
Les Cahiers du GERAD ISSN: 0711–2440

Hyper-heuristic approaches for strategic
mine planning under uncertainty

A. Lamghari,
R. Dimitrakopoulos

G–2018–81

October 2018

La collection Les Cahiers du GERAD est constituée des travaux de
recherche menés par nos membres. La plupart de ces documents de
travail a été soumis à des revues avec comité de révision. Lorsqu’un
document est accepté et publié, le pdf original est retiré si c’est
nécessaire et un lien vers l’article publié est ajouté.

Citation suggérée: A. Lamghari, R. Dimitrakopoulos (Octobre
2018). Hyper-heuristic approaches for strategic mine planning under
uncertainty, Rapport technique, Les Cahiers du GERAD G–2018–81,
GERAD, HEC Montréal, Canada.

Avant de citer ce rapport technique, veuillez visiter notre site Web
(https://www.gerad.ca/fr/papers/G-2018-81) afin de mettre à jour
vos données de référence, s’il a été publié dans une revue scientifique.

The series Les Cahiers du GERAD consists of working papers carried
out by our members. Most of these pre-prints have been submitted to
peer-reviewed journals. When accepted and published, if necessary, the
original pdf is removed and a link to the published article is added.

Suggested citation: A. Lamghari, R. Dimitrakopoulos (October
2018). Hyper-heuristic approaches for strategic mine planning under
uncertainty, Technical report, Les Cahiers du GERAD G–2018–81,
GERAD, HEC Montréal, Canada.

Before citing this technical report, please visit our website (https://
www.gerad.ca/en/papers/G-2018-81) to update your reference data,
if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grâce au
soutien de HEC Montréal, Polytechnique Montréal, Université McGill,
Université du Québec à Montréal, ainsi que du Fonds de recherche du
Québec – Nature et technologies.

Dépôt légal – Bibliothèque et Archives nationales du Québec, 2018
– Bibliothèque et Archives Canada, 2018

The publication of these research reports is made possible thanks to the
support of HEC Montréal, Polytechnique Montréal, McGill University,
Université du Québec à Montréal, as well as the Fonds de recherche du
Québec – Nature et technologies.

Legal deposit – Bibliothèque et Archives nationales du Québec, 2018
– Library and Archives Canada, 2018

GERAD HEC Montréal
3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2018-81
https://www.gerad.ca/en/papers/G-2018-81
https://www.gerad.ca/en/papers/G-2018-81

Hyper-heuristic approaches for strategic mine planning under
uncertainty

Amina Lamghari

Roussos Dimitrakopoulos

GERAD, Montréal (Québec), Canada, H3T 2A7

COSMO–Stochastic Mine Planning Laboratory,
McGill University, Montréal (Québec) Canada,
H3A 0E8

Department of Mining and Materials Engineering,
McGill University, Montréal (Québec), Canada,
H3A 0E8

amina.lamghari@mcgill.ca

roussos.dimitrakopoulos@mcgill.ca

October 2018
Les Cahiers du GERAD
G–2018–81
Copyright c© 2018 GERAD, Lamghari, Dimitrakopoulos

Les textes publiés dans la série des rapports de recherche Les Cahiers du
GERAD n’engagent que la responsabilité de leurs auteurs. Les auteurs
conservent leur droit d’auteur et leurs droits moraux sur leurs publica-
tions et les utilisateurs s’engagent à reconnâıtre et respecter les exigences
légales associées à ces droits. Ainsi, les utilisateurs:
• Peuvent télécharger et imprimer une copie de toute publication

du portail public aux fins d’étude ou de recherche privée;

• Ne peuvent pas distribuer le matériel ou l’utiliser pour une ac-
tivité à but lucratif ou pour un gain commercial;

• Peuvent distribuer gratuitement l’URL identifiant la publication.
Si vous pensez que ce document enfreint le droit d’auteur, contactez-
nous en fournissant des détails. Nous supprimerons immédiatement
l’accès au travail et enquêterons sur votre demande.

The authors are exclusively responsible for the content of their research
papers published in the series Les Cahiers du GERAD. Copyright and
moral rights for the publications are retained by the authors and the users
must commit themselves to recognize and abide the legal requirements
associated with these rights. Thus, users:
• May download and print one copy of any publication from the

public portal for the purpose of private study or research;

• May not further distribute the material or use it for any profit-
making activity or commercial gain;

• May freely distribute the URL identifying the publication.
If you believe that this document breaches copyright please contact us
providing details, and we will remove access to the work immediately
and investigate your claim.

ii G–2018–81 Les Cahiers du GERAD

Abstract: A hyper-heuristic refers to a search method or a learning mechanism for selecting or generating
heuristics to solve computational search problems. Operating at a level of abstraction above that of a meta-
heuristic, it can be seen as an algorithm that tries to find an appropriate solution method at a given decision
point rather than a solution. This paper introduces a new hyper-heuristic that combines elements from
reinforcement learning and tabu search. It is applied to solve two complex stochastic scheduling problems
arising in mining, namely the stochastic open-pit mine production scheduling problem with one process-
ing stream (SMPS) and one of its generalizations, SMPS with multiple processing streams and stockpiles
(SMPS+). The performance of the new hyper-heuristic is assessed by comparing it to several solution meth-
ods from the literature: problem-specific algorithms tailored for the two problems addressed in the paper
and general hyper-heuristics, which use only limited problem-specific information. The computational results
indicate that not only is the proposed new hyper-heuristic approach superior to the other hyper-heuristics,
but it also provides results that are comparable to or improve on the results obtained by the state-of-the-art
problem-specific methods.

Keywords: Hyper-heuristics, strategic mine planning, decision making under uncertainty, large-scale opti-
mization, local search

Les Cahiers du GERAD G–2018–81 1

1 Introduction

Strategic mine planning is a critical element in the process of extracting minerals from the ground for profit,

a complex operation that involves investments in the order of hundreds of millions of dollars and whose

revenues are tied to scheduling and production strategies. A strategic mine plan involves devising a long-

term production plan over the life-of-the-mine, typically a 10-30 year time frame, that maximizes the net

present value (NPV) of the mining operation while meeting various physical and operational requirements

at the extraction and processing levels. These requirements depend on the specificities and characteristics of

the mining operation, not all of which are the same from one operation to another. The sources of supply

might be open-pit mines, underground mines, or both. The processing facilities and processing paths might

also be different, as they depend on the main minerals in the mines, on the different products produced

in the various processing streams, and on the geographical location. This creates different strategic mine

planning problems, and the problem to be solved depends on the specificities and characteristics of the mining

operation under consideration. To date, a number of solution methods, mainly (meta)heuristics, have been

developed for strategic mine planning problems, but not all methods work for every problem. Often, they are

tailored and fine-tuned for a particular problem. When faced with a new problem specific to a given mining

operation, the question is, how can we determine which method will work best for this problem? In other

words, is there a methodology that will, given a particular problem and a number of solution methods, help

determine which method or combination of methods is the best for the given problem?

The simplest and most commonly studied strategic mine planning problem involves one open-pit mine, one

processing facility, and one waste dump, and is often referred to as the open-pit mine production scheduling

problem (MPS). In the MPS, the mine is discretized into a set of blocks, each of which represents a volume of

material that can be mined. The objective is to establish a schedule for the removal of material from the mine

(which blocks to mine at each period of the life-of-the- mine) that maximizes the NPV. Every block must be

mined after its predecessors (slope constraints), and the mining and processing equipment are assumed to

have a certain capacity (resource constraints). MPS is modelled as a linear integer pro- gram. It generalizes

the constrained maximum closure problem and is therefore NP-hard (Hochbaum and Chen, 2000; Bienstock

and Zuckerberg, 2010). This makes solving large instances of practical interest computationally challenging

and beyond the scope of exact methods and general-purpose solvers. This difficulty is exacerbated by the

need to incorporate operational constraints in addition to the usual slope and resource constraints. For

example, lower bounds on mining, processing, and metal production are often required to ensure that the

resources are utilized evenly and that the demand is satisfied at each period. While this is useful and closer

to the problem encountered in practical settings, the introduction of such constraints in the MPS formulation

makes the problem harder to solve (Cullenbine et al., 2011).

Another realistic and important aspect that further complicates the solution process is metal uncertainty.

Metal uncertainty, also referred to as geological or reserve uncertainty, stems from the fact that the metal

content of the blocks is not known at the time decisions are made, but is inferred from limited drilling

data. The benefits of integrating metal uncertainty in the optimization process are well-documented in the

literature. By taking into account the effects of metal uncertainty on present decision-making, not only is

risk in meeting production targets reduced, but also major improvements in NPV in the order of 10 to 30%

are reached (Ravenscroft, 1992; Dowd, 1994; Dimitrakopoulos et al., 2002; Menabde et al., 2007; Albor and

Dimitrakopoulos, 2010; Dimitrakopoulos, 2011; Asad and Dimitrakopoulos, 2013; Marcotte and Caron, 2013;

Fricke et al., 2014; Lamghari and Dimitrakopoulos, 2016b).

Over the years, several exact and approximate methods have been proposed for strategic mine planning

problems. Most of the literature around such methods deals with the simplest deterministic case–one open-

pit mine, one processing facility, one waste dump, and metal uncertainty is ignored (MPS). Exact methods

that exploit the structure of the problem were proposed by Boland et al. (2009) and Bley et al. (2010).

Heuristic and metaheuristic approaches have been introduced by, among others, Ferland et al. (2007) and

Cullenbine et al. (2011), while hybrid methods were proposed by Moreno et al. (2010), Chicoisne et al.

(2012), and Lamghari et al. (2015). The stochastic version of MPS that accounts for metal uncertainty has

been tackled mainly using metaheuristics. Godoy (2002) and Albor and Dimitrakopoulos (2009) proposed

simulated annealing algorithms. A tabu search algorithm and a variable neighborhood descent algorithm

2 G–2018–81 Les Cahiers du GERAD

were developed by Lamghari and Dimitrakopoulos (2012) and Lamghari et al. (2014), respectively. More

complex mining operations involving multiple destinations for the extracted material have been studied by

Ramazan and Dimitrakopoulos (2013), Behrang et al. (2014), and Lamghari and Dimitrakopoulos (2016a).

Montiel and Dimitrakopoulos (2015) and Goodfellow and Dimitrakopoulos (2016, 2017) considered stochastic

mineral value chains, also known as mining complexes. The problem is to simultaneously optimize different

aspects of the chain such as extraction, processing, and transportation accounting for metal uncertainty.

Operations involving both open-pit and underground mines have been considered by Montiel et al. (2016).

Hoerger et al. (1999); Chanda (2007); Whittle (2007, 2009); and Kawahata et al. (2015) have also considered

operations consisting of multiple mines, but their studies are restricted to deterministic environments; i.e.,

they do not account for metal uncertainty. For a general overview of mine planning optimization problems,

see Dimitrakopoulos (2011). For a literature review specifically aimed at strategic mine planning problems

and solution methodologies, see Lamghari (2017).

To the best of our knowledge, all the approaches proposed in the literature to optimize strategic mine

planning decisions either use aggregation techniques to reduce the size of the problem so that the resulting

model is of tractable size and can be solved using exact methods, or are based on (meta)heuristics, or combine

(meta)heuristics and exact methods. Each of these approaches presents some weaknesses. Aggregation can

severely compromise the validity and usefulness of the solution (Bienstock and Zuckerberg, 2010). It causes

loss of profitability and might even lead to infeasible solutions (Boland et al., 2009). Approaches based

on (meta)heuristics have been proven to be successful for solving large-scale instances without resorting to

aggregation, but they have two major flaws. First, they might involve a relatively large number of parameters

and/or algorithm choices, and they generally do not provide guidance on how to make such choices. Therefore,

it is not always clear a priori which choices will perform better in a particular situation, meaning that tuning

might be required if dealing with new variants of the problem or even new instances of the same variant.

Second, they are problem-specific methods. Problem-specific methods can often obtain excellent results for

the problem they have been designed for, but they are not readily applicable to other problems or other

variants of the same problem. They have to be adapted to the new problem, and if so, they might not

perform as well as on the original problem. An illustration of such a situation can be found in the study

in Lamghari and Dimitrakopoulos (2016a), which indicates that the tabu search metaheuristic developed

in Lamghari and Dimitrakopoulos (2012) to solve the problem with one processing stream worked well on

that particular problem but exhibits a poorer performance on the problem considering multiple destinations

for the extracted material, including stockpiles. Some approaches that combine (meta)heuristics and exact

methods are also limited by the same weakness; that is, they are tailored to one specific case. For example,

the algorithm proposed by Moreno et al. (2010) is only applicable to the variant of the MPS with a single

knapsack constraint per period.

As evidenced from the above discussion, there is a need for solution approaches that are able to tackle

large-scale instances without resorting to aggregation, that are self-managed, and that are more general than

currently existing methodologies. The latter feature is particularly important since, as mentioned earlier,

in strategic mine planning, the mining and processing requirements are often different as they depend on

the specificities and characteristics of the mining operation under consideration, and thus lead to different

problems. We believe that a general algorithmic framework that is re-usable without major structural modi-

fications is more appropriate than a problem-specific approach that must be re-adapted (if possible) to each

new problem tackled.

In response to this need, we propose using hyper-heuristic approaches. Operating at a level of abstraction

above that of a metaheuristic, a hyper-heuristic is an emergent search methodology that seeks to automate

the process of selecting and combining simpler heuristics or of generating new heuristics from components

of existing heuristics in order to solve hard computational search problems (Burke et al., 2003a; Ross, 2005;

Burke et al., 2013). A hyper-heuristic can be seen as an algorithm that tries to find an appropriate solution

method at a given decision point rather than a solution. The ideas behind hyper-heuristics date back to the

1960s (Fisher and Thompson, 1963), but the term hyper-heuristic was first used only in the late 1990s. It was

coined in the context of automated theorem proving to describe a protocol that combines different Artificial

Intelligence methods (Denzinger et al., 1997), then independently in the context of combinatorial optimiza-

tion to describe a high-level heuristic to choose lower-level heuristics using only limited problem-specific

Les Cahiers du GERAD G–2018–81 3

information (Cowling et al., 2001). Over the last decade, many papers presenting successful applications

of hyper-heuristics to various difficult combinatorial problems have appeared in the literature, including

hyper-heuristics for personal scheduling, sports scheduling, educational timetabling, space allocation, cutting

and packing, and vehicle routing problems. For a recent and comprehensive survey of the literature, see

Burke et al. (2013).

Despite the work that has been done in the above areas, hyper-heuristics, to the best of our knowledge,

have not been applied to solve mine planning optimization problems, and the objective of this paper is

to propose such a work. There are two main categories of hyper-heuristics: heuristic selection, which are

methodologies for choosing existing heuristics, and heuristic generation, which are methodologies for creating

new heuristics from a set of components of other existing heuristics (Burke et al., 2010). The three hyper-

heuristic approaches proposed in this paper fall un- der the first category. Specifically, they use a set of simple

perturbative low-level heuristics to improve a candidate solution. The decision of which low-level heuristic

should be applied at a given step of the search process relies on a score-based learning mechanism, whereby a

score is associated with each heuristic reflecting its past performance, and the heuristics are selected based on

these scores. The scores are updated periodically, and the process terminates when a pre-specified stopping

criterion is met. While this general framework is similar in the three hyper-heuristic approaches considered

in this paper, the score update rules and the heuristic selection strategy are different.

Two of the hyper-heuristic approaches come from the literature (Burke et al., 2003b; Drake et al., 2012),

while the third one is a novel approach that uses some of the ideas of the first two but also includes new features

aimed to overcome their weaknesses. The generality of the three proposed hyper-heuristics is demonstrated by

applying them to various instances of two strategic mine planning problems having different characteristics.

The performance of the hyper-heuristics is assessed by comparing them to each other and to other search

methodologies from the literature. This comparison indicates that the new hyper-heuristic that we propose

in this paper outperforms the two others, providing results that are comparable to or improve on the results

obtained by the state-of-the-art problem-specific methods.

In the next section, a description of the two strategic mine planning problems considered in this paper is

given. The proposed hyper-heuristics are described in Section 3. Numerical results are reported in Section 4.

Section 5 provides conclusions and directions for future research.

2 Description of the problems

As stated in Section 1, there are different strategic mine planning problems depending on the specificities

and characteristics of the mining operation under consideration. The two that are considered in this paper

are described in the following sections.

2.1 Stochastic open-pit mine production scheduling problem with one processing
stream (SMPS)

This mining operation consists of one open-pit mine from which blocks are extracted, one processing facility

where extracted ore blocks are treated to recover the metal they contain, and one waste dump where extracted

blocks that cannot be processed profitably are disposed. Although not profitable, low-grade blocks have to be

extracted to either have access to higher-grade blocks or ensure safe wall slopes for the pit. The metal content

of any given block, which determines whether the block is an ore block to be processed or a waste block to be

discarded, is not known prior to the extraction. What is available is a number of equiprobable scenarios, each

of which provides possible values of the blocks’ metal content given the geological data and the information

obtained from drilling. To generate the scenarios, geostatistical techniques of conditional simulation are used.

Those can be seen as complex Monte Carlo simulation frameworks able to reproduce all available data and

information, as well as spatial statistics of the data (Goovaerts, 1997; Chiles and Delfiner, 2012; Rossi and

Deutsch, 2014; Maleki and Emery, 2015; Horta and Soares, 2010; Boucher and Dimitrakopoulos, 2009).

The optimization problem associated with the mining operation described above, referred to as SMPS in

the rest of the paper, concerns the design of a mining sequence over a discrete finite planning horizon (the

4 G–2018–81 Les Cahiers du GERAD

life-of-the-mine); that is, deciding which blocks should be extracted at each period of the life-of-the-mine. In

doing so, various constraints must be satisfied. Logical and physical restrictions impose that each block can

be extracted at most once, after all its predecessors have been extracted. Operational restrictions require

that, at each period of the life-of-the-mine, the total amount of material extracted (ore and waste), the total

amount of ore processed, and the total amount of metal produced should lie between specific lower and upper

bounds. The extraction and processing operations incur costs, while the metal recovered from processing

is sold and generates revenue. All cost and revenue components are future cash-flows and thus must be

discounted to the present, so feasible solutions are evaluated by their net present value (NPV) to select the

one that provides the highest value.

As mentioned earlier, extraction decisions are to be made prior to knowing the metal content of the blocks,

and the latter affects: i) the amount of ore available for processing at each period; ii) the amount of metal

produced from processing at each period; and iii) the NPV. Thus, according to the particular metal scenario

realized, not only might the NPV shift upward or downward, but also ore and metal production targets might

fail to be satisfied in some or all periods (exceed the upper bound or fall under the lower bound). Some

recourse actions are available to adapt to the situation at hand, but they are subject to extra costs. For

example, if an excess in ore production occurs, extra processing capacity is required and an additional cost

is incurred. Clearly, for better-informed decision-making, the aforementioned effects of uncertainty must be

taken into account. Because initially one has to decide on which blocks to extract, but only later, when the

metal uncertainty is disclosed, does one have to decide how best to deal with the excess and shortage in ore

and metal (recourse decisions), the problem is formulated as a two-stage stochastic program- ming model

(Birge and Louveaux, 2011), where the overall objective is to maximize the expected net present value of

the mining operation and to minimize the future expected recourse costs over the uncertain metal scenarios.

This model is described in detail in Lamghari and Dimitrakopoulos (2012).

2.2 Stochastic open-pit mine production scheduling problem with multiple processors
and stockpiles (SMPS +)

In the SMPS+, several destinations for the extracted material are considered instead of only two (a processor

and a waste dump), and these destinations include stockpiles. The stockpiles are used to absorb the excess of

ore such that when such a situation occurs, some ore is not immediately processed in the period it is mined

in but rather sent to the stockpiles from which it is reclaimed in periods where there is spare capacity. Hence,

in each period, an extracted block is sent either to one of the processors, or to one of the stockpiles, or to

the waste dump. If blocks are sent to the stockpile, unit transportation and handling costs are incurred.

Costs are also incurred when reclaiming material from the stockpiles. Thus, an optimal solution maximizes
the NPV and indicates the set of blocks that should be extracted in each period, the destination of these

blocks, and the amount of material to take from the stockpiles in each period to feed the processors. That

is, compared to the optimization problem described in the previous section (SMPS), this problem (SMPS+)

incorporates the material flow aspect in addition to the mining sequence design.

SMPS+ can also be formulated as a two-stage stochastic program. The first- stage consists of designing

the mining sequence, and the second-stage consists of processing and stockpiling (i.e.; material flow decisions).

The second stage decisions are made based on the first-stage decisions (i.e, the mining sequence) and on the

realized metal scenario. A detailed description of the mathematical model is available in Lamghari and

Dimitrakopoulos (2016a).

3 Hyper-heuristic solution approaches

As mentioned in Section 1, the three hyper-heuristic solution approaches con- sidered in this paper fall

under the category of heuristic selection (Burke et al., 2010); that is, they are methodologies for choosing

existing heuristics. Burke et al. (2010) further categorize hyper-heuristics according to the nature of the

heuristic search space (constructive heuristics versus perturbation heuristics) and the source of feedback

during learning (online learning, offline learning, and no learning). With respect to this classification, the

three approaches can be seen as approaches based on perturbation low-level heuristics with online learning.

Les Cahiers du GERAD G–2018–81 5

The general framework can be summarized as follows: The algorithm starts by generating an initial solution

(a random feasible solution in this paper), and then tries to iteratively improve it using different local search

heuristics (low-level heuristics). These heuristics are described in Section 3.4. To determine the appropriate

heuristic to apply at a given iteration, the algorithm relies on a score-based learning mechanism. This means

that a periodically updated score S (hj) is assigned to each heuristic hj to measure how well hj has performed

during the search, and the heuristics are selected based on these scores. The selected heuristic is applied

once to the current solution to obtain a new solution. Another decision that has to be made at this point is

whether or not to accept this new solution. In this paper, the new solution is always accepted, independently

of its quality. This means that this new solution becomes the new current solution. It also replaces the

incumbent solution if it has a better objective value. This procedure is iterated until the stopping criterion

is met. In this paper, the procedure terminates when a specified number of iterations, Υmax, has elapsed.

Various learning mechanisms for selecting heuristics can be used in the framework outlined above. Three

are considered in this paper, and each leads to a different hyper-heuristic. The first two that we will describe

are previously-developed hyper-heuristics, introduced for comparison purposes, while the third is a new

hyper-heuristic that we propose in this paper.

3.1 Tabu search hyper-heuristic (HH1)

The first hyper-heuristic, henceforth referred to as HH1, has been proposed by Burke et al. (2003b) and

tested on timetabling and rostering problems. To guide the heuristic selection process, HH1 uses principles of

reinforcement learning and tabu search metaheuristic. Let H be the number of low-level heuristics. Initially,

each heuristic has a score equal to 0. As the search progresses, the scores increase and decrease within the

interval [0, H], and the heuristics are selected according to the updated scores. Not all heuristics are available

for selection at a given iteration. A dynamic tabu list of heuristics is maintained to temporarily exclude some

of them. Details of a typical iteration are as follows: HH1 selects the non tabu low-level heuristic having the

highest score. It applies it once and then compares the value of the current solution to the value of the new

solution. If the new solution is better than the current solution, the heuristic is rewarded by incrementing

its score by one. If the new solution and the current solution have the same value, the heuristic is punished

by decrementing its score by one and making it tabu. Finally, if the new solution is worse than the current

solution, HH1 proceeds as in the previous case except that the tabu list is first emptied before adding the

heuristic.

Burke et al. (2003b) justify emptying the tabu list by claiming that there is no point in keeping a heuristic

tabu once the current solution has been modified. However, there is a potential drawback to this strategy:

The tabu status is revoked too soon, which might lead to choosing a relatively poor heuristic too often,

thereby missing the opportunity to apply other better performing heuristics. To clarify, since the heuristics

are rewarded the same way, independently of the magnitude of improvement they can achieve, a heuristic

that is able to slightly improve the solution but also deteriorates it occasionally can gain large rewards. It

might have the highest score and making it non tabu as soon as one single other heuristic has also been

found deteriorating leads to using the same heuristic again and again (cycling behavior). This implies that

the other heuristics, which might be better performing and more appropriate at the current decision point,

have little or no chance to be selected. Strategies that allow a better exploration of the heuristic search space

are discussed in Section 3.3, where we describe how the new proposed hyper-heuristic, HH3, overcomes the

weakness of HH1.

3.2 Choice-function hyper-heuristic (HH2)

The second hyper-heuristic considered in this paper, henceforth referred to as HH2, has been proposed by

Drake et al. (2012) and tested on personnel scheduling problems. It extends the hyper-heuristic developed

in Cowling et al. (2001) and differs from HH1 in that i) it does not incorporate any mechanism at the high

level to prevent choosing heuristics that did not perform well recently; and ii) it uses a more complex score

update scheme. To be more specific, rather than incrementing and decrementing the score based on the

heuristic’s ability to improve the solution as HH1 does, HH2 calculates the scores as a weighted sum of the

three following measures:

6 G–2018–81 Les Cahiers du GERAD

• The first measure, f1, keeps track of the performance of the heuristics. It accounts for the improvement

that each heuristic has achieved so far as well as the time it has required. Following the same notation

as in Drake et al. (2012), let In (hj) be the change in the objective function value obtained the nth

last time hj was called (applied), and let Tn (hj) be the time required. Denote by φ ∈]0, 1[a weight

adjustment parameter, defining the importance given to recent performance. The value of f1 (hj) is

computed using the following formula:

f1 (hj) =
∑
n

φn−1 In(hj)

Tn (hj)
(1)

• The second measure, f2, seeks to capture any pairwise dependencies between heuristics. Whenever hj
is called immediately after hk, the value of f2(hk, hj) is updated as follows:

f2

(
hk, hj

)
=
∑
n

φn−1
In(hk, hj)

Tn
(
hk, hj

) (2)

where, φ is as defined previously, and In(hk, hj) and Tn(hk, hj) are respectively the change in the objective

function value and the time required by heuristic hj at the nth last call following a call to hk.

• The last measure, f3, accounts for the time elapsed since each heuristic was last selected. If we denote

this time by τ(hj), then:

f3 (hj) = τ(hj) (3)

The score associated with heuristic hj is a weighted sum of the three measures (hk being the heuristic called

immediately before hj):

S (hj) = φf1 (hj) + φf2

(
hk, hj

)
+ δf

3
(hj) . (4)

Note that the purpose of using measures f1 and f2 is to intensify the search by favoring heuristics that have

shown good performance, while measure f3 aims to give all heuristics a chance to be selected, thus providing

an element of diversification. The weights φ and δ are parameters in the interval]0, 1[used to provide a

balance between intensification and diversification. They are dynamically adjusted during the search process

based on reinforcement learning principles. This is done as follows: Once the selected heuristic has been

applied, the new solution is compared to the current solution. If it is better, then φ is rewarded by increasing

its value to φmax, a maximum value close to the upper bound 1, while δ is decreased to δmin, a minimum value

close to the lower bound 0, thus promoting intensification but reducing diversification. Otherwise, the value

of φ is decreased by a linear factor κ and δ is increased by the same factor to gradually favor diversification

over intensification.

HH2 has three drawbacks:

• It might select a heuristic that largely deteriorates the solution and requires long computational time

rather than a heuristic that slightly deteriorates the solution and requires short computational time.

To clarify, consider the following scenario with only two low-level heuristics, h1 and h2. Assume

that h1 was first applied and resulted in I1(h1) = −20 and T1(h1) = 10. At the second iteration,

the heuristics are selected based on their scores. The scores of h1 and h2 are S (h1) = −2φ and

S (h2) = 10δ, respectively. Since h2 has the highest score, it will be selected and applied. Assume that

h2 resulted in I1(h2) = −1 and T1(h2) = 1. Now, the scores of h1 and h2 are S (h1) = −2φ + δ and

S (h2) = −2φ, respectively. Clearly, S (h1) > S (h2)∀φ, δ ∈]0, 1[. So, despite the fact that h2 showed

a relatively better performance compared to h1, the latter has the highest score and will be selected.

• Although measures f1 and f2 are defined so as to give a greater importance to recent performance,

the way the parameter φ is adjusted can lead to early performance dominating recent performance.

Consider two heuristics hj and hk. Assume that hj obtained large improvements in the early stages

of the search but has exhibited a poor performance recently, while hk has yielded small improvements

since the beginning of the search. Assume also that the last iteration resulted in an improvement

of the current solution and, consequently, the value of φ was increased to φmax to favor heuristics

Les Cahiers du GERAD G–2018–81 7

that showed good performance and intensify the search. Now recall that the parameter φ defines not

only the importance given to good performing heuristics but also the importance given to previous

performance; i.e, large φ values put more emphasis on previous performance. So, looking back to the

example above, while one would want to favor hk because the improvements it achieves, although small,

are more significant at the current stage of the search, HH2 will select hj because its recent performance

is dominated by its early performance and thus has a small impact on the score value.

• A particularity of the problems addressed in this paper is that their objective functions take very large

values in the order of hundreds of millions. Preliminary tests showed that, in general, the change in the

objective function resulting from applying a given heuristic is in the order of tens of thousands, and

that this change is obtained in a fraction of a second. Consequently, in Equation (4), the values of the

intensification components f1 and f2 have an order of magnitude much larger than that of the diversifi-

cation component, f3. This means that the latter component is dominated by the first two. It becomes

obsolete when calculating the scores and thus does not provide diversification, as it is supposed to do.

The three aforementioned issues of HH2 are addressed in the new proposed hyper- heuristic presented in the

next section.

3.3 New proposed hyper-heuristic (HH3)

In this section, the new proposed hyper-heuristic, referred to as HH3 in the rest of the paper, is described. HH3

uses some of the ideas of HH1 and HH2 but also includes new features aimed to overcome their weaknesses,

outlined in the previous sections.

HH3 proceeds in two stages. In the first stage, the algorithm randomly picks a heuristic hj , applies it,

returns the resulting change in the objective function value (∆f(hj)) as well as the time required (T (hj)),

and computes the heuristic’s initial score (S(hj)). The initial scores reflect the order of importance given

to the heuristics. Of first importance are heuristics that are able to improve the solution. The larger the

improvement rate per unit of time is, the more important the heuristic is considered. Because heuristics that

deteriorate the solution help getting out of local optima, they are considered more important than heuristics

that cannot modify the objective function value. However, not all of them are equally important. The more

a heuristic deteriorates the solution and the more computational time it requires, the less important it is

considered. Accordingly, the initial scores are computed by the following formula:

S(hj) =

∆f(hj)
T (hj) if∆f (hj) ≥ 0,

1
|∆f(hj)|T (hj) otherwise.

(5)

To ensure that a chance is given to all heuristics to improve the solution, each heuristic is selected only

once. The first stage of the algorithm terminates when all low-level heuristics have been considered.

In the second stage, HH3 selects the heuristics based on two factors: the heuristics’ scores and their tabu

status. While heuristics are declared tabu in the same way they are in HH1 (i.e., whenever a heuristic is not

able to improve the current solution, it is made tabu to temporarily exclude it from the selection pool), the

strategy for managing the tabu list is different. Rather than using a tabu list of fixed length and emptying

the tabu list whenever a solution worse than the current one is obtained as HH1 does, HH3 chooses random

tabu tenures (γ) generated in the interval [Γmin,Γmax] at each iteration and empties the tabu list only if all

heuristics are tabu. This strategy allows a better exploration of the heuristic search space as it significantly

reduces the probability of repeatedly choosing the same heuristics during the search; for example, heuristics

that have a high score as a result of good performance at the early stages of the search but have recently

exhibited a poor performance. Recall that this is one of the weaknesses of HH1 and HH2. In addition, unlike

HH1 and HH2, where the choice of the heuristic to be applied at a given iteration is done in a greedy manner;

that is, the (non tabu) heuristic having the highest score is selected, HH3 uses a roulette-wheel strategy. It

associates with each non tabu heuristic hj a selection probability pj calculated by dividing its score by the

total score of the non tabu heuristics (pj =
S(hj)∑

k:hknon tabu S(hk)). It then randomly selects a heuristic based

8 G–2018–81 Les Cahiers du GERAD

on these probabilities. Another noticeable difference between HH3 and the two hyper-heuristics described in

the previous sections is the frequency at which the scores are updated and the score update scheme. In HH3,

the scores are updated every ζ iterations, accounting for the average performance of the heuristics during

these iterations instead of updating them at each iteration. For this purpose, the algorithm maintains for

each heuristic hj two measures, π1 (hj) and π2 (hj). Such measures are initially equal to 0. Whenever hj is

applied, either π1 (hj) or π2 (hj) is increased. The increase is related to the obtained change in the objective

function value (∆f (hj)). Specifically, if ∆f (hj) > 0 (i.e., if hj improves the current solution),
∆f(hj)
T (hj) is added

to π1 (hj); if ∆f (hj) < 0 (i.e., if hj deteriorates the current solution), 1
|∆f(hj)|T (hj) is added to π2 (hj); and

if ∆f (hj) = 0 (i.e., if hj cannot modify the value of the current solution), both π1 (hj) and π2 (hj) remain

unchanged. When ζ iterations of the algorithm are completed, the scores are recalculated as follows:

S (hj) :=

S (hj) if η (hj) = 0,

(1− α)S (hj) + α
βπ1(hj)+(1−β)π2(hj)

η(hj) otherwise.
(6)

where, η(hj) is the number of times heuristic hj has been selected in the last ζ iterations, and α and β be

two weight adjustment parameters in [0, 1]. Clearly, α defines the importance given to recent performance,

while β defines the importance given to heuristics that were recently able to improve the solution. In this

paper, the value of α is set to 0.7 to decrease the weight of previous performance (recall that one of the

weaknesses of HH2 is that early performance sometimes dominates recent performance). On the other hand,

the parameter β is self-adjusted during the search process. The value of β is initially set equal to 0.5, and it

is modified every ζ iterations based on whether or not a new incumbent solution has been found during the

last segment of search: If a new solution better than the incumbent is found during the last ζ iterations, β is

increased to 1; otherwise, it is decreased to max (β − 0.1, 0). This way of proceeding ensures that emphasis is

put on intensification if a new incumbent is found, while focus is gradually shifted to diversification otherwise.

Indeed, when the value of β is increased, the score of heuristics that were recently able to improve the solution

is also increased, so such heuristics are more likely to be selected, leading to an intensification of the search.

As the value of β decreases, the effect is the opposite, leading to a diversification of the search.

Once the value of β is updated, the previous scores as well as π1, π2 are normalized to a value in the

interval [1, 100], and the scores are updated using Equation (6). Afterwards, π1 (hj) , π2 (hj) and η(hj) are

reset to zero for each hj , the tabu list is emptied, and a new segment of search is initiated for another ζ

iterations. This process is repeated until the stopping criterion is met.

3.4 Low-level heuristics

To produce new solutions, the three hyper-heuristics described in the previous section use 27 simple per-

turbative low-level heuristics, each of which examines a subset of one of the following four neighborhoods,

previously proposed in the literature:

• Single-Shift (Lamghari and Dimitrakopoulos, 2012): This neighborhood involves moving a single block

from its current period t to another period t
′ 6= t.

• Swap (Lamghari et al., 2014): This neighborhood allows exchanging blocks between periods and can

be seen as two simultaneous changes associated with the Single-Shift neighborhood. More specifically,

it involves moving two blocks: block i from its current period t to another period t
′ 6= t and another

block i′ from t′ to t.

• Shift-Before (Lamghari et al., 2014): Here multiple blocks; namely, a block i and its predecessors mined

in the same period, are moved from their current period t 6= 1 to the preceding period (t − 1). Recall

that a predecessor of block i is a block that has to be extracted to have access to i. In what follows, we

will refer to the set formed by a block i and its predecessors mined in the same period as the inverted

cone whose base is i.

• Shift-After (Lamghari et al., 2014): This neighborhood also allows moving multiple blocks. A block and

its successors mined in the same period are moved from their current period t to the next period (t +1).

Les Cahiers du GERAD G–2018–81 9

Note that j is a successor of i if and only if i is a predecessor of j. In what follows, we will refer to the

set formed by a block i and its successors mined in the same period as the cone whose apex is i.

Not only do the proposed heuristics examine different subsets of the four neighborhoods described

above (different sub-neighborhoods), but they also use different functions to evaluate solutions in these

sub-neighborhoods and different strategies to select one of them to become the new current solution. Gen-

erating only subsets of the neighborhoods and using different evaluation functions and selection strategies

serves three main purposes: to reduce the computational effort, to drive the search to interesting parts of the

search space, and to ensure intensification and diversification.

To simplify the discussion, the heuristics are classified in three different groups. The first group contains

heuristics that select block(s) from a random period and move them either earlier or later. The second group

contains heuristics that select block(s) from a specific period, as opposed to a random period, and move

them either earlier or later. Clearly, heuristics in these two groups do not allow for any changes in the set of

extracted blocks. Heuristics in the third group allow for such changes by either dropping block(s) from the

schedule or adding unscheduled block(s) to the schedule. Heuristics in the three groups consider only moves

that yield a feasible solution. Below, additional details about the heuristics are provided.

3.4.1 Heuristics that choose blocks from a random period

h1 : This heuristic explores a subset of the Single-Shift neighborhood. It starts by randomly selecting a

period t. It then identifies blocks currently scheduled in t that can be moved either earlier or later without

violating the constraints. Moves are evaluated based on the change produced in the objective function value,

and the best move is selected.

h2 : Similar to h1 except that it considers only blocks that can be moved earlier. Furthermore, the evaluation

of a move is based on the total economic value of the block and all its successors. This evaluation function can

be seen as a measure of attractiveness used to identify potential blocks that if advanced will entail advancing

high-grade ore blocks. Thus, h2 explores a smaller subset of the Single-Shift neighborhood compared to h1,

and to orient the search, it does not use the objective function of the problem but an auxiliary function, the

value of the block and all its successors.

h3 : Unlike the two previous heuristics, which move a single block, this heuristic simultaneously moves

multiple blocks; more specifically, it advances the extraction of an inverted cone whose base block is currently

scheduled in t, from t to t− 1. Only inverted cones having a positive economic value are considered, and the

heuristic selects the one with the highest unit economic value. Thus, h3 explores a subset of the Shift-Before

neighborhood, and to orient the search, it uses another auxiliary function, the unit economic value.

h4 : Similar to h3 except that all inverted cones are considered, among which one is chosen at random. This

heuristic induces some form of diversification.

h5 : Similar to h4, but the moves are evaluated based on the change produced in the objective function

value, and the best move is selected.

h6 : This heuristic also allows simultaneously moving multiple blocks. However, rather than changing the

period of an inverted cone from t to t− 1, it changes the period of a cone whose apex is currently scheduled

at t, from t to t + 1, which means that it explores a subset of the Shift-After neighborhood. Only cones

having a non-positive economic value are considered, and the heuristic selects the one with the smallest unit

economic value.

h7 : Similar to h6 except that all cones are considered, among which one is chosen at random. Like h4, h7

is used for diversification purposes.

h8 : Similar to h7, but the moves are evaluated based on the change produced in the objective function

value, and the best move is selected.

10 G–2018–81 Les Cahiers du GERAD

h9 : Similar to h8, but the blocks to be moved are not necessarily related to each other via precedence, and

they are moved sequentially. At each iteration, a single block is selected and moved from t to t+ 1, and this

process is repeated as long as there is improvement in the objective function value. Therefore, h8 explores a

subset of the Single-Shift neighborhood using a best-improvement descent. It acts as a trimming mechanism

to free some capacity in t for hopefully more interesting blocks.

h10 : This heuristic also moves blocks that are not related to each other via precedence. It exchanges blocks

i and i′ currently scheduled in periods t and t + 1, respectively. That means that h10 explores a subset of

the Swap neighborhood. Moves are evaluated based on the change produced in the objective function value

and selected using a first improving strategy.

3.4.2 Heuristics that choose blocks from a specific period

Unlike the previous heuristics (h1 − h10), the following three heuristics do not select blocks from a random

period but rather from a specific period in an attempt to reduce either soft constraints violations or the

tightness of the hard constraints. The first heuristic explores a subset of the Single-Shift neighborhood, while

the last two explore subsets of the Shift-After or Shift-Before neighborhoods. The way these subsets are

chosen and explored is explained below.

h11 : This heuristic first identifies the period with the highest penalty cost (incurred by violation of the soft

constraints). It moves a single block currently mined in t either later or earlier. The moves are evaluated

based on the change produced in the objective function value, and the best move is selected.

h12 : This heuristic first identifies the period with the highest mining utilization, t (the mining utilization

is calculated as the total amount mined in period t in the current solution divided by the mining capacity).

It then determines the adjacent period with the most residual capacity, t′. If t′ = t − 1, then the heuristic

selects an inverted cone whose base is currently scheduled in t; otherwise (i.e., if t′ = t+ 1), it selects a cone

whose apex is currently scheduled in t. The (inverted) cone is selected at random and its period is changed

from t to t′.

h13 : Similar to h12 except for the way t is selected. Here t is selected among the periods with high penalty

cost, not among those with high mining utilization. Also, t is not chosen in a greedy manner but using

roulette wheel selection.

h14 : Similar to h13, but the moves are evaluated based on the change produced in the objective function

value, and the best move is selected

h15 : Unlike the previous heuristics where t is chosen first, this heuristic starts by selecting t′. The choice

of t
′

is based on a probability distribution biased towards the periods with the most residual capacity. The

heuristic then examines all the candidates that could be moved to t
′

(cones and inverted cones currently

mined in periods adjacent to t′) and evaluates them using the objective function to choose the best move to

be performed.

h16 : Similar to h15 except that the (inverted) cone to move from t to t′ is randomly selected.

3.4.3 Heuristics that modify the set of scheduled blocks

All heuristics described above change the periods of scheduled blocks. However, they do not allow for any

changes in the set of extracted blocks. Such changes are obtained with the heuristics presented below.

h17 : This heuristic starts by identifying blocks that are currently unscheduled then adds one of them to the

schedule. Moves are evaluated based on the change produced in the objective function value, and the best

one is selected.

h18 : Similar to h17, but only improving moves are considered.

Les Cahiers du GERAD G–2018–81 11

h19 : Similar to h17 but more aggressive in the sense that it induces greater solution changes than h17. It

adds to the schedule inverted cones (a block and its predecessors) rather than a single block.

h20 : Similar to h19, but only improving moves are considered.

h21 : This heuristic considers only inverted cones having a positive economic value, among which it selects

the one with the highest unit economic value.

The following heuristics drop block(s) from the schedule.

h22 : This heuristic drops a single block from the schedule. Moves are evaluated based on the change

produced in the objective function value. Only improving moves are considered, and the best one is selected.

h23 : Similar to h22, but it does not terminate after dropping a single block. The process is repeated until

no improvement is possible.

h24 : Like h23, this heuristic also drops multiple blocks from the schedule. However, these blocks are related

to each other by precedence. It removes a cone whose apex is currently scheduled in the last period of the

horizon (a block and its successors). Moves are evaluated based on the change produced in the objective

function value, and the best one is selected.

h25 : Similar to h24 except that only improving moves are considered.

h26 : Similar to h24, but evaluates moves based on the unit economic value of the cones. Only cones having

a non-positive value are considered, and the one with the smallest value is selected.

h27 : Similar to h22, but also simultaneously drops a single block from the schedule. In other words, it

exchanges an unscheduled block with a scheduled block. The neighborhood is explored using a first-improving

strategy.

4 Numerical results

To assess the efficiency and the robustness of the three hyper-heuristic approaches described in Section 3,

numerical experiments have been performed on five benchmark test sets for the two strategic mine planning
problems considered in this paper (SMPS and SMPS+). These benchmark datasets include a total of 43

instances of different sizes and characteristics, which are briefly described below.

• The first set of benchmark instances, L1, was introduced by Lamghari and Dimitrakopoulos (2012).

It consists of 10 small –to large-size instances from a copper and a gold deposit that all contain one

processor and one waste dump; that is, 10 instances for the SMPS (c.f. Section 2.1). Each period is

one year long, and it is assumed that the production capacities are identical in all periods. For each

instance, it is possible to extract a total of tonnes per year (i.e., 1.20 total tonnage
Number of periods), of which the

waste is sent to the waste dump (having an unlimited capacity), and the ore is sent to a processor p

(having a capacity of Θt
p =

⌈
1.05

∑N
i=1

∑S
s=1 θipswi

ST

⌉
; i.e., Expected amount of ore

Number of periods + 5%). Lower bounds on

mining and processing are set to
⌈
0.80

∑N
i=1 wi

T

⌉
and

⌈
0.95

∑N
i=1

∑S
s=1 θipswi

ST

⌉
, respectively. Finally, lower

and upper bounds on metal production are set to
⌈
0.95

∑N
i=1

∑S
s=1 θipsmis

ST

⌉
.

• The following four benchmark test sets (S1-S4) include 33 instances for the SMPS+ (c.f. Section 2.2),

in which several destinations for the extracted material are considered instead of only two. The first

three sets are those used by Lamghari and Dimitrakopoulos (2016a), while the fourth one is a new

dataset that contains larger instances. Details about these sets are as follows.

• The first set of benchmark instances, S1, consists of 10 small- to large-size instances from a copper and

a gold deposit that all contain one processor, one stockpile, and one waste dump. These instances are

12 G–2018–81 Les Cahiers du GERAD

the same as those in L1, except that a stockpile has been added. Moreover, lower bounds on mining

and processing are not imposed and there are no requirements for metal production levels.

• The set S2 consists of three instances representing three different real deposits: two copper deposits and

a gold deposit. The size of these instances is larger than those in the first benchmark set. Furthermore,

the instances in this set contain two processors and two stockpiles (as opposed to one processor, one

stockpile, and one waste dump in S1). Finally, the processing capacities are set to a value 5% smaller

than for the instances in the first set so as to make the satisfaction of the processing constraints more

difficult and thus force the use of the stockpiles.

• The set S3 consists of 10 medium-size instances from a copper deposit with two processors and two

stockpiles. They are similar to those in the second set, S2, except for the mining capacities, which are

much tighter here. They are set to a value 20% smaller than for the instances in S1 and S2 (i.e., they

are set to
⌈∑N

i=1 wi

T

⌉
).

• The last set of instances, S4, consists also of 10 instances from a copper deposit with two processors

and two stockpiles. They are similar to those in the third set, S3, except that they are larger.

All algorithms were coded in C++ and the experiments were run on an Intel(R) Xeon(R) CPU X5675

computer (3.07 GHz) with 96 Go of RAM running under Linux.

4.1 Results on the SMPS instances (dataset L1)

In this section, we examine how the three hyper-heuristic approaches (HH1, HH2, and HH3), described in

Section 3, perform on the ten benchmark instances in the set L1. We compare the hyper-heuristics to each

other and also to another problem-specific method tailored for the SMPS; namely, the tabu search heuris-

tic (TS) proposed in Lamghari and Dimitrakopoulos (2012), which has previously achieved the best solution

quality for the instances in L1.

All four methods (HH1, HH2, HH3, and TS) contain some user-controlled parameters. Recall that the

three hyper-heuristics terminate when a specified number of iterations, Υmax, has elapsed. We varied the

value of Υmax and analyzed the tradeoff between solution quality and solution time. The best results were

obtained with the value Υmax = 1000+0.5N , N being the number of blocks. Consequently, this value is used

in all further experiments. HH1 does not have any other parameters, while HH2 and HH3 have each three

more parameters. For HH2, we used the same parameter settings as in the original paper by Drake et al.

(2012); that is, 0.99, 0.01, and 0.01 for the parameters φmax, δmin, and κ, respectively. To tune the parameters

of HH3, we have chosen five instances at random, run tests using different values for Γmin,Γmax, and ζ. The

best values found for these parameters are Γmin = 0, 5H, Γmax = H, and ζ = 5H, H being the number of

low-level heuristics (27 in this paper). These settings are thus used in all further experiments. Finally, for

TS, we used the same parameter settings as in the original paper (Lamghari and Dimitrakopoulos, 2012).

All four methods start with a random initial solution generated using the heuristic in Lamghari and

Dimitrakopoulos (2012) and also make other random choices during the improvement phase. Hence, each of

them was applied to each instance ten times. The results are summarized in Tables 1 and 2. Table 1 reports

the values of the best solutions found by the different methods (Z*), while Table 2 provides a comparison of

the optimality gaps and the computational times. The formula used to calculate the gap is %Gap = Z∗−ZLR

ZLR
,

where ZLR is the linear relaxation optimal value, computed using CPLEX 12.2. The time required by CPLEX

is given in the last column of Table 3 (column LR). A dash (“-”) indicates that CPLEX was not able to solve

the linear relaxation of the instance within the time limit, set to four weeks. All the results reported (except

the computational time of CPLEX) are the averages of the results obtained over the ten runs. The best

results obtained for each instance are indicated in bold. The name of the instances and their size (number of

blocks (N), number of periods (T), and number of scenarios modelling geological uncertainty (S)) are given

in the first four columns of each table.

The results show that among the three hyper-heuristic methods, HH3 is the best in terms of solution

quality. On average, the optimality gap for HH3 is 1.36% as opposed to 5.59% and 18.76% for HH1 and

HH2, respectively. Even though HH3 is outperformed by the problem-specific method, TS, on some instances

(L1–C4 and L1–C5), overall, it finds better quality solutions than does TS (on average, the optimality gap for

Les Cahiers du GERAD G–2018–81 13

Table 1: Average values of the solutions obtained by the different solution methods on the first benchmark dataset, L1.

Instance Z*($)

Name N T S TS HH1 HH2 HH3

L1–C1 4,273 3 20 162,264,000 162,310,000 162,192,000 162,401,000
L1–C2 7,141 4 20 194,483,000 193,279,000 189,650,000 195,025,000
L1–C3 12,627 7 20 220,716,000 207,977,000 180,287,000 220,605,000
L1–C4 20,626 10 20 237,893,000 187,623,000 138,369,000 235,189,000
L1–C5 26,021 13 20 221,412,000 170,631,000 120,936,000 216,460,000
L1–G1 18,821 5 20 404,768,000 402,959,000 329,994,000 407,028,000
L1–G2 23,901 7 20 434,285,000 429,779,000 425,716,000 437,940,000
L1–G3 30,013 8 20 468,026,000 460,107000 332,693,000 473,015,000
L1–G4 34,981 9 20 474,289,000 467,032,000 342,271,000 479,170,000
L1–G5 40,762 11 20 449,648,000 419,726,000 186,754,000 451,444,000

Table 2: Average optimality gaps and average computational times for the ten instances in the first benchmark dataset, L1.

Instance Gap (%) CPU(Minutes)

Name N T S TS HH1 HH2 HH3 TS HH1 HH2 HH3 LR

L1–C1 4,273 3 20 0.23 0.20 0.28 0.15 4.28 0.83 0.86 1.94 8.97
L1–C2 7,141 4 20 0.68 1.30 3.15 0.41 9.53 1.24 2.71 4.18 73.64
L1–C3 12,627 7 20 1.77 7.44 19.77 1.82 29.47 3.60 3.08 8.12 1457.05
L1–C4 20,626 10 20 3.83 24.15 44.06 4.92 68.77 7.87 11.78 18.34 12115.63
L1–C5 26,021 13 20 - - - - 112.77 10.42 13.58 21.90 -
L1–G1 18,821 5 20 1.14 1.58 19.40 0.59 31.38 45.89 43.64 73.34 855.50
L1–G2 23,901 7 20 1.71 2.73 3.65 0.88 55.78 50.26 47.99 78.24 3786.73
L1–G3 30,013 8 20 1.98 3.64 30.33 0.94 80.05 73.38 37.67 108.28 7902.27
L1–G4 34,981 9 20 2.21 3.70 29.43 1.20 104.95 89.49 91.73 119.60 15230.50
L1–G5 40,762 11 20 - - - - 149.47 49.80 57.49 109.05 -

TS is 1.70%). It is worth noting that although the differences in the gap appear small, for the context of the

strategic mine planning problems studied in this paper, they are meaningful because they represent millions

of dollars, as can be seen from the values of Z∗ in Table 2. With respect to solution time, HH3 is less time con-

suming than TS for copper instances (L1–C1 to L1–C5), while the opposite is true for gold instances (L1–G1

to L1–G5). On average, HH3 is slightly better than TS (54.30 minutes versus 64.50 minutes). Both TS and

HH3 are more time consuming than HH1 and HH2 whose average CPU are 33.28 and 31.05 minutes, respec-

tively. All four methods require significantly less time than the time required by CPLEX to solve the linear

relaxation of the instances. In addition, they are less sensitive to the size of the instances compared to CPLEX.

4.2 Results on the SMPS+ instances (datasets S1–S4)

In this section, we report results obtained on the SMPS+ instances. Again, we compare the three hyper-

heuristic methods to each other and to a heuristic specifically designed for the problem addressed here.

Although different methods have been developed for the SMPS+, we have chosen to restrict our comparisons

to the diversified local search (DLS) presented in Lamghari and Dimitrakopoulos (2016a), which combines

a variable neighborhood descent heuristic and a very large neighborhood search heuristic based on network

flow techniques, as it is the most recent and best problem-specific heuristic proposed in the literature. Similar

to the previous tests, each method (HH1, HH2, HH3, and DLS) was applied to each instance ten times, each

time starting from a different random initial solution. The parameters for HH1, HH2, and HH3 were set as

in Section 4.1, while those for DLS were set as in Lamghari and Dimitrakopoulos (2016a).

4.2.1 Results for the first set of benchmark instances (dataset S1)

Recall that the SMPS+ instances are divided into four datasets. Tables 4 and 5 show the results for the

first dataset, S1, that contains ten instances. Similar to the previous section, the characteristics of each

instance are given in the first four columns of the tables. For each instance and each method, we report: the

average value of the best solutions found (Z∗), the average optimality gap (% Gap) as defined above, and

the average CPU time in minutes (Time). We use boldface symbols to indicate the best results obtained for

14 G–2018–81 Les Cahiers du GERAD

each instance. The linear relaxation optimal values, used to calculate the gaps, have been obtained using

CPLEX 12.5. The time required by CPLEX is given in the last column of Table 5 (column LR).

The following observations can be derived from Tables 3 and 4:

• In terms of solution quality, again, HH3 outperforms HH1 and HH2. On average, the optimality gap

for HH3 is 0.49% as opposed to 28.33% for HH1 and 46.17% for HH2. It is worth noting that the

differences between the three hyper-heuristics are more pronounced for this dataset (S1) than they are

for the previous dataset (L1).

• HH3 is outperformed by the problem-specific method, DLS, only on few in stances (3 out of 10).

Moreover, the differences are not significant. In general, both methods find quite comparable solutions

(average gaps for HH3 and DLS are 0.49% and 0.59%, respectively).

• HH3 requires slightly less computational time than does DLS (on average, 63.77 minutes versus 88.96

minutes). Both methods are outperformed by HH1 (44.11 minutes, on average) and HH2 (34.40 minutes,

on average).

• Among the four methods, HH2 is the one that requires the least computational time, but it was not

successful in solving any of the ten instances. It can compete neither with the well-performing HH3

and DLS nor with HH1.

• As expected, all four methods outperform CPLEX in terms of solution time. The differences are more

pronounced as the size of the instances increases.

Table 3: Average values of the solutions obtained by the different solution methods on the benchmark dataset S1.

Instance Z*($)

Name N T S DLS HH1 HH2 HH3

S1–C1 4,273 3 20 165,650,000 128,108,000 120,754,000 165,626,000
S1-C2 7,141 4 20 199,367,000 174,572,000 141,700,000 199,416,000
S1–C3 12,627 7 20 229,210,000 172,004,000 111,040,000 229,404,000
S1–C4 20,626 10 20 251,508,000 111,986,000 109,537,000 251,252,000
S1–C5 26,021 13 20 242,400,000 134,845,000 91,261,000 244,418,000
S1–G1 18,821 5 20 411,101,000 294,178,000 187,064,000 411,041,000
S1–G2 23,901 7 20 443,421,000 340,736,000 257,598,000 443,542,000
S1–G3 30,013 8 20 479,176,000 355,064,000 299,178,000 479,437,000
S1–G4 34,981 9 20 487,224,000 422,700,000 241,481,000 487,332,000
S1–G5 40,762 11 20 465,981,000 331,483,000 216,864,000 466,412,000

Table 4: Average optimality gaps and average computational times for the ten instances in the benchmark dataset S1.

Instance Gap (%) CPU(Minutes)

Name N T S DLS HH1 HH2 HH3 DLS HH1 HH2 HH3 LR

S1–C1 4,273 3 20 0.03 22.69 27.13 0.05 1.91 0.66 0.44 1.97 0.23
S1–C2 7,141 4 20 0.11 12.53 29.00 0.08 4.90 1.61 1.34 4.96 5.68
S1–C3 12,627 7 20 0.34 25.22 51.72 0.26 24.52 5.58 1.46 9.54 139.01
S1–C4 20,626 10 20 1.07 55.95 56.91 1.17 88.86 6.95 6.94 23.89 1540.61
S1–C5 26,021 13 20 1.75 45.35 63.01 0.93 145.25 17.32 8.76 32.91 3470.63
S1–G1 18,821 5 20 0.30 28.66 54.64 0.32 37.95 48.12 17.06 72.93 187.77
S1–G2 23,901 7 20 0.48 23.53 42.19 0.46 54.03 43.51 26.37 68.94 323.75
S1–G3 30,013 8 20 0.50 26.28 37.88 0.45 109.94 72.55 49.04 109.89 1947.79
S1–G4 34,981 9 20 0.52 13.69 50.69 0.49 161.45 109.78 179.97 152.82 1179.05
S1–G5 40,762 11 20 0.80 29.43 53.83 0.71 260.78 135.03 52.67 159.79 2394.03

4.2.2 Results for the second set of benchmark instances (dataset S2)

Tables 5 and 6 compare the results obtained for the second SMPS+ set of benchmark instances, S2. In these

tables, a dash “-” indicates that CPLEX was not able to solve the linear relaxation of the problem within the

time limit (four weeks), and thus neither the computational time of CPLEX nor the linear relaxation optimal

value used to compute the gap are known. Recall that the instances in S2 are larger than the instances in

the first set (S1) and also more difficult to solve.

Les Cahiers du GERAD G–2018–81 15

Table 5: Average values of the solutions obtained by the different solution methods on the benchmark dataset S2.

Instance Z∗($)

Name N T S DLS HH1 HH2 HH3

S2–C1 14,118 6 25 27,287,000 -7,647,320 -7,551,860 27,834,800
S2–C2 28,154 16 20 225,575,000 103,348,000 83,449,600 225,014,000
S2–G1 48,821 14 20 471,814,000 134,262,000 211,037,000 470,825,000

Table 6: Average optimality gaps and average computational times for the three instances in the benchmark dataset S2.

Instance Gap (%) CPU(Minutes)

Name N T S DLS HH1 HH2 HH3 DLS HH1 HH2 HH3 LR

S2–C1 14,118 6 25 8.41 125.67 6.57 7.09 54.03 4.98 5.90 21.57 932.00
S2–C2 28,154 16 20 - - - - 765.07 14.27 10.47 86.60 -
S2–G1 48,821 14 20 - - - - 1246.14 429.91 61.39 300.81 -

From Table 5, it appears that among the four methods, HH1 and HH2 are the ones that provide the worst

results. Moreover, their performance is far inferior to the other methods. HH2 is not dominated by HH1

as it was the case for the instances in the previous sets, L1 and S1. In particular, for the largest instance,

S2–G1, HH2 is significantly better than HH1, improving the value of the objective function by 57.18%. The

solutions found by HH3 are again generally comparable to those obtained by the problem-specific method,

DLS, but they are obtained much faster as can be seen from the results in Table 6. On average, the solution

time is reduced by a factor of 5 when HH3 is used. DLS is also more time consuming than HH1 and HH2.

On average, it runs 4.6 and 26.6 times longer than do HH1 and HH2, respectively. It should be noted that,

the differences between DLS and the three hyper-heuristics are more pronounced for these larger and more

computational demanding instances in S2 than they are for the instances in the previous datasets. As was

the case for the instances in the first datasets, HH2 is the fastest method. However, its short computational

times do not compensate for the poor quality of the solutions it provides.

4.2.3 Results for the third set of benchmark instances (dataset S3)

We next compare the four methods on the ten instances of the third benchmark dataset, S3. The same

comparison criteria as above are used; that is, the average values of the solutions obtained by each method

(Table 7), as well as the average optimality gaps and computational times (Table 8). Again, the best results

obtained for each instance are indicated in bold.

Some of the observations made in the previous sections can be confirmed from the results in Tables 7

and 8. First, all four methods solve the problems in a very reasonable time, in the order of a few minutes

to a few hours, which is significantly smaller than the 36.44 hours that CPLEX requires on average to solve

the linear relaxation. Second, although HH1 is the fastest method, requiring 11 minutes on average, and

although it is more effective than HH2, the quality of the solutions obtained with this hyper-heuristic is far

from the quality obtained by HH3 and DLS. On average, the optimality gap for HH1 is 43.39% as opposed to

1.11% and 1.75% for HH3 and DLS, respectively. When comparing HH3 and DLS, it appears that not only

does HH3 reach better solutions than does DLS, finding new best solutions for many instances in at least one

of the ten runs, but it also requires much less computational time. On average, the CPU time is reduced by a

factor of 8.5 when HH3 is used. We can then conclude that, for the instances in this third SMPS+ benchmark

dataset, regarding both solution quality and solution time, the new proposed hyper-heuristic HH3 seems to

be the best choice.

4.2.4 Results for the third set of benchmark instances (dataset S4)

Finally, we compare the four methods on the instances of the fourth SMPS+ benchmark dataset, S4, which

are larger than those in the third dataset, S3. Tables 9 and 10 summarize this comparison.

As for the instances in the previous set, HH3 significantly outperforms DLS in terms of solution time. On

average, the CPU time for DLS exceeds 37 hours, while the CPU time for HH3 is less than 5 hours. In terms

16 G–2018–81 Les Cahiers du GERAD

Table 7: Average values of the solutions obtained by the different solution methods on the benchmark dataset S3.

Instance Z∗($)

Name N T S DLS HH1 HH2 HH3

S3–C1 22,549 12 20 248,569,000 165,027,000 116,318,000 250,179,000
S3–C2 22,388 12 20 246,498,000 122,666,000 129,183,000 247,806,000
S3–C3 22,285 12 20 246,694,000 129,440,000 119,872,000 248,407,000
S3–C4 22,302 12 20 245,680,000 151,531,000 84,868,200 247,937,000
S3–C5 21,965 11 20 252,267,000 143,099,000 96,975,600 252,775,000
S3–C6 22,246 12 20 245,256,000 139,579,000 93,991,600 247,440,000
S3–C7 22,716 12 20 249,437,000 148,806,000 113,310,000 250,984,000
S3–C8 22,529 12 20 249,831,000 124,420,000 108,774,000 251,882,000
S3–C9 22,253 12 20 249,864,000 164,768,000 100,889,000 251,334,000
S3–C10 22,720 12 20 247,636,000 140,607,000 123,430,000 249,084,000

Table 8: Average optimality gaps and average computational times for the ten instances in the benchmark dataset S3.

Instance Gap (%) CPU(Minutes)

Name N T S DLS HH1 HH2 HH3 DLS HH1 HH2 HH3 LR

S3–C1 22,549 12 20 1.65 34.70 53.98 1.01 251.56 12.51 115.37 34.39 3586.66
S3–C2 22,388 12 20 1.78 51.12 48.53 1.26 228.17 7.47 16.60 25.07 2421.27
S3–C3 22,285 12 20 1.73 48.44 52.25 1.04 243.71 11.55 52.68 29.25 1420.44
S3–C4 22,302 12 20 1.89 39.49 66.11 0.98 210.87 11.96 10.32 27.21 3518.42
S3–C5 21,965 11 20 1.56 44.16 62.16 1.36 221.36 6.62 47.39 25.24 1464.72
S3–C6 22,246 12 20 2.00 44.23 62.44 1.13 282.59 13.94 8.59 28.56 1593.52
S3–C7 22,716 12 20 1.66 41.33 55.33 1.05 286.56 10.53 4.64 31.16 1986.17
S3–C8 22,529 12 20 1.82 51.11 57.25 1.01 219.94 8.02 23.52 26.39 1878.28
S3–C9 22,253 12 20 1.85 35.28 60.37 1.27 227.09 14.72 23.48 30.84 1807.55
S3–C10 22,720 12 20 1.52 44.09 50.92 0.95 285.68 12.55 9.03 29.15 2184.68

of solution quality, for the ten tested instances, HH3 is slightly dominating. Both methods produce excellent

solutions very close to optimality, with an average gap of 0.29% and 0.59%, respectively. These solutions are

significantly better than those obtained by HH1 and HH2. The latter again gives very poor results and ranks

last in terms of solution quality, but first in terms of solution time.

Table 9: Average values of the solutions obtained by the different solution methods on the benchmark dataset S4.

Instance Z∗($)

Name N T S DLS HH1 HH2 HH3

S4–C1 40,090 21 20 210,730,000 100,671,00 89,011,400 211,155,000
S4–C2 40,090 21 20 208,489,000 119,479,000 82,525,400 209,773,000
S4–C3 40,090 21 20 209,376,000 127,384,000 84,542,000 210,197,000
S4–C4 40,090 21 20 208,569,000 135,125,000 108,393,000 209,308,000
S4–C5 40,090 21 20 207,998,000 122,597,000 74,843,500 208,473,000
S4–C6 40,090 21 20 209,166,000 83,970,600 110,200,000 209,673,000
S4–C7 40,090 21 20 210,808,000 120,489,000 67,109,200 211,403,000
S4–C8 40,090 21 20 211,990,000 95,740,200 102,024,000 212,281,000
S4–C9 40,090 21 20 212,863,000 114,452,000 85,330,600 213,183,000
S4–C10 40,090 21 20 209,022,000 76,381,500 90,621,600 209,879,000

4.3 Summary

Overall, the new proposed hyper-heuristic, HH3, outperforms all other algorithms from the literature con-

sidered in the comparisons in this paper. When com- paring it to the best specialized heuristics for the

SMPS and SMPS+ (TS and DLS), the results show that HH3 finds high-quality solutions, comparable to or

better than those produced by these problem-specific methods, in addition to being faster; the performance

differences being more significant for the largest and most difficult in- stances. The superiority of HH3 over

TS and DLS can be explained by the fact that it relies on a mixture of simple and fast yet efficient heuris-

tics selected based on an effective learning mechanism. In comparison with the two general hyper-heuristic

approaches from the literature (HH1 and HH2), HH3 is relatively more time consuming. However, the in-

Les Cahiers du GERAD G–2018–81 17

crease in solution time is offset by the excellent quality of the solutions HH3 finds and the consistency of the

results. Considering the 38 tested instances for which it was possible to solve the linear relaxation within

the time limit, the average gap of the solutions provided by HH3 is 0.78% as opposed to 32.70% for HH1

and 46.38% for HH2, with a standard deviation of 0.86 compared to 30.59 and 28.96, for HH1 and HH2,

respectively. The poor performance of HH1 and HH2 compared to HH3 is due to their weaknesses outlined

in Sections 3.1 and 3.2; in particular, they tend to make “myopic” choices and fail to explore thoroughly

the heuristic search space. As explained in Section 3.3, HH3 includes various strategies to overcome these

weaknesses. These strategies have proven to be beneficial and yielded a better and more effective learning

mechanism, as supported by the excellent results obtained for all tested instances.

Table 10: Average optimality gaps and average computational times for the ten instances in the benchmark dataset S4.

Instance Gap (%) CPU(Minutes)

Name N T S DLS HH1 HH2 HH3 DLS HH1 HH2 HH3 LR

S4–C1 40,090 21 20 0.47 52.45 57.96 0.27 2520.62 62.40 33.44 311.51 10868.69
S4–C2 40,090 21 20 0.90 43.21 60.77 0.29 1648.16 61.99 26.20 333.63 4724.07
S4–C3 40,090 21 20 0.65 39.55 59.88 0.26 2070.65 67.25 18.61 296.67 7501.91
S4–C4 40,090 21 20 0.66 35.64 48.37 0.31 2037.65 98.55 36.15 321.99 12267.54
S4–C5 40,090 21 20 0.50 41.35 64.20 0.27 2360.88 49.45 27.31 264.32 7376.82
S4–C6 40,090 21 20 0.53 60.07 47.59 0.29 2392.38 39.30 33.28 295.66 6229.74
S4–C7 40,090 21 20 0.59 43.18 68.35 0.31 2321.52 58.79 14.07 256.69 10308.31
S4–C8 40,090 21 20 0.44 55.04 52.08 0.30 2462.85 29.05 32.69 266.14 7906.48
S4–C9 40,090 21 20 0.44 46.47 60.09 0.29 2503.03 58.39 19.17 333.73 9102.34
S4–C10 40,090 21 20 0.70 63.71 56.95 0.29 1937.58 71.04 20.76 238.56 6329.43

5 Conclusions

Strategic mine planning involves solving very large stochastic mixed-integer programming problems. In the

last decade, there has been a sustained development of methods capable of producing high-quality solutions

to these complex real-world problems within short computing times. However, not all methods work equally

well for each situation, and when faced with a new problem specific to a given mining operation, it is difficult

if not impossible to know in advance which method will work best. At the outset, we asked if there is a

methodology that, given a particular problem and a number of solution methods, will help determine which

method or combination of methods is the best for the given problem. To attempt to answer this question,

this paper investigated three hyper-heuristic approaches and applied them to two strategic mine planning

problems: the stochastic open-pit mine production scheduling problem with one processing stream (SMPS)

and the stochastic open- pit mine production scheduling problem with multiple processors and stockpiles

(SMPS+). We proposed, and we conclude, that hyper-heuristics offer a practical alternative to the problem-

specific state-of-the-art search methodologies. Not only can they tackle large instances, but also, being

self-managed, they do not need to be tuned for particular problem characteristics. Because they operate on a

search space of heuristics rather than a search space of problem solutions, they are more generally applicable

to a variety of problems.

The three hyper-heuristic approaches considered in this paper fall under the cat- egory of perturbative

hyper-heuristics with online learning; that is, they use a set of simple perturbative low-level heuristics to

improve a candidate solution, and a score-based learning mechanism to decide which low-level heuristic

should be ap- plied at a given step of the search process. Two of the proposed approaches (HH1 and HH2)

are approaches previously proposed in the literature, while the third one (HH3) is a novel approach that uses

some of the ideas of the first two but also in- cludes new features aimed to overcome their weaknesses. To

assess the performance of the three hyper-heuristics, extensive numerical experiments were performed on 43

benchmark instances of various sizes and characteristics. The three approaches were compared to each other

and to two problem-specific search methodologies from the literature; namely, a tabu search heuristic (TS)

and a diversified local search (DLS) that combines a variable neighborhood descent heuristic and a very large

neighbor- hood search heuristic based on network flow techniques. The major conclusions of this study are

that i) HH1 and HH2, although being the fastest of the methods, cannot compete with any of the other three

18 G–2018–81 Les Cahiers du GERAD

in terms of solution quality; ii) HH1 outperforms HH2 in terms of solution quality, and vice versa in terms

of solution time; iii) TS and DLS perform as well as HH3 or slightly better on some instances, but HH3 is

substantially better than TS and DLS on the larger and most difficult instances; iv) HH3 requires shorter

computational times than do TS and DLS and is less sensitive to the size of the instances; and v) HH3 is the

most robust approach, exhibiting consistent performance for different problems and instances.

We believe that hyper-heuristic approaches hold much promise in the field of mine planning, as they have

in other fields, and that they can, according to our results, efficiently determine which heuristic to apply at

each step of the search process, thereby automating the design of solution methods. They do not require

problem-specific knowledge and therefore can address different classes of problems instead of solving just one

problem. In line with the work in this paper, the next step is to further explore single-point perturbative

hyper-heuristics with online learning. Machine learning, data mining, and data analytics techniques will be

investigated to design new mechanisms to choose low-level heuristics. This should enable the generation of

better learning schemes and thus more efficient hyper-heuristics. Developing frameworks to enable the use

of multi-point-based search methodologies and metaheuristics as low-level heuristics (meta-hyper-heuristics)

will also be examined. Meta-hyper-heuristics are particularly promising as they provide a more diverse and

powerful set of algorithms to the high-level strategy. In a second stage of development, heuristic generation

hyper-heuristics, which are approaches that create new heuristics from a set of other existing heuristics, will

be investigated. The hybridization of heuristic selection and heuristic generation hyper-heuristics will also

be explored.

6 References

Albor, F., Dimitrakopoulos, R. (2009) Stochastic mine design optimization based on simulated annealing: Pit limits,
production schedules, multiple orebody scenarios and sensitivity analysis. IMM Transactions, Mining Technology,
118(2): 80–91.

Albor, F., Dimitrakopoulos, R. (2010) Algorithmic approach to pushback design based on stochastic programming:
Method, application and comparisons. IMM Transactions, Mining Technology, 119(2): 88–101.

Asad, M., Dimitrakopoulos, R. (2013) Implementing a parametric maximum flow algorithm for optimal open pit mine
design under uncertain supply and demand. Journal of the Operational Research Society, 64: 185–197.

Behrang, K., Hooman, A., Clayton, D. (2014) A linear programming model for long-term mine planning in the
presence of grade uncertainty and a stockpile. International Journal of Mining Science and Technology, 24: 451–459.

Bienstock, D., Zuckerberg, M. (2010) Solving LP relaxations of large-scale precedence constrained problems. Lecture
Notes in Computer Science, 6080: 1–14.

Birge, J., Louveaux, F. (2011) Introduction to stochastic programming, Second Edition. Springer.

Bley, A., Boland, N., Fricke, C., Froyland, G. (2010) A strengthened formulation and cutting planes for the open pit
mine production scheduling problem. Computers & Operations Research, 37(9): 1641–1647.

Boland, N., Dumitrescu, I., Froyland, G., Gleixner, A. M. (2009) LP-based disaggregation approaches to solving the
open pit mining production scheduling problem with block processing selectivity. Computers & Operations Research,
36: 1064–1089.

Boucher, A., Dimitrakopoulos, R. (2009) Block simulation of multiple correlated variables. Mathematical Geosciences,
41(2): 215–237.

Burke, E., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Qu, R. (2013) Hyperheuristics: A survey of
the state of the art. Journal of the Operational Research Society, 64: 1695–1724.

Burke, E., Hart, E., Kendall, G., Newall, J., Ross, P., Schulenburg, S. (2003a) Hyperheuristics: An emerging direction
in modern search technology. In: Handbook of Metaheuristics, Glover F and Kochenberger G (eds), Kluwer: 457–474.

Burke, E., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Woodward, J. (2010) A classification of hyper-heuristic
approaches. In: Handbook of metaheuristics - Second Edition, Springer, New York: 449–468.

Burke, E., Kendall, G., Soubeiga, E. (2003b) A tabu-search hyperheuristic for timetabling and rostering. Journal of
Heuristics, 9(3): 451–470.

Les Cahiers du GERAD G–2018–81 19

Chanda, E. (2007) Network linear programming optimization of an integrated mining and metallurgical complex.
In: Proceedings of Orebody Modelling and Strategic Mine Planning: Uncertainty and risk management models, The
Australasian Institute of Mining and Metallurgy Spectrum Series 14, 2nd Edition: 149–155.

Chicoisne, R., Espinoza, D., Goycoolea, M., Moreno, E., Rubio, E. (2012) A new algorithm for the open-pit mine
production scheduling problem. Operations Research, 60: 517–528.

Chiles, J., Delfiner, P. (2012) Geostatistics: Modeling Spatial Uncertainty, Second ed. John Wiley & Sons., New
Jersey.

Cowling, P., Kendall, G., Soubeiga, E. (2001) A hyperheuristic approach for scheduling a sales summit. Lecture Notes
in Computer Science, 2079: 176–190.

Cullenbine, C., Wood, R., Newman, A. (2011) A sliding time window heuristic for open pit mine block sequencing.
Optimization Letters, 5, 365–377.

Denzinger, J., Fuchs, M., Fuchs, M. (1997) High performance ATP systems by combining several AI methods. In:
Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence (IJCAI 97), Morgan Kaufmann,
CA, USA: 102–107.

Dimitrakopoulos, R. (2011) Stochastic optimization for strategic mine planning: A decade of developments. Journal
of Mining Science, 84: 138–150.

Dimitrakopoulos, R., Farrelly, C., Godoy, M. (2002) Moving forward from traditional optimization: grade uncertainty
and risk effects in open pit mine design. IMM Transactions, 111: A82–A88.

Dowd, P. (1994) Risk assessment in reserve estimation and open-pit planning. Transactions of the Institution of
Mining and Metallurgy, 103: A148–A154.

Drake, J., Ozcan, E., Burke, E. (2012) An improved choice function heuristic selection for cross domain heuristic
search. Lecture Notes in Computer Science, 7492: 307–316.

Ferland, J. A., Amaya, J., Djuimo, M. S. (2007) Application of a particle swarm algorithm to the capacitated open
pit mining problem. In: Autonomous Robots and Agents, Mukhopadhyay S. and Sen Gupta G. Ed. Springer-Verlag:
127–133.

Fisher, H., Thompson, G. (1963) Probabilistic learning combinations of local job-shop scheduling rules. In: Industrial
Scheduling, Muth, J.F., Thompson, G.L. (eds.), Prentice-Hall, New Jersey: 225–251.

Fricke, C., Velletri, P., Wood, R. (2014) Enhancing risk management in strategic mine planning through uncertainty
analysis. In: Proceedings of Orebody Modelling and Strategic Mine Planning Symposium 2014, The Australasian
Institute of Mining and Metallurgy: 275–279.

Godoy, M. (2002) The effective management of geological risk. Ph.D. thesis, University of Queensland, Australia.

Goodfellow, R., Dimitrakopoulos, R. (2016) Global optimization of open pit mining complexes with uncertainty.
Applied Soft Computing 40: 292–304.

Goodfellow, R., Dimitrakopoulos, R. (2017) Simultaneous stochastic optimization of mining complexes and mineral
value chains. Mathematical Geosciences 49(3): 341–360.

Goovaerts, P. (1997) Geostatistics for Natural Resources Evaluation. Oxford University Press, New York.

Hochbaum, D., Chen, A. (2000) Improved planning for the open-pit mining problem. Operations Research, 48:
894–914.

Hoerger, S., Hoffman, L., Seymour, F. (1999) Mine planning at Newmont’s nevada operations. Mining engineering,
51(10): 26–30.

Horta, A., Soares, A. (2010) Direct sequential co-simulation with joint probability distributions. Mathematical Geo-
sciences, 42(3): 269–292.

Kawahata, K., Schumacher, P., Fein, M. (2015) Strategic mine planning and production scheduling optimization at
Newmont’s twin creeks operation. In: Proceedings of the 37th International Symposium Application of Computers
and Operations Research in the Mineral Industry (APCOM), Fairbanks, Alaska: 1052–1060.

Lamghari, A. (2017) Mine planning and oil field development: A survey and research potentials. Mathematical
Geosciences, 42(3): 395–437.

20 G–2018–81 Les Cahiers du GERAD

Lamghari, A., Dimitrakopoulos, R. (2012) A diversified tabu search approach for the open-pit mine production
scheduling problem with metal uncertainty. European Journal of Operational Research, 222: 642–652.

Lamghari, A., Dimitrakopoulos, R. (2016a) Network-flow based algorithms for scheduling production in multi-
processor open-pit mines accounting for metal uncertainty. European Journal of Operational Research, 250: 273–290.

Lamghari, A., Dimitrakopoulos, R. (2016b) Progressive hedging applied as a metaheuristic to schedule production in
open-pit mines accounting for reserve uncertainty. European Journal of Operational Research, 253: 843–855.

Lamghari, A., Dimitrakopoulos, R., Ferland, J.A. (2014) A variable descent neighborhood algorithm for the open-
pit mine production scheduling problem with metal uncertainty. Journal of the Operational Research Society, 65:
1305–1314.

Lamghari, A., Dimitrakopoulos, R., Ferland, J.A. (2015) A hybrid method based on linear programming and variable
neighborhood descent for scheduling production in open-pit mines. Journal of Global Optimization, 63: 555–582.

Maleki, M., Emery, X. (2015) Joint simulation of grade and rock type in a stratabound copper deposit. Mathematical
Geosciences, 47(4): 471–495.

Marcotte, D., Caron, J. (2013) Ultimate open pit stochastic optimization. Computers & Geosciences, 51: 238–246.

Menabde, M., Froyland, G., Stone, P., Yeates, G. (2007) Mining schedule optimization for conditionally simulated
orebodies. Orebody Modelling and Strategic Mine Planning, The Australasian Institute of Mining and Metallurgy,
Spectrum Series, 14: 379–384.

Montiel, L., Dimitrakopoulos, R. (2015) Optimizing mining complexes with multiple processing and transportation
alternatives: An uncertainty-based approach. European Journal of Operational Research, 247(1): 166–178.

Montiel, L., Dimitrakopoulos, R., Kawahata, K. (2016) Globally optimising open-pit and underground mining oper-
ations under geological uncertainty. Mining Technology, 125(1): 2–14.

Moreno, E., Espinoza, D., Goycoolea, M. (2010) Large-scale multi-period precedence constrained knapsack problem:
A mining application. Electronic Notes in Discrete Mathematics 36: 407–414.

Ramazan, S., Dimitrakopoulos, R. (2013) Production scheduling with uncertain supply: A new solution to the open
pit mining problem. Optimization and Engineering, 14: 361–380.

Ravenscroft, P. (1992) Risk analysis for mine scheduling by conditional simulation. Transactions of the Institution of
Mining and Metallurgy, Section A: Mining Technology: A104–A108.

Ross, P. (2005) Hyper-heuristics. In: Search Methodologies: Introductory Tutorials in Optimization and Decision
Support Techniques, Burke EK and Kendall G (eds), Springer: 529–556.

Rossi, M., Deutsch, C. (2014) Mineral Resource Estimation. Springer, New York.

Whittle, G. (2007) Global asset optimization. In: Proceedings of Orebody Modelling and Strategic Mine Planning:
Uncertainty and risk management models, The Australasian Institute of Mining and Metallurgy Spectrum Series 14,
2nd Edition: 331–336.

Whittle, J. (2009) The global optimizer works-what next? In: Proceedings of Advances in Orebody Modelling and
Strategic Mine Planning: old and new dimensions in a changing world, The Australasian Institute of Mining and
Metallurgy Spectrum Series 17, 1st Edition: 3–5.

	Introduction
	Description of the problems
	Stochastic open-pit mine production scheduling problem with one processing stream (SMPS)
	Stochastic open-pit mine production scheduling problem with multiple processors and stockpiles (SMPS +)

	Hyper-heuristic solution approaches
	Tabu search hyper-heuristic (HH1)
	Choice-function hyper-heuristic (HH2)
	New proposed hyper-heuristic (HH3)
	Low-level heuristics
	Heuristics that choose blocks from a random period
	Heuristics that choose blocks from a specific period
	Heuristics that modify the set of scheduled blocks

	Numerical results
	Results on the SMPS instances (dataset L1)
	Results on the SMPS+ instances (datasets S1–S4)
	Results for the first set of benchmark instances (dataset S1)
	Results for the second set of benchmark instances (dataset S2)
	Results for the third set of benchmark instances (dataset S3)
	Results for the third set of benchmark instances (dataset S4)

	Summary

	Conclusions
	References

