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Avant de citer ce rapport technique, veuillez visiter notre site Web
(https://www.gerad.ca/fr/papers/G-2018-86) afin de mettre à
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Legal deposit – Bibliothèque et Archives nationales du Québec, 2018
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Abstract: A mining complex can include multiple mines, stockpiles, waste dumps and processing
facilities. Traditional optimization approaches are often based on sequential optimization of the various
components in the mining complex leading to suboptimal solutions. They also do not account for
uncertainty in critical inputs, resulting in misleading forecasts. This paper presents an application
of a stochastic framework that simultaneously optimizes mining, destination and processing decisions
for a multi-pit, multi-processor gold mining complex. The framework accounts for supply and market
uncertainty via stochastic orebody and commodity price simulations. The case study notably assesses
the impacts of integrating market uncertainty as an initial input that influences all components of
the production schedule. Additionally, cut-off grade decisions are determined by the simultaneous
optimization process, considering material variability and operating constraints while reducing the
number of a priori decisions to be made. This approach generates solutions that capitalize on the
synergies between extraction sequencing, cut-off grade optimization, blending and processing while
managing and quantifying risk in strategic plans. Leading to more metal production and higher
NPVs.

Keywords: Simultaneous stochastic optimization, mining complexes, cut-off grade optimization, mar-
ket uncertainty, geological uncertainty
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1 Introduction

A mining complex is a resource to market mineral value chain that transforms in-situ materials into

valuable products such as concentrate, pellets, bars of precious metals, and others (Montiel and Dim-

itrakopoulos, 2015). The main components of a mineral value chain are generally: mines, stockpiles,

waste dumps, mineral processing facilities, and logistics hubs (ports and railways for example) (Pi-

mentel et al., 2010). Traditionally, components of the mineral value chain are optimized independently,

leading to suboptimal solutions which deteriorate substantially as the complexity of the chain increases

(Goodfellow and Dimitrakopoulos, 2016; 2017). Simultaneous optimization of a mining complex is an

integrated approach where all the components of the chain are optimized simultaneously, leveraging

existing synergies towards maximizing the value of an operation (Pimentel et al., 2010; Whittle, 2009).

Development of frameworks that incorporate multiple components of the mineral value chain into the

optimization process began in the mid-1990s. Newmont Mining Corporation recognized the opportu-

nity to leverage synergies present in their expansive Nevada operations. Leading to the development

of an in-house optimizer based on a mixed integer programming (MIP) formulation to maximize

discounted cash flows by simultaneously optimizing material movement from a set of open pit and

underground mines to multiple destinations (Hoerger et al., 1999). BHP Billiton followed by devel-

oping the Blasor mine planning software, which simultaneously optimizes pushback sequences from

multiple pits (Stone et al., 2007). The authors present an application at BHP’s Yandi mining complex,

an eleven pit, blended iron ore joint venture where Blasor is used to maximize the net present value

(NPV) while ensuring market tonnage and material quality targets were respected. Blasor can provide

tractable solutions by aggregating spatially connected blocks with similar attributes then sequentially

generating near-optimal extraction sequences, ultimate pit, phase designs and finally panel (intersec-

tions of benches and phases) extraction sequences (Stone et al., 2007). Zuckerberg et al. (2007) extend

the framework to Blasor-InPitDumping, which incorporates optimized waste handling by utilizing

sterile mined-out areas. Whittle (2009) describes a global optimizer, designed to incorporate mining,

processing and blending components into the optimization process.

While the methods described above improve past approaches, they all have one or more of the following

major limitations: aggregation, which misrepresents mining selectivity, stepwise local optimization of

value chain components, and failure to account for the effects of uncertainty present in critical param-

eters. The main sources of risk in a mining project arise from technical, financial and environmental

uncertainty (Dimitrakopoulos et al., 2002; Rendu, 2017). Furthermore, it has been observed that

uncertainty in grades and material types is a significant source of technical risk, referred to as supply

uncertainty (also geological). The impact of supply uncertainty on a mining project’s ability to meet

production forecasts is now a well-studied issue (Dowd, 1994; Ravenscroft, 1992). Conventional mine

planning methods are deterministic, meaning they use a single estimated orebody model as an input

to the optimization process; Hustrulid et al. (2013) provide a comprehensive review of conventional

open pit mine planning practices. Estimated models are incorrectly assumed to be accurate represen-

tations of grades and materials in the ground. Instead, they provide overly smoothed representations

of attributes of interest (Goovaerts, 1997). Uncertainty in mineral deposits is incorporated into the

optimization process by stochastic optimization frameworks that use sets of equi-probable stochas-

tic simulations as inputs to stochastic integer programming (SIP) formulations (Birge and Louveaux,

2011; Ramazan and Dimitrakopoulos, 2007; Ramazan and Dimitrakopoulos, 2013). Dimitrakopoulos

(2011) provides a review of applications of stochastic optimization in mine planning, noting significant

improvements in NPV and metal recovered while managing and reducing technical risk.

Despite the significant influence that market uncertainty, specifically, fluctuations in commodity prices,

has on project risk, conventional planning practices assume constant and certain prices. Attempts to

overcome this simplification by sensitivity testing different price scenarios a-posteriori are limited in

that decisions such as destination policies (cut-off grades), life-of-mine (LOM), capacities and others are

fixed. Past efforts at incorporating the joint supply and market uncertainty into the planning process

allow some of these decisions to be made while accounting for the uncertainty. Examples of such efforts

include assessing the impacts on phase and ultimate pit designs as well as determining cut-off grade
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strategies, mining rates and capacities (Asad and Dimitrakopoulos, 2013a; Asad and Dimitrakopoulos,

2013b; Castillo and Dimitrakopoulos, 2014; Farmer, 2017; Kizilkale and Dimitrakopoulos, 2014). Cut-

off grade optimization is one of the most important elements in any mining operation, defining the

supply of ore and waste material to various destinations throughout the mineral value chain based on

economic and technical parameters. It characterizes an operation’s destination policy decisions (where

to send what material and when). Asad et al. (2016) provide a thorough review of cut-off grade

optimization (deterministic and stochastic) methods developed for open-pit mining operations. Cut-

off grade optimization is conventionally based on Lane’s theory on the economic definition of ore (Lane,

1988; Rendu, 2014) which predefines cut-off grades to be used for life-of-mine production scheduling

optimization. This is a limited approach based on the consideration of grade-tonnage distributions and

capacities while attempting to maximize net present value. However, cut-off grades determined prior

to production scheduling do not account for fluctuations in material availability and quality from one

mining period to another and are required only because the technologies used to date for production

scheduling optimization are unable to generate the optimal cut-off grades as an output of the truly

optimal life-of-mine production schedule. This has been the case for several decades and is a limitation

addressed by the new digital technologies and simultaneous optimization of cut-off grade policies in

conjunction with extraction sequencing and processing stream decisions, proposed in this work and

along the resource to market mineral value chain.

Recent developments have extended the two-stage SIP models reviewed by Dimitrakopoulos (2011)

to the simultaneous stochastic optimization of mining complexes (Goodfellow and Dimitrakopoulos,

2016; 2017; Montiel and Dimitrakopoulos, 2015, 2017; Montiel et al., 2016). These state-of-the-art

frameworks integrate the optimization of extraction sequences, destination policies, processing streams,

operating modes and transportation alternatives for multiple sources and processors simultaneously

in a single mathematical formulation. The contributions above move away from linear optimization

models to incorporate more realistic stockpiling decisions and non-linear interactions in processing

streams. These are enabled by a significant departure from conventional mine optimization practices,

such as the economic value of blocks as a driving force in optimization. Valuing material by calculating

the economic value of mining blocks pre-extraction, assumes that the concept of independent blocks

remains intact as the material is transformed throughout the value chain and is not able to consider

changes in the value of material due to blending or other downstream non-linear interactions (Good-

fellow and Dimitrakopoulos, 2016). Thus, simultaneous stochastic optimization shifts the focus from

optimization with the economic value of blocks to the economic value of products sold at the end of

the mineral value chain, removing the need for a-priori cut-off grade optimization. A major benefit of

Goodfellow and Dimitrakopoulos (2016) is that the model is highly generalized, allowing for extensions

to a large variety of applications. However, it does not incorporate specific transportation alternatives

or operating modes as Montiel and Dimitrakopoulos (2015) or supply from an underground mine as

Montiel et al. (2016). Farmer (2017) extends the generalized model to include capital expenditure

(CapEx) and mining capacity decisions in an application with complex revenue streams such as offtake

and streaming agreements. It also aims to integrate market uncertainty, but does so in a two-step

process that fixes the extraction sequence and optimizes the downstream variables. Del Castillo and

Dimitrakopoulos (2017) use a dynamic approach to integrate CapEx decisions on the mid-term time

horizon. Kumar and Dimitrakopoulos (2017) present another application of Goodfellow and Dimi-

trakopoulos (2016) with complex geo-metallurgical decisions incorporated into the destination policy

at a large copper-gold mining complex.

This work presents an application of the simultaneous stochastic optimization framework from Good-

fellow and Dimitrakopoulos (2016) at an intricate Nevada type gold mining complex with strict geo-

chemical blending constraints. Notably, this work explores the effects of joint market and supply

uncertainty scenarios by using commodity price simulations as inputs to the optimization model, al-

lowing the simultaneous stochastic optimizer to integrate market uncertainty into all three decision

variables. Additionally, this study examines the effectiveness of the simultaneous stochastic optimiza-

tion framework’s cut-off grade decisions by considering the value of downstream products, non-linear

blending interactions and the extraction sequence. This replaces the need for a-priori cut-off grade



Les Cahiers du GERAD G–2018–86 3

optimization using Lane (1988) and addresses limitations related to determining cut-off grades prior

to production scheduling. Due to the blending requirements in the case study the proposed approach

has the additional benefit of reducing the level of operational complexity in the mining complex by

significantly cutting down on the number of material types and stockpiles the operation needs to

manage.

The next sections provide, a brief description of the optimization model, constraints, and solution

approach. Then, a detailed description of the case study, presentation of the results and analysis.

Conclusions and future work follow.

2 Method

This section describes the adaptation of Goodfellow and Dimitrakopoulos (2016)’s simultaneous stochas-

tic optimization model to the specific application at a large gold mining complex. The general model is

extended to accommodate strict geochemical blending constraints related to autoclaving, mineability

constraints and market uncertainty.

2.1 Definitions and notation

The material in mining complex, C, is extracted from a set of sources (mines), m ∈ M. Mines are

discretized into selective mining units (SMU) known as mining blocks, b ∈ Bm, where Bm denotes the

set of mining blocks for a specific mine. The mining cost, MCb,t, represents the cost of mining any

block, b ∈ Bm, in period t ∈ T. Each block has a set of simulated properties, a ∈ A, mineralogical

(grade) and geochemical (deleterious elements). S, denotes a set of scenarios that quantify the joint

uncertainty in grade, geochemical properties, and commodity prices (when applicable). Material is only

available for extraction if all predecessors,O(b), of a block b are extracted. After extraction, material

can be sent from locations i ∈ C to several destinations such as stockpiles (S), processors (P), or

waste dumps (D). The cost of transporting material property a from a location i in period t is denoted

TCi,a,t. The amount of a material property a at location i in period t and scenario s is va,i,t,s. Material

properties that can be sent from one destination to another and accumulated, such as ounces, belong to

the set p ∈ P, while properties that are calculated such as ounces recovered, or element concentrations

belong to the set h ∈ H. Production targets associated with capacities belong to the set Pc and

those associated with geochemistry belong to Hg. PCi,a,t represents the cost of processing material

property a at location i in period t (including refinery charges). Ph,t,s Represents the unit selling price

of material property h in period t and scenario s. Deviations from a production target associated

with property a at location i in period t and scenario s are measured by d±i,a,t,s, while c±i,a,t represents

the unit surplus and shortage costs associated with their respective deviations. Mineability targets,

enabled by a set of scheduling constraints, ensure the production schedule is feasible in practice. Blocks

that lie within a horizontal ‘window’ around block b belong to the set Wb, blocks that lie vertically

above a block b are denoted v ∈ Vb. d
smooth
b,t Represents the number of blocks in the window Wb that

are mined in a different period from block b while dsinkb,t represents the number of blocks in the set Vb

that are mined in the same period as block b. The penalty costs used to enforce the mineability targets

on a per block basis in each period are denoted by csmooth
b,t and csinkb,t .

2.2 Decision variables

There are three types of decision variables that the simultaneous stochastic optimizer can modify to

impact the mining complex. Extraction sequence decisions (xb,t ∈ {0, 1}) define whether or not a

block b ∈ Bm, is extracted from mine m in period t. Destination policy decisions (zg,j,t ∈ {0, 1})
define whether material of grade g is sent to destination j in period t. Processing stream decisions

(yi,j,t,s ∈ [0, 1]) define what proportion of material is sent from location i ∈ S ∪ P to destination
j in period t and scenario s. The destination policy decisions are derived from the robust cut-off

grade policies from Menabde et al. (2018), where a grade distribution is discretized into bins and



4 G–2018–86 Les Cahiers du GERAD

the optimizer determines the minimum grade bin from which all bins above are sent to a processor.

A block may fall into a different grade bin from one simulation to another, however, the destination

decisions governing a group of bins remain scenario independent.

2.3 Objective function

The objective function in (Equation 1) maximizes the value of the products sold from the mining

complex and manages risk by minimizing deviations from targets in the value chain.

max
1

‖S‖

{∑
s∈S

∑
t∈T

{∑
i∈P

∑
h∈H

Ph,t,s×vh,i,t,s︸ ︷︷ ︸
Part I

−
∑
i∈P

∑
p∈P

(PCi,p,t + TCi,p,t)× vp,i,t,s︸ ︷︷ ︸
Part II

−
∑
i∈P

∑
p∈Pc

(c+i,p,t × d
+
i,p,t,s + c−i,p,t × d

−
i,p,t,s)︸ ︷︷ ︸

Part III

−
∑
i∈P

∑
h∈Hg

(c+i,h,t × d
+
i,h,t,s + c−i,h,t × d

−
i,h,t,s)︸ ︷︷ ︸

PartIV

−
∑
m∈M

∑
p∈Pc

(c+i,p,t × d
+
i,p,t,s + c−i,p,t × d

−
i,p,t,s︸ ︷︷ ︸

Part V

}}
−
∑
t∈T

∑
m∈M

∑
b∈Bm

(MCb,t × xb,t + csmooth
b,t × dsmooth

b,t )︸ ︷︷ ︸
Part VI

−
∑
t∈T

∑
m∈M

∑
b∈Bm

∑
v∈Vb

csinkb,t × dsinkb,t,v︸ ︷︷ ︸
Part VII

(1)

Part I from Equation 1 represents the discounted cash flow derived from products sold. Part II

represents the processing costs at the various processors and the transportation costs from each location

to the destination. Part’s III, IV, and V represent the cost of deviating from processing capacity,

geochemical, and mining capacity targets, respectively. Part VI represents the mining cost and the

cost of deviating from the schedule smoothness constraints. Part VII represents the cost of deviating

from schedule sink rate constraints. All penalty costs for deviating from targets are time varied using a

geological discount rate, meaning c+i,a,t =
c+i,a,t

(1+r)t , where r is the geological risk discount rate, similar to

an economic discount rate used in net present value calculations (Dimitrakopoulos and Ramazan, 2004).

2.4 Constraints

The transformation of sulphide ore material into gold products in a mining complex is a complicated

process that can require pressure oxidation as a pre-treatment to conventional gold recovery circuits.

This treatment requires the addition of an autoclave to the process flowsheet. An autoclave is a

horizontal cylindrical pressure vessel with multiple compartments that require specific physical and

metallurgical controls to ensure effective operation (Cole and Rust, 2002). Blending ore material to

maintain a feed that respects the autoclaves optimal operating targets is critical its performance. This

requires a set of constraints to measure deviations from the geochemical targets of the autoclave feed

which are then penalized in Part IV of the objective function in Equation 1. The concentrations of

sulphide sulphur and carbonate in the feed are carefully monitored for the autoclaving treatment as

well as the total amount of acid added. Acidic slurry is often added to help achieve the necessary pH

requirements by reducing the carbonate content of the feed. The recovery of gold from the sulphide

ore material is dependent on the organic carbon concentrations. Consequently, the organic carbon

content is also carefully monitored, and a target concentration is included in the objective function.

Equations 2 and 3 calculate the deviations from upper and lower targets on feed geochemistry which

are penalized in the objective function.

vh,i,t,s − d+h,i,t,s ≤ Uh,i,t ∀h ∈ H, i ∈ P, t ∈ T, s ∈ S (2)

vh,i,t,s + d−h,i,t,s ≥ Lh,i,t ∀h ∈ H, i ∈ P, t ∈ T, s ∈ S (3)
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Equations 4 and 5 define the scheduling constraints (smoothing and sink rate) enabling the opti-

mizer to penalize deviations from mineability targets in parts VI and VII in the objective function.

|Wb| × xb,t −
∑

w∈Wb

xw,t ≤ dsmooth
b,t ∀m ∈M,b ∈ Bm, t ∈ T (4)

xb,t + xv,t − dsinkb,t,v ≤ 1 ∀m ∈M,b ∈ Bm, v ∈ Vb ⊆ Ob, t ∈ T (5)

Recall that the smoothing window Wb is centered around b ∈ Bm in the same units as block

dimensions and that dsmooth
b,t is used to count the number of blocks scheduled in different periods

from b. If a block is mined in period t and it is a member of the smoothing window for its adjacent

blocks, who are not also scheduled for extraction, then a penalty is incurred in Part VI of the objective

function. The sink rate constraints allow the optimizer to control the number of blocks mining can

advance vertically in any period. Recall that the set Vb contains the block that overlie b, this set can

contain at most one block, v, where if block b = (bi,bj ,bk) then block v =
(
vi, vj , vk+SR(b)+1

)
and

SR(b) is the sink rate of b. If xb,t + xv,t = 1, meaning both blocks b and v are mined in the same

period, then dsinkb,t,v = 1, otherwise dsinkb,t,v = 0, satisfying Equation 5. It follows that the sum of all dsinkb,t,v

variables represents the number of sink rate constraint violations in the extraction sequence and incurs

a penalty Part VII of the objective function. The model is also subject to: capacity, reserve, slope,

destination policy, and processing stream flow constraints detailed in Goodfellow and Dimitrakopoulos

(2016).

2.5 Solution method

Stochastic modelling allows for integrating various sources of uncertainty into the optimization process,

however, this also considerably increases the size and complexity of what is already a challenging

combinatorial optimization problem. Meaning that solutions via commercial MIP solvers are much

more difficult and, in many cases, impossible to obtain. Metaheuristics provide a practical alternative

for solving these models, and many existing metaheuristics have been successfully adapted to the

stochastic optimization of mines and mining complexes (Lamghari and Dimitrakopoulos, 2016). The

solution approach uses a combination of metaheuristic algorithms to solve the model and is described

by (Goodfellow and Dimitrakopoulos, 2016; 2017).

3 Case study

This section describes and examines the application of the method described herein at a large Nevada

style gold mining complex. The results are reported as a probabilistic risk analysis on several key

performance indicators (KPIs). In Section 3.2 the cut-off grade optimization component of the si-

multaneous stochastic optimizer is compared to a base case cut-off grade policy provided by industry

partners. In Section 3.3 market uncertainty is integrated into the model and the results are analyzed.

3.1 Overview of the mining complex

The material in the mining complex is extracted from two open pit mines and delivered from a set of

nearby operations (referred to as external sources). The material can flow through the mineral value

chain to three processing destinations (an autoclave, oxide mill, and oxide leach pad), a waste dump,

and a set of stockpiles for each material type. Figure 1 shows the components of the mining complex.

Supply uncertainty is incorporated by using a set of multivariate geostatistical simulations provided

for each mine. A set of simulations is also generated to capture uncertainty in the delivery of material

from external sources. The model comprises several million integer variables and several thousand

scenarios for evaluation and optimization.

High-grade oxide ore extracted from Pit B is processed at the oxide mill, while a heap leach facility

processes lower grade oxide ore material. An autoclave processes sulphide ore extracted from Pit A
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and delivered from external sources. A non-linear recovery function models gold recovery at each of the

processing destinations. At the oxide mill and heap leach pad, the recovery function is dependent only

on gold grade in the feed. Recovery at the autoclave is governed by gold grade and organic carbon (OC)

content. The autoclave has a strict set of operating requirements for feed geochemistry to effectively

treat the sulphide ore material as mentioned in Section 2.4. The operating efficacy is dependent

on several physical and chemical controls to treat the feed for the next phase of metallurgical gold

recovery. The geochemical blending and acid consumption necessitated by the process are of particular

interest to this study, especially the ratio of sulphide sulphur (SS) to carbonate (CO3) concentrations

in the feed.

Figure 1: Diagram of the mineral value chain

The sulphide ore material from Pit A is classified into eleven geochemically distinct material types

a priori based on SS, CO3, and OC concentrations. Each material type has its own stockpile. The

optimizer determines the gold cut-off grade boundaries for each material type, deciding which grade

bins are sent to the stockpiles, the autoclave or the waste dump. The material from Pit B is not

concerned with the deleterious elements because they do not affect the metallurgical recovery process

that governs oxide ore at the mill or the leach pad. The optimizer determines the gold cut-off grade

boundaries for sending material to the waste dump, stockpile, leach pad, or mill. Cut-off grade

decisions are optimized simultaneously to maximize the net present value considering the extraction

sequence, downstream processing and blending decisions and related constraints. This configuration

of the mining complex is referred to hereafter as the ‘simultaneous case’.

The simultaneous case is compared to the ‘base case’ configuration of the mining complex. The

base case is also a simultaneous stochastic optimization; however, it is constrained by the destination

policy and material type configuration provided by the mining complex’s conventional cut-off grade

optimization procedure. Each of eleven sulphide material types from Pit A is further divided into

a maximum of five subgroupings based on gold grades, resulting in forty-five sulphide ore material

classifications. Eight of these material types are sent to the autoclave directly, while thirty-seven are

sent to distinct stockpiles for future reclamation. Oxide material from Pit B is classified as either waste

(<0.0088 Au Oz/ton), low-grade (0.0088 – 0.022 Au Oz/ton), or high-grade (>0.022 Au Oz/ton). Low-

grade material is sent to the leach pad, high-grade material is sent to the oxide mill or stockpiled on

an ad-hoc basis.

3.2 Results and comparisons

Figure 2 (a)–(d) present the risk profiles for discounted cash flow, ounces of gold recovered and through-

put at the two main processing facilities, the base case is in blue, and the simultaneous case is in black.

The relevant values have been scaled for confidentiality. Figure 2 (a) shows that over the ten-year span

there is a negligible difference in NPV between the two cases (0.16% difference in p50 values), however,

the base case forecast would be adversely affected by mill capacity violations that will be addressed

later on. Furthermore, the risk profiles are particularly tight over the first five periods, projecting

confident forecasts. Figure 2 (b) shows that both cases deliver stable discounted cash flows (200+
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million USD) throughout the life of the operation. Cash flows are comparable in most periods except

for period three, where the simultaneous case forecast is significantly higher. Figure 2 (c) and (d)

depict gold ounces recovered; they closely mirror the cash flow forecasts. Both optimized plans fore-

cast stable ounce profiles throughout the life of the operation, never delivering less than 300 thousand

ounces a year.

Figure 2: Base case (blue) and simultaneous case (black) cash flow and gold recovered risk profiles

Figure 5 (a)–(c) provide the risk profiles throughput at each processing facility in the mining

complex. The base case forecast under delivers autoclave throughput in Period 1. Otherwise, both

cases respect the capacity targets through the life of the operation. The oxides provide more contrasting

differences between the two cases. The flexibility afforded to the optimizer in the simultaneous case

enables it to adjust the destination policy decisions to deliver a consistent throughput to the oxide mill.

The base case struggles to respect the oxide mill’s capacity targets in Periods 1, 3–8. It is important

to note that the oxide mill capacity violations would negatively impact the base case NPV forecast,

meaning the real difference is more pronounced than the 0.16% shown in Figure 2 (a). Examining the

oxide cut off grades and the leach pad throughput provides some insight into these results. Figure 4
presents the oxide cut-off grades and Figure 3 presents the feed grades to both oxide processing facilities.

Recall, the base case uses predetermined cut-off grade decisions. The simultaneous case optimizes the

cut-off grades in conjunction with the extraction sequence and processing stream decisions. Figure 4
highlights the adjustments made to keep the mill well fed. Cut-offs are raised when there are large
quantities of high-grade material available, such as in Period 3, and lowered when high-grade materials

are scarce such as in Period 1. Figure 3 (b) confirms these observations as the trend in feed grade to

the oxide mill mirrors the cut-off grade adjustments. It is important to note that just because there is

high grade being mined in Period 3 of the simultaneous case, it does not mean that the same high-grade

material is being mined in the base case, the extraction sequences are not the same. Figure 7 shows

that they are very different, in fact, not even the final pit limits are the same. The simultaneous case

mines 3% more material than the base case over the ten-year period.

Figure 3: Base case (blue) and simultaneous case (black) oxide mill and leach pad feed grades

Figure 6 (a)–(e) presents the risk profiles for the blending constraints. Recall the autoclave requires

certain levels of acidity in the feed slurry for efficient operation. The most critical blending target is
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the SS:CO3 ratio, shown in Figure 6 (b). When the SS or CO3 levels fall too low or too high, acid is

added to the feed slurry to control the pH. However, acid consumption capacity is strictly limited by

regulation. It is evident that other than the SS targets, both cases satisfy the blending constraints in

most periods. Although the SS levels do not consistently respect the blending targets, the violations

are on the order of fractions of a percentile. The potentially negative impacts are mitigated by the

very well controlled SS:CO3 ratio.

Figure 4: Base case and simultaneous case oxide material cut-off grades

Figure 5: Base case (blue) and simultaneous case (black) throughput forecasts at each processing facility

In summary, allowing the simultaneous stochastic optimizer to determine cut-off grade decisions in

conjunction with extraction sequence and processing decisions yields several key improvements. The

simultaneously optimized cut off decisions perturb the extraction sequence to deliver stable material

flows that respect the capacities of the processing facilities. The pre-determined cut-off grades in the

base case configuration yield production forecasts that struggle to respect processing capacity targets.

While the NPVs of both configurations appear similar, the base case forecasts may be misleading due

to these violations. Furthermore, the configuration of the simultaneous case significantly reduces the

number of necessary stockpiles on site. Thus, reducing the operational complexity in managing the

mineral value chain.

3.3 Incorporating market uncertainty

Incorporating market uncertainty through the use commodity price simulations as inputs to the simul-

taneous stochastic optimization framework generates a long-term plan that manages and quantifies

risk derived from volatile spot markets. Gold prices are simulated using an established model for

precious metals, geometric Brownian motion with Poisson jump diffusion (Schwartz, 1997), described
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Figure 6: Base case (blue) and simultaneous case (black) blending results

Figure 7: Pit B extraction sequence cross-section: simultaneous case (left) base case (right)

by Equation 6, where St is the metal price at time t, W is a Weiner process, β is the size of Poisson

jump P . Average annual price drift, η, is the trend component often used in price models where the

price is correlated with inflation, σ2, is average annual price volatility. Figure 8 presents the simulated

gold price scenarios used in this case study, the mean of the simulate prices and the constant price
used in the comparative case. It is typically accepted that the number of simulations necessary to

accurately quantify metal price uncertainty can be on the order of hundreds (Farmer, 2017). Such a

number makes the problem intractable as the number of variables is already in the order of 106 and the

number of joint uncertainty scenarios is in the thousands. However, the sensitivity of long-term pro-

duction scheduling for mineral value chains to the number of price scenarios has not been sufficiently

explored. For example, Albor Consuegra and Dimitrakopoulos (2009) show that due to support-scale

effects (also known as volume-variance relationship), fifteen to twenty stochastic orebody simulations

are enough to quantify geological uncertainty in long-term mine production scheduling applications.

Meaning, for practical purposes using any more than fifteen simulations as inputs does not change

solution. This application should be considered as a proof-of-concept that it is possible to consider

market uncertainty in the simultaneous stochastic optimization framework and that is has material dif-

ferences to the outputs of the process. Further studies must determine the number of commodity price

simulations necessary to generate stable solutions and provide accurate quantifications of uncertainty

in this context.

St = St−1 ×
(
η × t− σ2 × t

2
+W + β × P

)
(6)
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3.3.1 Risk analysis considering market uncertainty

This section examines the risk profiles of the case study considering joint market and supply uncertainty

scenarios. To provide a comparison, the simultaneous case from Section 3.2, which uses the constant

gold price (shown in Figure 8) is included and referred to as the ‘supply uncertainty’ case. Figures 9 (a)–

(d) present the discounted cash flow and gold recovered risk profiles. The effect of the joint uncertainty

scenarios becomes quite evident in the p10 and p90 values after Period 4 in Figure 9 (a) and (b). In all

periods, the cash flows are less certain than the case that only considers supply uncertainty, however,

through the first four periods the optimizer forecasts cashflows with a reasonable amount of confidence.

Examining the gold price scenarios in Figure 8 provides a reasonable explanation, the fluctuations in

gold price simulations begin to vary significantly more as time progresses beyond Period 4. However,

the forecasts beyond Period 4 provide a quantification of risk in projected cash flows. Despite the

fluctuating price scenarios in the later periods, the forecasts remain positive throughout the life of the

operation, with the p10 value never dropping below 100 million USD and the p50 never dropping below

200 million USD. The joint uncertainty case delivers stable ounce profiles (Figure 9 (d)) throughout the

life of the operation while remaining profitable. In fact, despite the significant exposure to downside in

gold prices, the ounce profile remains comparable to the case that does not consider market uncertainty.

Figures 11 (a)–(c) provide the risk profiles for throughput at each processing facility; it is evident that

optimizer provides a long-term plan that respects the capacity targets of each processing facility. In

Figure 11 (b) and (c) Period 5 highlights one of the benefits of incorporating market uncertainty into

this process. First, note that several price scenarios enjoy an upswing in Period 5. The optimizer

can take advantage of this upswing and mine more high-grade material, but it does not violate the

maximum capacity of the oxide mill. Instead, it utilizes the leach pad to process significantly more

tons. This leads to higher cashflows and a larger number of ounces recovered in Period 5. Note the

relative increase in cut-off grade in Period 5 shown in Figure 11.

Figure 8: Gold price simulations (grey), mean of simulated prices (red dotted), constant gold price (black dotted)

Figure 9: Supply uncertainty (black) and joint uncertainty (green) cashflow and gold recovered risk profiles
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Figure 12 presents the same cross-section of both pit B extraction sequences, the difference in mate-

rial scheduled for extraction in Period 5 is visually clear. Recall, that the extraction sequence is scenario

independent. This provides some insight into the differences in material scheduled for extraction in

Periods 9 and 10 when the downside exposure to price uncertainty becomes more pronounced. Beyond

the visual differences in the extraction sequences, the incorporation of joint uncertainty scenarios also

leads to differences in the physical boundaries of the open pit mines. The total extracted material

mass in the joint uncertainty case is approximately 119 million tons. In the supply uncertainty case,

the extracted mass is approximately 174 million tons. Despite the 32% difference in total extracted

material, there is only an 8% difference in the p50 values for total recovered announces. However,

this does not translate to an improvement in p50 for the net present value; the joint uncertainty case

has a 3% higher p50 net present value. This highlights the ability of the simultaneous stochastic opti-

mizer to capitalize on extra production in elevated price scenarios while managing the impact of risk

throughout the life of the operation.

Figure 10: Supply and joint uncertainty oxide material cut off grades

Figure 11: Supply uncertainty (black) and joint uncertainty (green) throughput risk profiles at each processor

Figure 12: Pit B extraction sequence cross-section. Joint uncertainty (left) and supply uncertainty (right)
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4 Conclusions

This paper presents an application of the simultaneous stochastic optimization framework at a multi-

pit, multi-processor Nevada-type gold mining complex and its strategic mine planning; including ex-

traction sequences, destination policies, and processing stream decisions. The contributions are high-

lighted by the case study at the mining complex composed of two open pit mines, three external sources

of ore delivery, three processing facilities and a series of distinct stockpiles. The mining complex is sub-

ject to numerous operating constraints related to capacities and geochemical blending requirements.

The application documents the effectiveness of the framework’s cut-off grade optimization component

by comparing results with a base case model that uses cut-off grades determined a-priori by conven-

tional methods derived from Lane’s theory. It also explores the incorporation of market uncertainty

into the simultaneous optimization of a mining complex and effects on all its major aspects. The results

show that the proposed approach improves the operation’s ability to respect operating capacity tar-

gets by optimizing cut-off grades in conjunction with material availability and processing requirements.

The approach also allows for a reduction in operating complexity as the simultaneous case utilizes only

twelve stockpiles compared to thirty-eight in the base case. Additionally, the integration of commodity

price fluctuations and optimization of the mining complex under joint market and supply uncertainty

underscores the flexibility of the framework. The results demonstrate the optimizer’s ability to adapt

the schedule to mine and process more material during periods of elevated price environments while

being more conservative when the downside exposure to prices becomes more pronounced. Highlighting

the ability of simultaneous stochastic optimizers to generate long-term schedules that manage exposure

to commodity price fluctuations and provide accurate quantifications of risk to an operation’s strategic

decision makers.

As research into more efficient solution approaches develops, the framework will be able to consider

larger numbers of joint uncertainty scenarios in reasonable amounts of time. Allowing for more in-

depth sensitivity analyses on the number of commodity price simulations necessary to generate stable

and resilient outputs. Future extensions of the method should include the ability to optimize mining

capacity and processing rates. Another area of particular interest is the extension of the destination

policy to consider multiple attributes into cut-off grade decisions.
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