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Dépôt légal – Bibliothèque et Archives nationales du Québec, 2018
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Québec – Nature et technologies.
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Abstract: In this paper we tackle the problem of eNodeB failure detection in LTE networks using Bi-
nary Classification techniques under smart-cities Machine-to-Machine (M2M) traffic. We train 20 different
classifiers with data from two 24 hrs simulations with different traffic volume levels. Input features for the
classification models are built aggregating packet generation and access collisions from the eNodeB on which
failures are being detected, as well as from its closest neighbors, by computing statistics for each time-bin.
Network service providers generally maintain network performance data by processing real-time data to pro-
duce periodic aggregated summaries, which in practice constitutes a filter on the data, reducing the quantity
of information available for inference. We explore the effect of different levels of granularity in data aggre-
gation and their effect on our ability to detect failures. We gathered data from M2M traffic along an LTE
network simulated using publicly available geographic city data on Montreal, Canada. With Linear Support
Vector Machines (L-SVMs) and Bagged Decision Trees (BDT), failure detection rates above 97.5 % were
achieved, with false positive rates under 2.8 %, showing that, even in 30 minutes aggregations, it is feasible
to extract meaningful data from aggregations of data from LTE networks with M2M traffic.

Keywords: MTC (Machine Type Communications), M2M (Machine-to-machine) communications, failure
detection, LTE networks, machine learning, smart city, Internet-of-things
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1 Introduction

A smart city relies on a very large number of smart devices, such as sensors, actuators, and smart watches,

whose number is expected to reach 25 billions by 2020: the interconnection of those devices is usually referred

to as the Internet of Things (IoT). What makes these devices smart is their ability to communicate without

human supervision: this type of communication is commonly grouped under the category of Machine-to-

machine (M2M) or Machine Type Communication (MTC) communications.

M2M or MTCs are expected to use existing communication infrastructure and the traffic volume is

expected to be non-trivial, especially in densely populated smart cities. Machine-generated traffic has some

peculiarities, because it depends on the very different behaviour of machine applications rather than well-

studied human behavior. Moreover, the data size is usually small in M2M communications, which mainly

take place in the uplink direction.

LTE is one of the most popular candidate solutions to support M2M communications, thanks to its large

bandwidth availability and its ubiquitous coverage. In the latest specifications of LTE, such as LTE-M and

NB-IoT, 3GPP is working on reducing the bandwidth requirements for machines: this would reduce the power

consumption, which is particularly sought by small devices in IoT networks. However, a large number of

different M2M applications are expected to be using LTE and a diverse set of different machines are requiring

LTE access. Therefore, it is important to study the ability of LTE to support M2M traffic [1].

Even though the size of messages in M2M communications is very small, the number of communicating

devices is considerably large and this would be a burden for the access nodes in the LTE architecture, i.e.

eNodeBs. The increased load can degrade network performance—due to the limited number of available

preambles— and also increase the probability of hardware/software failures. Many M2M applications require

high reliability and cannot afford long outages or large delays, due to eNodeB failures. Therefore, the prompt

detection of those events is crucial for network maintainance and efficiency, and therefore for expedite delivery

of M2M messages in an IoT setting.

The massive stream of data generated by network activity is difficult to handle for service providers [2].

Network data are subdivided in time intervals and, for each time interval, only counters and basic statistics,

such as minima, maxima and averages are traced. Even though this aggregation permits to considerably

reduce the network data, it entails a loss of information. Specifically, original probability distributions are

lost, and we are left to study the behavior of the means of variables instead of the variables themselves.

In particular, eNodeB failures can take time and effort to be detected [3]: the delay in the detection

can cost money to the network operator and jeopardize the operation of smart city applications. The main

objectives of this paper are to analyze traffic patterns associated to an eNodeB failure and to provide models

and algorithms to detect failure events. For this purpose, we use the LTE network simulator proposed in [1],

which employs real geographic data on the position of the machines and eNodeBs and permits to evaluate

the LTE network performance in a large-scale smart city environment.

The simulator allows us to control the different types of events that can take place in the network and to

jointly study different types of IoT applications. However, such a fine knowledge is not always available in

real-life traffic monitoring products, where only largely aggregated Key Performance Indicators (KPIs) and

statistics per minutes, hours or days are available to the operator. Therefore, an important aspect of this

paper is to assess the effects of data aggregation on failure detection using machine learning methods.

Summarizing, the paper presents the following original contributions:

1. An assessment of the feasibility of detecting failures in a specific eNodeB of an LTE network carrying

M2M traffic for IoT using binary classification techniques.

2. A study of the effects of aggregation levels and traffic volumes on automatic failure detections tech-

niques.
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2 Related work

A good deal of research has investigated the problem of failure detection and diagnosis in LTE networks. The

large majority of the surveyed work has focused on Human Type Communications (HTCs). We now mention

some of the work done in failure detection and diagnosis Self-Organizing Networks (SONs) tasks, mostly in

LTE networks. It should be pointed out that all the techniques surveyed are based mainly on HTC, and no

distinction between it and M2M or MTC is made.

2.1 Fault detection

Fault detection is defined as the task of identifying the cell, base station, or eNodeB experiencing problems [3].

A fault detection method determines on which network nodes the self-healing functions should be focused.

It refers to both outages and degradations. The fault detection methods can be defined as proactive, if their

goal is to anticipate the effects of the failure in the traffic behavior, or reactive, if the detection occurs after

the behavior is degraded [3].

A cell in a mobile network can be classified as follows [4]:

• Degraded cell: when it is operational but performance values are low with respect to some reference.

• Crippled cell: when a failure in the base station severely affects the capacity of the cell. Some traffic is

observed both from and towards the cell.

• Catatonic cell: when a serious software of hardware failure totally impedes traffic in at least one

direction (uplink or downlink).

In general, the detection task is the easiest of the self-healing functions, as alarms, KPIs thresholds,

and deviation from normal-behaviour profiles signal the occurrence of many kinds of failures [3]. Failures of

sleeping cells, however, are considered a harder problem [2], because of the absence of alarms or messages

indicating the degradation or outage of the cell. Operators rely only on the observation of the problematic

cell KPIs and the perturbation it generates on its neighborhood, as the User Equipments (UEs) in the area of

the failing cell start establishing connections to nearby cells instead. This kind of failures can stay undetected

and undiagnosed for days [3].

Random-Access Channel (RACH) originated sleeping cells have the particularity of producing problems of

service availability for UEs without noticeable lacks of radio signal coverage [5]. These failures can be caused

by configuration problems level, excessive traffic load, software problems, or firmware issues in an eNodeB.

At the eNodeB level, KPI thresholds frequently fail to trigger alarms, even though the QoE deteriorates

from the user point of view [5]. New users fail to connect while established connections continue working.

Eventually, connections end and the eNodeB enters a catatonic state [5]. Given the long time that detection

process can take, and the bad experience of the users, RACH sleeping cells are recognized as a hard and

relevant for the operators interested in preventing subscriber’s churn [6].

Fault detection algorithms are important, as most fault diagnosis automatic methods show a non-trivial

quantity of false positives (such as in [7]), and some have good results after receiving data filtered by a fault

detector [8].

Data Analysis approaches to fault detection are usually grouped into two categories: those using cell

data, and those using UE data. Most of the work on fault detection is based on data from cells [5]. A

typical strategy is to observe statistical deviations from the cells “normal” performance [9]. This implies

making assumptions about the outage causes and symptoms, which might not be applicable to all situations.

Statistics and performance KPIs can also allow a Base Station (BS) to detect a failure in a neighbor BS, by

considering the frequency of requests for registration along with Channel Quality Indicator (CQI)ś distribu-

tion and time correlation [10]. Most techniques have a specific granularity in their data time-aggregation,

however, as performance anomalies can take place at different time-scales, anomaly detection techniques can

also be applied simultaneously at different levels of aggregation (multi-resolution) [11]. Besides analyzing

performance KPIs, data related to interactions with other cells can be used, such as the number of hand-overs

with adjacent cells [12] and neighbor cell list reports [13]. Binary classification techniques can also be used

as proposed by [10] and [14].
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Deviations from “normal” behavior have also been used for UE-based fault detection. In [15] Diffussion

Maps are used to reduce the dimensionality of the UE performance data, and data-points that lie in a low

density area of the feature-space are considered as possible “faulty” anomalies. A clustering phase is used to

identify whether an anomaly corresponds or not to a failure state, which is important because instances of

exceptionally good performance can also be considered anomalies. Another clustering approach was proposed

in [16] where simulated data is analyzed via an Affinity Propagation algorithm. Reference Signals Received

Power (RSRP) and Reference Signals Received Quality (RSRQ) are reported by the UE for serving and

adjacent cells and UE geographical location is successfully used to identify the cells at fault. A different

approach is given in [5], where events reported by calls in an LTE network are analyzed via an N-grams

technique for anomaly detection. They apply dimensionality reduction techniques and k-Nearest Neighbors

to estimate the level of probability of each sequence. Sleeping Cells are identified by analyzing aggregations

of indicators based on probability scores from adjacent cells. A salient feature of this work is that it takes

only 10 minutes of real-time data for this algorithm to start working as a practical detector.

2.2 Fault diagnosis

The diagnosis of a fault involves finding the cause of the network problem [3]. The resulting diagnosis

is important for the fault-recovery function, in the case of SONs, and for the experts carrying out the

troubleshooting.

One of the problems of using supervised learning for fault diagnosis based on cell KPI values is that

service providers seldom register the cause of the faults after troubleshooting [17], and the way KPIs are

stored might not be ideal to take advantage of the data [18]. This has motivated research such as [19],

with the goal of facilitating the non-intrusive acquisition of experts knowledge during their troubleshooting

workflow, creating a knowledge base that can be used by fault-diagnosis algorithms. In [20], KPI values are

discretized via thresholds, in order to use Bayesian Networks to perform a diagnosis of the cells, though nearly

one third of the non-faulty cells were falsely diagnosed with some type of failure. In [13] the neighbor cell list

reports are used to analyze the changes in the visibility graph to detect the failing cells, via binary classifiers

(Decision Trees and Linear-Discriminant Functions), achieving good detection results but an impractical level

of false positive rate even after penalizing false positive classification errors.

Fuzzy models have been used to mine troubleshooting databases to diagnose [7] network problems. They

classify a particular status of the network according to categories corresponding to the nature of the failure.

Their approach has false-positives issues, which makes it necessary to include a failure detection stage before

the classifier. Fuzzy logic models were also used in [21], where it was shown that individual KPI thresholds are
not well-suited for fault diagnosis. They propose a methodology to design and evaluate self-healing systems,

and elaborated a simulator that modelled various types of failure.

Self Organising Maps (SOMs) are a kind of neural network architecture whose output creates a low-

dimentional representation of the data. If the number of output neurons is low, the result is similar to that

of clustering algorithms. In [8] SOM techniques are used to identify clusters of the behavior of network KPIs.

The statistical behavior of the data from a cluster is evaluated by experts who determine if its behavior is

relevant and coherent with a particular kind of known failure. The technique gave excellent results on real

data. The method was tested with data filtered by a fault detector.

In [14], KPIs and Operation Support System (OSS) data are clustered after being discretized. A protocol

for knowledge acquisition is also proposed, where experts are asked to match identified clusters with the

causes of the failures.

In [18], time intervals where eNodeBs in LTE networks experiment degradation are identified, and the

KPI values registered during the intervals are aggregated into one vector describing the performance of the

interval. Vectors of each degradation interval are labelled according to the cause registered by the expert

who troubleshooted each case. A search engine is proposed to help in diagnosing the failure, finding the most

similar past degradations.

AdaBoost is used for failure diagnosis in [22], where it was tested on simulated data. They over-sampled

normal traffic, using Synthetic Minority Over-sampling Technique (SMOTE). This strategy allowed them
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to address class imbalance. AdaBoost techniques are also used in [17] to perform automatic fault diagnosis.

They use Support Vector Machines (SVMs) as the weak learner models, tunning the parameters of the

classifier via a genetic algorithm. The method is tested in real data from an LTE network.

3 Models proposed

Differently from the reviewed research, we propose a failure detection strategy based solely on M2M / MTC

traffic in a smart city. We also consider different levels of aggregation to help the operator choose the best

one for their needs.

Even though the data is sequential in nature, we do not approach the problem as one of time series. In

order to identify whether there is a failure or not, we only consider aggregated data from one interval at a

time, and no information from the system in previous intervals is used.

Data aggregation is performed by estimating several statistical descriptors of the variability of packet and

RACH collision counts. Non-overlapping time intervals of different sizes are used to compute the statistics,

and supervised learning techniques are adopted to independently classify each of these intervals based on

its statistics. In order to extract more information from the KPI variability, we also consider higher order

statistics, in order to produce a richer representation of the variability, while still relying on data aggregation

to detect failures.

We treat the failure as a sleeping cell problem, assuming that no operation and mainteinance system is

providing any kind of alarm. In an ideal context, eNodeB failures are scarce, with respect to normal traffic

regimes, which implies that there is very little data from the network during failures, in comparison to data

gathered in normal conditions. In machine learning, this situation is called class imbalance, and makes the

problem difficult to solve using binary classification techniques: in fact, standard training techniques produce

models with a tendency to assume the more frequent class for every data-point as the imbalance grows. This

is usually addressed by using an anomaly detection approach, under the assumption that most anomalies are

also failures. We deal with class imbalance instead, with the binary classification approach, by sub-sampling

normal traffic, which is the mayority class, so that both sets of data-points are of equal size.

In this paper, classification performance is measured by focusing more on detection rate rather than on

false positive rate, precision or accuracy, as falsely assumming the existence of a failure is less expensive than

failing to detect one [22].

We use the LTE simulator both in “normal” operation regime and in failure state. Failures are modeled as
the total or partial elimination of Random-Access Opportunities (RAO) for an interval defined by the user.

These kind of failures could be caused by a natural disaster, an energy outage or an accident completely

affecting the hardware of an eNodeB.

3.1 M2M traffic model

The process of troubleshooting a performance problem in an LTE network begins with the detection of the

failure, and, ideally, the identification of the cause of the problem [7]. Performing this process in an automated

way is part of the functions of SONs, specifically self-healing (Figure 1). Fault detection is a neuralgic part

of this process, as the rest of the self-healing functions (compensation, diagnosis and recovery) will only be

applied over those nodes indicated by the detection function. In order to perform fault detection Service

Providers maintain KPIs that are aggregated over time and across the network, or regions of the network.

Low-level fine-grained performance data is costly to keep, as storage requirements are extreme.

Our simulator uses public data to obtain the location of the following types of machines:

• Smart meters (installed in residential

addresses).

• Fire alarms.

• Surveillance cameras.

• Bus stops.

• Traffic lights.

• Parking lots.
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Fault Detection

Fault Compensation Diagnosis

Fault recovery

Figure 1: Self-Healing functions in the context of M2M-eNodeB traffic.

In addition to these traffic generators, 50 thousand Micro-Phasor Measuring Units (microPMUs) were

randomly placed along the island of Montreal. We also have public data on the location and characteristics

of eNodeBs in Canada.1

The traffic from the applications was generated following a Poisson distribution, with average times

between connection requests varying from 10 seconds for the microPMUs to one hour for the smart meters.

The simulator generates a list with the two closest eNodeBs for each machine. RACH is performed first

for the closest eNodeB. Only access from the machines. At the end of the simulation, the model provides the

number of packets and the count of the RACH collisions in each cell and globally in the network. Results

are also subdivied by the type of M2M applications included in the run.

3.2 Fault model

Our simulator allows the creation of simultaneous eNodeB failures with arbitrary starting time and duration.

The intensity of the failure is specified as the percentage of the number of channels at fault.

The intensity of a failure in an eNodeB is modeled by making unavailable for access a specific number

of channels in the node. The intensity percentage is also the percentage of channels being turned off (or

the closest integer number of channels). In this paper, the pattern classification techniques are trained to

recognize 2 different states: (i) 100 % of failure, (ii) normal traffic. We assume that a failure affects the

failing eNodeB and its neighbors.

3.3 Granularity

The size of the aggregation of the “real-time” data plays an important role in the ability to observe changes

in the patterns of collisions. On one hand, large aggregations imply a loss of information. On the other hand,

statistics become more stable as sample size increases, which is a desirable property.

In order to study the effect that granularity size has on our ability to detect failures based solely in the

statistic of a particular interval, we perform our analyzis on aggregations of 5, 10, 15, 20 and 30 minutes.

An additional approach we consider regarding granularity, is to use an ensemble classifier where the base

classifiers learn at different scales of granularity. In particular we try an ensemble composed as follows:

1. One classifier trained with a granularity of 30 minutes.

2. Two classifiers trained with a granularity of 15 minutes, covering the 30 minutes of the previous classifier.

3. Six classifiers trained with a granularity of 5 minutes, covering the 30 minutes of the first classifier.

3.4 Machine learning methodology

We use the simulator in combination with machine learning models, as depicted in Figure 2. The failure,

which is an input parameter of the simulator is sought to be reconstructed by the learner model, by taking

as input an aggregation of the collisions and packets counts.

1Spectrum Management System Data: https://sms-sgs.ic.gc.ca/eic/site/sms-sgs-prod.nsf/eng/h_00010.html

https://sms-sgs.ic.gc.ca/eic/site/sms-sgs-prod.nsf/eng/h_00010.html


6 G–2018–79 Les Cahiers du GERAD

Traffic

parameters

Failure

parameters
Aggregated performance

values per region

Simulator

Learner

model

Figure 2: Interaction between simulator and binary classifier.

The problem is formulated as a binary classification problem, where statistics from a single time-bin are

used as features or predictors vector by a classification model. The target or label that should be matched

by the output of the model, consists in the states of failure or no-failure.

The statistics used to aggregate the data are: average, variance, assymetry, kurtosis, minimum, maximum,

range (difference between minimum and maximum), and percentils (5 %, 25 %, 50 %, 75 %, 95 %). In the

case the part of the feature vectors describing the behavior of the neighborhood of a node, average, variance,

minimum, maximum and range from adjacent cells are added, while kurtosis, skewness and percentiles

are averaged.

3.5 The dataset

We generated two scenarios of 24 hours of traffic data for the 553 eNodeBs in the island of Montreal. Each

scenario consisted of twelve concatenated 2-hour simulations. For 11 eNodeBs covering emblematic areas of

the city, each of the simulations consisted on one hour of normal activity followed by a one-hour failure. This

allowed us to consider aggregations of both normal and failing regimes at different times of the day, which is

relevant as some machines traffic generation parameters depend on the time of the day. In total we simulated

12 total failures in each of the 11 nodes of choice.

The data pre-processing did not include Principal Component Analysis (PCA) nor standardization, as

these techniques worsened the False Positive Rate without any gain in the Detection Rate.

We randomly splitted the data of each node in three sets (Figure 3):

• Training set: 70 % of the data was used to train 20 different classification models.

• Validation set: 15 % of the data was used to evaluate the 20 models and estimate their generalization

ability.

• Testing set: 15 % of the data was saved to estimate the classification performance values reported in

this paper, after the training, tunning and model selection was finished.

Validation

set

Training

set

Test

set
15 %

15 %

70 % Trained classifier

Performance

evaluation

Figure 3: Data split for training validation and testing.
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3.6 The learning models

We used 20 binary classifiers implemented in Matlab 2018a for the Classification Learner App and an Ensem-

ble Model, built as an equal-weight voting system among the 20 classifiers from the Classification Learner App,

as shown in Figure 4.

Classifier 1

Ensemble

performance

Classifier 2

Classifier 20

...

Validation

set
Voting

Figure 4: Ensemble classifier performance evaluation.

We implemented the following two training strategies, as depicted in Figure 5:

1. Node-wise training: 11 instances of each model were trained, each using as training data the feature

vectors of one the 11 experiencing failures. This produced 20 trained models for each of the 11 eNodeBs.

11 Ensemble Models were also used, fed with the votes of the 20 models from the node for which a

prediction was being made.

2. Training by set of nodes: this strategy consists in unifying all the training data from all the nodes to

train the 20 models. This implies that the pattern learned by each model is not fitted for the specific

behavior or a node.

Joint training set

nodes 1, 2, 3

Classifier for node 1

Classifier for node 1

Classifier for node 1

Classifier for nodes

1, 2 and 3

Training set

eNodeB 1

Training set

eNodeB 2

Training set

eNodeB 3

Figure 5: Training by node vs. training from a set of nodes.

In both cases, the aggregation of packet and collision counts from neighboring eNodeBs is part of the

feature vector for the target eNodeB.

For the 11 nodes experiencing failures the scenario implies a 50 % of probability of failure, and both time

between failures and the time to failure are exactly of one hour. In order to consider a more general context,

we repeated the experiments using the 10 best classifiers, and trained them with a mult-node approach. This

time the set of intervals without failures were randomly chosen from the 553 eNodeBs of whole network,

instead of using those of normal traffic from the 11 nodes with failures. The number of intervals extracted

from normal traffic instances was equal to the number of intervals extracted from failures.

To summarize, by means of the mentioned experiments, we aim at providing an answer to the following

research questions:

1. Does node-wise training allow better generalization ability than training in a set of nodes?

2. How does aggregation size affect prediction performance?
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3. How does the performance of an Ensemble Model combining different algorithms compare with the

individual models?

4. How does the traffic volume affect prediction performance?

5. How will prediction performance will be affected when data from normal traffic intervals is sampled

from the whole network?

4 Results and analysis

In order to measure classification performance, we consider the following indicators, sorted in a decreasing

priority order:

• Prediction rate: defined as the well-classified failures over the total number of failures.

• False positive rate: defined as the cases of normal traffic classified as failures over the total of normal

traffic instances.

• Accuracy: defined as the total of well-classified data-points over the total.

• F-score: defined as two times the product of precision (% of detections that are truly failures) and

detection rate, divided by the sum of precision and detection rate.

Performance scores of 22 models are shown in Figure 6, for an experiment of high traffic and 5 minutes

aggregations, which is representative of the behavior observed in the rest of the experiments. Models trained

in multiple nodes (indicated by the orange circles) consistently had detection rates higher than 90 % and

false positive rates lower than 30 %, with the exception of one model (subspace k-nearest neighbors, which

is the top-right orange circle). There is a clear advantage in multi-node training, even though there are

some instances of experiments where occassionally node-wise trained models achieved good combinations of

detection and false positive rates.

1.0

0.5 1
0

Detection rate

F
a
ls

e
 p

o
s
it
iv

e
 r
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Figure 6: Performance of node-wise and multi-node models in 5 min aggregation and high traffic.

Ensemble learners did not perform systematically well as their false positive rate bested in every exper-

iment by those of BDT and L-SVMs. In Figure 6, all 22 models are placed in a plane according to their

performance values of detection and false positive rates. Those shown as blue squares are classifiers trained

node-wise, while the red circles show the performance achieved by multi-node trained classifiers. The figure

corresponds to the performance values for one particular scenario of 5 minutes of aggregation and high traffic).

We point out the positions of L-SVMs and BDT, obtained both via node-wise and multi-node training. Both

systematically performed better than Ensemble Learners. It can be seen that with multi-node training their

performance is very similar, while node-wise training produces worse results for both algorithms. Considering

L-SVMs and BDT in all the training scenarios, we observe that detection rates for multi-node L-SVMs and

BDT were higher than 97.5 % and false positive rates were lower than 2.7 % in all aggregation levels (see

Tables 1 and 2).
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Table 1: Detection and false positive rates on L-SVMs (multi-node training).

Linear SVM
Detection Rate (%) False Positive Rate (%)

Aggregation Low traffic High traffic Low traffic High traffic

5 99.6 99.6 1.6 2.1
10 99.2 99.2 1.3 1.2
15 98.8 98.8 1.0 1.0
20 98.3 98.6 1.0 0.8
30 97.5 97.7 0.9 0.8

Table 2: Detection and false positive rates on Bagged Decision Trees (multi-node training).

Bagged Decision Trees
Detection Rate (%) False Positive Rate (%)

Aggregation Low traffic High traffic Low traffic High traffic
5 99.6 99.6 2.4 2.6
10 99.2 99.2 2.4 2.4
15 98.8 98.8 2.6 2.4
20 98.3 98.6 2.6 1.8
30 97.5 97.7 2.6 1.7

We can also observe in Tables 1 and 2, that larger aggregations produce lower detection rates both in

L-SVMs and BDT. In L-SVMs, false positive rate decreased with the increment in aggregation size. The

same ocurred in BDT in the high volume traffic scenario.

We also obtained good results when sampling normal traffic intervals from the whole network: in Figure 7,

detection rates above 96.3 % were observed for all models except for Fine Gaussian SVM. False positive rates

were under 3 % for all 10 classifiers. The figure is representative of the general behavior of multi-node models

when sampling from the whole network.
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Figure 7: Performance of 10 mult-node models in 30 min aggregation and high traffic, sampling normal traffic from 553 nodes.
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5 Conclusions

We performed experiments to detect eNodeB total failures in a simulated LTE network under M2M traffic,

with 20 binary classification techniques, following two approaches:

• Training models on only one eNodeB (node-wise training).

• Training models on various eNodeBs (multi-node training).

We found that in both traffic volume scenarios, and in every data aggregation level, most of the best

performing models were those trained on a set of eNodeBs. L-SVMs and BDT were the ones showing more

consistently good results both in terms of detection rate and false positive rate.

Two traffic volume scenarios were used, one with normal traffic (following templates of normal packet

generation by the machines), and one with high traffic and one third of the available channels. On higher

aggregations (20 minutes or more), with high traffic conditions the two best models showed a slightly better

detection rate. False positive rate appears to improve in the high traffic scenario as well.

Aggregation levels of 5, 10, 15, 20 and 30 minutes were used in our experiments, in both traffic scenarios.

As expected, there is a clear trend of decrease in detection rate as the size of the aggregation intervals

increases. However, in the false positive rate, L-SVMs performance improved with bigger aggregations,

implying that models trained on bigger intervals are more conservative when detecting a failure. On BDT

there is not a clear pattern on whether aggregation size is good or bad for false positives rate. Overall, even

though detection rates slightly degrade as aggregation size increases, we were able to achieve high detection

rates and low false positives in the largest level of aggregation (30 minutes).

Our results suggest that using a set of statistics on the number of packets and collisions, both in a

node under observation and its neighborhood, with a small aggregation (5 minutes) gives the best failure

detection rate. With respect to the slightly more conservative behavior of models under larger aggregations,

one possible explanation is the fact that statistics are computed with a larger sample, making them more

stable, which means they are less sensitive to individual outlayers.

Models trained under larger aggregations (30 minutes), despite being the more conservative ones (with

lower detection rate), showed the ability to have excellent failure detection rates when using L-SVMs and

BDT (higher than 97.3 % in all our experiments), while giving the best rates of false positives (at most 2.6 %).

One possible strategy for Service Providers to take advantage of both the detection rates of smaller

aggregations, and the false positive rates of bigger aggregations, is to two aggregation levels at the same time:

1. A model trained with a bigger aggregation, providing the more conservative classifier (with lower false

positive rates).

2. A model trained with a smaller aggregation, providing the more sensitive classifier (with higher detec-

tion rates).

For the interval used as input for one classifier of the bigger aggregation, several intervals of the smaller

aggregation could feed the more sensitive classifier. As a consequence, one output for a period of time, from

the conservative classifier would be complemented with the output of several evaluations of the more sensitive

one. When most of the outputs of the more sensitive classifier for the interval under consideration, agree

with the output of the conservative classifier, there is lower probability of incurring in a misclassification. On

the other hand, if the sensitive classifier gives as outputs several failures within the interval, but the output

for the conservative classifier does not indicate a failure, a warning state can be triggered, signalling that,

while a failure is being detected on several of the small aggregation intervals, there is a higher chance of it

being a false alarm.

It is important to point out that the kind of failures we are focusing, in general, does not dissapear, unless

there is some activity to fix it. Therefore, if one interval is falsely classified as belonging to “normal traffic”,

it is unlikely that in the next interval the same mistake will be made, as there is at most 3 % of probability
of missing the detection of a failing interval. As a consequence, failing to detect a failure in one interval, can
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be considered as an additional delay in the detection, as the classifier will have one more chance to perform

the detection, each time an interval equivalent to the aggregation size passes by. This implies that the overal

figures of detection rate are even higher than what is reported when considering more than one interval.
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