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Before citing this technical report, please visit our website (https://
www.gerad.ca/en/papers/G-2018-98) to update your reference data,
if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grâce au
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Legal deposit – Bibliothèque et Archives nationales du Québec, 2018
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Abstract: The Integral Simplex Using Decomposition (ISUD) algorithm has been developed recently to solve
large set partitioning problems (SPPs) in a primal way, i.e., moving from an integer solution to an improved
adjacent one until optimality is reached. More recent works intended to enlarge its applications and to
increase its performances. We cite namely the distribution version of ISUD called DISUD which implements
the multi-agent system approach. In this work, we develop a distributed integral column generation (DICG)
algorithm that extends DISUD to the column generation context in order to solve practical vehicle and crew
scheduling problems. The computational tests on large bus drivers scheduling and aircrew pairing problems
show that DICG gets good results and outperforms a distributed version of the well-known restricted master
heuristic (RMH). DICG yields optimal or near optimal solutions in less than one hour.

Keywords: Set partitioning problems, Integral Simplex Using Decomposition, multi-agent systems, column
generation
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1 Introduction

Column generation (CG) is closely connected to Dantzig–Wolfe decomposition which is introduced by Dantzig

and Wolfe (1960). It is widely used to solve industrial optimization problems. It involves reformulating the

problem as a restricted master problem RMP and one or more column generation subproblems CGSPs. The

RMP has as few variables as possible. New variables are added to the RMP as long as the solution process

continues. At each iteration, the RMP is solved to get a pair of primal and dual solutions. Then, duals

are used in the CG subproblem to determine if there are any columns that can improve the RMP current

solution as shown on Figure 1. The algorithm stops when no negative reduced-cost columns are generated

and consequently the RMP solution is also optimal for the linear relaxation of the original problem. In

integer optimization problems, column generation is usually embedded in a branch and bound procedure to

get an integer solution. The resulting method is known as Branch and Price (see Desrochers and Soumis

1989, Barnhart et al. 1998, Desaulniers et al. 1997, Gamache et al. 1999).

Duals π

Columns

Restricted Master Problem

(RMP )

Column generation

Subproblem

(CGSP )

Figure 1: Column generation process

In vehicle routing and crew scheduling optimization problems, the RMP is often the well-known set

partitioning problem SPP . The latter can be defined using the following scheduling terminology. A set

partitioning constraint is associated with a task (for example, a flight leg or a bus trip to be accomplished

by a pilot or a bus driver). Let T = {1, 2, ...,m} be the set of tasks and J = {1, 2, ..., n} the set of feasible

schedules. With each schedule, we associate a variable xj , a cost cj and a column Aj = (atj)t∈T where atj
takes value 1 if Aj covers task t and 0 otherwise. The matrix A = [A1, A2, ..., An] is a binary matrix. Then,

the set partitioning problem formulation is:

minimize
∑
j∈J

cjxj (1)

(SPP) subject to
∑
j∈J

atjxj = 1, ∀t ∈ T (2)

xj ∈ {0, 1}, ∀j ∈ J (3)

The objective function (1) seeks to minimize the total cost. The set partitioning constraints (2) ensure that

each task is covered exactly once. Constraints (3) impose integrality on the xj variables. SPP is NP-hard

(see Garey and Johnson 1979). There are many heuristic and exact algorithms devoted to solve it. The most

used method is the famous branch and cut (Hoffman and Padberg 1993, Desaulniers et al. 1997). However,

this method becomes inefficient and takes a huge time to reach an optimal solution for large instances due

to degeneracy and the size of the branching tree.

Recently, Zaghrouti et al. (2014) proposed the Integral Simplex Using Decomposition algorithm (ISUD),

which is based on the Improved Primal Simplex algorithm (IPS) (see El Hallaoui et al. 2011), to solve SPP.

At each iteration ISUD decomposes the original problem into two subproblems. The first, called the reduced

problem (RP), which only considers columns that are compatible with the current solution, i.e., columns that

belong to the vector subspace generated by the columns associated with the current solution positive variables.

The second, called the Complementary Problem (CP), contains only the columns that are incompatible with

the current solution. Its main role is to find a descent direction to improve the current solution of RP. ISUD

stops when neither the reduced problem nor the complementary problem can improve the current solution.

Their results show that ISUD deals more efficiently with degeneracy and is able to solve large problems that

are up to 570000 variables and 1600 constraints.

Since then, several improvements have been added to the initial version of ISUD namely those of Rosat

et al. (2016, 2017a) and Zaghrouti et al. (2018). Rosat et al. (2016) studied the cone of the CP directions and
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proposed different formulas for the normalization constraint in order to favor the integrality of the descent

direction found by the CP . In addition, Rosat et al. (2017a) proposed to add cuts to ISUD and concluded

that this technique is costly in computing time especially for large instances. In the meanwhile, Zaghrouti

et al. (2018) developed the Zoom algorithm which explores a neighborhood of the fractional solution, when

it is not possible to find an improving “integer” direction, rather than exploring a branching tree as it is the

case in the ISUD first version, see Section 2 for more details.

As the current trend in computer science is to produce multicore processors and to design parallel algorithms,

Foutlane et al. (2017) developed the Integral Simplex Using Double Decomposition algorithm (ISU2D). It is

a parallel algorithm based on ISUD. At each iteration, ISU2D groups the columns of the current solution

into clusters in order to decompose the CP into independent complementary subproblems using the notion

of compatibility defined just above. The set of complementary subproblems are solved in parallel to improve

the current solution by combining the returned descent directions. ISU2D reduces the computing time of

ISUD by a factor of 3 to 4 for the tested instances. ISU2D is then generalized and improved in Foutlane et al.

2018. They use the multi-agent system approach (MAS) to introduce a general framework for a distributed

version of ISU2D called DISUD. It enables to use different decompositions simultaneously. Tests of DISUD on

aircrew scheduling problems show that DISUD is better than DCPLEX, the distributed version of the state

of the art commercial solver CPLEX. DISUD achieves better quality solutions than DCPLEX and reduces

the computing time by an average factor of 4 to 5 for test instances.

In this paper, we introduce a distributed integral column generation (DICG) that combines column

generation and DISUD to solve very large scale practical SPP instances. We summarize below the most

important contributions of the paper:

• DICG introduces a flexible framework using a multi-agent system to parallelize the integral column

generation approach where, at each iteration, we improve the current integer solution until satisfac-

tion. Each agent finds multiple descent directions in parallel and zooms around these directions to

improve the current solution more significantly. This introduces a new level in the conventional column

generation method.

• We compare two versions, one competitive and another cooperative, where agents compete or cooperate.

In both, they exploit the information gathered during the solution process to improve the current integer

solution.

• Tests on bus crew scheduling and real crew pairing instances from the transport industry, with up to

2000 tasks (bus trips, flights) and millions of variables, show the effectiveness of DICG. We succeed to

compute excellent quality solutions (gap less than 1%) for all instances.

The remainder of this paper is organized as follows. Section 2 presents briefly some useful notions on the

decomposition basics and the main parts of ISUD versions. Section 3 describes the new algorithm DICG

and provides a detailed algorithmic and analysis of its components. In Section 4, we discuss computational

results and the effectiveness of our algorithm. Finally, we end this paper with some concluding remarks and

suggestions for future research in Section 5.

2 Preliminaries

In this section, we provide the basic notions of ISUD in addition to its main improved variants. These

improvements are used in DICG to solve very large SPPs more efficiently.

2.1 Decomposition basics

Given an integer solution x̄ to SPP, let Pint be the index set of its positive components, i.e., Pint = supp(x̄) =

{j ∈ J : x̄j = 1}.

SPP could be decomposed into a reduced problem RP and a complementary problem using the following

definition of compatibility (El Hallaoui et al. 2011):
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Definition 1 Given P an index set of some linearly independent columns containing at least Pint, a subset S

of J is said to be compatible with P , or simply compatible, if there exist two vectors v ∈ R|S|+ and λ ∈ Rp such

that
∑

j∈S vjAj =
∑

l∈P λlAl. The combination of columns, possibly a singleton,
∑

j∈S vjAj is also said to

be compatible. S is said to be minimal if any strict subset of it is incompatible.

We note that the incompatibility degree of a column Aj towards a given integer solution is a measure

that represents a distance of Aj from the current solution. Let C and I be the index sets of the compatible

and incompatible columns respectively. They form a partition of J , i.e., J = C∪I, C ∩I = ∅. The restriction

of SPP to compatible columns only defines the reduced problem (RP) as follows :

minimize zRP = cC · xC (4)

(RP) subject to ACxC = e (5)

xC ∈ {0, 1}|C| (6)

When P = Pint, a pivot on any compatible column with a negative reduced cost leads to an improved

integer solution according to Zaghrouti et al. (2014). Moreover, if x∗C is an optimal solution to RP , x̄ = (x∗C , 0)

will be a solution to SPP.

Similarly, we define the Complementary Problem (CP) as follows :

minimize zCP =
∑
j∈I

cjvj −
∑
l∈P

clλl (7)

(CP) subject to
∑
j∈I

Ajvj −
∑
l∈P

Alλl = 0 (8)

e · vI = 1 (9)

vj ≥ 0, j ∈ I (10)

In fact, the goal of the CP is to find a subset of incompatible columns to replace a subset of the current

solution columns, i.e., from supp(x̄). More precisely, we look for a convex combination of incompatible

columns that is compatible and has a negative reduced cost.

Zaghrouti et al. (2014) show that x̄ is an optimal solution to SPP when the CP is infeasible or zCP ≥ 0,

i.e., the objective value of the CP is nonnegative. In the other case, the CP returns a descent direction

d = (v,−λ, 0). In this case, let S+ = {j ∈ I : vj > 0} and S− = {l ∈ P, λl > 0} be the sets of entering

and leaving variables respectively. When the columns Aj , j ∈ S+ are pairwise row-disjoint, i.e., they do not

cover the same constraints, and S− ⊂ Pint, we get an integer descent direction leading to an improved integer

solution. Moreover, S+ is shown to be minimal by El Hallaoui et al. (2011), i.e., non-decomposable using

the terminology of Balas and Padberg (1975). This means that pivoting on variables indexed by S+ leads

to an adjacent extreme integer point with better cost value. The direction d is said to be fractional when

columns Aj , j ∈ S+ are not pairwise row-disjoint. In this case, Zaghrouti et al. (2014) proposed a branching

scheme to eliminate the non-disjoint solutions when solving the CP using a diving branching strategy to get

an integer descent direction.

In short, ISUD is a two-stage algorithm: at each iteration, it looks first for an improved integer solution

by using the RP and second by solving the CP. The algorithm stops when both cannot improve the current

solution. We discuss the improvements that have been made to ISUD in the next subsection.

2.2 ISUD improvements and versions

ISUD has been the subject of intensive research to improve it. Rosat et al. (2016) replaced the normalization

constraint (9) by the constraint w ·vI = 1 and studied the influence of the weight vector w on the integrality of

the descent directions returned by the CP. It is obvious that when w = e, we obtain the classical normalization

constraint (9). They proposed new formulas to compute the weight wj based on the number of tasks covered

by the column Aj and the degree of its incompatibility.
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Zaghrouti et al. (2018) have proposed a “Zoom” version to avoid implementing a complex and exhaustive

branching when the complementary problem returns a fractional descent direction. They proposed to zoom

around this “fractional” direction instead of branching in the classical CP. Indeed, a set of columns compatible

with the fractional direction is solved by the reduced problem to get an improved integer solution.

The main steps of Zoom, as reported in Foutlane et al. (2018), are provided below :

Step 1: Find a good heuristic initial solution x0 and set x̄ = x0, P = Pint, d = 0.

Step 2: Find a better integer solution around d:

• Increase P : set P = P ∪ {j : dj > 0}.
• Construct and solve RP.

• Update x̄ and P : if x̄ is improved, set P = Pint.

Step 3: Get a descent direction d:

• Solve the CP to get a descent direction d.

• If no descent direction can be found or |zCP | is small enough then stop: the current solution is optimal

or near optimal.

• Otherwise, go to Step 2.

Thus, when the direction is fractional, they construct RP around this direction as explained above and

solve it by a MIP solver.

In addition, there are other equivalent formulations of the complementary problem. Let AP =

(
A1

P

A2
P

)
be a

submatrix of A composed of columns indexed by P where A1
P is without loss of generality composed of the

first —P— linearly independent rows. .

Similarly, let AI =

(
A1

I

A2
I

)
= (aij)1≤i≤m

j∈I
be a submatrix of A composed of incompatible columns indexed

by I with A1
I a |P | × |I| matrix.

We thus obtain an equivalent model involving only incompatible variables. In fact, constraint (8) could

be written as: (
A1

I

A2
I

)
v =

(
A1

P

A2
P

)
λ

Observe that A1
P is invertible, so λ = (A1

P )−1A1
Iv and consequently the variables λ could be replaced. This

results in the following CP formulation:

zCP
P = min

v

(
c>I − c>P

(
A1

P

)−1
A1

I

)
v (11)

(CP) subject to
(
A2

P

(
A1

P

)−1
A1

I −A2
I

)
v = 0 (12)

w · v = 1 (13)

v ≥ 0. (14)

Consequently, we can use the matrix M = (A2
P (A1

P )−1,−I|P |) to measure the incompatibility of Aj

column by ‖MAj‖1. We mention that I|P | is the |P | × |P | identity matrix. This measure is equal to 0 for

compatible columns and positive for incompatible ones. The constraint (12) can be rewritten simply as:

MAIv = 0.

Foutlane et al. (2017) presented the principle of dynamic decomposition. They proposed ISU2D which

finds in parallel orthogonal descent directions leading to an integer solution with a larger improvement. The

approach splits the complementary problem into a set of subproblems CSPk, defined below, where Ik ⊂ I

and c̄ =
(
c>I − c>P

(
A1

P

)−1
A1

I

)
. These subproblems are then solved in parallel.
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min
v

∑
j∈Ik

c̄jvj (15)

CSPk MAIkvk = 0 (16)∑
j∈Ik

wjvj = 1 (17)

vj ∈ {0, 1} ∀j ∈ Ik (18)

To do so, they construct a graph G(V,E), where the columns of the current solution are represented by

the vertices. Then, they use a scoring function to calculate the weight w(v1,v2) for each edge (v1,v2) ∈ E

based on columns and problem information. They obtain a partition of the vertices of G into some clusters

that minimize the cut; in other words, a partition of P into a certain number of subsets Pk: P = ∪Pk,

Pk ∩P ′k = if k 6= k′ where Pk corresponds to the kth cluster. CSPk can actually be obtained from the CP by

replacing P by Pk in (11)–(14); see Foutlane et al. (2017) for more details.

Foutlane et al. (2018) generalized ISU2D and proposed the DISUD, a distributed version of ISUD using a

multi-agent system approach. They consider a network of worker agents where each agent dynamically splits

the original CP using its own scoring function. So, the agent i constructs hence an RP and q complementary

subproblems (CSP
[i]
k )1≤k≤q.

3 DICG Algorithm

DICG is a multi-agent algorithm where a master agent coordinates a set of worker agents. Using the set of

worker agents, DICG realizes multiple column generations and solves the obtained restricted master problems

in parallel to get an improved integer solution. We present the worker and master agents in Sections 3.1

and 3.2 respectively.

We implemented DICG as an asynchronous algorithm in such a way that each worker does not have to

wait for other agents to end their iteration to start a new iteration. Worker agents exploit the available time

to improve the current solution. DICG is designed to run on more than a single machine, thus making it

possible to solve large problems. DICG stops when all the agents are idle or if it reaches a limit set by the

user. Such limits include a time limit, a limit on the number of iterations, a limit on the number of solutions

found, or other similar criteria.

3.1 Worker agents

Worker agents realize simultaneously multiple column generations and decompositions to get an improved

solution. Each worker agent starts with a warm up phase where it generates, for a certain time, a set of

columns with GEN procedure using the duals sent by master agent. Each worker agent generates columns

with its own parameter setting, possibly different from the parameter settings of other workers, for a limited

period of time or a limited number of iterations.This phase is intended to ensure that the worker has a

sufficient number of columns to start the solution process. After this phase, a worker agent runs DISUD

using DVD or IVD on the generated columns and generates new ones as needed using GEN until the master

agent asserts that a good quality solution is found. GEN, DVD and IVD procedures are briefly described in

Sections 3.1.1, 3.1.2, and 3.1.3 respectively. More details on DVD and IVD decompositions are in Foutlane

et al. (2017). An illustration of a worker agent state mode transition is given in Figure 2. The nontrivial

modes are described in the subsequent subsections.

A worker agent behavior depends on the message received from the master as indicated in Algorithm 1

below.
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GENstart IDLE

DVD

IV D

END

Figure 2: Worker agent basic state evolution

Algorithm 1 Worker agent algorithm

Do
Wait for a message from the master. In case of:

msgGEN: Set π̄[i] = πb, generate new columns using GEN (see Section 3.1.1);
msgSOL: Set x̄[i] = xb
msgMODE-DVD: Call DVD algorihm (Algorithm 2);
msgMODE-IVD: Call IVD algorihm (Algorithm 3);
msgMODE-IDLE: Wait;
msgSTOP: Stop (do memory cleaning);

While (true)

We mention that throughout this paper, we use superscript [i] to denote quantities belonging to the ith

agent.

3.1.1 GEN mode

In this mode, a worker agent generates potential columns (feasible schedules) with reduced cost sufficiently
negative. The GEN procedure consists in solving the CGSP, that is actually the shortest path problem

with resource constraints (SPPRC), using a label-setting algorithm (see Desaulniers et al. (2005)). It is

basically a dynamic programming approach (generalized Dijkstra algorithm) where dominated labels are

eliminated and nodes are sorted in a topological order (the networks of the CGSP used in this paper are

acyclic). To generate columns, we use the dual vector πb sent by the master agent to price out arcs of the

CG networks. During the warm up phase, the dual vector is the one that the master agent finds after the

solution of the linear relaxation of the restricted master problem at a given column generation iteration (see

Section 3.2). The worker agents accumulate hence a certain number of columns to start up with in the next

DVD phase. In the course of the DVD phase, πb is exactly the one obtained by concatenating dual subvectors

πk returned by the CSPk. After that, it is the CSP dual vector π in IVD phase. We note that πb verifies

c̄j = cj − πb ·Aj = 0,∀j ∈ supp(x̄), i.e., the reduced costs of these basic variables are null.

3.1.2 DVD mode

During the DVD mode, the ith worker agent partitions P
[i]
int = supp(x̄[i]) into q clusters, where the columns

belonging to the cluster k cover a set of tasks Tk. Consequently, we have T = ∪1≤k≤qTk and decomposing the

problem reduces to defining the partition τ = (Tk)1≤k≤q. For the partitioning purpose, each agent constructs

a weighted graph G(V,E) where each column Av, v ∈ supp(x̄[i]) is represented by a vertex v ∈ V . Let

(v, v′) ∈ V 2, Ivv′ = {l ∈ I : Av ·Al 6= 0 and Av′ ·Al 6= 0} and Tvv′ is the set of all tasks covered by either Av

or Av′ . The weight of edge (v, v′) measures the probability that some of the variables indexed by Ivv′ could
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improve the objective value if entered into the basis. The ith agent uses a weighting method we[i] to score

each edge (v, v′) ∈ E. Then, it partitions the graph into q disjoint subgraphs using a min-cut algorithm (see

Kernighan and Lin 1972). Finally, using its weight normalization vector w[i], the agent i constructs an RP

and q complementary subproblems (CSP
[i]
k )1≤k≤q formulated as follows:

min
∑
j∈I[i]

k

c̄jvj

CSP
[i]
k MA

I
[i]
k

vk = 0 (19)∑
j∈I[i]

k

w
[i]
j vj = 1 (20)

vj ∈ {0, 1} ∀j ∈ I [i]
k (21)

where I
[i]
k ⊂ I is the subset of incompatible columns that cover only tasks in Tk. We have I [i] =

∪1≤k≤qI
[i]
k . Hence, we generalize the DVD concept mentioned in Foutlane et al. (2018) by introducing

the weight normalization vector while defining the (CSP
[i]
k )1≤k≤q. Consequently, the ithagent behavior is

defined by the pair (w[i], we[i]) as those parameters are used to construct the partition (CSP
[i]
k )1≤k≤q and

consequently the resulting pair (x̄[i], π[i]) after the resolution. As in Foutlane et al. (2018), we use the

following weighting methods which propose to use the reduced cost c̄j , the number of tasks nj and the

incompatibility degree kj of a column Aj :

• we1 : (v, v′) 7→ |{j ∈ Ivv′ : c̄j ≤ 0}| which scores each edge (v, v′) with the number of negative

reduced cost columns that Ivv′ contains. This means that it is likely to find a descent direction where

there are more negative reduced cost columns.

• we2 : (v, v′) 7→ −min(0,min{c̄j : j ∈ Ivv′}) that associates with the edge (v, v′) the absolute value

of the smallest negative reduced cost column from those indexed by Ivv′ . It stipulates that a descent

direction contains the least negative reduced cost column.

• we3 : (v, v′) 7→ wvv′ = −min(0,min{ c̄j
nj

: j ∈ Ivv′}) which takes into account the number of tasks of

columns and stipulates that a good entering variable should have the smallest average negative reduced

cost per task.

• we4 : (v, v′) 7→ wvv′ = −min(0,min{ c̄jkj
: j ∈ Ivv′}) that scores the edge (v, v′) with the reduced cost

per incompatibility degree (kj = ‖MAj‖1) ratio. It is likely that small ratios would favor integrality of
the descent direction.

In addition, we use the following weights vectors w1 , w2 and w3 in the normalization constraint as defined

in Rosat et al. (2016):

• w1j = 1 which was used in the first versions of ISUD and Zoom.

• w2j = kj , the incompatibility degree of column Aj . This favors the direction with columns having small

incompatibility degree.

• w3j = nj , the number of tasks covered by Aj . This favors the direction with columns covering fewer

tasks.

Worker agents take benefit from ISUD improvements to get better solutions x̄[i]. Each of them explores a

different region because it uses a different decomposition and normalization constraint. These latter impact

the dual solution that in its turn impacts the columns generation process. Indeed, while the classical Zoom

algorithm zooms around one direction using the unit weight normalization vector, DICG looks for multiple

descent directions around a multitude of orthogonal directions and using different weight normalization

vectors. DICG can be hence interpreted as a multi-zooming algorithm. Algorithm 2 outlines the DVD

procedure of a worker agent. An illustration is shown in Figure 3. Of course, the list of agents is not
exhaustive and other agents could be added easily using this framework.
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Algorithm 2 DVD pseudocode for agent i

Build τ [i] and consequently CSP
[i]
k , k ∈ {1 . . . q} using we[i] and w[i].

Solve in parallel the CSP
[i]
k , k ∈ {1 . . . q}.

For k = 1 to q

IF dk is integer (dk is the direction returned by CSP
[i]
k ) THEN

Set x̄[i] = x̄[i] + dk.
ELSE

Set P [i] = P [i] ∪ {j : dkj > 0}
ENDIF

End For.
IF some dk is fractional, construct RP according to P [i] and solve it by a MIP solver.

Send the resulting x̄[i] and duals π
[i]
k , k ∈ 1..q to the master agent.

Duals π

Columns

Reduced Problem (RP )

Update the solution: s = s+
∑q

k=1 d
k

direction d1

Find a descent

CSP1

s1 d1 π1

direction dq

Find a descent

CSPq

sq dq πq

. . . . . . . . . . . .

Column
Generation

Subproblem

Figure 3: Column generation in DVD mode

3.1.3 IVD mode

The IVD can be seen as a neighborhood exploration policy. The idea is to partition columns of the constraint

matrix A into subsets. In Foutlane et al. (2017, 2018), we used reduced cost as a pricing criterion. One may use

other criteria such as the incompatibility degree. Thus, a worker agent starts by a neighborhood containing

potential columns according to some chosen criteria and explores the subsets of columns incrementally. More

precisely, the worker agent runs Zoom on SPPk, a restriction of SPP to the chosen subset of columns, starting

with the best solution that is returned by the master agent. Algorithm 3 provides the pseudocode of the IVD

phase; q′ is a parameter tuned by experimentation. An illustration is given in Figure 4.

Algorithm 3 IVD pseudocode for agent i

Price out the columns using a distance metric to create neighborhoods.
Sort the variables in an increasing order of the distance and reindex them.
For k = 1 to q′

Build SPP
[i]
k by considering the first k

|J|
q′ variables.

Solve SPP
[i]
k with Zoom, set x̄[i] to the obtained solution, and update z

[i]
ub.

Send x̄[i], calculate a dual vector π[i] and send it to the master agent.
End for.
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Duals π

Columns

Reduced Problem (RP )

Update the solution: s = s+ d

CSP4

CSP1

CSP2

s d π

Column
Generation

Subproblem

Figure 4: Column generation in IVD mode for q′=4

3.2 Master agent

The master agent controls the progress of DICG. It ends it when a termination criterion is satisfied. Similarly

to the work of Foutlane et al. (2018), we develop and study two variants of DICG: the cooperative variant

where worker agents cooperate and the competitive variant where worker agents work independently. Pseu-

docode of cooperative and competitive variants are provided in Sections 3.2.2 and 3.2.1 respectively. The

IN-PARALLEL and END-PARALLEL terms are used to mention that the multiple statements in between

are executed in parallel. For both variants, the master agent starts with an initial primal solution x0 of

value z0 and a dual vector π0, sets the upper bound zub = z0, sends supp(x0) and π0 to all agents and waits

for the pairs (solution, dual) obtained by the worker agents.

The master agent solves in parallel the linear relaxation of SPP by column generation. During a certain

number of iterations (IterWarm), it sends the dual solution πb of its restricted master poblem to the workers

for a warm up. After the warm up phase, when the master receives a solution x̄[i] from the ith agent that

improves the DICG upper bound zub, the master agent updates zub and xb, the best solution encountered.

During the DICG execution, the master agent reacts according to which variant, competitive or cooperative,

is activated. Finally, the master agent initializes the counter nbrItr[i] for each agent and increments it after

receiving a solution from the worker agent i. The master agent uses this counter to tell the worker which mode

to use, GEN, DVD or IVD mode, depending on the predefined values IterDVDMax, IterWarm and εdvd. In

addition, this counter is used among others to stop the agent i when it reaches a predefined value IterMax.

3.2.1 DICG competitive agents

After the warm-up phase, which aims to generate a sufficient number of columns, the worker agents begin to

solve their RMPs using DISUD. They send their solutions to the master. The latter updates the ith agent’s

upper bound z
[i]
ub. The sender agent makes another DVD iteration if its iteration number does not exceed a

predefined value IterDVDMax and the current solution quality is less than a predefined value εdvd. Otherwise,

the master agent sends to the ith agent the message msgMODE-IVD in order to switch to IVD iteration. An

agent becomes idle when its iteration number exceeds IterMax. Finally, DICG stops when all worker agents

become idle or some stopping criteria are met. As it can be seen, each agent works independently and does

not share any information with other agents. Algorithm 4 presents the master competitive procedure.
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Algorithm 4 Competitive pseudocode

Set zub = z0, xb = x0, πb = π0 and for each agent i, set nbrItr[i] = IterWarm, mode[i] = GEN
IN-PARALLEL

Calculate a lower bound zlb for SPP and update πb consequently. During the first
IterWarm iterations, send msgGEN and πb to all worker agents.

Listen to worker agents:
On the reception of a solution x̄[i] from some agent i, DO

Set nbrItr[i] = nbrItr[i] + 1, πb = π[i]

IF c · x̄[i] < zub THEN
Set zub = c · x̄[i] and xb = x̄[i]

END IF
IF nbrItr[i] = IterMAX THEN

Send msgMODE-IDLE to agent i, set mode[i] = IDLE
ELSE IF nbrItr[i] ≤ IterDV DMax AND zub−zlb

zlb
> εdvd THEN

Send msgGEN and πb to agent i
Send msgMODE-DVD to agent i

ELSE
Send msgGEN and πb to agent i
Send msgMODE-IVD to agent i

END IF.
IF all worker agents are IDLE or some stopping criteria are met THEN

Send msgSTOP to all worker agents and return xb
END IF.

END DO
END IN-PARALLEL

3.2.2 DICG cooperative agents

In the cooperative variant, the master agent intervenes more and changes the worker agents settings during

the progress of the process as it is shown in Algorithm 5. We discuss below the most important issues. During

the process execution, the communication between the master and the worker agents is bilateral: the worker

agent sends its newly found solution pair (primal, dual) to the master and waits for the primal solution xb
from which it starts, the OK to stay in DVD mode or any other decision from the master. Here again, when

an agent iteration number exceeds IterMax, its mode changes to IDLE. If all agents are idle, the master

stops the process. We limit the cooperation to the exchange of the best integer solution found at the end of

a column generation iteration between the worker agent and the master agent. But, we keep in mind that

further cooperation policies and strategies can be made in future work to study more thoroughly this subject.

Algorithm 5 Cooperative pseudocode

Set zub = z0, xb = x0, πb = π0 and for each agent i, set nbrItr[i] = IterWarm, mode[i] = GEN
IN-PARALLEL

Calculate a lower bound zlb for SPP and update πb consequently. During the first
IterWarm iterations, send msgGEN and πb to all worker agents.

Listen to worker agents:
On the reception of a solution x̄[i] from some agent i, DO

Set nbrItr[i] = nbrItr[i] + 1, πb = π[i]

IF c · x̄[i] < zub THEN
Set zub = c · x̄[i] and xb = x̄[i]

ELSE
SEND msgSOL and supp(xb) to agent i, set x[i] = xb

END IF
IF nbrItr[i] = IterMAX THEN

Send msgMODE-IDLE to agent i, set mode[i] = IDLE
ELSE IF nbrItr[i] ≤ IterDV DMax AND zub−zlb

zlb
> εdvd THEN

Send msgGEN, πb and msgMODE-DVD to agent i
ELSE

Send msgGEN, πb and msgMODE-IVD to agent i
END IF
IF all worker agents are IDLE or some stopping criteria are met THEN

Send msgSTOP to all worker agents and return xb
END IF.

END DO
END IN-PARALLEL



Les Cahiers du GERAD G–2018–98 11

4 Computational results

In this section, we present results of DICG and discuss its effectiveness. We tested DICG algorithm on crew

pairing problem (CPP) and vehicle and crew scheduling problem (VCSP) instances. We compare DICG

to DRMH, a distributed version of the well-known restricted master heuristic (RMH) (see Joncour et al.

(2010)). DRMH consists in solving the linear relaxation of MP by column generation at the root node.

Then, DCPLEX, the distributed version of CPLEX, solves the last RMP after adding integer constraints on

the variables.

At the beginning, we go through characteristics of the instances composing our test benchmark. Then, we

discuss the influence of the two parameters IterWarm, which controls the duration of the warming phase, and

q, the number of complementary problems, on the performance of DICG. After this, we compare DICGcomp

and DICGcoop performances when using the best values of these parameters. Finally, we compare the best

variant of DICG to DRMH.

We implemented the two DICG variants (competitive (DICGcomp) and cooperative (DICGcoop)) using

C++ and the MPI (Message Passing Interface) library. This latter ensures communication between our

agents. The master runs on a Linux PC with Quad-Core processor of 3.30 GHz and each worker agent runs

on a Linux PC with 8 processors of 3.4 GHz each. Finally, we note that all induced optimization problems

(CSP, RP, RMP ...) are solved using the commercial CPLEX solver version 12.6.1 while the SPPRC is solved

using the Boost library version 1.55.

4.1 Instances characteristics

The set of tests consists of CPP and VCSP instances, described respectively in Sections 4.1.1 and 4.1.2. Each

subset contains medium and large instances. Furthermore, considering that DICG needs a pair (primal, dual)

of solutions to start from, we construct an artificial initial primal solution where each task is covered by a

single-task column with a large, big-M, cost and an initial dual solution where each dual value is set to this

large cost value.

4.1.1 CPP instances

In aircrew scheduling, a pairing is a sequence of flights that starts and ends at the same airport. CPP

consists of finding a set of pairings that covers all the scheduled flights at minimum cost over the planning

horizon. Moreover, each flight has to be covered by a single pairing and therefore, CPP is modeled as a

SPP. In practice, the CPP is solved by branch & price method where the pairings are generated by solving
subproblems modeled as SPPRCs (see Saddoune et al. (2013)). For our tests, we use five instances derived

from a real-life CPP of a major north American airline. The original datasets can be found in Kasirzadeh et al.

(2017) (aircraft fleets concerned are D94, D95, 757, 319, and 320). We add the CPP prefix to the instance

name to indicate that it belongs to the CPP subset. Table 1 presents the CPP instances characteristics. This

table shows (from left to right) the name of the instance, the number of tasks (flights), the “density” (the

rounded average number of flights per pairing (i.e., the number of nonzeros per column)), the (approximate)

percentage of degeneracy in an optimal basis.

Table 1: Characteristics of the CPP instances

instance nbrTasks density degeneracy

CPP D94 424 8 87
CPP D95 1255 9 88
CPP 757 1290 6 83
CPP 319 1293 7 85
CPP 320 1740 7 85

4.1.2 VCSP instances

VCSP consists of assigning buses to bus trips and drivers to tasks which are defined by dividing each bus trip

into segments. These latter link consecutive relief points where drivers exchange could occur. There is one



12 G–2018–98 Les Cahiers du GERAD

task for each (bus trip) segment. We consider the single-depot homogenous-fleet variant addressed by Haase

et al. (2001) and consider only set partitioning constraints. We use the random instance generator of Haase

et al. (2001) to generate three test instances for the same pair (R,B) where R is the number of relief points on

each bus trip and B is the number of bus trips. In fact, the size of an instance (number of tasks) is defined as

the product B× (R+1). Consequently, to name a VCSP instance, we use the acronym vcs s R B. The prefix

vcs indicates that it belongs to the VCSP subset and the incremental value s indicates the seed number of

the instance. So, as an example, vcs 1 5 160 indicates that it is the second VCSP instance generated with the

values s = 1, R = 5, and B =160. Table 2 presents the VCSP instances characteristics. The first column shows

the name of the instance. Then, it reports the number of tasks (nbrTasks), the number of relief points (R),

the number of bus trips (B), the density (density), and the percentage of degeneracy (degeneracy).

Table 2: Characteristics of the VCSP instances

instance nbrTasks R B density degeneracy

vcs s 9 80 800 10 80 12 91
vcs s 5 160 960 6 160 9 89
vcs s 9 160 1600 10 160 15 93
vcs s 9 200 2000 10 200 14 93

4.2 Influence of the parameters

In this section, we study the influence of the principal parameters, i.e., the number q of CSPs we solve in

parallel and the number of column generation iterations (IterWarm) in the warm up phase. We present

results of the influence of these parameters on the CPP 319 instance. The idea is to tune these parameters

on a medium instance (leaning towards large ones) and use the tuned values for all the other instances.

First, as mentioned in Section 3.1.2, the behavior of an agent is defined by the scoring function we and

the normalization weight vector w. The workers that we used during our tests are the following three agents:

• agent 1 defined by the pair (w1, we1),

• agent 2 defined by the pair (w2, we1), and

• agent 3 defined by the pair (w3, we1).

These agents use the same scoring function we1 - as it seems to be the best for our tests - and different

normalization weight vectors. They all look for descent directions in a region of the graph G where there

are more negative reduced cost columns, but differ only on how the direction is composed. Indeed, the first

agent favors directions having the minimum average reduced cost per entering column, the second favors

entering columns with small incompatibility degree, while the third leans towards entering columns covering

few tasks.

Figure 5 shows the influence of q on the evolution of the objective value that DICG finds over time during

DVD phase. We choose the values of q so that they are power of 2 (q = 2, 4, 8). We deduce that we get good

performance for both q = 2 and q = 4. This can be explained by the fact that for high values (q = 8), we get

poor performance because it becomes difficult to find descent direction as more variables are ousted by the

DVD decomposition process. In addition, when there are more processes, we face the overload phenomenon

as we use computers with 8 processors.

Similarly, Table 3 gives results for the influence of IterWarm. The first column shows the different tested

values of IterWarm parameter. Then, for each DICG variant, it reports the total computational time in

seconds (time), the optimality gap (in percentage) between the cost of the best solution found and the linear

relaxation optimal value (gap), the number of column generation iterations (nbIter) and the agent that gets

the best solution (Agb). The IterWarm parameter controls the duration of the warming phase. Indeed,

higher is the IterWarm value, higher is the warming up time. From the results, we deduce that the DICG

performance increases with IterWarm value. In general, DICG variants perform well. This is explained by

the fact that ISUD and its variants perform better when they generate columns close to LP optimality and

the integrality gap is small.
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Figure 5: Influence of q on CPP 319 during the DVD phase

Table 3: Influence of IterWarm on CPP 319

DICGcomp DICGcoop

IterWarm time gap (%) nbIter Agb time gap (%) nbIter Agb

5 5604 0.95 35 2 6786 0.62 44 3
10 3547 0.37 29 1 5399 0.29 16 2
15 2579 0.19 26 2 2879 0.23 25 1
20 5896 0.17 26 2 4148 0.20 41 3

Based on these results, we can see that we get good quality solutions in shorter computing times for

IterWarm = 15. Therefore, we use the values q = 4 and IterWarm = 15 for the results given in sections 4.3

and 4.4. Moreover, we set εdvd = 2%; the threshold of 2% is inspired by an industrial observation claiming

that solutions within 2% gap are acceptable in practice (see Rosat et al. 2017b). Also, we set the other DICG

parameters as follows: IterDVDMax = 20, IterMAX = 50 and the execution time limit to two hours for CPP

instances and to a one hour for VCSP instances.

4.3 Cooperative vs competitive results

In this section, we show DICGcoop and DICGcomp results and discuss their performances on our set of tests.

Figure 6 shows the evolution of the objective value over time for DICGcomp on the instance CPP 320, as it

is the largest instance. It depicts the solutions found by each agent during the solution process.

We can observe a rapid objective value decrease at the beginning of the solution process compared to the

objective value decrease at the end. This is explained by the fact that like traditional column generation

methods, it becomes difficult for DICG to generate improving directions when the solution process approaches

the optimality. This behavior is typical and representative of the other instances.

Figure 7 shows the evolution of DICGcoop and DICGcomp on CPP 320. We connect the points to improve

its readability. We note that the two curves present similar shape. DICGcoop is better in the middle of the

solution process. This is due to the fact that DICGcoop embeds the spirit of the depth first search strategy.

DICGcoop uses all its agents to explore its best solution xb ( solution with the lowest cost) neighborhood.

Table 5 shows results for each variant of DICG. It reports the same information as in Table 3 for the

columns having the same name. In addition, it presents the objective value (obj) and the number of improving

integer solutions found during the solution process (nbSols).

We observe that both DICG variants solve all instances to near optimality within almost an hour. The

differences between objective values of the two variants are less than 0.1% in all cases. Thus, the results show

that both variants are excellent from industrial point of view. However, DICG coop remains significantly

better in terms of the number of integer solutions found and the overall objective value thanks to cooperation.

On the other hand, concerning the computing time, DICGcomp is faster than DICGcoop because the marginal
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Figure 6: DICGcomp evolution over time on CPP 320

Figure 7: DICG variants evolution over time of the CPP 320 instance

Table 4: Results of DICG variants for the CPP instances

instance DICGcomp DICGcoop

name time obj nbIter nbSols Agb time obj nbIter nbSols Agb

CPP D94 59 109178 17 2 2 59 109178 17 2 2
CPP D95 3296 268975 19 57 3 4580 268431 25 95 1
CPP 757 708 430807 16 5 3 1457 430671 14 19 1
CPP 319 2579 374859 26 35 3 2879 375015 25 46 1
CPP 320 3729 562623 25 36 1 2293 562680 18 17 1

gain in the last iterations is costly. In major complex applications, it worths it, especially when we have

enough time for planning. Finally, it is obvious that all agents contribute to the DICG solution process as

it is shown by the Agb column. Based on this, we deduce that considering many agents simultaneously is a

better approach.
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From the aforementioned results, we conclude that DICG variants yield excellent results. DICGcoop

constitutes a good variant of DICG that shows a good potential since it allows to manage multiple agents

simultaneously in order to take advantage of their cooperation and paves the way for implementing more

sophisticated cooperation strategies.

4.4 DICG vs DRMH

The goal in this section is to compare the performance of the best variant of DICG against DRMH on CPP

and VCSP instances. Figure 8 shows the gap value evolution over time for DICG variants and DRMH on

CPP 320. The figure clearly shows that the DICG variants outperform DRMH in terms of computing time

and solution quality.

Figure 8: Gap evolution for DICG and DRMH for CPP 320 test

The CPP computational results are presented in Table 5. We report (from the left to the right) the

computational time, the solution gap, the total number of improving integer solutions and the best DICG

variant. We observe that for the cited statistics, DICG is generally better than DRMH, especially for the

number of improving integer solutions that is very desirable in practice. We would like to mention here that

DRMH is good because the density is low which is an important fact.

Table 5: Results of DICG and DRMH for the CPP instances

instance DRMH DIGC

name time gap (%) nbrSol nbIter time gap(%) nbrSol nbIter bestVar

D94 81 0.07 9 22 59 0.35 2 17 coop
D95 4110 0.71 9 36 3296 0.48 95 25 coop
757 1392 0.05 4 30 1457 0.04 18 19 coop
319 6649 0.28 12 40 2879 0.23 46 25 coop
320 2946 0.03 6 42 3729 0.03 36 25 comp

The VCSP computational results are presented in Table 6. We report the computational time, the solution

gap and the number of column generation iterations for both DRMH and DICG. We restrict the comparison

of VCSP instances to the DICG comp variant. This is dictated by the fact that the convergence of DICG is

too fast that there is no need to any cooperation strategy between worker agents. For this reason again, we

do not report results on VCSP instances in the previous section. For instances with medium difficulty, i.e.,

those with tasks’ number less than 1000 and low density, DICG is two to five times faster than DRMH. While

for instances with larger number of tasks’ number (more than 1000) and higher density (greater than 13),

DRMH is unable to find a good enough (less than 10% gap) feasible integer solution within one hour time limit.

Remark 1 This can be explained by the fact that in DRMH, columns that are good for the linear relaxation

are not necessarily good for getting an optimal integer solution. In the opposite, we can show that at each CG

iteration, DICG should succeed in generating one or more optimal columns that are missing in the current
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integer solution. This can also explain the fact that the DICG number of iterations is smaller than the DRMH

number of iterations number.

Table 6: Results of DICG and DRMH on the VCSP instances

instance
DRMH DICG

time gap (%) nbIter time gap (%) nbIter Agb

vcs 0 9 80 73 0 37 44 0 3 3
vcs 1 9 80 105 0 10 38 0 3 2
vcs 2 9 80 74 0 38 39 0 2 2

vcs 0 5 160 123 0 37 25 0 3 2
vcs 1 5 160 119 0 40 26 0 4 3
vcs 2 5 160 112 0 29 24 0 4 3

vcs 0 9 160 3600 - - 163 0 4 3
vcs 1 9 160 3600 - - 154 0 4 3
vcs 2 9 160 3600 - - 151 0 4 1

vcs 0 9 200 3600 - - 220 0 4 1
vcs 1 9 200 3600 - - 220 0 5 1
vcs 2 9 200 3600 - - 212 0 6 3

5 Conclusion

We proposed in this paper a new algorithm DICG, which is a distributed integral column generation algorithm.

It is a multi-agent based algorithm dedicated to generate in parallel descent directions leading to an improved

integer solution at each column generation iteration. We presented and implemented two DICG variants and

discussed their performances. They differ in the strategy used to manage the worker agents. We showed

that our algorithm yields good quality solutions (less than 1%), largely better than the distributed version

of RMH on a set of vehicle and crew scheduling instances. Our tests set contains large-scale instances with

up to almost 2000 tasks. DICG was able to find optimal or near optimal solutions for all instances in less

time than DRMH, especially on hard VCSP instances.

Future research should be done to further improve the DICG performance. We believe that combining

this primal algorithm DICG with meta/math/heuristics should produce better solutions in a drastically

reduced time.
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