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Abstract: A new solution approach is developed herein to address the topic of multi-product open-pit mine
production scheduling with multi-element uncertainty. The method is based on extending the Bienstock-
Zuckerberg (BZ) algorithm to the stochastic optimization. The purpose of the BZ algorithm is to exploit the
structure of the problem to solve its linear programming relaxation (LP) efficiently. Numerical results on a
real-size instance show that the LP can be solved to optimality in few minutes, while Cplex takes several
hours to solve it. Following this with a rounding heuristic based on topological sorting and a second heuristic
based on Tabu Search, a feasible integer solution is then obtained within 1–2% of optimality.

Keywords: Open-pit optimization, stochastic programming, Bienstock-Zuckerberg algorithm, multi-element
deposit, long-term production planning, Tabu Search

Résumé : Une nouvelle approche est développée dans cet article pour résoudre le problème de la planification
stratégique de production d’une mine à ciel-ouvert dans un contexte d’incertitude à éléments multiples. La
méthode repose sur l’extension de l’algorithme Bienstock-Zuckerberg (BZ) à l’optimisation stochastique. Le
but de l’algorithme BZ est d’exploiter la structure particulière du problème pour résoudre efficacement sa
relaxation linéaire. Les résultats numériques, suite à une application sur une instance de taille réelle, montrent
que la relaxation linéaire peut être résolue à l’optimal en quelques minutes, alors que Cplex prend plusieurs
heures à le résoudre. Ensuite, en appliquant successivement une heuristique d’arrondissement basée sur un
ordonnancement topologique et une seconde heuristique basée sur la recherche Tabou, une solution entière
réalisable est obtenue avec un saut d’optimalité allant de 1 à 2%.

Mots clés : Optimisation des mines à ciel-ouvert, programmation stochastique, algorithme de Bienstock-
Zuckerberg, gisement à éléments multiples, planification stratégique de la production, recherche Tabou

Acknowledgments: The work in this paper was funded by FRQNT Grant and the industry members
of the COSMO Stochastic Mine Planning Laboratory: AngloGold Ashanti, Barrick Gold, BHP, De Beers,
IAMGOLD, Kinross Gold, Newmont, and Vale.



Les Cahiers du GERAD G–2018–72 1

1 Introduction

The mining industry is a major player in the global economy, providing most of the mineral and metal that

is essential to not only construction activities related to economic development and urbanization, but also to

both conventional and new high-tech industries, including green technologies and communication. To meet

an ever-increasing demand for metal supplies, millions of dollars are invested each year by mining companies

in new projects and the development of mining operations. The profitability of these investments goes hand-

in-hand with efficiency in mine planning, as all operating and production performance depends on it. It is

crucial to develop decision-making tools that aim to maximize the economic value of a mining project and

meet customer requirements in terms of metal product tonnage and grade quality to be delivered. For these

reasons, mine production scheduling (MPS) has received much attention in the technical literature.

As starting point for optimization, a three-dimensional model of blocks was introduced very early to

represent mineral deposits. This block model subdivides the mineral deposit into mining blocks in the form

of parallelepipeds and associates with each block a set of pertinent geological attributes, such as metal grades

and material types, obtained from the available drill-hole data. At the time that mine planning is undertaken,

the actual values of each mining block are never exactly known due to the limited drilling information. Values

of pertinent geological attributes are interpolated with a certain degree of accuracy, given the data available.

Once the orebody model is created, mine production scheduling involves the determination of which mining

blocks should be extracted during each time period, and what is to be done with them once they are extracted,

choosing from a given set of possible destinations.

The conventional approaches to solve the MPS use a single deposit model created as a weighted average of

local data. They are thus, deterministic in the sense that they consider all the information utilized as precise

and well known, ignoring the sources of uncertainty and risks. The first attempts date back to Johnson (1969)

who applied the Dantzig-Wolfe decomposition to reduce the resolution of the problem to the resolution of

several subproblems of reasonable size. Subsequently, Dagdeleen and Johnson (1986) propose an exact method

based on the Lagrangian relaxation of resource constraints. The results were promising, but still not applicable

on realistic size instances. To alleviate this problem and make large instances computationally tractable,

several methods have been suggested. Heuristic methods for aggregating ore blocks have been proposed

by Ramazan (1996) and Whittle (1988, 1999), while Ramazan (2007) has developed the Fundamental Tree

Algorithm (FTA), which optimally aggregates blocks based on exploiting the structure of the problem. To

reduce the number of required binary variables, Topal (2003) define, for each block, the earliest and the

latest period when it can be extracted. Dimitrakopoulos and Ramazan (2008), Cullembine et al. (2011),

and Lamghari and Dimitrakopoulos (2014) use the sliding time window by fixing some variables and relaxing

the integrity of some others temporarily. Heuristics have been widely proposed. Some works use classical

heuristics such as swarm optimization (Khan and Niemann-Delius, 2014) or genetic algorithms (Denby and

Schofield, 1994). Others combine heuristics and optimization methods as presented in the paper by Lamghari

et al. (2015), which proposes a hybrid method based on linear programming and variable neighborhood local

search. Some other efficient approaches relying on decomposition techniques have been proposed. Tachefine

(1997) uses in his thesis the Lagrangian relaxation of the resource constraints to be reduced to a maximum

closure problem. He innovates by using the bundle method to adjust the Lagrange multipliers, rather than

the classical sub-gradient method. Later, Chicoisne et al. (2012) propose a decomposition algorithm to

solve, in polynomial time, the LP of the MPS considering one single resource (mining capacity) by a period.

Bienstock and Zuckerberg (2009, 2010) develop a new algorithm based on a Lagrangian decomposition to

solve also the LP of the problem, but with an arbitrary number of renewable or non-renewable resources.

Recently, Munoz et al. (2017) extend the template of the Bienstock-Zuckerberg (BZ) algorithm to handle

more problems arising in the context of mine planning.

Nevertheless, there is one critical issue remaining in deterministic optimization methods: ignoring the

uncertainty present in several parameters, such as the metal content, and the lack of robustness that it

creates. The detrministic approach has the effect of smoothing the representation of the pertinent attributes

of the mineral deposit considered (an average of arrange of possible values), and thus, misrepresenting the

deposit by over or underestimating the actual mining potential (Ravenscroft, 1992; Dowd, 1994, 1997). In

addition to the metal content, other parameters are affected by the uncertainty and directly influence the
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expected net present value (NPV) of a project. These parameters include the fluctuation of demand on

metal products (Sabour and Dimitrakopoulos, 2011; Asad and Dimitrakopoulos, 2013), which consequently

affects not only selling prices, but also costs of production, processing, etc. Nevertheless, only the geological

uncertainty has really aroused the interest of researchers given its major impact on the profitability of mining

projects. Through a sensitivity analysis on the effect of several financial factors (NPV, recovery rate, etc.),

Dowd (1994, 1997) demonstrates that geological uncertainty substantially affects the performance of a project

and Baker and Giacomo (1998) shows that ignoring it is the main cause of not meeting production forecasts.

Stochastic simulation (Goovarets, 1997; Boucher and Dimitrakopoulos, 2009) addresses these problems

by reproducing the distribution of the grades and spatial statistics of available data and information, and

thus, preserves the in-situ variability of the deposit. For that, several equiprobable realizations of pertinent

attributes of the mineral deposit are simulated. They are then used simultaneously as inputs for the MPS

to provide results closer to reality along with risk quantification on production forecasts. Stochastic pro-

gramming increases the reliability of planning and its chances of achieving production targets through more

realistic modeling and risk management. Considering uncertainty also leads to better NPVs (15-30% more

on average) than those obtained by deterministic models (Godoy, 2002; Leite and Dimitrakopoulos, 2007,

2014; Albor and Dimitrakopoulos, 2010). This improvement is due in part to the fact that the stochastic

programming approach facilitates the elimination of the effects of smoothing while managing the related risk,

and, by construction, leads to higher chances of meeting forecasts, higher metal production and higher NPV.

In addition, case studies show that stochastic optimal pit limits generate 10-15% additional metal extracted

when compared to the traditional optimal limits (Dimitrakopoulos, 2011). This is a direct result of a more

efficient blending, as well as a better understanding of the spatial distribution and the relationship between

high-quality grade blocks.

All this has led to the stochastic approach’s emergence in the last two decades. The optimal scheduling

is now the one that maximizes the NPV taking into account the uncertainty described by different equiprob-

able simulations of the orebody model. Risk management is reflected in terms of deviations from objectives.

Different methods have been suggested to solve this problem. Lamghari and Dimitrakopoulos (2012) sug-

gested an efficient metaheuristic solution approach based on a diversified Tabu search while Godoy and

Dimitrakopoulos (2004), and Albor and Dimitrakopoulos (2009) use the simulated annealing. Stochastic in-

teger programming (SIP) has also been adopted by several authors for the optimization of mining production

planning considering uncertainty (Ramazan and Dimitrakopoulos, 2007, 2013, Leite and Dimitrakopoulos,

2014). One of the applications that particularly interests this current study is proposed by Benndorf and

Dimitrakopoulos (2013) who deal with an iron deposit where geological uncertainty affects several elements

at once. Also, the authors introduce the objective function a term penalizing an unsmoothed activity. The
current trend is towards global optimization models that focus not only on the extraction, but also on pro-

cessing, consider several metals and minerals, and deal with both blending options and alternative treatments

leading to separate products (Whittle, 2009). Goodfellow and Dimitrakopoulos (2016, 2017) and Montiel and

Dimitrakopoulos (2015, 2017) have recently proposed a stochastic global optimization model with recourse.

They combine three metaheuristics, namely simulated annealing, particle swarm optimization and differential

evolutions. Their method includes a policy for choosing the destinations of the blocks once extracted. The

results obtained are very promising.

This paper proposes an efficient solution method to solve long-term MSP of an open-pit multi-product

mine under multi-element geological uncertainty. The method is based on extending the BZ algorithm (Bi-

enstock and Zuckerberg, 2009) to stochastic optimization. The mathematical formulation is presented in

Section 2. Section 3 presents the solution approach, more specifically how the BZ algorithm is adapted to

stochastic optimization along with the two heuristics proposed to make the solution integer. An applica-

tion on a multi-product iron ore deposit is reported as a case study in Section 4. Implementation details,

computational results on a multi-product iron ore deposit and some conclusions are drawn in Section 5.
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2 Mathematical formulation

Given a 3D block model of an ore body, the relationships among the blocks can be represented through a

directed graph G = (B,A) where the nodes are the mining blocks and an arc (a,b) from a to b means that the

block a cannot be extracted before the block b. This category of constraints is termed the slope constraints.

They are essential to maintain the stability of the orebody during extraction operations and they imply that

a block is accessible only after all its overlying blocks are already extracted. Figure 1 shows a simple 2D

block model and its corresponding graph if a 45-degree slope must be respected.

Figure 1: 2D block model and its corresponding graph

Let suppose that the blocks B should be scheduled over T the lifetime of the mine and sent to one

destination (products ore, mills, waste, etc.) among a given set D = {1 . . . D} . Let R = {1, . . . , R} be the

mineral resources including both ore tonnage and grade targets, and S={1 . . . S} the set of equally possible

scenarios of the unknown orebody. The following notation is also defined to be used in the formulation of

the scheduling problem and next sections.

2.1 Variables

• yb,d,t is the activity variable which takes the value 1 if mining block b is extracted and sent to destination

d by period t and 0, otherwise.

• qurd,t,s and qlrd,t,s are respectively the upper and lower deviation from production resource r at period t

sent to destination d under scenario s.

2.2 Parameters

• pb,d,t,s is the discounted profit obtained, if block b is sent to destination d in period t under scenario s.

• grb,s is the grade of block b for element r under scenario s.

• Gmaxrd,t and Gminrd,t are respectively the expected maximum and minimum grades for resource r sent
to destination d at period t.

• curt and clrt are respectively the discounted unit cost of upper and lower deviation from Gmaxrd,t and

Gminrd,t
• Without loss of generality, all blocks have the same tonnage equal to Q.

• Mmax is the maximum mining capacity per period.

• Γ+
b and Γ−b are respectively the successors and the predecessors of block b defined by: Γ+

b =

{j∈ B|(j, b)∈ A} and Γ−b = {j∈ B|(b, j)∈ A}

Using this notation, the objective function can be formulated as a two-stage stochastic integer program-

ming model (Birge and Louveaux, 1997) as follows:

2.3 Objective function

max
1

S

B∑
b=1

D∑
d=1

T∑
t=1

(
S∑

s=1

p̃b,d,t,syb,d,t

)
− 1

S

D∑
d=1

T∑
t=1

S∑
s=1

R∑
r=1

(
curt qu

r
d,t,s + clrt ql

r
d,t,s

)
where:

p̃b,d,s,t =


pb,d,t,s − pp,(d+1),t,s ∀b∈ B, d < D, t = 1 . . . T, s = 1 . . . S
pb,D,t,s − pb,1,t+1,s ∀b∈ B, t < T, s = 1 . . . S
pb,D,T,s ∀b∈ B, s = 1 . . . S
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The objective function is a combination of two parts. Each one represents a different goal. The first part

indicates that discounted operating income is to be maximized considering all the scenarios. The second

part manages the deviations from production targets over the simulated orebody models. This part ensures

the consideration and the management of uncertainty and variability since the optimization is done over S

equally probable scenarios. Note that the corresponding cost parameters determine the weight of the two

parts in the objective function.

2.4 Constraints

The reserve constraint assures that each block b cannot be extracted and processed more than once overall

periods and is defined by:

yb,D,t ≤ yb,1,t+1 ∀b∈ B, t = 1 . . . T − 1 (1)

yb,(d−1),t ≤ yb,d,t ∀b∈ B, d = 2 . . . D, t = 1 . . . T (2)

Before a block i can be extracted, all the overlaying blocks j must be extracted in the same period or

earlier:

yi,D,t ≤ yj,D,t ∀t = 1 . . . T, (i, j) ∈ A (3)

(a) (b) (c)

Figure 2: Figure 2a represents the original graph G containing only the slope constraints, 2b is obtained by duplicating T times
the graph G and adding the inter-period arcs. 2c represents the graph G and it is derived from 2b by duplicating each node D
times and adding the inter-destination arcs

Figure 2 shows the steps to introduce, respectively, the notion of multi-period and multi-destinations

scheduling into the graph G = (B,A) to obtain a new directed graph G = (B,A) where for each period t and

destination d, a block b is represented by a vertex (b/d/t). G also represents the constraints (1), (2) and (3)

by three different categories of arcs: the inter-period arcs for the constraints (1) represented by dashed lines,

the inter-destination arcs for the constraints (2) represented by thick lines and finally, the slope-constraint

arcs for the constraints (3) represented by thin lines.

In what follows, a new variable y̌bdt is used to simplify the constraints expressions and defined by:

ỹb,d,t =


yb,d,t − yp,(d−1),t ∀b∈ B, d = 2 . . . D, t = 1 . . . T, s = 1 . . . S
yb,1,t − pb,D,t−1 ∀b∈ B, t = 2 . . . T, s = 1 . . . S
yb,1,1 ∀b∈ B, s = 1 . . . S

Grade deviations qurd,t,s and qlrd,t,s for each destination d, period t, element r and under scenario s are

defined by blending constraints formulated in inequations (4) and (5) for the upper and lower deviations
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respectively and for each (s, r) ∈ S×R:

B∑
b=1

(
grbs − Gmaxrd,t

)
·Obs · ỹb,d,t − qurd,t,s ≤ 0 ∀ t = 1 . . . T, d = 1 . . . D (4)

B∑
b=1

(
grbs − Gminrd,t

)
·Obs · ỹb,d,t + qlrd,t,s ≥ 0 ∀ t = 1 . . . T, d = 1 . . . D (5)

Note here that there are three different expressions for each type of constraint due to the definition of the

decision variables “sent by” and not “sent at”. Also, the Obs allows to consider only the ore blocks. Similarly,

ore tonnage deviations quored,t,s and qlored,t,s are defined in inequations (6) and (7):

B∑
b=1

Obs · ỹb,d,t − quored,t,s ≤ Gmax
ore
d,t ∀ t = 1 . . . T, d = 1 . . . D, s = 1 . . . S (6)

B∑
b=1

Obs · ỹb,d,t + qlored,t,s ≥ Gmin
ore
d,t ∀ t = 1 . . . T, d = 1 . . . D, s = 1 . . . S (7)

Then, the constraints (8) limit the total tonnage of handled material at period t subject to maximum mining

capacity:

Q ×
B∑

b=1

yb,D,1 ≤Mmax (8a)

Q ×
B∑

b=1

(yb,D,t − yb,D,t−1) ≤Mmax ∀ t = 2 . . . T (8b)

Finally, the integrity constraints (9) and the non-negativity constraints (10):

yb,d,t ∈ {0, 1} ∀ b ε B, d ε D, t = 1 . . . T (9)

qurd,t,s, ql
r
d,t,s ≥ 0 ∀ d ε D, t = 1 . . . T, s ε S, r ∈ R (10)

3 Solution approach

The proposed methodology consists of three steps. The first step is an adaptation of the algorithm initially

introduced in Bienstock and Zuckerberg (2009). In Section 3.1, a description of how this algorithm was

extended to the stochastic optimization is presented. The second one is a rounding heuristic to the fractional

solution obtained in the first step. This heuristic described in Section 3.2 takes up ideas from the TopoSort

Heuristic proposed by Chicoisne et al. (2012), but some changes are introduced to handle the stochastic

aspect. The third step is to apply a TabuSearch iteratively to improve the quality of the solution obtained

by the rounding heuristic.

3.1 Solving the linear relaxation

The formulation described in Section 2 can be represented in a more compact form as follows where q

represents the deviation variables, and c the discounted unit cost of deviation:

Z = max pty + ctq

s.t. yi ≤ yj ∀ (i, j) ∈ A
My +Hq ≤ d
y ∈ {0, 1}n
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This formulation is more general than the General Precedence Constrained Problem (GPCP) presented

in Bienstock and Zuckerberg (2011), and that doesn’t consider the variables q. Munoz et al. (2017) proved

the correctness of the BZ algorithm even under this form with these extra variables. The authors suggested

that these variables could be used for several modeling purposes (stockpiles, variable capacities, etc.). The

idea proposed in this paper is to use the q variables to model the deviations from production targets, and

thus, extend it to the stochastic formulation.

Recall that the BZ algorithm efficiency lies in three main ideas. First, the algorithm takes advantage of

the problem structure once the side constraints My +Hq ≤ d are relaxed. Indeed, the resulted problem is

the well-known maximum closure problem which can be solved quite efficiently using appropriate algorithms

such as the Pseudoflow Algorithm proposed by Hochbaum (2008). Second, for this class of problem, the inte-

grality gap remains small in practice. Thus, the optimal solution of the linear programming relaxation (LP)

obtained by the BZ algorithm represents a tight upper bound for the integer problem all the more so that tra-

ditional methods often fail to solve even the linear relaxations of real size instances. Third, unlike traditional

Lagrangian relaxation methods that require many iterations and converge very slowly with no satisfying ac-

curacy, the BZ approach uses the dual information to reduce efficiently the size of the LP. In fact, Bienstock

and Zuckerberg (2010) proved that the optimal solution of any instance of GPCP attains no more than l+2

distinct values with l being the number of linearly independent rows in the matrix D, this number remains

relatively small for this class of problem. Thus, in each iteration k, the original feasible region of the problem

can be restricted to the linear space spanned by a generator matrix Gk that forces variables corresponding

to the non-zero entries of each column to be equal. This resembles an aggregation operation in the sense

that it leads to a significant reduction of variables, but it differs in preserving the individual properties of the

blocks. Gk is updated at each iteration after solving the maximum closure problem to generate Gk+1, this

procedure is called “refining”. This procedure and the BZ extended version algorithm are formally described

in Algorithm 1.

Algorithm 1 BZ extended version algorithm
Input: a feasible linear programming problem of the form:

(P1)


max pty + ctq
s.t. Ay ≤ b
My +Hq ≤ d

0 ≤ y ≤ 1

where constraints Ay ≤ b represent the precedence constraints and My +Hq ≤ d the side constraints.
Next, Sk will design a partition of the nodes N at iteration k where |Sk| is the number of sets that make up the partition Sk.
Each element Sh

k of the partition is a set of nodes where 1 ≤ h ≤ |Sk|.

1. λ0 ← 0 , S1
0 ← N and S0 ←

{
S1
0

}
, k ← 1

2. Solve the problem L(P1, λk−1) which is the Lagrangian relaxation of P1 with multipliers equal to λk−1 and having the
form:

L(P1, λk−1)

 max pty + ctq + λk−1(d− (My +Hq ))
s.t. Ay ≤ b
0 ≤ y ≤ 1

Note that the variables q are free here. Thus they can be ignored, and the problem can be treated as a classic
maximum flow problem.

3. Let yk be the optimal solution of L(P1, λk−1). Define the two sets: Ik =
{
i ∈ N

∣∣ yk
i = 1

}
and Ok =

{
i ∈ N

∣∣ yki = 0
}

4. Define the new partition Sk which is the union of all nonempty sets in
{
Sh
k−1 ∩ I

k
∣∣∣1 ≤ h ≤ |Sk−1|

}
∪{

Sh
k−1 ∩O

k
∣∣∣1 ≤ h ≤ |Sk−1|

}
. If k > 1 and the partition didn’t change, STOP and return xk−1 as optimal solution

of P1.

5. Solve the problem Pk
2 which is P1 plus the additional clustering constraints yi = yj for each pair (i, j ) in Sh

k for
1 ≤ h ≤ |Sk|.

6. Let xk the optimal solution of Pk
2 , and λk the optimal dual variables corresponding to the side constraints Dy+Hq ≤ d.

If the dual variables λk didn’t change STOP and return xk as optimal solution of P1.

7. k← k + 1 and go to step 2 after applying coarsification* if needed.
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* Remark: to avoid an intractable growth in the size of the matrix, the coarsification of Sk is applied by

merging the sets Sh
k with common values in xk only when the size of Sk exceeds l+2 (where l is the number

of linearly independent rows in D).

3.2 Rounding heuristic

The rounding heuristic, as its name implies, makes the optimal solution of the LP integer. It is an adaptation

of the TopoSort Heuristic proposed in Chicoisne et al. (2012). Some changes are introduced to handle the

stochastic aspect and discussed later in this section. This heuristic takes as input a topological ordering

of the blocks. This ordering defines a feasible extraction sequence in the sense that it satisfies the slope

constraints. This way, a block appears in the sequence after all its predecessors. Because there are many

possible topological orderings, associating a “weight” to each block leads to finer orderings. Thus, blocks with

lower weights will be scheduled earlier in the sequence. In this paper, the same weight function proposed by

Chicoisne et al. (2012) is retained. It uses the LP solution. For each b∈ B, the weight is calculated as follows:

wb = xb,D,1 +

T∑
t=2

t× (xb,D,t − xb,D,t−1) + (T + 1)× (1− xb,D,T ) .

The weight wb can be interpreted as the probability that block b will be extracted in time t. Blocks not

extracted by time T will be assumed to be extracted in time T+1. Then, let G = (B,A) be the graph defined

in Section 2. Given this graph and a weight vector w, the blocks are classified according to the topological

sorting to obtain a feasible extraction sequence {b1, b2, . . . , bn } where bi represents a block member. This

procedure is described in Algorithm 2. To summarize, a block bi will appear before bj in the sequence, if it

satisfies either 1) bi is a predecessor of bj or 2) wi < wj .

Algorithm 2 TopoSorting (Tsort(G,w))

Inputs: An acyclic directed graph G =(B,A), N a set of nodes, a weight vector w, and ∀b ∈ N , a set Ω−b is defined by

Ω−b = {j ∈ N|(b, j)∈ A}:
i← 1,N ← B, n← |N|
while i < n do

b← argmaxb∈N
{
wb

∣∣∣Ω−b = ∅
}

N ← N\{b}
bi ← b and i← i+ 1

end while

return topological ordering b1, b2 . . . , bn in G that is weighted with respect to w.

Once the topological ordering of the blocks is obtained, a rounding heuristic (RH) is applied. Unlike

the heuristic proposed in Chicoisne et al. (2012) where the model is deterministic, and there are only

hard constraints that represent upper bounds to satisfy, the stochastic model allows the violation of some

constraints by penalizing the objective function and makes them soft. Also, the model contains both upper

and lower bounds for each target. To address these differences, instead of regarding the remaining resources,

to decide whether or not a block can be mined at a specific period and sent to one particular destination, the

solution value after scheduling this block is calculated. If it doesn’t lead to a better solution, the extraction

is refused at this specific period and destination, and other destinations and later periods are checked. Only

the best move is then selected. Furthermore, the heuristic takes advantages of the LP solution by fixing the

blocks that were entirely extracted in the same period. These blocks are sent to the destinations for which

the fractional values are the highest. Only the extraction periods and the destinations of the remaining

blocks (i.e., those that have not been extracted or not been completely extracted in one single period) can

be changed.

More specifically, to apply this heuristic, first, the blocks that should be fixed (conditions referred above)

are identified then, the fractional solution of the LP is simply rounded, and the new solution value is computed.

Next, based on the topological sorting, all the blocks, except for those that have been fixed, are moved (i.e.

advanced, postponed, or simply have their destinations changed) one by one if it leads to a better solution. A
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block can be scheduled at any period and any destination as long as that occurs between the earliest period

of extraction (after all its predecessors) and the lastest one (before all its successors). The move that leads

to the best solution is always selected. The heuristic ends when all the blocks are scheduled and their times

of extraction
{
t1, t2 . . . t|B|

}
are defined. This procedure is summarized in Algorithm 3.

Algorithm 3 RH (Rounding Heuristic)

Inputs: An acyclic directed graph G =(B,A), a weight wb for each block b∈ B, T periods, R resources, X an initial integer
solution which is the result of rounding the LP solution with X⊕(b, t, d) a new solution obtained from X by moving the extraction
of block b to period t and to destination d, F = {b∈ B| ∃ t ≤ T, xbDt − xbDt−1 = 1} the set of blocks that are considered fixed,
and finally

{
t1, t2 . . . t|B|

}
are initialized to the extraction time determined by X.

i← 1

{b1, . . . , bn} ← Tsort (G,w)

while i < n do

Let u = bi and let i← i+ 1

if u /∈ F then

tearliest ←max
{
tj

∣∣∣ j ∈ Γ−u
}

tlastest ←min
{
tj

∣∣∣ j ∈ Γ+
u

}
tu ← argmax { value(X ⊕ (u, t, d)) | tearliest ≤ t ≤ tlastest}
X ← X ⊕ (u, t, d)

end if

end while

return tb∀b ∈ B

3.3 Tabu search

A Tabu Search is then applied considering successively periods p =1, . . . , T to improve the solution obtained

by the Rounding Heuristic. At iteration p, blocks scheduled in earlier periods are considered fixed, and only

the remaining blocks can be moved. This approach uses the cost structure in the mine planning problems

by preferring the extraction of a profitable block as soon as possible, rather than delaying its extraction at

future periods. Next, this heuristic is described more specifically.

At the pth iteration, let Sp be the set of blocks b ∈ B scheduled in periods tb ≤ p (i.e. b ∈ Sp ⇔∑D
d=1 ybdp = 1) defined by the current solution Xp, and let S

p−1
be the set of blocks b ∈ B scheduled

and fixed in periods tb ≤ p − 1 and obtained after applying the Tabu Search the p-1 previous iterations.

Also, the two sets Bp
− and Bp

+ are defined as follows: Bp
− =

{
i∈ B

∣∣ti = p and j /∈ Sp ∀j ∈ Γ+
i

}
and

Bp
+ =

{
i∈ B

∣∣ti = p+ 1 and j ∈ Sp ∀j ∈ Γ−i
}

Figure 3: Current solution and corresponding neighborhood illustrated by B−p (blocks can be removed from Sp) and B+
p (block

can be added to Sp)

The first set represents the blocks located on the “inner” border of Sp. They can be removed from Sp (i.e.,

their extraction can be delayed to a later period or cancelled). The second set represents the blocks located

on the “outer” border of Sp. They can be added to Sp (i.e., pushing forward their extraction or including new

ones if they weren’t scheduled in the current solution) without violating the precedence constraints. Figure 3
schematizes these two sets Bp

− and Bp
+.

The neighborhood of the solution Xp is represented by all the solutions generated either by removing a

block from Bp
− or by adding a block from Bp

+. Algorithm 4 shows how to find all these neighbors given an

initial solution X and a period p. In this algorithm, X ⊕ (i, t, d) represents the solution obtained by moving

a block i from ti to t and from di to d.
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Algorithm 4 getNeighbors (X, p): building the neighborhood of a given solution

Inputs: A feasible solution X, a period p

neighbors← ∅
for (block i in B) do

test ← true

if (ti = p) then

tmin ←min
{
tj | j ∈ Γ+

i

}
if (tmin > ti) then

for (d = 1 . . . D) do

neighbors← neighbors ∪ (X⊕ (i, p+ 1, d)) . (i.e. postpone the extraction to p+ 1)

end for

end if

end if

if (ti = p+ 1) then

tmax ←max
{
tj | j ∈ Γ−i

}
if (tmax ≤ p) then

for (d = 1 . . . D) do

neighbors← neighbors ∪ (X⊕ (i, p, d)) . (i.e. advancing the extraction to period p)

end for

end if

end if

end for

return neighbors

Given the neighbors, the best solution among them is selected even if it leads to a worsening move and

it is automatically added to what it is denoted as Tabu-list. This list regroups all the temporary prohibited

moves. Thus, cycling and coming back to previously-visited solutions are avoided. If the Tabu-list reaches its

maximum size maxTabuSize, some elements are no longer considered Tabu following the rule of FIFO (First

In First Out). However, exceptionally, a Tabu move can be accepted if it generates a better solution than

the best feasible solution known so far. The algorithm will continue searching for an optimal solution until

nitermax successive non-improving iterations are reached. The best solution found so far is then returned

and used as an initial solution for the next period. Algorithm 5 summarizes how the Tabu Search is applied.

Note that the value of a solution X will be noted ZX .

Algorithm 5 TabuSearch(X0, p): Improving the initial solution X0 considering all blocks scheduled be-
fore p as fixed

Inputs: A feasible solution X0, a period p, nitermax the maximum number of iterations without improving the solution, and
maxTabuSize the size of the Tabu list.

sBest← X0, bestCandidate← X0, tabuList← ∅, niter ← 0

while (niter < nitermax) do

sNeighborhood← getNeighbors(bestCandidate, p)

bestCandidate← sNeighborhood [1]

for (sCandidate in sNeighborhood) do

if (((sCandidate /∈ tabuList) and (ZsCandidate > ZbestCandidate)) or ((sCandidate ∈ tabuList) and (ZsCandidate >
ZBest))) then

bestCandidate← sCandidate

end if

end for

if ZbestCandidate > ZsBest then

sBest← bestCandidate

niter ← 0

end if

tabuList← tabuList ∪ bestCandidate
if (| tabuList |> maxTabuSize) then

tabuList← tabuList \tabuList[1] . the first element of the list was considered tabu for maxTabuSize iterations

end if

niter ← niter + 1

end while

return sBest
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4 Numerical results

The numerical tests presented in this section have two objectives: (a) compare the performance of the

extended version of the BZ algorithm to Cplex linear programming algorithms, (b) discuss the quality of the

solutions provided by the two heuristics proposed herein and (c) evaluate the results in terms of risk profiles

of produced grades per period.

4.1 The case study

In this paper, the algorithm is applied to a two-product iron ore deposit in West Australia. The main objective

of this deposit is to meet, at lowest costs, the customer requirements in terms of quality and quantity of the

different geochemical elements for the two products the mine provides. The critical elements considered here

are iron content (Fe), silica content (SiO2), alumina content (Al2O3), phosphorus content (P), and the loss

on ignition (LOI). Table 1 summarizes the ore tonnage and grade limits for the two products over the lifetime

of the mine.

Table 1: Ore tonnage and grade constraints

Production requirements for iron ore deposit over 5 years

One mine with 2 products

Product 1

Year Ore Tonnage (wt) Fe (%) P (%) SiO2 (%) Al2O3 (%) LOI (%)
1 6 000 000 56.0-59.2 0.021-0.038 4.1-5.20 0.9-1.03 9.5-11.0
2 4 000 000 56.0-59.2 0.021-0.038 4.1-5.20 0.9-1.03 9.5-11.0
3 4 000 000 56.0-59.2 0.021-0.038 4.1-5.20 0.9-1.03 9.5-11.0
4 5 300 000 56.0-59.2 0.021-0.038 4.1-5.20 0.9-1.03 9.5-11.0
5 2 500 000 56.0-59.2 0.021-0.038 4.1-5.20 0.9-1.03 9.5-11.0

Product 2

Year Ore Tonnage (wt) Fe (%) P (%) SiO2 (%) Al2O3 (%) LOI (%)
1 8 000 000 57.7-60.0 0.032-0.038 4.2-5.2 0.88-1.05 9.5-11.0
2 6 000 000 57.7-60.0 0.032-0.038 4.2-5.2 0.88-1.05 9.5-11.0
3 6 000 000 57.7-60.0 0.032-0.038 4.2-5.2 0.88-1.05 9.5-11.0
4 3 300 000 57.7-60.0 0.032-0.038 4.2-5.2 0.88-1.05 9.5-11.0
5 4 200 000 57.7-60.0 0.032-0.038 4.2-5.2 0.88-1.05 9.5-11.0

The economic parameters including unit costs, unit revenues and discount factor are summarized in
Table 2. Penalties for deviating from the production targets are also included in Table 2. Several combinations

were tested to determine the penalty costs presented here. The idea was to find a compromise between a

very strict selectivity imposed by high penalties and a more permissive one that would affect the products’

homogeneity. To depict the in-situ variability and uncertainty of these parameters in the scheduling, 10

stochastically simulated orebody models are considered. They are obtained from the computationally joint

direct block simulation approach proposed by Boucher and Dimitrakopoulos (2012). All the simulated models

have 33,168 blocks. Each block contains the total attributes tonnage, ore tonnage as well as the total content

of each element Fe, P, SiO2, Al2O3, and LOI. Furthermore. Also, no Fe cut-off grade is fixed, the solver is

free to consider a block as ore or waste.

4.2 Implementation and results

All the algorithms were developed in the C++ programming language, and all the computational tests were

carried out on an Intel Core i5 computer (2.3 GHz) with 8.00 GB of RAM running under Windows 10. The

extended version of the BZ algorithm, the Rounding Heuristic, and the Tabu Search will be referred as ExBZ,

RH and TS, respectively. Before presenting the results, the different parameter values are first explained.

ExBZ. To solve maximum-flow subproblems, the pseudoflow algorithm presented in Hochbaum (2008) is

used, and the LP is solved using Cplex with the default settings.
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Table 2: Economic parameters for long-term production scheduling

Product 1 Product 2

Price of recovered metal 26$/t 30$/t
Processing costs 5$/t 6$/t
Mining costs 5$/t
Waste costs 5$/t
Economic discount rate 10 %
Penalty for Fe deviations 10$/t
Penalty for SiO2 deviations 10$/t
Penalty for P deviations 10$/t
Penalty for Al2O3 deviations 10$/t
Penalty for LOI deviations 1$/t
Penalty for Ore target deviations 25$/t

TS. For the tabu search, there are two major parameters. They were defined based on preliminary tests:

• The maximum size of the TabuList or in other terms, the number of iterations during which a move

remains tabu or forbidden is fixed at 1000 iterations which is, in average, nearly equal to 0.6N where

N is the number of blocks that can be moved at each iteration or, in other words, the size of the

neighborhood at each iteration.

• Stop criterion: Maximum number of successive non-improving iterations: 0.3N.

In what follows, the objective function values will always be divided by the upper bound obtained with

Cplex. This allows having an idea about the quality of the solutions and their proximity to the optimal value

of the linear relaxation. Table 3 shows the running times and the objective function values using Cplex,

ExBZ and the heuristics RH and TS. ExBZ manages to solve the LP relaxation within 44 minutes while

Cplex takes more than 4 hours to do it. The time required to run the RH is negligible. However, the value

obtained with this heuristic is relatively poor (within 15–20% of optimality). The table also shows that TS

does a very good job in terms of improving the solution obtained by RH. After running for 17 minutes, the

solution value goes from 20% to less than 1,2% of optimality.

Table 3: Running time and solution quality using Cplex, ExBZ, RH, TS

Cplex ExBZ RH TS

Time 4h20m 44m < 10s 17m
Gap % 0 0 15–20 < 1, 2

4.3 Risk profiles

The results are now evaluated regarding risk profiles of produced grades for the critical elements Fe, SiO2,

Al2O3, P , and LOI. Figure 4 shows the grades for each period, each possible scenario for both products. A

point outside the bounds reflects a deviation from production targets.

The risk profiles of Fe, P and LOI content lead to the conclusion that there is no risk of deviating from

production targets. However, it is more critical with SiO2 and Al2O3 that failed to meet the targets for

at least one period and one simulation. The deviations of SiO2 remain very limited. The most important

deviation is observed at Al2O3 grades of Product 1 with a chance of 30% at period 1 and 50% at period 5.

Higher penalties were tested to decrease this risk, but that improved the result only marginally. A high

in-situ variability and uncertainty of the element can explain it, and blending cannot bypass this issue.

5 Conclusions

In this paper, a method based on a stochastic adaptation of the BZ algorithm, a rounding heuristic and a

Tabu search has been proposed to solve a real case of an open-pit mine production scheduling problem with

multi-destination and under multi-element geological uncertainty. The first heuristic used aims to round the

fractional solution obtained by the BZ algorithm adaptation. It is a greedy heuristic based on topological
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Figure 4: Results of stochastic scheduling in terms of risk profiles for Fe, SiO2, Al2O3, P, and LOI
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sorting techniques. The second one is a Tabu search that improves the quality of the solution. Results show

that the method performs very well when compared to the upper bound provided by Cplex. Indeed, the

gap between the solution obtained and the upper bound is smaller than 1.2%. Also, the running time is

reasonable (∼= 1 hour) and even much lower than that obtained by Cplex to solve only the linear relaxation

of the problem. Also, results demonstrate how the stochastic approach leads to control the risk of deviating

from production targets.

A natural next step would consist of testing the method on other instances to verify its robustness. An

additional natural improvement includes finding finer decision-making criteria to accept or reject a block in

the rounding heuristic and, thus, have better solutions to provide the Tabu search with. Another interesting

work will consist of adding mid-short-term constraints for consideration.
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