. Multi-objective Meta-heuristics for Scheduling Applica-
tions with High Availability Requirements and Cost Constraints in Multi-Cloud Environments. Fourth IEEE
International Conference on Utility and Cloud Computing, Victoria, NSW (Dec. 2011), 267–274. DOI:
https://doi.org/10.1109/UCC.2011.43

[12] Greg Franks, Tariq Al-Omari, Murray Woodside, Olivia Das, and Salem Derisavi. 2009. Enhanced
Modeling and Solution of Layered Queueing Networks. IEEE Transactions on Software Engineering, 35, 2
(March-April 2008), 148–161. DOI: https://doi.org/10.1109/TSE.2008.74

[13] Farhana Islam, Dorina Petriu, and Murray Woodside. 2015. Simplifying Layered Queuing Network
Models. Beltrán M., Knottenbelt W., Bradley J. (eds) Computer Performance Engineering (EPEW 2015),
Springer LNCS, 9272 (Aug. 2015), 65–79. DOI: https://doi.org/10.1007/978-3-319-23267-6_5

[14] Standard Performance Evaluation Corporation. 2015. SPECpower ssj2008: Fujitsu FUJITSU Server
PRIMERGY TX1320 M2. (Nov. 25, 2015). Retrieved Dec. 7, 2018 from https://www.spec.org/power_

ssj2008/results/res2015q4/power_ssj2008-20151110-00704.html

[15] Jumie Yuventi and Roshan Mehdizadeh. 2013. A critical analysis of Power Usage Effectiveness and its
use in communicating data center energy consumption. Energy and Buildings, 64 (Sept. 2013), 90–94. DOI:
https://doi.org/10.1016/j.enbuild.2013.04.015

[16] André B. Bondi. 2014. Foundations of Software and System Performance Engineering. Addison-Wesley
Professional, Boston, MA.

[17] Standard Performance Evaluation Corporation. 2007. SPECpower ssj2008 Result File Fields. (Nov.
2017). Retrieved Dec. 6, 2018 from https://www.spec.org/power/docs/SPECpower_ssj2008-Result_File_

Fields.html

[18] Danyel Fisher, Joshua O’Madadhain, and Scott White. 2003. JUNG: Java Universal Network/Graph
Framework. (Aug. 2003). Retrieved Dec. 16, 2018 from https://github.com/jrtom/jung

[19] Yidong Fang, Chris Nokleberg and Dave Hughes. 2008. json-simple. (Nov. 2008). Retrieved Dec. 16,
2018 from https://code.google.com/archive/p/json-simple

[20] Google. 2010. Guava. (April 2010). Retrieved Dec. 15, 2018 from https://github.com/google/guava

[21] Apache Commons. 2012. Commons Math: The Apache Commons Mathematics Library. (Mar. 2012).
Retrieved Dec. 17, 2018 from http://commons.apache.org/proper/commons-math

[22] Eclipse Foundation. 2001. Eclipse IDE. Retrieved Dec. 16, 2018 from https://www.eclipse.org/ide

[23] AdoptOpenJDK. 2017. Prebuilt OpenJDK Binaries. Retrieved Dec. 17, 2018 from https://adoptopenjdk.

net/?variant=openjdk8&jvmVariant=openj9

[24] Canonical. 2016. Ubuntu 16.04.5 LTS. April 2016. Retrieved Dec. 17, 2018 from http://releases.

ubuntu.com/16.04

https://doi.org/10.23919/INM.2017.7987260
https://doi.org/10.1109/ICCAC.2016.22
https://doi.org/10.1109/CLOUD.2016.0021
https://doi.org/10.1007/s11227-014-1376-6
https://doi.org/10.1007/s11227-014-1376-6
https://doi.org/10.1109/UCC.2011.43
https://doi.org/10.1109/TSE.2008.74
https://doi.org/10.1007/978-3-319-23267-6_5
https://www.spec.org/power_ssj2008/results/res2015q4/power_ssj2008-20151110-00704.html
https://www.spec.org/power_ssj2008/results/res2015q4/power_ssj2008-20151110-00704.html
https://doi.org/10.1016/j.enbuild.2013.04.015
https://www.spec.org/power/docs/SPECpower_ssj2008-Result_File_Fields.html
https://www.spec.org/power/docs/SPECpower_ssj2008-Result_File_Fields.html
https://github.com/jrtom/jung
https://code.google.com/archive/p/json-simple
https://github.com/google/guava
http://commons.apache.org/proper/commons-math
https://www.eclipse.org/ide
https://adoptopenjdk.net/?variant=openjdk8&jvmVariant=openj9
https://adoptopenjdk.net/?variant=openjdk8&jvmVariant=openj9
http://releases.ubuntu.com/16.04
http://releases.ubuntu.com/16.04

	Introduction
	Background: Graph partitioning, bin packing and layered queueing networks (LQN)
	Related work

	Modelling multi-cloud application deployments
	Multi-cloud model
	AppModel: The application Model
	Application graph
	Power model
	Notation
	Application graph
	Clouds and hosts
	Deployment

	Response time approximation
	Optimization model

	Low-power multi-cloud application deployment (LPMCAD) algorithm
	Stage 1: Cloud selection
	Stage 2: Generating the application graph
	Stage 3: Scaling the application
	Stage 4: Initial deployments
	Find the most power efficient host for a task in a cloud

	Stage 5: Partition to satisfy the response time and bin-pack to minimize the power consumption
	Enhancements
	Enhancement 1: Coarsening and uncoarsening
	Enhancement 2: Apply 2D bin-packing

	Stage 6: Selecting the deployment solution

	Experiments
	Experimental setup
	Hardware details
	Software details
	Algorithm control parameters
	Host parameters

	Solution bounds
	Power consumption lower bound
	Response time per user request: No lower bound

	Response time verification by layered queueing network solver (LQNS)
	Evaluation criteria
	Tuning and test models
	Multi-cloud test environment
	Tuning the LPMCAD algorithm
	Tuning experiments
	Summary of results
	Tuned algorithm

	Evaluation of the tuned LPMCAD algorithm
	Test models and experiments
	PLPMCAD versus Pbound
	RLPMCAD versus Rconstraint
	RLPMCAD versus RLQNS
	Algorithm runtime

	Conclusions

