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Université du Québec à Montréal, ainsi que du Fonds de recherche du
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tivité à but lucratif ou pour un gain commercial;

• Peuvent distribuer gratuitement l’URL identifiant la publication.
Si vous pensez que ce document enfreint le droit d’auteur, contactez-
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Abstract: High-order sequential simulation methods have been developped as an alternative to existing
frameworks to facilitate the modelling of spatial complexity of non-Gaussian variables of interest. The high-
order simulation approaches address the modelling of curvilinear features and spatial connectivity of extreme
values that are common in mineral deposits, petroleum reservoirs, water aquifers and other geological phe-
nomena. This paper presents a new high-order simulation method that generates realizations directly at
the block support, conditioned to the available data at point support scale. Under the context of sequential
high-order simulation, the method estimates, at each block location, the cross-support joint probability den-
sity function using Legendre-like splines as the set of basis functions. The proposed method adds previously
simulated blocks to the set of conditioning data, which initially contains the available data at point support.
A spatial template is defined by the configuration of the block to be simulated and related conditioning values
in both support scales and is used to infer additional high-order statistics from a training image. Through
testing the proposed method with an exhaustive dataset, it is shown that simulated realizations reproduce
major structures and high-order relations of data. The practical intricacies of the proposed method are
demonstrated in an application at a gold deposit.

Keywords: sequential high-order simulation, block support, cross-support joint probability density function
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1 Introduction

Stochastic simulation methods are used to quantify spatial uncertainty and variability of pertinent attributes

of natural phenomena in the geo-sciences and geo-engineering. Initial simulation methods were based on Gaus-

sian assumprions and second-order statistics of corresponding random field models (Journel and Huijbregts

1978; David 1988; Goovaerts 1997). To address limits of Gaussian approaches, multiple point statistics (MPS)

based simulation methods have been introduced (Guardiano and Srivastava 1993; Strebelle 2002; Zhang et al.

2006; Arpat and Caers 2007; Remy et al. 2009; Mariethoz et al. 2010; Mariethoz and Caers 2014; Mustapha

et al. 2014; Chatterjee et al. 2016; Li et al. 2016; Zhang et al. 2017) to remove distributional assumptions, as

well as to enable the reproduction of complex curvilinear and other geologic features by replacing the random

field model with a framework built upon the extraction of multiple point patterns from a training image (TI)

or geological analogue. The main limitations of MPS methods are that they do not explicitly account for

high-order statistics, or provide consistent mathematical models while they generate TI-driven realizations.

Previous studies have shown resulting realizations that comply with the TI used, but do not necessarily

reproduce the spatial statistics inferred from the data (Osterholt and Dimitrakopoulos 2007; Goodfellow et

al. 2012). As an alternative to the above limitations, a high-order simulation (HOSIM) framework has been

proposed as a natural generalization of the second-order based random field paradigm (Dimitrakopoulos et

al. 2010; Mustapha and Dimitrakopoulos 2010a, b, 2011, Minniakhmetov and Dimitrakopoulos 2017a, b;

Minniakhmetov et al. 2018; Yao et al. 2018). The HOSIM framework does not make any assumptions about

the data distribution, and the resulting realizations reproduce the high-order spatial statistics of the data.

Similar to the MPS and most Gaussian simulation approaches, HOSIM methods generate realizations at

the point support, whereas, in most major areas of applications, simulated realizations need be at the block

support scale. Typically, the change of support needed is addressed by generating simulated realizations at a

very dense grid of nodes that is then post-processed to generate realizations at the block support size needed,

which is a computationally demanding process, as related configurations may require extremely dense grids

that may be in the order of many millions to billions of nodes. Thus, there is a need for computationally

efficient methods that simulate directly at the block support scale.

In the context of the conventional second-order geostatistics, direct block support simulation has been pro-

posed. Godoy (2003) presents an approach, termed “direct block simulation,” that discretizes each block into

several internal nodes, but only stores a single block value in memory for the next group simulation. This

mechanism drastically reduces the amount of data stored in memory and saves considerable computational

effort. Boucher and Dimitrakopoulos (2009) expand the sequential direct block simulation method to incor-

porate multiple correlated variables by applying the min/max autocorrelation function (MAF). Emery (2009)

uses an explicit change of the support model and directly simulates at block support. Although efficient,

these methods carry all the limitations of a Gaussian simulation framework and related spatial connectivity

is limited to two-point spatial statistics, thus, remain unable to characterize non-Gaussian variables, complex

non-linear geological geometries and the critically important connectivity of extreme values (Journel 2018).

Thus, alternatives are needed.

High-order sequential simulation methods use high-order spatial cumulants to describe complex geologic

configurations and high-order connecticity. At the same time, simulated realizations remain consistent with

respect to the statistics of the available data, while capitalizing on the additional information that TIs can pro-

vide. Dimitrakopoulos et al. (2010) describe these high-order spatial cumulants as combinations of moment

statistical parameters. Mustapha and Dimitrakopoulos (2010a) propose a high-order simulation algorithm,

where the conditional probabilities density functions (cpdf) are approximated by Legendre polynomials and

high-order spatial cumulants. A template is defined based on the central node to be simulated and the near-

est conditioning data. The replicates of this configuration are obtained from both the data and TI, and are

used as input for the calculation of the Legendre coefficients in the cpdf approximation. Advantages of this

method lie in the absence of assumption on the distribution of the data and in being a data-driven approach.

Minniakhmetov et al. (2018) replace the Legendre polynomial by Legendre-like splines as the basis function

for the estimation of conditional probabilities. Results show a more stable approximation of the related cpdf.

Improving upon the computational performance, Yao et al. (2018b) propose a new approach, where the
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calculation of the cpdf is simplified and no explicit calculation of cumulants is required. Although effective,

the methods above are performed at point support scale.

This paper presents a new method that generates high-order stochastic simulations directly at the block

support scale. The technique considers overlapping grids representing a study area at two support scales,

point and block support, where the simulation process is implemented at the latter support. In the sequential

simulation pocess followed, only the initial point support data and previously simulated blocks are added

to the set of conditioning values, thus drastically reducing the number of elements stored in memory. The

block to be simulated and the nearest conditioning data, at the point or block support, define the spatial

configuration of the template used. Similarly, the TI is represented in both support scales to provide replicates

of related spatial template configuration. The conditional cross-support joint density function estimated at

each block is approximated by Legendre-like splines.

The remainder of the paper is organized as follows. First, the proposed model for high-order block support

simulation is presented. Subsequently, a case study in a controlled environment assesses the performance of

the current approach. Next, the method is applied to an actual gold deposit to demonstrate its practical

aspects. Conclusions follow.

2 High-order block support simulation

2.1 Sequential simulation

In the following description, the index V relates to elements at the block support, while P represents point

support. Consider a stationary and ergodic non-Gaussian random field (RF) ZP (uj) in Rn, where uj defines

the location of nodes j in the domain D ⊆ Rn. Now consider a transformation function that takes the above

point support RF to the block support RF

ZV (v) =
1

|V |

∫
uj∈ v

ZP (uj) duj . (1)

Now ZV (vi) is also a RF, indexed as vi ∈ D ⊆ Rn, i = 1, . . . , NV where NV represents the total number

of blocks to be simulated within the domain D ⊆ Rn. ZV (vi) is the upscaled RF from ZP (uj) considering

all nodes uj that are discretized within the block centred in vi, where V is the volume.

The outcomes from the above RFs are denoted as zPj = zP (uj) and zVi = zV (vi), respectively for the

point and the block support RF ZP (uj) = ZP
j and ZV (vi) = ZV

i . Herein, the objective is to simulate

a realization of the RF ZV
i given the set of initial conditioning values at point support are denoted as

dp =
{
zP1 , . . . , z

P
NP

}
, NP being the total of conditioning point support values. According to the sequential

simulation theory in the geostatistical field, the joint probability density function (jpdf) fZV
1,2,...,NV

can be

decomposed in the products of their respective univariate distributions (Journel and Alabert 1989; Journel

1994; Goovaerts 1997; Dimitrakopoulos and Luo 2004)

fZV
1,2,...,NV

(
zV1 , z

V
2 , . . . , z

V
NV
|dP

)
= fZV

1

(
zV1 |dP

)
fZV

(
zV2 , . . . , z

V
NV

∣∣dP , zV1 ) (2)

= fZV
1

(
zV1 |dP

)
fZV

2

(
zV2
∣∣dP , zV1 ) . . . fZV

NV

(
zVNV

∣∣dP , zV1 , zV2 , . . . , zVNV −1
)
.

According to the Equation 2, each block vk is simulated based on the estimation of the conditional cross-

support probability density function fZV
k

(
zV

k

∣∣dP , zV1 , zV2 , . . . , zVk−1 ), which according to Bayes’ rule (Stuart

and Ord 1987) is

fZV
k

(
zV

k

∣∣dP , zV1 , zV2 , . . . , zVk−1 ) =
fZV

1 ,...,ZV
k

(
zV

k , dP , z
V
1 , z

V
2 , . . . , z

V
k−1
)

fZV
1 ,...,ZV

k−1

(
dP , zV1 , z

V
2 , . . . , z

V
k−1
) . (3)

It is sufficient to approximate only the cross-support joint probability density function

fZV
1 ,...,ZV

k

(
zV

k , dP , z
V
1 , z

V
2 , . . . , z

V
k−1
)
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since its marginal distribution can be theoretically obtained from

fZV
1 ,...,ZV

k−1

(
dP , z

V
1 , z

V
2 , . . . , z

V
k−1
)

=

∫
D

fZV
1 ,...,ZV

k

(
zV

k , dP , z
V
1 , z

V
2 , . . . , z

V
k−1
)
dvk. (4)

In this paper, the cross-support joint probability density fZV
1 ,...,ZV

k

(
zV

k , dP , z
V
1 , z

V
2 , . . . , z

V
k−1
)

is approxi-

mated using Legendre-like orthogonal splines (Wei et al. 2013; Minniakhmetov et al. 2018).

2.2 Joint probability density function approximation

For simplicity, let f (x)be the pdf of a random variable X defined in Ω = [a, b] and let ϕ1 (z) , ϕ2 (z) , . . .be a

set of set of orthogonal functions defined in the same space Ω. Then, a fixed number ω of those orthogonal

functions can approximate f (x) (Lebedev 1965; Mustapha and Dimitrakopoulos 2010a; Minniakhmetov et

al. 2018; Yao et al. 2018), when multiplied by coefficients Li.

f (z) =

ω∑
i=0

Liϕi (z) . (5)

Since the sets of functions are orthogonal,∫ b

a

ϕi (z)ϕj (z) dz = δij , (6)

where δij is the Kronecker delta indexed by i and j, such that it gets a unitary value if i = j; and 0 otherwise.

By using a definition of the expected value of one of a basis function

E [ϕi (z)] =

∫ b

a

ϕi (z) f (z) dz. (7)

Replacing f (z) as in Equation 5, it is obtained

E [ϕi (z)] ≈
∫ b

a

ϕi (z)

ω∑
j=0

Ljϕj (z) dz =

ω∑
j=0

Lj

∫ b

a

ϕj (z)ϕi (z) dz =

ω∑
j=0

Ljδij = Li. (8)

Li coefficient can be experimentally obtained from an available sample, thus f (z) is approximated by

Equation 5.

Moving to the multivariate cross-support case, at every block location vk the cross-support jpdf fZV
1 ,...,ZV

k(
zV

k , dP , z
V
1 , z

V
2 , . . . , z

V
k−1
)

can be defined in a similar sense. Moving forward, the above function is defined

as f
(
zV0 , . . . , z

V
nV
, zP1 , . . . , z

P
nP

)
for simplistic notation ensuring a better understanding of variables in both

block and point support layers. Also note that, without loss of generality, zV0 is the value to be simulated

at the v0location. The cross-support jpdf is defined in the domain[a, b]
nV +1 × [a, b]

nP , where nP and nV are

the maximum number of points and blocks considered, respectively, for the approximation. Similarly to the

univariate case, the cross-support jpdf can be approximated as

f
(
zV0 , . . . , z

V
nV
, zP1 , . . . , z

P
nP

)
≈

ω∑
kV
0

. . .

ω∑
k
nV
V

ω∑
k1
P

. . .

ω∑
k
nP
P

[
LkV

0 ...kV
nV

kP
1 ...kP

nP
ϕkV

0

(
zV0
)
. . . ϕkV

nV

(
zVnV

)
ϕkP

1

(
zP1
)
. . . ϕkP

nP

(
zPnP

)]
. (9)

Those Li...jk...l coefficients can be calculated experimentally since they can be obtained from the orthog-

onality property of the basis functions. Following the definition of the expected value of a basis function, it

is expressed as:
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E
[
ϕi

(
zV0
)
. . . ϕj

(
zVnV

)
ϕk

(
zP1
)
. . . ϕl

(
zPnP

)]
=∫ b

a

. . .

∫ b

a

∫ b

a

. . .

∫ b

a

ϕi

(
zV0
)
. . . ϕj

(
zVnV

)
ϕk

(
zP1
)
. . .

ϕl

(
zPnP

)
f
(
zV0 , . . . , z

V
nV
, zP1 , . . . , z

P
nP

)
dzV0 . . . dzVnV

dzP1 . . . dz
P
nP
. (10)

Replacing f
(
z0V , . . . , z

nV

V , z1P , . . . , z
nP

P

)
as in Equation 9, it is obtained

E
[
ϕi

(
zV0
)
. . . ϕj

(
zVnV

)
ϕk

(
zP1
)
. . . ϕl

(
zPnP

)]
≈∫ b

a

. . .

∫ b

a

∫ b

a

. . .

∫ b

a

ϕi

(
zV0
)
. . . ϕj

(
zVnV

)
ϕk

(
zP1
)
. . . ϕl

(
zPnP

) ω∑
kV
0

. . .

ω∑
kV
nV

ω∑
kP
1

. . .

ω∑
kP
nP

[
LkV

0 ...kV
nV

kP
1 ...kP

nP
ϕkV

0

(
zV0
)
. . . ϕkV

nV

(
zVnV

)
ϕkP

1

(
zP1
)
. . . ϕkP

nP

(
zPnP

)]

dzV0 . . . dzVnV
dzP1 . . . dz

P
nP

=

ω∑
kV
0

. . .

ω∑
kV
nV

ω∑
kP
1

. . .

ω∑
kP
nP

[
LkV

0 ...kV
nV

kP
1 ...kP

nP

∫ b

a

. . .

∫ b

a

∫ b

a

. . .

∫ b

a

ϕi

(
zV0
)
ϕkV

0

(
zV0
)
. . .

ϕj

(
zVnV

)
ϕk

nV
V

(
zVnV

)
ϕk

(
zP1
)
ϕk1

P

(
zP1
)
. . . ϕl

(
zPnP

)
ϕkP

nP

(
zPnP

)]
dzV0 . . . dzVnV

dzP1 . . . dz
P
nP

=
ω∑
kV
0

. . .

ω∑
kV
nV

ω∑
kP
1

. . .

ω∑
kP
nP

[
LkV

0 ...kV
nV

kP
1 ...kP

nP
δikV

0
. . . δjkV

nV
δkkP

1
δlkP

nP

]
= Li...jk...l. (11)

Now, to determine Li...jk...l, the expected value from Equation 11 is calculated from replicates of the

training image according to a template defined from simulation grid and sampling data.

Figure 1: An example of a template τ with conditioning data capturing values in both point and block support sizes.

Let τ = [v0, . . . , vnV
, u1, . . . , unP

] be a template as in Figure 1, where v0and v1represent locations at

block support, and u1, u2 and u3represent point support locations. v0 is the location of the block to be

simulated and nP and nV are, respectively, the total number of points and blocks used as conditioning.

Note that limited conditioning values are chosen in order of Euclidean proximity from the central block to

be simulated. Having the specified templateτ , the TI is scanned, and the replicates of such template are

retrieved. Note that τ has elements that belong to the point and block support sizes. Similarly, the TI
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requires to be available both scales. Therefore, assuming a TI input in the point support scale, it is rescaled

to block support, and both are retrieved during the simulation process, each one in its respective layer.

The algorithm for the block support high-order simulation method is as follows:

1. Upscale the TI from point to block support.

2. Define a random path to visit all the unsampled block locations on the simulation grid.

3. At each v0 block location:

(a) Find the nearest conditioning point and block support values.

(b) Obtain the template τ according to the configuration of the central block and related conditioning

values in both support sizes.

(c) Scan the training images, searching for replicates of the template τ and corresponding values.

(d) Calculate all the spatial cross-support coefficients Li...jk...l using Equation 11.

(e) Derive the conditional cross-support jpdf fZV
0

(
zV0
∣∣dP , zV1 , zV2 , . . . , zVk ) according to Eqations 9

and 11.

(f) Draw a uniform value from [0, 1] to sample zV0 from the conditional cumulative distribution derived

from the above.

(g) Add zV0 to the simulation grid at block support scale so that it can be a conditioning value for the

next block.

4. Repeat steps 2 and 3 for additional realizations.

2.3 Approximation of a joint probability density using Legendre-like orthogonal splines

The current paper uses the Legendre-like splines (Wei et al. 2013; Minniakhmetov et al. 2018) as means to

obtain the basis function above mentioned. In short, those splines are a combination of Legendre polynomials

(Lebedev 1965) up to the rthorder and linear combinations of B-splines(De Boor 1978). B-splines are a

particular class of piecewise polynomials (splines) connected by some condition of continuity, and by itself do

not form an orthogonal basis. Thus, as introduced in Wei et al. (2013), the first r+1 splines are the Legendre

polynomials, which can be defined as in (Lebedev 1965)

ϕr =
1

2rr!

(
dr

dzr

)[(
z2 − 1

)r]
, −1 ≤ z ≤ 1. (12)

The additional functions are constructed given the domain T

T = {a, a, . . . , t0 = a︸ ︷︷ ︸
r+1

< t1 ≤ t2 ≤ . . . ≤ tmmax < tmmax+1 = b, b, . . . , b︸ ︷︷ ︸
r+1

}, (13)

where the ti elements are referred to as knots and mmaxrepresents the maximum number of knots. The

final Legendre-like splines are defined as

ϕr+m(t) =
dr+1

dtr+1
fm(t), m = 1 . . .mmax, (14)

The fm(t) is the determinant of the following matrix

fm(t) = det


B−r,2r+1,m(t) B−r+1,2r+1,m(t) · · · B−r+m−1,2r+1,m(t)

B−r,2r+1,m(t1) B−r+1,2r+1,m(t1)
... B−r+m−1,2r+1,m(t1)

...
...

. . .
...

B−r,2r+1,m(tm−1) B−r+1,2r+1,m(tm−1) · · · B−r+m−1,2r+1,m(tm−1)

 , (15)
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which is constructed with the auxiliary splines Bi,r,m (t), of rthorder, obtained according to the recur-

sive rule

Bi,0,m =

{
1, ti,m ≤ t ≤ ti+1,m

0, otherwise
, (16)

Bi,r,m (t) =
t− ti,m

ti+r−1,m − ti,m
Bi,r−1,m (t) +

ti+r,m − t
ti+r,m − ti+1,m

Bi+1,r−1,m (t) .

These auxiliary functions are defined on the knot sequence Tm = {ti,m}r+m+1
i=−r , m = 1 . . .mmax − 1 and

the ti,m term is defined as

ti,m =

 a, − r ≤ i ≤ 0
ti, 1 ≤ i ≤ m
b, m+ 1 ≤ i ≤ m+ r + 1

. (17)

3 Testing with an exaustive dataset

The method outlined above is tested using the two-dimensional image of the Walker-Lake dataset (Isaaks

and Srivastava 1989). The exhaustive dataset comprises two correlated variables U and V of sizes 260x300

pixels. Random stratified sampling is used to retrieve 234 values from or 0.3% of the exhaustive image V to

be used as the data set in the direct block simulation of V, to test the proposed method. The full dataset V

is converted from the point to a block support representation by an averaging over 5x5 pixels. This block

support version is referenced here as the fully-known reference image and it is used for comparisons. Figure 2

shows V at the point and block support scale, as well as the dataset to be used. The image U is chosen as

the training image in the simulation process. Figure 3 presents the TI in both point and block support (5x5

unit size) scales. To help the method find more meaningful spatial patterns of the potential conditioning

templates, the TI is scaled to the range of values of the dataset. Histograms of the exhaustively known image,

TI and dataset are displayed in Figure 4 and basic statistics are presented in Table 1.

Figure 2: Exhaustive image “V” (a) at point support, (b) at block support, and (c) 234 samples from image in (a) – 234 samples.

The test conducted consists of generating 15 simulated realizations of the V dataset at block support,

using the data and the training image mentioned above. Figure 5 presents three of the simulated realizations

generated and Table 2 shows the statistics relative to the average of the 15 simulations, training image and
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Figure 3: Training image “U” and the (a) point support scale, and (b) block support scale.

Figure 4: Histogram of data, reference and training image at point support scale.

Table 1: Basic stats of dataset, training image and fully known image at point support scale.

Basic stats Dataset Reference image Training image
Average 277.0 278 278.5
Median 193.5 221.3 193.6
Variance 68926 62423 70385

reference image at block scale. A comparison of Figures 2(b) and 5 suggest that the simulations reproduce the

main structures of low and high values of the fully-known reference image V. The histograms and variograms

presented in Figures 6 and 7 respectively reasonably follow the behaviour exhibited by the variogram model

from the data and the training image. Note that the variograms of data is computed at point scale and
rescaled to represent the corresponding volume-variance relation (Journel and Huijbregts 1978).

Table 2: Basic stats of the average of the simulations, training image and reference image at block support scale.

Basic stats Simulations Training image Reference image

Average 280.6 278.5 278.0
Median 234.6 237.0 235.4
Variance 51764 46518 52304

Spatial cumulants (Dimitrakopoulos et al. 2010) quantify the spatial relationships between three and

more points and are used herein to assess high-order spatial patterns. The third-order cumulant maps are

presented along with the template used for its calculation in Figure 8. Figure 9 shows the fourth-order

cumulant map, where three slices of the complete cumulant map and the related template are displayed. In

both figures, the colors range from blue to red, representing lower to higher spatial inter-correlation between

values. Note that the reference and training image high-order maps are calculated on the block support

scale, while the cumulant maps related to each simulation is averaged to a single map using the 15 stochastic

simulated realizations at block support. During the calculation of the high-order spatial statistics from the

data, only a few replicates are obtained and Figure 8(a) presents a smooth interpolation using B-splines.

Regarding the third-order maps, the average of the simulations match the spatial features observed in the

data and fully-known dataset. The fourth-order cumulant map reproduces the characteristics that are closer
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Figure 5: Example of 3 simulated realizations of the Walker Lake reference image V.

to the TI than the fully-known image, as expected. Note that, by explicitly calculating the spatial high-

order cumulants, the information received from the training image to infer local cross-support distributions

is conditioned to the data.

Figure 6: Histograms of the simulations at block support, and comparison with reference and training image also at block support.

Figure 7: Variograms of simulated realizations, exhaustive image, TI, and variogram from data rescaled to block support variance;
figure (a) shows the WE direction, and (b) the NS direction.
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Figure 8: Third-order cumulant maps for (a) point support data used, (b) fully-known block support image V, (c) training image,
and (d) the average map of the 15 simulated realizations.

Figure 9: Slices of the fourth-order cumulant maps for (a) fully-known image V, (b) training image, and (c) average map of the
15 simulations, all at block support.

4 Application at a gold deposit

This section applies the proposed method at a gold deposit. The dataset comprises 2,300 drillholes that

are spaced approximately at a 35 x 35 m2 configuration covering an area of 4.5 km2. The training image is

defined on 405×445×43 grid blocks of size 5×5×10 m3 and is based on blasthole samples. Both inputs are

composited in a 10 m bench and are considered to be at point support. Figure 10 presents the drillholes

available and the training image at block scale. The deposit to be simulated is represented by 510,800 blocks

measuring 10x10x10 m3 each.
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Figure 10: (a) Cross-section of the available drillhole locations, and (b) training image in the block support scale.

Fifteen simulated realizations are generated and cross-sections from two of them are presented in Figure 11

to show similarities with the data and TI in the corresponding cross-section in Figure 10. Notable is the

reproduction of a sharp transition from high to low grades. Figure 12 shows the histograms of the simulations

and TI at block support. Table 3 provides the related statistics. Variograms at block support are displayed

in Figure 13, where the data variogram is regularized to reflect the corresponding volume-variance relation.

The second-order spatial statistics of the simulations match reasonably with the pattern followed by the data

and are close to those of the TI. Results for third- and fourth-order cumulants and related maps for the data,

TI and simulated realizations are shown in Figures 14 and 15, respectively. It is noted that the high-order

statistics of the simulated realizations match those of the data and TI.

Figure 11: Cross-section of two simulated realizations.

Figure 12: Histograms of simulated realizations and training image.
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Table 3: Basic stats of the average of the simulations and training image at block support and dataset at point scale.

Basic stats Simulations TI block support Data point support

Average 0.63 0.62 0.63
Median 0.40 0.39 0.39
Variance 0.74 0.76 1.81

Figure 13: Variograms of simulated realizations and training image and data variograms rescaled to represent block variance; WE
direction (left) and NS direction (right).

Figure 14: Third-order cumulant maps, obtained with the template in the left, for the (a) dataset, (b) training image at block
support, and (d) average map of the 15 simulations.

Further highlighting the advantages of the proposed direct block high-order simulation method, one may

note that, for the above case study, the run time of the related algorithm was approximately five and a half

hours, while the point high-order simulation requires approximately twenty-four hours. Both approaches are

tested with the same specifications and computing equipment: Intelr CoreTM i7-7700 CPU with 3.60 GHz,

16GB of RAM and running under Windows 7.
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Figure 15: 3 slices of the fourth-order cumulant maps, obtained with the template in the bottom, for the (a) dataset, (b) training
image at block support, and c) average map of the 15 simulations.

5 Conclusion

This paper presented a new high-order simulation method that simulates directly at block support scale

by estimating, at every block location, the cross-support joint probability density function. Legendre-like

splines are the set of a basis function used to approximate the above density function. The related coefficients

are calculated from replicates of a spatial template employed. The latter template is generated from the

configuration of the block to be simulated and associated conditioning values, whose supports can be both at

the point and block support scales. The high-order character of the proposed direct block simulation method

ensures that generated realizations reflect complex, non-linear spatial characteristics of the variables being

simulated and reproduce the connectivity of extreme values.

The proposed algorithm was tested using an exhaustive image showing that the different realizations

generated can reasonably reproduce spatial architectures observed in the exhaustive image. An application

at a gold deposit shows the practical aspects of the method. In addition, it documents that the method works

well while simulated realizations are shown to reproduce the spatial statistics of the available data up to the

cumulants of the fourth-order that were calculated. Further work will focus on improving computational

efficiency, generating training-images that are consistent with the high order relations in the available data,

and extending the proposed method to jointly simulate multiple variables.
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