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Abstract: Drawing on statistical learning theory, we derive out-of-sample and optimality guarantees about
the investment strategy obtained from a regularized portfolio optimization model which attempts to exploit
side information about the financial market in order to reach an optimal risk-return tradeoff. This side
information might include for instance recent stock returns, volatility indexes, financial news indicators, etc.
In particular, we demonstrate that a regularized investment policy that linearly combines this side information
in a way that is optimal from the perspective of a random sample set is guaranteed to perform also relatively
well (i.e., within a perturbing factor of O(1/

√
n)) with respect to the unknown distribution that generated

this sample set. We also demonstrate that these performance guarantee are lost in a high-dimensional regime
where the size of the side information vector is of an order that is comparable to the sample size. We further
extend these results to the case where non-linear investment policies are considered using a kernel operator
and show that with radial basis function kernels the performance guarantees become insensitive to how much
side information is used. Finally, we illustrate our findings with a set of numerical experiments involving
financial data for the NASDAQ composite index.

Keywords: Portfolio optimization, generalization bound, utility maximization, learning theory

Acknowledgments: E. Delage gratefully acknowledges the support of the Canadian Natural Sciences and
Engineering Research Council [RGPIN-2016-05208].



Les Cahiers du GERAD G–2018–77 – Revised 1

1 Introduction

There is no doubt that modern portfolio management theory has been dramatically affected by two important

historical events. First, Markowitz in 1952 highlighted in his seminal paper Markowitz (1952) how investment

decisions needed to inherently trade-off between risk (typically measured using variance) and returns (in the

form of expected returns). This was later reinterpreted as a special case of characterizing risk aversion using

expected utility theory von Neumann and Morgenstern (1944). The flexibility of such a theory has since

then been demonstrated in many occasions regarding the wide diversity of investors’ risk aversion that it

can represent (see Ingersoll (1987) and reference therein for an overview of the type of attitudes that can be

modeled).

The second turning point of this theory can be considered to have occurred with the financial crisis of

2008 which provided strong evidence that the use of statistics such as variance and value-at-risk, and of

distribution models that are calibrated using historical data could provide a false sense of security Salmon

(2009). In an attempt to address some of these new challenges, researchers have proposed using more robust

statistical estimators (see Madan et al. (1998); Goldfarb and Iyengar (2003); Olivares-Nadal and DeMiguel

(2018)) while others encouraged the use of robust portfolio management models that are designed to produce

out-of-samples guarantees by exploiting the use of a confidence region for the distribution of future returns

(See Delage and Ye (2010); Huang et al. (2010); Mohajerin Esfahani and Kuhn (2018); Bertsimas and Van

Parys (2017)).

In this work, we draw on statistical learning theory to establish what are the out-of-sample guarantees

that can be obtained when using regularization in an expected utility model that allows to exploit side

information about the financial markets (see Brandt et al. (2009) where a non-regularized version of this

model was introduced). This side information could consist of fundamental analysis (as was famously done

in Fama and French (1993)), but also of technical analysis, financial news, etc. Overall, we consider our

contribution to be four-fold.

1. We derive a lower bound on the out-of-sample performance of the investment strategy returned by this

regularized model. In this respect, our results differ from the usual statistical learning and stability

theory results in the sense that our guarantees will not be in terms of quality of fit of a model (e.g.,

expected squared loss, hinge loss, etc.), but rather in terms of the actual performance perceived by the

investor (through the notion of a certainty equivalent).

2. We derive an upper bound on the suboptimality of the investment strategy when compared to the

optimal strategy that would be derived using the full knowledge of the sample distribution. Note

that, to the best of our knowledge, such finite sample guarantees have not yet been established for

distributionally robust optimization models.

3. Considering that nowadays a growing amount of side-information can be exploited by individuals to

make their investments, we establish precisely how these bounds are affected at a high-dimensional (or

“big data”) regime.

4. Finally, we present how the out-of-sample and sub-optimality bounds can be extended to a multi-

asset portfolio selection problem and a “kernelized” single-asset portfolio selection problem which can

produce investment strategies that are linear functions of a lifting of the side-information to a possibly

infinite dimensional space.

It is worth mentioning that contributions 1–3 are similar in spirit to those of Ban and Rudin (2018) who

applied stability theory to provide generalization bounds for a newsvendor problem. There are however

a number of distinctions regarding how stability theory needs to be articulated for the two applications.

For example, our paper deals with a more general performance function which is non-linear and possibly

unbounded on both sides, and needs to identify reasonable assumptions about the financial market in order

for an optimal investment strategy to exist. To the best of our knowledge, Contribution 4 is also entirely

original (and could be of use to the newsvendor problem) given that the work of Ban and Rudin (2018) did

not consider a multi-dimensional decision vector and that it used kernels in the context of kernel density

estimator unlike in this work where a kernel operator will be used to define the space of possible investment

strategies.
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In the field of finance, it is worth mentioning that Gotoh and Takeda (2012) did employ machine learning

theory to establish out-of-sample performance guarantees of portfolios, yet they solely focus on the out-of-

sample probability of reaching a target return (a.k.a. loss probability minimization), instead of a more general

expected utility model, and did not consider the use of market side information. The learning algorithm that

is proposed by the authors is also very different in spirit to ours as it suggests minimizing a ratio between

value-at-risk (or regularized conditional value-at-risk) and the norm of the portfolio for different confidence

level instead of simply minimizing a regularized version of the performance measure of interest, as would be

done in our approach. Finally, the authors do not provide an out-of-sample guarantee on suboptimality of

the optimal in-sample portfolio and perhaps more importantly do not establish whether the out-of-sample

performance of the in-sample optimal portfolio converges to the best possible out-of-sample performance as

more observations are made. One can also identify some interesting applications of kernels (e.g. in Györfi

et al. (2006) and Takano and Gotoh (2014)) to dynamic portfolio selection but none of this prior work studies

the out-of-sample performance in one shot investment problem where side-information can be exploited.

The rest of the paper is divided as follows. First, we formally introduce our model and assumptions in

Section 2. Section 3 then presents what kind of out-of-sample guarantees can be provided on the certainty

equivalent (CE) of the investor using a sample of market returns and side information when assuming a

stationary market distribution. We then proceed in Section 4 to show that the same kind of guarantees

can also be derived for the CE suboptimality, before showing in Section 5 what kind of behaviour can be

expected in “big-data” situation. We then present extensions of our results to the case of multiple risky

assets in Section 6 and to the case where investment strategies are defined using kernels in Section 7. Finally,

in Section 8 we illustrate our findings in a set of numerical experiments and conclude in Section 9. All proofs

have been pushed to the appendix.

2 Model and assumptions

We consider a classical financial portfolio selection problem involving a risky asset with random return rate

R and a risk-free asset with return rate of 0% for simplicity of exposure. We also suppose that the investor’s

risk aversion can be characterized using expected utility theory using a strictly increasing concave utility

function u, and that the investor has access to side information regarding the returns. This information

might be the result of processing the most recent financial or economic news, etc. We let this information

be described as a vector of p normalized random features X ∈ Rp. In this context, if the the distribution F

of the pair (X,R) of side information and return is known, a linear investment policy that exploits the side

information optimally for this investor can be obtained by solving the following optimization problem:

maximize
q∈Rp

EF [u(R · qTX)] , (1)

where an investment policy consists of investing a qTX proportion of the wealth in the risky asset and a

1− qTX proportion in the risk-free one, and where it is assumed that short-selling is permitted.1

In practice however, the exact distribution describing the relation between X and R is not available at the

time of designing the investment policy and one might instead need to exploit a sample set Sn := {(xi, ri)}ni=1

were each (xi, ri) was drawn independently and identically from F . Unfortunately, when the sample size n

is relatively small compared to p, it is well known that the version of problem (1) that uses the empirical

distribution F̂ obtained from sample Sn can suffer from overfitting the sample and produce investment policies

that perform badly out of sample. This is for instance illustrated in the following example.

Example 1 Consider a case where n = p and each term in X is independently and identically drawn from

a Gaussian distribution. Given that it is well known that the probability that the random matrix Ξ :=

[X1 X2 . . . Xn]T be singular is null, then one can easily establish that problem (1) with F̂ is unbounded.

Indeed, one can verify that riq̄
Txi = 1 for all i = 1, . . . , n when q̄ is set to Ξ−1[1/r1 1/r2 . . . 1/rn]T . Hence,

1Note that in the case that the risk free return rate is non-null, one should interpret R as the return in excess of the risk-free
rate. Hence, the model can still take the form presented in (1) using the reduction EF [u((R + rf ) · qTX + rf (1 − qTX))] =

EF [u(R · qTX + rf )] = EF [v(R · qT x)] where v(y) := u(y + rf ).
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one can achieve an arbitrarily large empirical expected utility by investing according to αq̄ for α > 0. Note

that it would be surprising that such an extreme policy would perform well out-of-sample.

To prevent issues associated to overfitting, one might instead seek the optimal solution of the following

regularized empirical expected utility maximization problem:

maximize
q∈Rp

EF̂ [u(R · qTX)]− λ‖q‖22 . (2)

We will refer to the optimal solution of this problem as q̂. Note that such an optimal solution always exists

since the objective function is strongly concave.

The question remains of understanding what guarantees one has regarding out-of-sample performance of

the portfolio investment policy obtained from such a regularized problem. In what follows, we establish some

high confidence bounds on the out-of-sample performance and suboptimality of q̂.

3 Out-of-sample performance bounds

In this section, we identify a high confidence bound on the out-of-sample performance of q̂. In particular,

since utility functions are expressed in units without any physical meaning for the investor, any guarantees

derived using learning theory should be reinterpreted in terms of a guarantee on the certainty equivalent2 (in

percent of return) of the risky investment produced by q̂TX. In other words, we will be interested in bounding

how different the in-sample certainty equivalent performance of q̂ might be compared to the out-of-sample

certainty equivalent performance.

In order to shed some light on this question, we first make the following assumptions.

Assumption 1 The random return R is supported on a bounded interval SR ⊆ [−r̄, r̄], for some r̄ ∈ R, such

that PF (|R| ≤ r̄) = 1.

Assumption 2 The random vector of side-information X is supported on a bounded set SX such that

PF (‖X‖2 ≤ ξ) = 1 for some ξ ∈ R.

Assumption 3 The utility function is normalized such that u(0) = 0 and limr→0+ u′(r) = 1. Furthermore,

it is Lipschitz continuous with a Lipschitz constant of γ, i.e., for any r1 ∈ R and r2 ∈ R, we have that

|u(r1)− u(r2)| ≤ γ|r1 − r2|.

The first assumption is relatively realistic given that one can usually assess from historical data a large

enough interval of returns which could be assumed to contain R with probability one. For instance, when

looking at the last 35 years of daily returns for an index such as S&P 500, this interval can legitimately

be set to [−25%, 25%] daily returns. If some side information are not known to be bounded, the second

assumption might require one to pre-process the vector of side information in order to rely on the results that

will be presented. This could typically be done by employing a “clipping” procedure that projects this vector

on the surface of a ball of radius ξ when ‖X‖2 > ξ, which is as simple as replacing X with (ξ/‖X‖2) · X.

This assumption will be further studied in Section 5. Finally, while the last assumption is fairly common for

establishing generalization bounds and can certainly accommodate any piecewise linear utility function (often

used by numerical optimization methods), it is important to mention that it is not one that is commonly made

in modern portfolio theory. If, for instance, an investor expresses an absolute risk aversion uniformly equal to

α, this suggests the use of u(r) := (1/α)(1− exp(−αr)) which is not Lipschitz continuous. Fortunately, the

theory that will be developed only exploits the fact that the function is Lipschitz continuous on the interval

[−r̄2ξ2/(2λ), r̄2ξ2/(2λ)].

We are now in a position to exploit a well-known learning theory result to establish a bound on the

out-of-sample portfolio performance of q̂ based on its in-sample estimation.

2The fact that c is the certainty equivalent of a random return R implies that the investor is indifferent between being exposed
to the risk of R or getting involved in a risk free investment that has a return rate of c.



4 G–2018–77 – Revised Les Cahiers du GERAD

Theorem 1 Given that Assumptions 1, 2 and 3 are satisfied, the certainty equivalent of the out-of-sample

performance is at most O(1/
√
n) worse than the in-sample one. Specifically,

CE(q̂;F ) ≥ CE(q̂; F̂ )− Ω1/ lim
ε→0−

u′(CE(q̂; F̂ ) + ε) ,

where

CE(q̂;F ) := u−1(EF [u(R · q̂TX)]) ,

and where

Ω1 :=
r̄2ξ2

2λ

(
γ2

n
+

(2γ2 + γ + 1)
√

ln(1/δ)√
2n

)
with probability 1− δ.

Our proof of Theorem 1 proceeds as follow. First, borrowing from the terminology introduced by Bousquet

and Elisseeff (2002), we show that this so-called “investment algorithm” is β-stable. We then show that for

this investment algorithm the amount of utility generated from exploiting different sample sets is within a

range ∆. Given that these two conditions are satisfied, we can then rely on an adapted version of Bousquet-

Ellisseef’s out-sample error bound theorem in order to establish out-of-sample guarantees in terms of expected

utility. By exploiting the concavity of u(·), we are finally able to describe the implications in terms of certainty

equivalent that are expressed in our theorem.

It is worth noting that in some learning problems there exists strong connections between the use of

regularization and the principles of robust optimization (e.g. in Caramanis et al. (2012) and Duchi and

Namkoong (2017)). It is therefore not surprising that through regularization we are able obtain out-of-sample

guarantees that are similar in nature to those obtained when using robust optimization (see for instance the

work in Mohajerin Esfahani and Kuhn (2018)). It would furthermore be interesting to establish what are

the bounds that could be obtained for problem (1) using the results presented in Shafieezadeh-Abadeh et al.

(2017) which was made public during the later stages of the writing of this paper. On the other hand, to the

best of our knowledge there has still been no results in the field of robust optimization regarding finite sample

bounds on the sub-optimality of solutions obtained through the robustification/regularization process. This

is what we do next for problem (1) when robustification is obtained using regularization.

4 Suboptimality performance bounds

We now turn our attention to the suboptimality of the problem, i.e., we would like to understand the

behaviour of the performance of the empirical investment policy q̂ compared to the optimal policy q? :=

arg maxq EF [u(R · qTX)]. It is important to realize that in general, there are situations in which the optimal

performance according to (1) could be unbounded. Thus, if one wishes to establish a bound on the sub-

optimality of an investment policy, it is necessary to impose additional assumptions on the class of problem

that he is facing. The two following examples motivate these assumptions.

Example 2 Consider a risk neutral investor, i.e., such that u(r) = r and suppose EF [Xi] = 0. The expected

utility simply becomes

EF [u(R · qTX)] =

n∑
i=1

qiCovF (R,Xi).

If we simply let q̄i = CovF (R,Xi), it follows immediately that the expected utility of αq̄ can become arbitrarily

large as α goes to infinity.

Example 3 Consider another example in which there exists a j for which feature Xj induces arbitrage over F ,

namely that PF (RXk < 0) = 0 and PF (RXj > 0) > 0. In such a case, if we let q̄i = 1 only when i = j and

otherwise zero, then, as long as u(·) is strictly increasing, the expected utility of αq̄ will once again always be

strictly improved as α goes to infinity.
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Given those two examples, we now introduce two new assumptions that will ensure that problem (1) is

bounded, i.e., it has a finite optimal solution.

Assumption 4 The utility function is sublinear, i.e., u(r) = o(r).

Assumption 5 The side information X induces no linear arbitrage opportunities, that is, there exists no

q ∈ Rp, such that both PF (RqTX < 0) = 0 and PF (RqTx > 0) > 0.

In a financial context, Assumption 4 is certainly realistic since an investor’s behaviour is usually taken

to be strictly risk averse, i.e. EF [R] < u(EF [R]) for all random returns R unless EF [R] = R almost surely,

thus implying Assumption 4. As for Assumption 5, this notion of arbitrage relates directly to the notion

of market efficiency when the side-information contained in X is considered to be publicly available. In

particular the semi-strong version of market efficiency states that it should be impossible for an investor to

constantly beat the market using publicly available information. See Malkiel and Fama (1970) and Fama

(1991) for more details.

Theorem 2 Given that Assumptions 1, 2, 3, 4, and 5 are satisfied, the suboptimality of the policy q̂ can be

expressed with confidence 1− δ by

CE(q̂;F ) ≥ CE(q?;F )− Ω2/ lim
ε→0−

u′(CE(q̂;F ) + ε) ,

where

Ω2 = λ‖q?‖22 +
8γ2r̄2ξ2(32 + ln(1/δ))

λn
+

2γr̄2ξ2
√

32 + ln(1/δ)

λ
√
n

.

The first term in Ω2 shows that, unless the regularization constant λ is brought to zero as n increases,

the empirical maximization problem (2) will asymptotically converge toward a constant suboptimality bound

based on the particular market distribution F and on λ. The two other terms in Ω2 show that this bound

will be reached at a O(1/
√
n) rate in the same fashion as with Theorem 1. Therefore, the best suboptimality

performance that can be hoped to be reached is at most −λ‖q?‖22/ limε→0− u′(CE(q̂;F ) + ε) when λ is

maintained constant. Alternatively, one could (and typically would) bring λ to zero as the size of the sample

set increases in order to bring the suboptimality bound to zero. In particular, this can be done by letting

λ = o(1/
√
n).

5 Big data phenomenon

In this section, we question how realistic Assumption 2 is in a big data context. In particular, we expose two

sets of natural conditions for the generation of the side information vector X that leads to motivating the

use of a support set which diameter grows proportionally to the square root of p.

Example 4 Consider a case where every terms of X are independent from each other, while each Xi has

a mean EF [Xi] = 0, a variance VarF [Xi] = 1, and are supported on their respective intervals PF (Xi ∈
[−ν, ν]) = 1 for all i. By Hoeffding’s inequality, one can establish that

PF

(∣∣∣‖X‖22 − p∑
i=1

EF [X2
i ]
∣∣∣ ≤√2p ln(δ/2)ν2

)
≥ 1− δ

so that ‖X‖22 ∈ [p −
√

2p ln(δ/2)ν2, p +
√

2p ln(δ/2)ν2] with probability 1 − δ. Hence, any ball of fixed

radius ξ will contain X with a probability that asymptotically converges to zero as p increases, more specifically

PF (‖X‖22 ≤ ξ2) ≤ 2 exp(−2p(1 − ξ2/
√
p)2/ν2). On the other hand, this inequality somehow also prescribes

that the diameter of the support SX should increase proportionally to
√
p in order to still contain X with high

probability as p increases.
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Example 5 Consider a similar case as above but where the independence assumption is dropped. In this

context, although we might not have as much of a strong argument to discredit the use of a constant diameter

for SX , there is still a good motivation for employing a radius that grows proportionally to
√
p. Namely,

if each Xi has a mean EF [Xi] = 0 and a variance VarF [Xi] = 1 then the random variable Z := ‖X‖22 is

necessarily positive with an expected value of p. Based on Markov inequality, this implies that with probability

1− δ, we have that ‖X‖2 ≤
√
p/δ.

Since we believe these two examples provide strong arguments for replacing Assumption 2 with the

assumption that it is within a ball of radius ξ
√
p, we reformulate our previous two results as follows.

Corollary 1 Given that Assumptions 1 and 3 are satisfied, and that PF (‖X‖2 ≤ ξ
√
p) = 1, the certainty

equivalent of the out-of-sample performance is at most O(p/
√
n) worse than the in-sample one. Specifically,

with probability 1− δ,
CE(q̂;F ) ≥ CE(q̂; F̂ )− Ω3/ lim

ε→0−
u′(CE(q̂; F̂ ) + ε) ,

where

Ω3 :=
r̄2ξ2p

2λ

(
γ2

n
+

(2γ2 + γ + 1)
√

ln(1/δ)√
2n

)
.

Likewise, if Assumptions 4 and 5 are also satisfied, then the bound on the suboptimality of the decision q̂

reaches a constant at a rate of at most O(p/
√
n):

CE(q̂;F ) ≥ CE(q?;F )− Ω4/ lim
ε→0−

u′(CE(q̂;F ) + ε) ,

where

Ω4 = λ‖q?‖22 +
8γ2r̄2pξ2(32 + ln(1/δ))

nλ
+

2γr̄2pξ2

λ

√
32 + ln(1/δ)

n
,

with probability 1− δ.

Note that Assumption 2 was inspired by an early version of Ban and Rudin (2018) who also studied

asymptotic properties of a regularized decision problem in its high-dimensional regime, i.e., when n and p go

to infinity simultaneously. Our analysis indicate that the convergence in accuracy that is reported with such

an assumption can be misleading for many problems, e.g., when the features can be considered independent

from each other. In particular, Corollary 1 states that asymptotic convergence in accuracy is only guaranteed

to occur when p/λ = o(
√
n) and λ→ 0. For example, both the estimation error and sub-optimality converge

to zero if p = O(n1/4) and λ = cṅ−1/8, for some c > 0, since p/λ = O(n3/8).

However, it is important to understand that Corollary 1 serves as a worst-case scenario and that we don’t

necessarily expect to observe downgrading performances as soon as p ∼ λ
√
n. Still, no matter what, there

is a cost to pay in pouring more and more features into such a portfolio selection problem, and this cost

is directly exhibited through ξ and the weakening the out-of-sample performance guarantees. One might

therefore wish to be prudent when facing such high-dimension regimes.

6 Extension to multiple risky assets

In Brandt et al. (2009), the authors propose a generalization of problem (1) to a context where the portfolio

can be diversified among multiple assets. Their model takes the form:

maximize
w∈Rm,q∈Rp

EF [u(

m∑
j=1

Rj · (wj +XT
j q)] , (3)

where Ri is the return obtained from risky asset j, with j = 1, . . . ,m, and for each risky asset j = 1, . . . ,m,

wj captures a reference investment while Xj ∈ Rp is a random vector of side information about asset j which
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is used to adapt the investment to the market conditions. More generally speaking, one can consider the

regularized multi-asset portfolio selection problem :

maximize
q∈Rp

EF [u(RTXq)] , (4)

where R ∈ Rm is the random vector of returns while X ∈ Rm×Rp is a matrix containing in each of its rows

the side-information that is used to make the decision about the proportion of wealth that is invested in a

particular risky asset. In particular, one recovers problem (3) by composing X and q as follows:

X :=


XT

1 eT1
XT

2 eT2
· · · · · ·
XT
m em

 ∈ Rm × Rp+m q :=

[
q
w

]
, (5)

where each ej captures the j-th column of the m×m identity matrix.

Building on the results presented in Sections 3 and 4, it is actually possible to establish generalization

bounds for the solution of the regularized multi-asset portfolio selection problem:

maximize
q∈Rp

EF [u(RTXq)]− λ‖q‖22 . (6)

In order to do so, one first needs to adapt the two assumptions that were made about the support set of R

and X to the multi-asset framework.

Assumption 6 The random return R is supported on Sr which lies inside a ball of radius r̄, i.e. PF (‖R‖2 ≤
r̄) = 1.

Assumption 7 The random matrix of side-information X is supported on Sx which lies inside a ball of

radius ξ, i.e. PF (‖X‖2 ≤ ξ) = 1 where ‖X‖2 stands for the largest singular value of X.

We now can proceed with an extension of Theorem 1 to the case of multi-asset portfolios. We refer the

reader to Appendix A.3 for more details about the proof.

Theorem 3 Given that Assumptions 3, 6, and 7 are satisfied, the certainty equivalent of the out-of-sample

performance is at most O(1/
√
n) worse than the in-sample one for the optimal multi-asset portfolio policy

obtained from problem (6). Specifically, with probability larger than 1− δ we have that

CE(q̂;F ) ≥ CE(q̂; F̂ )− Ω1/ lim
ε→0−

u′(CE(q̂; F̂ ) + ε) ,

where CE(q̂;F ) := u−1(EF [u(RTXq̂)]) and where F and F̂ refer respectively to the true and empirical joint

distribution of (R,X).

Similarly, in order to obtain some guarantees about the sub-optimality of q̂, it is necessary to extend our

assumption that no linear arbitrage opportunities are present in the market defined through (X,R). This is

needed in order to ensure that problem (4) is bounded and has a bounded optimal solution.

Assumption 8 The side information X induces no linear arbitrage opportunities, i.e. that there exists no

q ∈ Rp such that both PF (RTXq < 0) = 0 and PF (RTXq > 0) > 0.

We follow with the extension of Theorem 2 to the case of multi-asset portfolio selection.

Theorem 4 Given that Assumptions 3, 4, 6, 7, and 8 are satisfied, the suboptimality of the optimal multi-asset

portfolio policy obtained from problem (6) is bounded with confidence 1− δ by

CE(q̂;F ) ≥ CE(q?;F )− Ω2/ lim
ε→0−

u′(CE(q̂;F ) + ε) .
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It is worth noting that while the bounds presented in Theorems 3 and 4 have exactly the same definition

as in the single-asset case, i.e. they reuse the original definitions of Ω1 and Ω2, they in fact rely on the

new definitions of ξ and r̄. In particular, if one considers the multi-asset model presented in Equation (5)

(inspired from Brandt et al. (2009)) and that each Ri ∈ [−r̄0, r̄0] and each PF (‖Xi‖2 ≤ ξ0
√
p) = 1 for each

i ∈ {1, 2, . . . , m} as proposed in Section 5, then one could conclude that ξ = 1 +
√
mpξ2

0 and r̄ = r̄0
√
m

using the argument that follows. First, with probability one we have that

‖R‖22 =

m∑
j=1

R2
j ≤ mr̄2

0 .

Also, for any q such that ‖q‖2 ≤ 1 we have that

‖Xq‖2 ≤ ‖
[
X1 X2 . . . Xm

]T
q‖2 + ‖w‖2

≤

√√√√ m∑
j=1

(XT
j q)

2 + 1 ≤ 1 +

√√√√ m∑
j=1

‖Xj‖22‖q‖22 = 1 +
√
mpξ2

0 ,

since ‖q‖22 ≤ ‖q‖22 ≤ 1 and similarly for w. Hence, we have that the largest singular value of X is bounded

by ξ.

Overall, in the multi-asset portfolio selection problem discussed in Brandt et al. (2009), we can expect

that the out-of-sample performance will be at most O(pm2/
√
n) worse than the in-sample one. On the

other hand, the sub-optimality of q̂ will reach a constant bound due to regularization at a rate of at most

O(pm2/
√
n) when λ is considered constant and can be brought to zero by sizing λ appropriately. Finally, it

is left for future work to confirm how tight these bounds actually are.

7 Extension to kernel approach

As described in Hofmann et al. (2008), we let k : Rp × Rp → R be a positive definite kernel on the space

of pairs of market side-information vectors and let this kernel be associated to a unique reproducing kernel

Hilbert space W with a mapping Φ : Rp →W that projects vectors of market side-information in Rp to W.

It is well known that any function w in W can be characterized using {(αi, xi)}mi=1, with each αi ∈ R and

xi ∈ Rp, and some m ∈ N such that w :=
∑m
i=1 αik(·, xi). Also, given two functions f1 ∈ W and f2 ∈ W, we

have that the inner product is defined as 〈f1, f2〉 :=
∑m1

i=1

∑m2

j=1 α
1
iα

2
jk(x1

i , x
2
j ).

With this in hand, it is possible to consider the following kernel investment problem:

maximize
w∈W

EF [u(R · 〈w,Φ(X)〉)] . (7)

Again, given that in practice we don’t have access to the full distribution information for F but rather to a

set of identically and independently generated samples {(xi, ri)}ni=1, in order to control over-fitting we can

consider solving the regularized empirical kernel investment problem:

maximize
w∈W

1

n

n∑
i=1

u(ri · 〈w,Φ(xi)〉)− λ‖w‖22 . (8)

From a practical perspective it is important to explain how problem (8) can be numerically solved,

especially given that W would usually be an infinite dimensional space. In particular, the following theorem

shows how this problem can be reduced to a finite dimensional one.

Theorem 5 Problem (8) is equivalent to the following finite dimensional convex optimization problem:

maximize
α∈Rn

1

n

n∑
i=1

u(ri

n∑
j=1

αjk(xj , xi))− λαTKα , (9)
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where K ∈ Rn×n is such that Kij := k(xi, xj) and known as the Gram matrix. In particular, given

an optimal solution α̂ for problem (9), one can construct an optimal portfolio policy ŵ for problem (8)

through ŵ :=
∑n
j=1 α̂jΦ(xj) for which the investment proposed under condition x takes the form 〈ŵ,Φ(x)〉 =∑n

j=1 α̂jk(xj , x).

Next, in order to obtain generalization bounds on the quality of ŵ, we will exploit a bound on the

magnitude of the norm of Φ(X) which is defined through the following assumption.

Assumption 9 The random vector of side-information X is supported on a set SX such that PF (‖Φ(X)‖2 ≤
ξ) = PF (

√
k(X,X) ≤ ξ) = 1.

It is worth providing some details about how the above assumption is affected by the choice of kernel.

For instance, a polynomial kernel will consider k(x, y) := (xT y + c)d with c ≥ 0 and d ∈ N, and therefore

Assumption 9 would imply that PF (‖X‖2 ≤
√
ξ2/d − c) = 1. Alternatively, one might instead use the popular

radial basis function kernel k(x, y) := exp(−‖x− y‖2/(2σ2)), where ‖ · ‖ is an arbitrary norm and σ > 0 is a

free parameter, for which Assumption 9 is always satisfied with ξ = 1 since k(x, x) = exp(‖x−x‖22/(2σ)) = 1

for all values of x.

In what follows, we explain how Theorems 1 and 2 can be extended to the kernel investment problem.

A summary of the key steps involved in proving these results is presented in Sections A.6 and A.7 of the

appendix respectively.

Theorem 6 Given that Assumptions 1, 3, and 9 are satisfied, the certainty equivalent of the out-of-sample

performance is at most O(1/
√
n) worse than the in-sample one. Specifically, with probability larger than 1−δ

we have that

CE(ŵ;F ) ≥ CE(ŵ; F̂ )− Ω1/ lim
ε→0−

u′(CE(ŵ; F̂ ) + ε) ,

where CE(ŵ;F ) := u−1(EF [u(R · 〈ŵ,Φ(X)〉)]) and where F and F̂ refer respectively to the true and empirical

joint distribution of (R,X).

In order to extend Theorem 2, we actually need a stronger version of the no linear arbitrage opportunity

assumption. This is due by the fact that the kernel investment problem now permits the use of non-linear

investment strategies. A stronger condition must therefore be imposed to ensure that problem (7) is bounded

and hence its sub-optimality controlled.

Assumption 10 The side information X induces no general arbitrage opportunities, i.e. that there exists no

S ⊆ SX such that

PF (R > 0 |X ∈ S) > 0 and PF (R < 0 |X ∈ S) = 0

or such that

PF (R < 0 |X ∈ S) > 0 and PF (R > 0 |X ∈ S) = 0 .

Theorem 7 Given that Assumptions 1, 3, 4, 9, and 10 are satisfied, the suboptimality of the policy ŵ can be

expressed with confidence 1− δ by

CE(ŵ;F ) ≥ CE(w?;F )− Ω2/ lim
ε→0−

u′(CE(ŵ;F ) + ε) .

Overall, in the kernel investment problem (7), if a polynomial kernel is used and ‖X‖2 ≤ ξ0
√
p with

probability one, we can expect that the out-of-sample performance of ŵ will be at most O(pd/
√
n) worse

than the in-sample one. On the other hand, the sub-optimality of ŵ will reach a constant bound due to

regularization at a rate of at most O(pd/
√
n) when λ is considered constant and can be brought to zero by

sizing λ appropriately. The guarantees become more interesting if a radial basis function kernel is used given

that both convergence rates become O(1/
√
n) in that case and are completely unaffected by the size of p.

This seems to be a strong theoretical argument to support the use of radial basis function kernels in the

kernel investment problem.
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8 Numerical experiments

We conducted a set of numerical experiments in order to illustrate the practical impact of our proposed

modeling paradigm and theoretical results. These experiments make use of data about the value of the

NASDAQ Composite index over the years 2004 to 2018 inclusively. In particular, we considered the question

of designing the right policy for investing in a NASDAQ index fund when considering the investors aversion

to risk. We considered three types of investment policies which were trained using data from the years 2004

to 2013 (i.e. 512 weeks), and later tested out-of-sample on data from the years 2014 to 2018 (257 weeks).

The three strategies were as follows:

• “fixed policy” : A policy π(X) := q0 that tries to identifies a fixed proportion of the investor’s wealth

that should be invested in the index fund no matter what market condition he is acting in.

• “σ-adapted policy without clipping ” : A policy π(X) := q0 +
∑6
k=1 qiXk that adapts the proportion of

wealth invested based on the recent volatility of the market. In particular, for each k = 1, . . . , 6, the

feature Xk was designed to be a normalized version (based on empirical mean and standard deviation)

of the k-th power of the empirical standard deviation of the index observed in the most recent 60 days.

• “σ-adapted policy with clipping ” : A policy π(X) := q0 +
∑6
i=1 qiX̄k that follows the same motivation

as the σ-adapted policy without clipping but which enforces that the norm of the feature vector stays

below 2 in order for Assumption 2 be satisfied. This is done using a “clipping” procedure that projects

excessively large feature vectors on the sphere centered at zero of radius 2.

All our experiments assumed that the investor’s attitude regarding risk was captured by the following utility

function3 :

ū(y) =

{
0.2(1− e−y/0.2) if y ≥ 0

−y otherwise,

with a Lipschitz constant of one.

We start by investigating what is the right choice of regularization parameter λ for all three methods.

To do so, we generated 30 random pairs of training and validation data sets (each containing 256 weeks) by

bootstrapping from the training data (the 512 weeks spanning years 2004 to 2013). For each of such pairs

of data sets, the policies are optimized using the training set while the performance (in terms of certainty

equivalent) is measured on the validation set. Figure 1a presents the average performance on the randomly

generated validation sets while Figure 1b presents each policies trained on the whole training set using the

best performing λ. One can observe that the best average performance on the validation data is achieved by

the σ-adapted policy with clipping which reaches an average certainty equivalent of 0.08% (i.e. 4.2% yearly).

As shown in Figure 1b, the best σ-adapted policy with clipping recommends to invest almost 100% of the

wealth when the index volatility is at its lowest and to decrease this investment as volatility grows, which is

quite reasonable given that the investor is known to be risk averse. The fixed policy comes second best with

a performance of 0.05% (2.6% yearly) while the σ-adapted policy without clipping barely succeeds to reach a

positive certainty equivalent with 0.016% (i.e. 0.8% yearly) on average. In our opinion, the poor performance

of σ-adapted policy without clipping on the validation set is not surprising given that our generalization error

bound and suboptimality bound do not apply for this model. In fact, we suspect that without clipping it is

difficulty to identify the right investment for scenarios with large volatility given that the number of samples

in the training set with such characteristics is very small. In particular, as shown in Figure 1b this policy

recommends large short sale of the index fund for situations where the 60-days standard deviation is above

3% although the training set only has 19 examples in that range to calibrate that part of the policy. Overall,

it appears that adapting the investment policy based on the volatility of the market can be significantly

beneficial but requires careful handling of the features space (e.g. using clipping) in order to be useful.

We next present out-of-sample performance of the three policies presented in Figure 1b. In particular, we

evaluated the 257 weekly returns achieved in the period ranging from 2014 to 2018. Considering each weekly

return as an equiprobable outcome of the performance of the policies out-of-sample, it is possible to evaluate

3This function was chosen in a way that ensured that the investor considered the observed returns obtained in the training
years with the index fund to have a certainty equivalent equal to half of the historical average.
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Figure 1: Comparison of three forms of trained investment policies. (a) presents the average performance of each policy for
different values of λ on randomly generated validation sets. (b) presents the structure of each investment policies trained using
the λ that performed best during validation.

the certainty equivalent of the out-of-sample performance. Specifically, the σ-adapted policy with clipping

achieved an out-of-sample performance of 0.16% (8.77% yearly), while the regular σ-adapted policy without

clipping and fixed policy achieved an out-of-sample performance of 0.15% (8.29% yearly) and 0.12% (6.40%

yearly) respectively. One can remark that the effect of clipping is not as apparent here given that the 60-days

standard deviation in the test data ranged from 0.4% to 1.5% perhaps due to the absence of a recession

during this period. This is a region of volatility for which both trained policies were somewhat similar (see

Figure 1b). The poor performance of the fixed policy can be explained by its over-conservatism. Indeed,

since the training period included the financial crisis of 2007-2008, we have as a result that the fixed policy

recommends to cautiously invest only 56% of the wealth in the index fund. On the other hand, σ-adapted

policies were able to learn to protect the investor by reducing the investment when the volatility is large

while making sure to seize the opportunities in markets that are more stable.

For completeness, while our policies are not designed for dynamic management, we also present in Fig-

ure 2a the amount of wealth that would be cumulated by each policy if they were to be implemented every

week during the period spanning from 2014 to 2018. The figure also presents in (b) and (c) respectively

the computed 60-days standard deviation and the recommended investments for the same period. One can

observe in this figure how an increase in volatility as a direct effect on reducing the investment sometime by

as much as 30%. Finally, we note that the question of how to properly train a dynamic investment policy

that exploits market side information is left for future work.

We close this section with a discussion on how the theoretical generalization error bound and subotpimality

bound established in Theorems 1 and 2 compare to some evidence provided by this case study. In this regard,

we revisit the 30 pairs of training and validation sets generated using bootstrapping to estimate empirical

versions of these bounds. Based on construction, for the σ-adapted policy with clipping , we have that

r̄ = 2.9%, ξ = 2, γ = 1, and λ = 6.95× 10−4. We also choose to set δ = 0.1, and to assume that ‖q∗‖22 ≤ 13

based on the average norm of optimal policies in the validation data sets. Figure 3a presents both the

theoretical generalization error bound and the empirical bound (i.e. the 1− δ quantile of generalization error

on validation sets). Figure 3b does the same for suboptimality gap. In both case, a monomial is fitted to the

empirical bounds to indicate the order of the decay. Looking more closely at Figure 3a we can see that the

empirical error seems to decrease at a rate proportional to n−0.93 which is closer to O(n−1) than O(n−0.5)

and could indicate that the constant in the second term of the definition of Ω1 might be more conservatively

estimated than needed. Regarding Figure 3a, we see that the empirical rate of suboptimality reduction is of

the order of n−0.39 which is not below the rate of O(n−0.5) and might indicate thatn is of a size at which λ

needs to be decreased in order to further reduce the gap.
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Figure 2: Comparison of investment strategies obtained from three trained investment policies in out-of-sample period of 2014
to 2018. (a) presents the evolution of cumulated wealth for each strategy. (b) presents the weekly investment implemented by
each strategy. (c) presents the 60-days standard deviation of the index which is exploited by the σ-adapted policies.
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Figure 3: Comparison of empirical and theoretical bounds on generalization error in (a) and suboptimality gap in (b). Both figures
also present the monomial equation that best fits the empirical data.

9 Discussion

As a conclusion, we would like to review the main messages we hope to deliver with this paper. First off, as

illustrated in Section 8 it can be very useful to use side information about financial markets, such as volatility

measures, market news, financial indicators, economic variables and so on in order to build portfolios of single

or multiple risky assets. More importantly, when this is done using the regularized empirical expected utility

maximization problem (2), we established that, under mild conditions, a solution comes with statistical

guarantees regarding its out-of-sample performance. One also has statistical guarantees on the suboptimality

of the empirical decision in comparison to what might have been the best decision, given full knowledge of

the market distribution. These guarantees can be used to establish the statistical consistency of problem (2)

(i.e. the convergence to a truly optimal solution as n goes to infinity) when ω(
√
n/p) ≤ λ ≤ o(1) for the

single asset problem.

Secondly, these results have natural extensions for the case where the space of investment strategies is

defined using kernel operators. In particular, it appears that radial basis function kernels become especially
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effective in a big data regime (i.e. the dimensionality of the feature vector grows with n) given that the

performance guarantees for this family of kernel operators are unaffected by dimensionality.

Finally, while the empirical evidence that was presented in Section 8 seem to indicate that these perfor-

mance bounds are overly conservative, we still believe that establishing these performance guarantees provide

essential guidance in the design of data-driven investment policies. In particular, in our experiments the pol-

icy that was able to achieve the best out-of-sample performance, both on the validation and the test data

was a policy that employed clipping of the feature vector in order to satisfy Assumption 2. Looking forward,

we believe that there is a need for more extensive numerical studies that would explore the strength and

limitations of the modeling paradigm that is proposed in this paper. In particular, the multi-asset setting

would appear especially interesting together with settings where a richer source of market side information

is used to inform the portfolio. On the theoretical side, there are also interesting open questions regarding

how to tighten the performance bounds or improve on them using methods proposed in Shafieezadeh-Abadeh

et al. (2017) and Duchi and Namkoong (2017), and how to extend the performance guarantees to dynamic

portfolio management.

A Appendix

A.1 Proof of Theorem 1

In this proof, we will make use of an adapted version of a theorem made famous by Bousquet and Elisseeff

(2002) in the context of learning theory to analyse relevant statistical properties of the investment policy q̂

presented in Section 2. While this theorem discusses the use of a learning algorithm, we will rather refer to

an investment algorithm which is defined next.

Definition A.1 Let a investment algorithm π : R(p+1)×n × Rp → R be a procedure that generates a portfolio

recommendation based on a historical sample set Sn := {(xi, ri)}ni=1, where each xi ∈ SX and each ri ∈ SR,

and the current market conditions x, in other words, it produces the recommendation of investing π(Sn, x)

in the risky asset and 1− π(Sn, x) in the risk-free asset.

We start by adapting Theorem 11.1 from Mohri et al. (2012) (originally found in Bousquet and Elisseeff

(2002)) to our context. To do so, we need to adapt the concept of β − stability to the case of investment

algorithms.

Definition A.2 A investment algorithm π(·) is uniformly β-stable if for any two sample sets S1
n := {(x1

i , r
1
i )}ni=1

and S2
n := {(x2

i , r
2
i )}ni=1 that are exactly identical except for the j-th sample, i.e., (x1

i , r
1
i ) = (x2

i , r
2
i ) for all

i 6= j, the following holds:

|u(r π(S1
n, x))− u(r π(S2

n, x))| ≤ β , ∀x ∈ SX , ∀ r ∈ SR .

We also introduce an additional property of the investment algorithm which will be used instead of the

notion of bounded loss for learning algorithms since, unlike loss functions, utility functions are typically

neither bounded above nor below.

Definition A.3 An investment algorithm π achieves a ∆-bounded utility range if for all sample sets S1
n and

S2
n, we have that

|u(r π(S1
n, x))− u(r′ π(S2

n, x
′))| ≤ ∆ , ∀(r, x) ∈ SR × SX , ∀(r′, x′) ∈ SR × SX .

Theorem 8 (First adapted version of Theorem 11.1 in Mohri et al. (2012)) Given that an investment al-

gorithm q̂(·) is uniformly β-stable and achieves a ∆-bounded utility range, then one is guaranteed with a

confidence of 1− δ that

EF [u(R · π(Sn, X))] ≥ EF̂ [u(R · π(Sn, X))]− β − (2nβ + ∆)

√
ln(1/δ)

2n
.
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The proof of this theorem follows exactly the same steps as the proof proposed in Mohri et al. (2012)

except that the ∆-bound is used to bound the expression |u(r π(S1
n, x)) − u(r′ π(S2

n, x
′))| instead of using

upper and lower bounds for u(·) over its entire domain.

We now have in hand the necessary tools to obtain the result presented in Theorem 1 by considering the

investment algorithm defined as π(Sn, x) := q̂(Sn)Tx where q̂(Sn) := arg maxq EF̂ [u(R · qTX)] + λ‖q‖22. In

particular, we will be interested in identifying the β-stability and the ∆-bound for this estimator

Lemma A.1 When Assumptions 1, 2 and 3 are satisfied, the investment algorithm π(·) is uniformly β-stable

with β = (γr̄ξ)2

2λn .

Proof. We first establish that for any pair (q1, q2) ∈ Rp × Rp, one has that

|u(r qT1 x)− u(r qT2 x)| ≤ γ|rqT1 x− rqT2 x| ≤ γ|r|‖x‖2‖q1 − q2‖2 ≤ γr̄ξ‖q1 − q2‖2 , ∀ r ∈ SR , ∀x ∈ SX .

This follows naturally from Assumption 3 which states that u(·) is Lipschitz continuous, and Assumptions 1

and 2. Next, we can employ similar steps as in the proof of Proposition 11.1 from Mohri et al. (2012) to

establish that ‖q̂(S1
n) − q̂(S2

n)‖2 ≤ γr̄ξ/(λn) which would complete our proof since for all x ∈ SX and all

r ∈ SR, we would have that

|u(r q̂(S1
n)Tx)− u(r q̂(S2

n)Tx)| ≤ γr̄ξ‖q̂(S1
n)− q̂(S2

n)‖2 ≤ γ2r̄2ξ2/(λn)

To summarize how ‖q̂(S1
n) − q̂(S2

n)‖2 ≤ γr̄ξ/(λn) is obtained, we first observe that since q̂(S1
n) is the

maximizer of the concave function ÊUS1
n
(q) − λ‖q‖22 where ÊUSn(q) := (1/n)

∑n
i=1 u(riq

Txi), there must

exist a super-gradient equal to zero at q̂(S1
n). In particular, there must be a super-gradient ∇ÊUS1

n
(q̂(S1

n))

of ÊUS1
n
(q) at q̂(S1

n) such that

∇ÊUS1
n
(q̂(S1

n))− 2λq̂(S1
n) = 0 ⇒ ∇ÊUS1

n
(q̂(S1

n)) = 2λq̂(S1
n) .

Together with the concavity of ÊUS1
n
(q), this implies that

ÊUS1
n
(q̂(S2

n)) ≤ ÊUS1
n
(q̂(S1

n)) +∇ÊUS1
n
(q̂(S1

n))(q̂(S2
n)− q̂(S1

n))

= ÊUS1
n
(q̂(S1

n)) + 2λq̂(S1
n)T (q̂(S2

n)− q̂(S1
n))

and similarly that

ÊUS2
n
(q̂(S1

n)) ≤ ÊUS2
n
(q̂(S2

n)) + 2λq̂(S2
n)T (q̂(S1

n)− q̂(S2
n)) .

Together, these two inequalities can be used to conclude that

2λ‖q̂(S2
n)− q̂(S1

n)‖22 = 2λq̂(S2
n)T (q̂(S2

n)− q̂(S1
n))− 2λq̂(S1

n)T (q̂(S2
n)− q̂(S1

n))

≤ ÊUS1
n
(q̂(S1

n))− ÊUS1
n
(q̂(S2

n)) + ÊUS2
n
(q̂(S2

n))− ÊUS2
n
(q̂(S1

n))

= (1/n)(u(r1
mq̂(S1

n)Tx1
m)− u(r1

mq̂(S2
n)Tx1

m) + u(r2
mq̂(S2

n)Tx2
m)− u(r2

mq̂(S1
n)Tx2

m)

≤ (2γr̄ξ/n)‖q̂(S2
n)− q̂(S1

n)‖2 ,

where the second equality comes from the definition of ÊUSn and the second inequality follows from As-

sumptions 1, 2, and 3. By dividing both sides of the inequality by 2λ‖q̂(S2
n) − q̂(S1

n)‖2 we get our stated

property.

Lemma A.2 When Assumptions 1, 2 and 3 are satisfied, the ∆-bound on the utility range for π(·) is ∆ :=
(γ+1)ξ2r̄2

2λ .
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Proof. This proof relies mostly on demonstrating that ‖q̂(Sn)‖2 ≤ r̄ξ/(2λ) with probability one with respect

to the randomness of Sn. Indeed, when this is the case, then we have that

|u(r1 q̂(S1
n)Tx1)− u(r2 q̂(S2

n)Tx2)| ≤ u(r̄2ξ2/(2λ))− u(−r̄2ξ2/(2λ))

≤ |u(r̄2ξ2/(2λ))− u(0)|+ |u(0)− u(−r̄2ξ2/(2λ))|
≤ (1 + γ)r̄2ξ2/(2λ) .

In order to identify a bound on the norm of q̂(Sn), we reformulate problem (2) as follows

maximize
s∈R,v∈Rp

1

n

n∑
i=1

u(sRiX
T
i v)− λs2

s. t. s ≥ 0 , ‖v‖2 = 1 ,

such that q̂(Sn) = s∗ · v∗ when (s∗, v∗) is the pair of optimal assignments for this optimization problem.

It is therefore clear that s∗ = ‖q̂(Sn)‖2 and our proof reduces to establishing an upper bound for s∗. By

recognizing that s∗ = arg maxs≥0 g(s) := 1
n

∑n
i=1 u(sRiX

T
i v
∗) − λs2 and that g(s) is a concave function,

then it is necessarily the case that if there exists a s̄ ≥ 0 such that g(·) is non-increasing at s̄ then s∗ ≤ s̄.

We can actually show that this is the case for s̄ := r̄ξ/(2λ) by upper bounding the impact of taking a step

of δ > 0:

g(s̄+ δ)− g(s̄) =
1

n

n∑
i=1

(u((s̄+ δ)RiX
T
i v
∗)− u(s̄RiX

T
i v
∗))− λ((s̄+ δ)2 − s̄2)

≤ 1

n

n∑
i=1

(u((s̄+ δ)|RiXT
i v
∗|)− u(s̄|RiXT

i v
∗|))− λ((s̄+ δ)2 − s̄2)

≤ 1

n

n∑
i=1

δ|RiXT
i v
∗| − λ(2s̄δ + δ2)

≤ δr̄ξ − 2λs̄δ − δ2 = −δ2 ≤ 0 ,

where we first used the fact that u(·) is increasing, next that u(y + δ) ≤ u(y) + δ when δ ≥ 0 since it is a

concave function with a subgradient of one at zero. Finally, we exploited Assumptions 1 and 2 and used the

definition of s̄. This completes our proof.

We have therefore established that under Assumptions 1, 2, and 3, we have that

EF [u(R · π(Sn, X))] ≥ EF̂ [u(R · π(Sn, X))]− Ω1 . (A1)

We can now conclude this section by demonstrating how Theorem 1 follows from this fact. In particular, by

concavity of the utility function, we have that

u(CE(q̂;F )) ≤ u(CE(q̂; F̂ )) + (CE(q̂;F )− CE(q̂; F̂ ))∇u(CE(q̂; F̂ )) ,

where ∇u(r) denotes any supergradient of u(·) at r. In particular, since u(·) is an increasing concave function,

it follows that limε→0− u′(CE(q̂; F̂ )+ε) ≥ 0 is one of the supergradient at CE(q̂; F̂ ). Combining this inequality

with the inequality presented in Equation (A1), we get

u(CE(q̂; F̂ ))− Ω1 = EF̂ [u(R · π(Sn, X))]− Ω1 ≤ EF [u(R · π(Sn, X))]

= u(CE(q̂;F )) ≤ u(CE(q̂; F̂ )) + (CE(q̂;F )− CE(q̂; F̂ ))∇u(CE(q̂; F̂ ))

so that

CE(q̂;F ) ≥ CE(q̂; F̂ )− Ω1/∇u(CE(q̂; F̂ ))

follows since it was assumed that u(·) is strictly increasing. This completes the proof of Theorem 1.
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A.2 Proof of Theorem 2

We first show that there exist an optimal solution q∗ for problem (1).

Lemma A.3 Given Assumptions 1, 2, and 5, we have that problem (1) is bounded.

Proof. Similarly as was done in the proof of Lemma A.2, we can reformulate problem (1) in terms of both

an orientation vector and a scale decision variable. This gives us

maximize
s∈R,v∈Rp

EF [u(sRXT v)]

s. t. s ≥ 0 , ‖v‖2 = 1 .

Note that the optimal value of the above problem is necessarily greater or equal to u(0) = 0. Moreover, in

the case where it is exactly zero, then s∗ = 0 is an optimal solution and we can conclude that there exists

a bounded q∗. We therefore focus in what follows on the case where the optimal value is strictly positive or

even unbounded.

Based on Assumption 5, since no feature induces an arbitrage opportunity, it follows that for any v of norm

equal to one, either PF (RXT v = 0) = 1 or there exists a δ > 0 and a % > 0 such that PF (RXT v < −δ) = %

. In the former case, v cannot be an optimal assignment since EF [u(sRXT v)] = u(0) for all s ≥ 0 which

we assumed was a sub-optimal objective value. Now, in the latter case, we let B be a discrete random

variable with two states such that PF (B = −δ) = 1 − PF (B = r̄ξ) = %. Since |RXT v| ≤ r̄ξ, we have that

PF (B ≥ r) ≥ PF (RXT v ≥ r) for all r ∈ R, i.e. that B stochastically dominates RXT v, so that it must

necessarily follow that EF [u(sB)] ≥ EF [u(sRXT v)] for all s ≥ 0. But, by the sublinearity asumption on u,

lim
s→∞

EF [u(sRXT v)] ≤ lim
s→∞

EF [u(sB)] = lim
s→∞

(
%u(−sδ) + (1− %)u(sr̄ξ)

)
≤ lim
s→∞

−%sδ + (1− %)o(s) = −∞

which shows that s?, and therefore ‖q?‖2, is bounded.

We next invoke a theorem from Sridharan et al. (2009) which will be of use.

Theorem 9 (See Theorem 1 in Sridharan et al. (2009)) LetW be a closed convex subset of a Banach space

with norm ‖ · ‖ and dual norm ‖ · ‖∗ and consider f(w, x, r) := `(〈w,Φ(x, r)〉;x, r) + λ‖w‖2, where ` :
R × Rp+1 → R is L-Lipschitz and convex in its first argument and where Φ : Rp × R → W is bounded such

that PF (‖Φ(X,R)‖ ≤ B) = 1. Then, for any δ > 0, with probability at least 1 − δ over a sample of size n,

we have that :

F (ŵ)− F (w∗) ≤ 4L2B2(32 + ln(1/δ)

λn
,

where F (w) := EF [f(w,X,R)], F̂ (w) := (1/n)
∑n
i=1 f(w, xi, ri), w∗ := arg minw∈W F (w), and ŵ :=

arg minw∈W F̂ (w).

By considering that Φ(x, r) := x, which is bounded by ξ when using the 2-norm, and that `(z;x, r) :=

−u(zr) which is convex and γr̄-Lipschitz for all x ∈ SX and r ∈ SR, we immediately get the following

corollary. Note that to get this result we also exploit the fact that f(q, x, r) is 2λ-strongly convex with

respect to the 2-norm which implies, based on for example Lemma 13 in Shalev-Shwartz (2007) that :

F (ŵ) ≥ F (w∗) + λ‖ŵ − w∗‖22.

Corollary A.1 Given that Assumptions 1, 2, and 3 are satisfied, then one has with confidence of 1− δ that

−λ‖q̂ − q?λ‖22 ≥ EUλ(q̂)− EUλ(q?λ) ≥ −ω,

where ω := 4γ2r̄2ξ2(32 + ln(1/δ))/(λn) and EUλ(q) := EF (u(R · qTX))− λ‖q‖22, with q? := arg minq EU(q)

and q?λ := arg minq EUλ(q).
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Notice that Corollary A.1 implies with confidence 1− δ that

EU(q̂)− EU(q?λ) ≥ λ
(
‖q̂‖22 − ‖q?λ‖22

)
− ω ≥ −λ

(
‖q̂ − q?λ‖22 + 2‖q̂‖2‖q̂ − q?λ‖2

)
− ω.

where EU(q̂) := EF (u(R · q̂TX)). As shown in Lemma A.2, ‖q̂‖2 ≤ r̄ξ/(2λ). Hence, Theorem A.1 further

implies concerning the same 1−δ probability outcomes that ‖q̂−q?λ‖22 ≤ ω/λ, and therefore ‖q̂−q?λ‖2 ≤
√
ω/λ,

so that we end up with

EU(q̂)− EU(q?λ) ≥ −2ω − r̄ξ
√
ω

λ
.

with probability 1− δ. Finally, note that since by the definition of q?λ, we have that

EU(q?)− λ‖q?‖22 ≤ EU(q?λ)− λ‖q?λ‖22 ,

it follows that

EU(q?)− EU(q?λ) ≤ λ
(
‖q?‖22 − ‖q?λ‖22

)
≤ λ‖q?‖22,

so that we can bound the suboptimality of the policy q̂ with probability 1− δ in the following fashion:

EU(q̂) = EU(q?) + EU(q̂)− EU(q?λ) + EU(q?λ)− EU(q?)

≥ EU(q?)− 2ω − r̄ξ
√
ω

λ
− λ‖q?‖22 = EU(q?)− Ω2.

This relation can be exploited in a similar way as in the proof of Theorem 1 (see Section A.1) to derive the

relation between certainty equivalents that is presented in our theorem.

A.3 Proof of Theorem 3

This proof follows exactly the same steps as the proof of Theorem 1. Namely, we can exploit another adapted

version of Theorem 11.1 in Mohri et al. (2012) for a multi-asset investment algorithm π : Rp+1×m×n×Rp →
Rm which constructs an investment portfolio based on a training set Sn := {(x1, r1), . . . , (xm, rm)}, where

each xi ∈ Rm×p and each ri ∈ Rm, and the current market side-information matrix x. The natural extension

of β-stability and ∆-bound to this context is described in what follows.

Definition A.4 A multi-asset investment algorithm π(·) is uniformly β-stable if for any two sample sets

S1
n := {(x1

i , r
1
i )}ni=1 and S2

n := {(x2
i , r

2
i )}ni=1 that are exactly identical except for the j-th sample, i.e.,

(x1
i , r

1
i ) = (x2

i , r
2
i ) for all i 6= j, the following holds:

|u(rTπ(S1
n,x))− u(rTπ(S2

n,x))| ≤ β , ∀x ∈ Sx , ∀ r ∈ Sr .

Definition A.5 A multi-asset investment algorithm π(·) achieves a ∆-bounded utility range if for all sample

sets S1
n and S2

n:

|u(r π(S1
n,x))− u(r′ π(S2

n,x
′))| ≤ ∆ , ∀(r,x) ∈ Sr × Sx, ∀(r′,x′) ∈ Sr × Sx .

This leads us to adapting Theorem 8 to the context of multi-asset investment algorithms.

Theorem 10 (Second adapted version of Theorem 11.1 in Mohri et al. (2012)) Given that a multi-asset

investment algorithm q̂(·) is uniformly β-stable and achieves a ∆-bounded utility range, then one is guaranteed

with a confidence of 1− δ that

EF [u(RTπ(Sn,X))] ≥ EF̂ [u(RTπ(Sn,X))]− β − (2nβ + ∆)

√
ln(1/δ)

2n
.

This time, we consider a multi-asset investment algorithm to be defined as π(Sn,x) := xq̂(Sn) where

q̂(Sn) := arg maxq EF̂ [u(RTXq)] + λ‖q‖22. In particular, the same steps can be used to verify that this

algorithm is (γr̄ξ)2

2λn -stable and that ∆ := (γ+1)ξ2r̄2

2λ is a valid ∆-bound for the utility range achieved using this

estimator. For completeness, we repeat the argument that is used to establish the bound on q̂(Sn).
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Lemma A.4 Given Assumptions 6 and 7, we have that ‖q̂(Sn)‖2 ≤ r̄ξ/(2λ) with probability one.

Proof. We first reformulate problem (2) as follows

maximize
s∈R,v∈Rp

1

n

n∑
i=1

u(sRT
i Xiv)− λs2

s. t. s ≥ 0 , ‖v‖2 = 1 ,

such that q̂(Sn) = s∗ · v∗ when (s∗,v∗) is the pair of optimal assignments for this optimization problem.

It is therefore clear that s∗ = ‖q̂(Sn)‖2 and our proof reduces to establishing an upper bound for s∗. By

recognizing that s∗ = arg maxs≥0 g(s) := 1
n

∑n
i=1 u(sRT

i Xiv
∗) − λs2 and that g(s) is a concave function,

then it is necessarily the case that if there exists a s̄ ≥ 0 such that g(·) is non-increasing at s̄ then s∗ ≤ s̄.

We can actually show that this is the case for s̄ := r̄ξ/(2λ) by upper bounding the impact of taking a step

of δ > 0:

g(s̄+ δ)− g(s̄) =
1

n

n∑
i=1

(u((s̄+ δ)RT
i Xiv

∗)− u(s̄RT
i Xiv

∗))− λ((s̄+ δ)2 − s̄2)

≤ 1

n

n∑
i=1

(u((s̄+ δ)|RT
i Xiv

∗|)− u(s̄|RT
i Xiv

∗|))− λ((s̄+ δ)2 − s̄2)

≤ 1

n

n∑
i=1

δ|RT
i Xiv

∗| − λ(2s̄δ + δ2)

≤ δr̄ξ − 2λs̄δ − λδ2 = −λδ2 ≤ 0 ,

where we first used the fact that u(·) is increasing, next that u(y + δ) ≤ u(y) + δ when δ ≥ 0 since it is a

concave function with a subgradient of one at zero. Finally, we exploited Assumptions 6 and 7.

A.4 Proof of Theorem 5

This follows from the representer theorem (see Theorem 9 in Hofmann et al. (2008)) which states that the

optimal solution to problem (8) always takes the form of a linear combination of the kernel expansion of the

sample points. Specifically, there exists a linear combination α ∈ Rn such that ŵ :=
∑n
j=1 αjΦ(xj). This

implies that the optimization can be reduced to optimizing over the space of α ∈ Rn. When doing so, the

objective function becomes:

1

n

n∑
i=1

u(ri〈
n∑
j=1

αjΦ(xj),Φ(xi)〉)− λ〈
n∑
i=1

αiΦ(xi),

n∑
j=1

αjΦ(xj)〉

=
1

n

n∑
i=1

u(ri

n∑
j=1

αj〈Φ(xj),Φ(xi)〉)− λ
n∑
i=1

n∑
j=1

αiαj〈Φ(xi),Φ(xj)〉

=
1

n

n∑
i=1

u(ri

n∑
j=1

αjk(xj , xi))− λ
n∑
i=1

n∑
j=1

αiαjk(xi, xj) .

This directly leads to the objective function used in problem (9).

A.5 Proof of Theorem 4

The steps of this proof follows almost exactly as the steps presented for the proof of Theorem 2 in Ap-

pendix A.2. We can first demonstrate that problem (1) remains bounded in the multi-asset setting using the

same steps as in the proof of Lemma A.3. We then apply Theorem 9 using this time φ(x, r) := xTr (instead

of φ(x, r) := x) , which is bounded by r̄ξ when using the 2-norm, and using `(z;x, r) := −u(z) (instead of

`(z;x, r) := −u(zr)) which is convex and γ-Lipschitz. Together with the fact that f(q,x, r) is 2λ-strongly

convex with respect to the 2-norm, we immediately get the following corollary.
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Corollary A.2 Given that Assumptions 3, 6, and 7 are satisfied, then one has with confidence of 1− δ that

−λ‖q̂ − q?λ‖22 ≥ EUλ(q̂)− EUλ(q?λ) ≥ −ω,

where ω := 4γ2r̄2ξ2(32+ln(1/δ))/(λn) and where EU(q) := EF (u(RTXq)) and EUλ(q) := EF (u(RTXq))−
λ‖q‖22, with q? := arg minq EU(q) and q?λ := arg minq EUλ(q).

The rest of the proof is straightforward and exploits the bound on q̂ established in Lemma A.4.

A.6 Proof of Theorem 6

This proof follows exactly the same steps as the proof of Theorem 1 and 3. Namely, we exploit exactly

the version of Theorem 11.1 in Mohri et al. (2012) presented in Theorem 8 with the investment algorithm

π : Rp+1×m×n × Rp → Rm defined as π(Sn, x) := 〈ŵ(Sn),Φ(x)〉. Once again, the same steps can be used, in

the reproducing Hilbert kernel space W replacing q with w and x with Φ(x) in the analysis, to verify that

this algorithm is (γr̄ξ)2

2λn -stable and that ∆ := (γ+1)ξ2r̄2

2λ is a valid ∆-bound for the utility range achieved using

this estimator. For completeness, we repeat the argument that is used to establish the bound on ŵ(Sn).

Lemma A.5 Given Assumptions 1 and 9, we have that ‖ŵ(Sn)‖2 ≤ r̄ξ/(2λ) with probability one.

Proof. We first reformulate problem (8) as follows

maximize
s∈R,w∈W

1

n

n∑
i=1

u(ri · 〈sw,Φ(xi)〉)− λ‖sw‖22

s. t. s ≥ 0 , ‖w‖2 = 1 ,

such that ŵ = s∗ · w∗ when (s∗, w∗) is the pair of optimal assignments for this optimization problem. It is

therefore clear that s∗ = ‖ŵ‖2 and our proof reduces to establishing an upper bound for s∗. By recognizing

that s∗ = arg maxs≥0 g(s) := 1
n

∑n
i=1 u(ri · 〈sw,Φ(xi)〉)−λ‖sw‖22 and that g(s) is a concave function, then it

is necessarily the case that if there exists a s̄ ≥ 0 such that g(·) is non-increasing at s̄ then s∗ ≤ s̄. We can

actually show that this is the case for s̄ := r̄ξ/(2λ) by upper bounding the impact of taking a step of δ > 0:

g(s̄+ δ)− g(s̄) =
1

n

n∑
i=1

(u(ri · 〈(s̄+ δ)w,Φ(xi)〉)− u(ri · 〈s̄w,Φ(xi)〉)− λ((s̄+ δ)2 − s̄2)

≤ 1

n

n∑
i=1

(u((s̄+ δ)|ri · 〈w,Φ(xi)〉|)− u(s̄|ri · 〈w,Φ(xi)〉|))− λ((s̄+ δ)2 − s̄2)

≤ 1

n

n∑
i=1

δ|ri〈w,Φ(xi)〉| − λ(2s̄δ + δ2)

≤ δr̄ξ − 2λs̄δ − λδ2 = −λδ2 ≤ 0 ,

following exactly the same arguments as in the proof of Theorem A.2.

A.7 Proof of Theorem 7

The steps of this proof follows exactly as the steps presented for the proof of Theorem 2 but in the reproducing

Hilbert kernel space W. We can first demonstrate that problem (7) remains bounded yet this time when

Assumption 10 is satisfied.

Lemma A.6 Given Assumptions 1, 2, and 10, we have that problem (7) is bounded.
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Proof. Similarly as was done in the proof of Lemma A.3, we can reformulate problem (7) in terms of both

an orientation vector and a scale decision variable. This gives us

maximize
s∈R,w∈W

EF [u(R · 〈sw,Φ(X)〉)] (A2a)

s. t. s ≥ 0 , ‖w‖2 = 1 . (A2b)

We can once again focus on the case where the optimal value is strictly positive or even infinite. Let us

consider any fixed w of norm equal to one and verify that we can once again identify some δ > 0 and % > 0

such that PF (R · 〈w,Φ(X)〉 < −δ) = % in order for the rest of the proof to follow as before. In particular,

we can first make the case that PF (|R · 〈w,Φ(X)〉| > 0) = 0 necessarily leads to a sub-optimal assignment

for w. Indeed, for such assignments R · 〈w,Φ(X)〉 = 0 with probability one hence the objective value of

problem (A2) is zero which we considered sub-optimal.

Next, since we have that PF (|R · 〈w,Φ(X)〉| > 0) > 0, it must be that at least one of the following

statements is true:

PF (R > 0 |X ∈ SX+)PF (X ∈ SX+) > 0

PF (R < 0 |X ∈ SX+)PF (X ∈ SX+) > 0

PF (R > 0 |X ∈ SX−)PF (X ∈ SX−) > 0

PF (R > 0 |X ∈ SX−)PF (X ∈ SX−) > 0 , ,

where SX+ := {x ∈ Rp | 〈w,Φ(X)〉| > 0} while SX− := {x ∈ Rp | 〈w,Φ(X)〉| < 0}. For each of these cases, we

can confirm that this necessarily implies that PF (R · 〈w,Φ(X)〉 < 0) > 0. In the first case, one can argue that

PF (R > 0 |X ∈ SX+)PF (X ∈ SX+) > 0 ⇒ PF (R > 0 |X ∈ SX+) > 0 & PF (X ∈ SX+) > 0

⇒ PF (R < 0 |X ∈ SX+) > 0 & PF (X ∈ SX+) > 0

⇒ PF (R · 〈w,Φ(X)〉 < 0) > 0 ,

where we employed Assumption 10 to get the second implication. On the other hand, the second case leads to:

PF (R < 0 |X ∈ SX+)PF (X ∈ SX+) > 0 ⇒ PF (R < 0 |X ∈ SX+) > 0 & PF (X ∈ SX+) > 0

⇒ PF (R · 〈w,Φ(X)〉 < 0) > 0 .

The next two cases are similar. We can therefore conclude that there must exist some δ > 0 and % > 0 such

that PF (R · 〈w,Φ(X)〉 < −δ) = %.

We then apply Theorem 9 using this time φ(x, r) := Φ(x) (instead of φ(x, r) := x) , which is again

bounded by ξ when using the 2-norm, and using again `(z;x, r) := −u(z) which is convex and γr̄-Lipschitz.

Together with the fact that f(w, x, r) is 2λ-strongly convex with respect to the 2-norm, we immediately get

the following corollary.

Corollary A.3 Given that Assumptions 3, 1, and 9 are satisfied, then one has with confidence of 1− δ that

−λ‖ŵ − w?λ‖22 ≥ EUλ(ŵ)− EUλ(w?λ) ≥ −ω,

where ω := 4γ2r̄2ξ2(32 + ln(1/δ))/(λn) and where EU(w) := EF (u(R · 〈w,Φ(X)〉)) and EUλ(w) := EF (u(R ·
〈w,Φ(X)〉))− λ‖w‖22, with w? := arg minw EU(w) and w?λ := arg minw EUλ(w).

The rest of the proof is straightforward and exploits the bound on ŵ established in Lemma A.5.
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