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• Peuvent télécharger et imprimer une copie de toute publication

du portail public aux fins d’étude ou de recherche privée;

• Ne peuvent pas distribuer le matériel ou l’utiliser pour une ac-
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Abstract: We study an integrated process configuration, lot-sizing, and scheduling problem, which appears
in a real production environment in the packaging industry. Products are produced by alternative process
configurations. The production quantities and capacity consumption depend on which process configurations
are used, how long they are used for, and in which sequence. For the particular case studied here, configuration
decisions are generated at the same time as lot-sizing and sequencing decisions, which involve sequence-
dependent setup costs and times. Due to dependency of these decisions, the model is nonlinear. Even though
a linearization technique can be applied, the problem is still difficult to solve by a mixed integer programming
(MIP) solver due to its complexity. This paper aims to develop efficient solution methods to deal with this
integrated production planning problem. An exact branch-and-check (B&Ch) algorithm based on a relaxed
formulation and using logic-based Benders cuts is proposed to find optimal solutions. In addition, symmetry-
breaking constraints are applied to strengthen the formulations. Results show that in general, the B&Ch
outperforms the linearized models solved by an MIP solver. To efficiently solve large instances, an MIP-based
heuristic is then proposed to find good quality solutions in shorter computing times. Although the problem
studied here is based on the packaging industry, the logic of the B&Ch and the proposed heuristic can be
adapted to other applications where lot-sizing must be determined simultaneously with process configuration
decisions.

Keywords: Lot-sizing and scheduling, process configuration, logic-based Benders decomposition, branch-
and-check, molded pulp industry.
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1 Introduction

We consider an integrated optimization problem which combines process configuration, lot-sizing, and se-

quencing decisions inspired by a real-world production system in the packaging industry. In this integrated

problem, products are produced by alternative process configurations or operation modes. A single product

can be produced by alternative process configurations, and a single process configuration can produce several

products simultaneously. The amount of products produced over the planning horizon depends on how long

and how many times each process configuration is used. Therefore, lot-sizing and sequencing decisions, which

may include sequence-dependent setups, are related to the processes instead of products, as in the classical

lot-sizing problems (Johnson and Montgomery, 1974).

The set of possible process configurations by which products are produced can be either determined

beforehand or generated at the same time as the lot-sizing and scheduling decisions. For some production

environments, the number of configurations might be large, so complete enumeration approaches become

intractable. On the other hand, considering only a subset of them may lead to sub-optimal solutions. Thus,

integrated approaches capable of dealing with process configuration, lot-sizing, and scheduling are desirable

for these integrated problems. A well known similar problem that may be considered as an integration of

process configuration and lot-sizing is the cutting-stock problem, where the amount of each item depends on

how many times the cutting patterns are used. A general review of this integrated optimization problem can

be found in Melega et al. (2018).

Production planning problems which include process configuration decisions also appear in other industrial

applications, as in refineries, the printing industry, and flexible manufacturing systems. For these problems,

machines or production stages can be set according to alternative process configurations, which produce

different products simultaneously. In lumber companies (Gaudreault et al., 2011), for instance, the amounts

and mix of products depend on the configurations used in the drying and finishing stages for each period. In

the foundry industry (Luche et al., 2009), production quantities of electrofused grains depend on the furnace

configuration and the combination of shaking sieves used. In refineries (Göthe-Lundgren et al., 2002; Shi

et al., 2014), production quantities depend on the choice of operation modes for each production unit. In the

offset printing industry (Baumann et al., 2015), the mix and production quantities depend on the designs

allocated to the printing-plate slots and the number of rotations of each plate.

This paper studies the integration of production planning decisions in the molded pulp packaging industry.

In this real application, products are shaped by a molding machine with a specific combination of molds

attached, which is called the molding pattern. The amounts produced depend on the molding patterns

used and the speed of the molding machine (e.g., rotations per hour). Setup times and costs depend on

how these molding patterns are sequenced over a finite planning horizon. As the number of all possible

molding patterns can be very large and laborious to identify beforehand, integrated approaches are expected

to be advantageous for this context. Alternative mathematical formulations to represent this optimization

problem have been proposed in our previous works. Mart́ınez et al. (2016) proposed a linear formulation

for this problem, which assumes that some preset settings for the production line are known in advance to

generate feasible molding patterns. Mart́ınez et al. (2018) proposed a general nonlinear formulation, which

integrates the main decisions and models the operational constraints of the problem. Results showed the

capability of the general model to represent production environments of different sizes and its superiority

over enumerating approaches.

The main contribution of this paper is on the development and performance of exact and heuristic solution

approaches for the studied problem. These contributions are fourfold. First, we provide enhancements to

improve the mathematical formulation presented in Mart́ınez et al. (2018). Valid inequalities are proposed

to deal with different types of symmetries of the original formulation. Second, we propose a reformulation,

which is efficiently solved by an exact algorithm based on a branch-and-check (B&Ch) framework. Third,

we perform extensive computational experiments to demonstrate the effectiveness of the symmetry-breaking

constraints and the performance of the B&Ch algorithm compared to the linearized MIP model solved by

CPLEX. Fourth, an MIP-based heuristic is proposed to achieve competitive solutions in shorter computing

times for larger instances. Although the integrated problem studied here is a particular application in the
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molded pulp packaging industry, we believe the proposed approaches can be adapted to similar applications

which combine lot-sizing with process configuration decisions, and for production planning optimization

problems with nonlinear constraints.

This paper is organized as follows. The next section describes the planning problem. Section 3 presents

the formulations for two different variants of the studied problem. Section 4 describes the symmetries in the

models and proposes a set of valid inequalities to eliminate them. Section 5 describes the solution methods

proposed to solve the problem. Section 6 presents the results of the computational experiments. Finally,

Section 7 presents concluding remarks. We also provide an online supplement with additional information

and detailed results of the approaches proposed here.

2 Problem description

In the molded pulp packaging industry, the process configuration, lot-sizing, and scheduling problem involves

the decisions of generating the molding patterns to be used, defining how long each one should be used for,

and the sequence in which they should be scheduled. Demands are dynamic and assumed to be deterministic,

based on a combination of customer orders and forecasts of future requirements. The sales and marketing

department provides these requirements (weekly demand) on a monthly basis to the production planning

department. A production plan is then created at the beginning of each month to deal with the total demand

of the entire month. Furthermore, some rescheduling decisions could be made every one or two weeks to

improve the initial production plan. Deadlines may be renegotiated with customers, but this is considered

as strategically undesirable. Therefore, backlogging is allowed but with a penalty.

We consider a single production line environment. A production line consists of one rotary molding

machine followed by several conveyors that work simultaneously and synchronously. One mold produces only

one type of product and a product is produced by only one type of mold. The molding machine has a set of

F faces of width L, where molds of different types are attached. Each machine face is assigned to one specific

conveyor, so that the output of the face is exclusively downloaded and transported by such conveyor. The

assignment of faces to conveyors has been decided on beforehand and constitutes an input for the models.

Thus, we consider that the machine faces are divided into disjoint subsets dedicated to each conveyor. These

subsets are called here faces for conveyor k, denoted by Fk, where F =
⋃
k∈K

Fk and
⋂
k∈K

Fk = ∅.

Decisions on the process configuration include how many molds of each type are attached to the molding

machine, i.e., determining the molding patterns. However, not all possible combinations of molds are feasible,

since some operational constraints must be satisfied. These constraints include the synchronization of the

molding machine and conveyors. Conveyors are considered identical, when they have the same total width,

but they may still be configured differently. The configuration of each conveyor is a decision to make which

consists of determining the number of lanes and the width of each lane. Products must be transported on the

conveyors in such a way that only one type of product is assigned to each lane. This is mandatory to properly

carry out the subsequent stages of the process, i.e., sorting, pressing, and packing, which are set up according

to the specific configuration of products on the conveyors. Therefore, the molding pattern attached to the

machine must ensure that the products produced are transported properly on the corresponding conveyors

(i.e., one type of product on each lane).

Figure 1 illustrates a production line and the synchronization of the molding pattern attached to the

machine and the configuration of the conveyors. The molding machine has 6 faces in total. The output

from faces 1, 3, and 5 are transported to conveyor 1, and the output of faces 2, 4, and 6 are transported to

conveyor 2. Conveyor 1 has three separate lanes to feed the packaging stage. Conveyor 2 has two separate

lanes. The sequence of products A, B, and C on the faces 1, 3, and 5 is arranged in such a way that product

A is always transported in the first lane, product B in the second lane and product C in the third lane.

Besides the synchronization between the molding machine and conveyors, the following operational con-

straints must also be satisfied by the process configuration decisions. First, the number of molds of each type
is limited, so each molding pattern must not exceed the total availability. In addition, the capacity of the
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Figure 1: Production line in large scale molded pulp companies

machine faces must be totally used. This implies that all the faces must be used and fully filled with molds.

Next, some products are incompatible and cannot be produced simultaneously. This is imposed because they

may have incompatible physical and chemical characteristics, e.g., different colors, different weights, or they

require a different pulp composition.

Lot-sizing decisions consist of deciding how long each molding pattern should be used for. The production

quantity of each product in a given period is defined as the number of the corresponding molds, multiplied by

how long the molding pattern is used for, and the speed of the molding machine (i.e., rotations per time unit).

Scheduling decisions specify how the molding patterns should be sequenced and involve sequence de-

pendent setup times and costs. To properly represent these decisions, the setup operations are divided in

three different types, namely, Setups I, II and III. Setup I involves the action of stopping and restarting the

production line, and it is done every time a new molding pattern is attached to the machine. This setup

is performed when at least one mold has to be replaced and it does not depend on the patterns and their
sequence. Setup II is related to the steps to attach and detach molds to the machine faces. The total time

for Setup II depends on the number of molds exchanged to set up a different pattern. Setup III is related to

the changeovers in the configuration of the conveyors, i.e., the set of different lanes of different width, and it

is sequence-dependent. This setup operation is usually the longest one since it can last from 10 to 48 hours,

and it is only required when the replaced molds have different sizes.

3 Mathematical formulations

The formulations in this section are based on the general lot-sizing and scheduling problem (GLSP), originally

proposed by Fleischmann and Meyr (1997). The planning horizon is divided into |T | non-overlapping large

time buckets (i.e., one week). This time horizon is further subdivided into |S| non-overlapping subperiods of

variable length. The production line can only be set up for a single molding pattern per subperiod and the

models implicitly determine the length of the subperiod by the time that each pattern is used. The objective

is to minimize the total production costs which include the setup, inventory holding, and backlogging costs.

We present two MIP formulations for two variants of the problem. The first model assumes a production

line where all the molds have the same size, therefore only Setup I and II are required in the scheduling

decisions. The second model represents a generalization of the first model where molds of different sizes can

be used and thus Setup III is possibly required.
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3.1 Model 1: MIP formulation for molds of identical size

In order to define the problem, we present the following sets, parameters, and decision variables.

Sets
T set of time periods (indexed by t);
St set of subperiods belonging to period t (indexed by s);
S set of subperiods, i.e.,

⋃
t∈T St;

N set of products (indexed by i);
O set of incompatible pairs of products (i, i′);
K set of conveyors (indexed by k);
Fk set of faces for conveyor k (indexed by f);
F set of faces of the molding machine, i.e.,

⋃
k∈K Fk;

P set of lanes on each conveyor (indexed by p).

Parameters
h+i unit inventory holding cost for product i;

h−i unit backlogging cost for product i;
scI setup cost for stopping/restarting the production line (Setup I);
scIIi setup cost for attaching/detaching one mold for product i (Setup II);
dit demand of product i in period t;
Qt total time capacity in period t;
Mi number of molds for product i available;
l width of molds;
L total width of every face of the molding machine;
R speed of the molding machine (i.e., rotations per hour);
Hk proportion parameter between the size of the machine faces and conveyor k; this parameter takes the value⌊

L
width of conveyor k

⌋
;

stI setup time for stopping/restarting the production line (Setup I);
stIIi setup time for attaching/detaching one mold for product i (Setup II).

Decision variables

Process configuration decisions
yipks equals 1 if product i is assigned to lane p of conveyor k in subperiod s; 0, otherwise;
xifs number of molds for product i attached to face f in subperiod s.

Lot-sizing decisions
ws production time in subperiod s;

I+it inventory quantity of product i at the end of period t;

I−it backlogged quantity of product i at the end of period t.

Scheduling decisions
vs equals 1 if a new molding pattern is set up in subperiod s; 0, otherwise;
uiks number of molds for product i attached or detached to the faces for conveyor k, in subperiod s.

Auxiliary variables
Yis equals 1 if product i is produced in subperiod s; 0, otherwise;
αiks equals 1 if product i is assigned to all lanes of conveyor k in subperiod s; 0, otherwise;
βks integer variable to impose a logical relationship between the configuration of conveyor k

in subperiod s, and the molds attached to the faces for this conveyor in the same subperiod.

Objective function Objective function (1) minimizes the total production costs, which in this case involves

costs for Setups I and II, inventory holding, and backlogging costs.

Min
∑
s∈S

scIvs +
∑
s∈S

∑
k∈K

∑
i∈N

scIIi uiks +
∑
t∈T

∑
i∈N

(h+i I
+
it + h−i I

−
it ) (1)

Process configuration decisions The set of constraints (2)–(12) are all related to the process configuration

decisions. Constraints (2)–(5) define the configuration of the conveyors. Specifically, constraints (2) enforce

that only one product is assigned to each lane of each conveyor in each subperiod. Constraints (3) and (4)

ensure that product i is produced in a given subperiod if, and only if, this product is assigned to at least

one lane in any of the conveyors. Constraints (5) guarantee that incompatible products are not produced

simultaneously in any of the subperiods.∑
i∈N

yipks = 1 ∀s ∈ S; k ∈ K; p ∈ P (2)
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Yis ≤
∑
k∈K

∑
p∈P

yipks ∀s ∈ S; i ∈ N (3)

Yis ≥ yipks ∀s ∈ S; i ∈ N ; k ∈ K; p ∈ P (4)

Yis + Yi′s ≤ 1 ∀s ∈ S; (i, i′) ∈ O (5)

Constraints (6)–(7) define the molding patterns attached to the machine. Constraints (6) ensure that as

many molds as possible are attached to each machine face. Therefore, the sum of the width of these molds

must not exceed the total width of the machine face and there must not remain enough space to attach any

other mold. Note that, as this model assumes that all the molds have the same width, we can state that the

number of molds attached to each face is exactly
⌊
L
l

⌋
. Constraints (7) guarantee that for each subperiod,

the required number of molds to be attached to the complete machine does not exceed the number of molds

available of each type. ∑
i∈N

xifs =

⌊
L

l

⌋
∀s ∈ S; f ∈ F (6)∑

f∈F

xifs ≤Mi ∀s ∈ S; i ∈ N (7)

Constraints (8)–(12) link the configurations of conveyors and the molding machine to synchronize the

process. Constraints (8) ensure that the molds attached to the machine correspond to the products assigned

to the conveyors. Therefore, if molds for product i are attached to any of the faces for conveyor k (i.e.,

any f ∈ Fk), then product i must be assigned to at least one lane of conveyor k. Constraints (9) are valid

inequalities and ensure that if product i is transported on conveyor k, then the number of molds for this

product attached to each face for the same conveyor (i.e., ∀ f ∈ Fk) is at least Hk multiplied by the number

of lanes filled by product i. Our results show that these valid inequalities significantly improve the lower

bounds of the formulations.∑
f∈Fk

xifs ≤Mi

∑
p∈P

yipks ∀s ∈ S; k ∈ K; i ∈ N (8)

xifs ≥ Hk

∑
p∈P

yipks ∀s ∈ S; k ∈ K; f ∈ Fk; i ∈ N (9)

Constraints (10) determine whether conveyors transport different products at the same time or not. They
impose that αiks = 1 if and only if product i is assigned to all the lanes in conveyor k in subperiod s (i.e.,∑

p∈P yipks = |P |).
|P | −

∑
p∈P

yipks ≤ |P |(1− αiks) ∀s ∈ S; i ∈ N ; k ∈ K (10)

Constraints (11) and (12) ensure that the products will be arranged in the same order on the conveyor,

as demanded by the operational constraints for this problem. To be able to satisfy this synchronization,

we have to impose a logical relationship between the configuration of a conveyor and the molds attached to

the faces for this conveyor. This is imposed particularly for the cases in which a conveyor is configured to

transport different products simultaneously. The nonlinear constraints (11) and (12) guarantee that there is

an integer βks so that for any product the number of molds attached to the faces for conveyor k equals the

number of lanes assigned to this product, multiplied by βks. When the conveyor k transports only one type

of product (i.e.,
∑

i∈N αiks = 1), this condition can be relaxed, so the number of molds attached are only

defined by (6)–(9). Note that Bk in constraints (11) and (12) is an upper bound of
∑

f∈Fk
xifs, which can

be defined as Bk = |Fk|
⌊
L
l

⌋
.∑

f∈Fk

xifs ≤ βks
∑
p∈P

yipks +Bk

∑
i′∈N

αi′ks ∀s ∈ S; i ∈ N ; k ∈ K (11)

∑
f∈Fk

xifs ≥ βks
∑
p∈P

yipks −Bk

∑
i′∈N

αi′ks ∀s ∈ S; i ∈ N ; k ∈ K (12)
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Lot-sizing decisions Constraints (13) ensure that the total time capacity of each period, which is consumed

by setup times and production times of the patterns used in that period, is not exceeded. Constraints (14)

are the demand balance constraints, which link the process configuration and lot-sizing decisions in order to

determine the production quantities in each period. Note that for this problem, the quantity produced of

each product is a function of the molding patterns defined, the speed of the molding machine R, and the

time each pattern is used (i.e., ws), which results in another set of nonlinear constraints. These constraints,

as well as constraints (11)–(12), can be linearized as presented in Appendix A of the online supplement.∑
s∈St

ws +
∑
s∈St

stIvs +
∑
s∈St

∑
k∈K

∑
i∈N

stIIi uiks ≤ Qt ∀t ∈ T (13)

I+i(t−1) +
∑
s∈St

YiswsR
∑
f∈F

xifs + I−it = dit + I−i(t−1) + I+it ∀t ∈ T ; i ∈ N (14)

Scheduling decisions Constraints (15) and (16) model Setup II by determining how many molds of each

type are attached and detached to the set of faces for each conveyor. Note that, as uiks ≥ 0, constraints (15)

are active when molds of type i are attached to the faces f ∈ Fk in subperiod s, while constraints (16) are

active when molds of type i need to be detached in this subperiod. Constraints (17) ensure that the Setup I

is done when at least one mold of any type needs to be attached or detached, i.e., every time a new molding

pattern is set up.

uiks ≥
∑
f∈Fk

xifs −
∑
f∈Fk

xif(s−1) ∀s ∈ S : s ≥ 1; i ∈ N ; k ∈ K (15)

uiks ≥
∑
f∈Fk

xif(s−1) −
∑
f∈Fk

xifs ∀s ∈ S : s ≥ 1; i ∈ N ; k ∈ K (16)

uiks ≤Mivs ∀s ∈ S; i ∈ N ; k ∈ K (17)

Finally constraints (18) define the domain of the variables in this formulation.

Yis, vs, yipks, αiks ∈ {0, 1}; xifs, βks ∈ Z+; uiks, ws, I
+
it , I

−
it ∈ R+

∀t ∈ T ; s ∈ S; i ∈ N ; k ∈ K; f ∈ F ; p ∈ P
(18)

3.2 Model 2: MIP formulation for molds of different size

This formulation is a generalization of the previous one because it assumes that the molds attached to the

machine may be of different sizes. In this case, the conveyors might require adjustments in their lanes, which

involve an additional setup operation named Setup III. To model the decisions about the configuration of

conveyors, in addition to defining which product is assigned to each lane, it is also necessary to know which

arrangement must be set up for each conveyor. An arrangement defines how many lanes are set up on the

conveyor and the width of each one. The set of possible arrangements E as well as the data related to them

are determined in advance, i.e., the number of lanes (|Pe|) and the width of each lane (gpe). As we considered

that conveyors are identical (i.e., they have the same total width), it implies that all conveyors in set K can

be configured to any possible arrangement e ∈ E. Thus, the configuration of a conveyor is defined by deciding

which arrangement is set up and which product is assigned to each lane. Model 1 can be considered as a

special case of Model 2, when the number of possible arrangements equals one (|E| = 1) and li = l, ∀i ∈ N .

In addition to the data and variables defined for Model 1, the following data and variables are also required

for Model 2.
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Additional sets
E set of arrangements for conveyors (indexed by e);
Pe set of lanes of a conveyor according to arrangement e;

⋃
e∈E Pe = P and

⋂
e∈E Pe 6= ∅.

Additional parameters
li width of molds for product i;
gpe width of lane p if a conveyor is set up according to arrangement e;
ape equals 1 if position p ∈ Pe; 0 otherwise;
scIII

ee′ setup cost for a changeover from arrangement e to e′ (Setup III);

stIII
ee′ setup time for a changeover from arrangement e to e′ (Setup III).

Additional decision variables
zkes equals 1, if conveyor k is set up according to arrangement e in subperiod s; 0, otherwise;
bee′ks equals 1, if there is a changeover from arrangement e to e′ in conveyor k, in subperiod s;

0, otherwise.

Objective function As in Model 1, the objective (19) is to minimize the total costs, which in this case also

include the cost for Setup III.

Min
∑
s∈S

scIvs +
∑
s∈S

∑
k∈K

∑
i∈N

scIIi uiks +
∑
s∈S

∑
k∈K

∑
e, e′∈E

scIIIee′ bee′ks +
∑
t∈T

∑
i∈N

(h+i I
+
it + h−i I

−
it ) (19)

Process configuration decisions Constraints (20)–(22), in addition to (3)–(5), define the setup state of the

conveyors. Constraints (20) ensure that each conveyor is set up for only one arrangement in each subperiod.

Constraints (21) ensure that a single type of product is assigned to each lane configured on each conveyor.

The number of lanes in a conveyor depends on the arrangement set up, which is a decision to be made.

Constraints (22) guarantee that, if product i is assigned to lane p, then the lane and the mold that produces

this product have the same width. These constraints are valid because of (21) and the assumption that each

product is obtained by only one type of mold.∑
e∈E

zkes = 1 ∀s ∈ S; k ∈ K (20)∑
i∈N

yipks =
∑
e∈E

apezkes ∀s ∈ S; k ∈ K; p ∈ P (21)∑
i∈N

liyipks =
∑
e∈E

gpezkes ∀s ∈ S; k ∈ K; p ∈ P (22)

Constraints related to the configuration of the molding machine, i.e., constraints (7), and the synchro-

nization between the machine and conveyors, i.e., (8)–(9) and (11)–(12), remain the same as in Model 1.

Constraints (23)–(24) are included in this model to guarantee that each machine face is completely filled

with molds. As the size of molds might be different in this case, the number of molds to be attached to each

face is not known in advance as in Model 1 (i.e., bLl c). Therefore, constraints (23) impose that the sum of the

width of the molds attached to each face does not exceed the total width of the face, whereas constraints (24)

ensure that the unused space in each face is smaller than the size of the smallest lane of the corresponding

conveyor. As the lanes of conveyors and molds attached to their faces are of the same width (imposed by

constraints (22)), this also implies that there should not be enough space left to attach any mold of any type

set up in a specific subperiod. The value of ξ is set up as 10e-4 for this implementation.

Similar to constraints (10) for Model 1, constraints (25) ensure αiks = 1 if all the lanes of conveyor k are

assigned to the same product i. ∑
i∈N

lixifs ≤ L ∀s ∈ S; f ∈ F (23)

L−
∑
i∈N

lixifs ≤
∑
e∈E

min
p∈Pe

{gpe}zkes − ξ ∀s ∈ S; k ∈ K; f ∈ Fk (24)∑
e∈E
|Pe|zkes −

∑
p∈P

yipks ≤ |P |(1− αiks) s ∈ S; i ∈ N ; k ∈ K (25)
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Lot-sizing decisions These sets of constraints include the inventory balance equalities (14) as in Model 1

and constraints (26). These are the capacity consumption constraints, which include the time required for

Setup III, where stIIIee = 0, ∀e ∈ E.∑
s∈St

stIvs +
∑
s∈St

∑
k∈K

∑
i∈N

stIIi uiks +
∑
s∈St

∑
k∈K

∑
e,e′∈E

stIIIee′ bee′ks +
∑
s∈St

ws ≤ Qt ∀t ∈ T (26)

Scheduling decisions In addition to constraints (15)–(17) in Model 1 for Setups I and II, constraints (27)

and (28) for Setup III are added. These constraints model the changeovers of the arrangements on each

conveyor, which are sequence-dependent. Constraints (29) properly link Setups I and III, so that Setup I

must be performed if Setup III occurs in a given subperiod. Constraints (29) can be omitted because they are

redundant with constraints (15)–(17) and (27)–(28). However, preliminary experiments for this formulation

showed improved results when these valid inequalities are added.∑
e∈E

bee′ks = zke′s ∀s ∈ S; k ∈ K; e′ ∈ E (27)∑
e′∈E

bee′ks = zke(s−1) ∀s ∈ S : s ≥ 2; k ∈ K; e ∈ E (28)

1−
∑
e∈E

beeks ≤ vs ∀s ∈ S; k ∈ K (29)

Finally the domains of the new variables are defined in (30) in addition to the ones defined in (18).

zkes, bee′ks ∈ {0, 1} ∀s ∈ S; k ∈ K; e, e′ ∈ E (30)

4 Symmetry-breaking constraints

We propose valid constraints to deal with three different types of symmetry. The first one is related to the

setup state of the whole production line in each subperiod, the second one is related to the assignment of

products to conveyors’ lanes, and the third one is related to the set up of arrangements to conveyors. The

two first symmetries may appear in both Models 1 and 2, whereas the last one only appears in Model 2.

The first type of symmetry is the same issue as in the formulation for the original GLSP in Fleischmann

and Meyr (1997). The idea is to place subperiods with no setup operations at the end of each period; so

constraints (31) can be included, where sft represents the first subperiod in period t. The domain of these

constraints is ∀s ≥ sft + 2 since the models 1 and 2 allow to keep the setup state from one period to the

next one, as the classical GLSP. Note that for the cases when the setup state is carried over from a specific

period to the next one (e.g, from period t− 1 to period t), there is not setup operation performed in the first

subperiod of t, i.e., vsft
= 0. Therefore, constraints (31) would not be valid inequalities if defined ∀s ≥ sft + 1

because this consequently forces all the Setup I variables to be null (i.e., vs = 0 ∀s ∈ St), and therefore these

constraints may eliminate optimal solutions.

vs ≤ vs−1 ∀t ∈ T ; s ∈ St : s ≥ sft + 2 (31)

The second type of symmetry appears since multiple identical assignments of products to the lanes of

the conveyor exist for a given molding pattern. The assignment of products to the lanes of the conveyor can

hence be permuted without affecting the feasibility or the total cost. This is illustrated in Figure 2. One can

observe that, for cases 1, 2, and 3, the number of molds of each type attached to machine faces for conveyor

k = 1 is the same, whereas the values of yipks are different.

Constraints (32) ensure that products are assigned to the conveyors’ lanes in ascending order, so that the

product with the smallest index is placed in the first lane and the one with the largest index in the last lane.

These constraints can be added to both Models 1 and 2. However, for Model 2, where molds and products
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𝑝 = 3𝑝 = 2𝑝 = 1

A B C

A B C

A B C

C A B C

B C A B

A B C A

𝑘 = 1

𝐹1

Variables ( 𝑘 = 1)
𝑧11𝑠 = 1; 𝑦𝐴11𝑠 = 1
𝑦𝐵21𝑠 = 1; 𝑦𝐶31𝑠 = 1

Case 1
Total molds attached to the faces 

for conveyor 𝑘 = 1:
4 molds A 

4 molds B

4 molds C

𝑝 = 3𝑝 = 2𝑝 = 1

B A C

B A C

B A C

C B A C

A C B A

B A C B

𝑘 = 1

𝐹1

Variables ( 𝑘 = 1)
𝑧11𝑠 = 1; 𝑦𝐵11𝑠 = 1
𝑦𝐴21𝑠 = 1; 𝑦𝐶31𝑠 = 1

Case 2
Total molds attached to the faces 

for conveyor 𝑘 = 1:
4 molds A 

4 molds B

4 molds C

𝑝 = 3𝑝 = 2𝑝 = 1

C B A

C B A

C B A

A C B A

B A C B

C B A C

𝑘 = 1

𝐹1

Variables ( 𝑘 = 1)
𝑧11𝑠 = 1; 𝑦𝐶11𝑠 = 1
𝑦𝐵21𝑠 = 1; 𝑦𝐴31𝑠 = 1

Case 3
Total molds attached to the faces 

for conveyor 𝑘 = 1:
4 molds A 

4 molds B

4 molds C

... 

Figure 2: Symmetric solutions avoided by constraints (32)

are of different size, the input data must be ordered so that products are enumerated from 1 to |N |, and

lanes from 1 to |P |, according to their width, from the smallest to the largest. Otherwise constraints (32)

are not valid inequalities for Model 2, as they may cut optimal solutions.∑
i′∈N :
1≤i′≤i

yi′(p−1)ks ≥ yipks ∀s ∈ S; i ∈ N ; k ∈ K; p ∈ P : p ≥ 2 (32)

Symmetries related to arrangements and conveyors only appear in Model 2. For a given molding pattern,

the assignment of arrangements (using the zkes variables) to the various conveyors can be permuted. This is

shown in Figure 3. Constraints (33) ensure that arrangements are assigned in ascending order to conveyors,

i.e., the arrangement with the smallest index is assigned to the first conveyor and the arrangement with the

largest index is assigned to the last conveyor. These constraints are valid since we assume that all conveyors

may be configured to any of the arrangements in set E.

𝑝 = 3𝑝 = 2𝑝 = 1

A B C

A B C

A B C

𝑘 =2

Variables ( 𝑘 = 2)
𝑧12𝑠 = 1; 𝑦𝐴12𝑠 = 1
𝑦𝐵22𝑠 = 1; 𝑦𝐶32𝑠 = 1

𝑝 = 3𝑝 = 2𝑝 = 1 𝑝 = 1 𝑝 = 2

A B C

A B C

A B C

D D

D D

D D

C A B C

B C A B

A B C A

𝑘 = 1

𝐹1 𝐹2

𝑘 = 2

D D D

D D D

D D D

Molding pattern:  4 molds A; 4 molds B;

4 molds C;  9 molds DCase 1

Variables ( 𝑘 = 1)
𝑧11𝑠 = 1; 𝑦𝐴11𝑠= 1
𝑦𝐵21𝑠 = 1; 𝑦𝐶31𝑠 = 1

Variables  ( 𝑘 = 2)
𝑧22𝑠 = 1; 𝑦𝐷12𝑠 = 1

𝑦𝐷22𝑠 = 1

𝑝 = 1 𝑝 = 2

D D

D D

D D

𝐹1

𝑘 =1

D D D

D D D

D D D

Case 2

Variables   ( 𝑘 = 1)
𝑧21𝑠 = 1; 𝑦𝐷11𝑠 = 1

𝑦𝐷21𝑠 = 1

C A B C

B C A B

A B C A

𝐹2

Molding pattern:  4 molds A; 4 molds B

4 molds C;  9 molds D

Figure 3: Symmetric solutions avoided by constraints (33)

∑
e′∈E:
1≤e′≤e

z(k−1)e′s ≥ zkes s ∈ S; e ∈ E; k ∈ K; k ≥ 2 (33)

5 Solution approaches

5.1 Linearized MIP models solved by CPLEX

We employ a linearization technique for the nonlinear constraints (11)–(12) and (14), and solve the linearized

models using a standard MIP solver. Since these constraints involve the product of variables where at least
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one of them is integer, we can use a binary representation to substitute these integer variables and define

additional inequalities to linearize the nonlinear constraints. We then solve the linearized formulations using

CPLEX. An improved version of the linearization approach proposed in Mart́ınez et al. (2018) is described

in Appendix A of the online supplement.

5.2 Reformulation solved by a branch-and-check algorithm

As an exact solution approach to solve the problem, we propose a branch-and-check algorithm (B&Ch)

based on logic-based Benders decomposition (LBBD), which are formally introduced by Hooker (2000),

Thorsteinsson (2001) and Hooker and Ottosson (2003). In this framework, a relaxed model is solved by

a branch-and-bound and cuts based on the LBBD are generated and added during the branch-and-bound

process. Some applications of logic-based Benders implementations on production management problems

have been studied in Hooker (2007); Fazel-Zarandi and Beck (2009); Cao et al. (2010), and most recently

in Côté et al. (2014), and Delorme et al. (2017). In our study, we use LBBD in a branch-and-bound for a

nonlinear formulation, specifically to deal with the demand balance constraints, where quantities produced

are defined as a nonlinear function of other decision variables of the problem. We then proposed a relaxed

formulation solved by the B&Ch algorithm which comprises two main elements: a cut generation routine

and a procedure to find feasible solutions for the original nonlinear formulation.

This algorithm uses the branch-and-bound callback of CPLEX for MIP problems and this is implemented

as follows. Firstly, the linear program of the relaxed formulation is solved. If the solution of this relaxation

is not an integer feasible solution, then branching starts. If an integer feasible solution is found, the cut

generation routine is performed to detect whether this solution represents a feasible integer solution for the

original nonlinear problem. If the solution is proven to be infeasible for the original problem, some valid

inequalities are added to the current formulation, and then the branch-and-bound process continues. After

the cut generation is performed, a procedure to find a feasible solution for the original problem is also called

and, if the solution obtained is better than the incumbent one, this one is provided as an upper bound to the

branch-and-bound tree.

5.2.1 Relaxed formulation

This relaxed formulation consist on relaxing the demand balance constraints (14) by representing the pro-

duction quantities as single variables limited by valid bounds. So, the quantity of product i produced in

subperiod s is defined as the product of the production time ws, the machine speed R, and an approximation

of the number of molds for this product in the pattern defined for such subperiod. For this relaxed formu-

lation, the demand balance constraints become linear, and consequently no linearization is needed for these

constraints. Optimal solutions for this reformulation are valid lower bounds for the original problem, which

can be strengthened by cutting planes through the branch-and-bound tree.

Denote qis ∈ R+ as the quantity produced of product i in subperiod s. The relaxed formulation can be

obtained by replacing constraints (14) in Model 1 or 2 by constraints (34)–(37).

I+i(t−1) +
∑
s∈St

qis + I−it = dit + I−i(t−1) + I+it ∀t ∈ T ; i ∈ N (34)

qis ≤ wsRMi ∀s ∈ S; i ∈ N (35)

qis ≤ QtR
∑
f∈F

xifs ∀t ∈ T ; s ∈ St; i ∈ N (36)

qis ≥ min
k∈K
{|Fk|Hk}wsR−BM II

is (1− Yis) ∀s ∈ S; i ∈ N (37)

where BM II
is is a large enough number that can be approximated as an upper bound for qis. We set

BM II
is = QtRMi, ∀t ∈ T ; s ∈ St; i ∈ N in our experiments. Note that the original demand balance

constraints are equivalent to equations (34) if qis = YiswsR
∑
f∈F

xifs, ∀s ∈ S; i ∈ N . However, for the

relaxed formulation qis is an approximation of the true amount, where valid upper bounds are defined by

constraints (35) and (36), and a valid lower bound by constraints (37).
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The bounds imposed for qis are always valid. If product i is produced in s, then the quantity produced is at

most equal to wsRMi, which means that the pattern defined in such subperiod contains all the molds available

for this product. This upper bound is imposed by constraints (35) and it is valid because constraints (7)

ensure that the maximum number of molds used is at most Mi. If product i is not produced in s, then there is

no molds for this product on the machine (i.e.,
∑

f∈F xifs = 0), hence qis becomes zero via constraints (36).

If product i is produced in s, then (36) still provides a valid upper bound, which is the amount produced

by using the defined molding pattern during the whole corresponding time period. Likewise, if product i is

produced (i.e., Yis = 1), the quantity of this product in s is greater than or equal to the production time in

this subperiod ws, times the speed of the molding machine R, times the minimum number of molds for this

product attached to the molding machine, as imposed by (37).

If product i is produced in a given subperiod, then the number of molds for this product in the molding

pattern is at least one. However, constraints (3) and (9) allows us to define the minimum number of molds

in any molding pattern as mink∈K{|Fk|Hk}. Note that Yis = 1 implies that product i is assigned to at least

one lane of one of the conveyors, as constraints (3) ensure. Consequently, the molds for product i must be

attached Hk times to each face for the conveyor to which this product was assigned (see constraints (9)).

5.2.2 Cut generation routine

This routine is performed in the B&Ch every time a feasible integer solution of the relaxed formulation is

found. As the relaxed formulation only defines valid upper and lower bounds for qis, solutions provided may

be not feasible for the original model since qis may not be equal to YiswsR
∑

f∈F xifs. Therefore, the values

of the variables qis, ∀s ∈ S; i ∈ N are verified to see whether they are valid for the original problem or not. If

they are not valid, cuts are added at the current node for all violations regarding the original value of variables

qis, and then the branching process continues. These valid cuts are shown in constraints (38) and (39), where

Ŷis, x̂ifs, ẑkes, and ŷipks are the current values of variables Yis, xifs, zkes, and yipks, ∀s ∈ S; i ∈ N ; k ∈ K;

p ∈ P ; e ∈ E, respectively, and S is the set of pairs (i, s) corresponding to the variables q̂is whose value are

not valid for the original program.

qis ≥ŶiswsR
∑
f∈F

x̂ifs −BM II
is

∑
k∈K

∑
e∈E:

ẑkes=1

(ẑkes − zkes)−BM II
is

∑
k∈K

∑
e∈E:

ẑkes=0

zkes

−BM II
is

∑
p∈P

∑
k∈K:

ŷipks=1

(ŷipks − yipks)−BM II
is

∑
p∈P

∑
k∈K:

ŷipks=0

yipks ∀(i, s) ∈ S
(38)

qis ≤ŶiswsR
∑
f∈F

x̂ifs +BM II
is

∑
k∈K

∑
e∈E:

ẑkes=1

(ẑkes − zkes) +BM II
is

∑
k∈K

∑
e∈E:

ẑkes=0

zkes

+BM II
is

∑
p∈P

∑
k∈K:

ŷipks=1

(ŷipks − yipks) +BM II
is

∑
p∈P

∑
k∈K:

ŷipks=0

yipks ∀(i, s) ∈ S
(39)

Inequalities (38)–(39) are based on the logic-based Benders decomposition approach. These constraints

ensure that if the setup state in a subperiod s is the same as the current relaxed solution (the values

of variables zkes and yipks are the same as ẑkes and ŷipks), we have qis = ŶiswsR
∑

f∈F x̂ifs, i ∈ N ,

and consequently the solution is also feasible for the original problem. Otherwise, qis is relaxed and only

bounded by constraints (35)–(37) of the relaxed formulation. For Model 1, the cuts to be added are simi-

lar to constraints (38) and (39), but they do not include the terms related to variable zkes, i.e., the terms

BM II
is

∑
k∈K

∑
e∈E:

ẑkes=1
(ẑkes − zkes) and BM II

is

∑
k∈K

∑
e∈E:

ẑkes=0
zkes.

5.2.3 Procedure to find feasible solutions for the original problem

The main idea of this procedure is to generate feasible solutions for the original problem using information

provided by the integer solutions of the relaxed formulation. In the relaxed problem, the total inventory

holding and backlogging costs are not accurate because the demand balance constraints are relaxed. Thus, this
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procedure consists of optimizing the lot-sizing decisions by considering as input parameters the information

provided by the relaxed solution about process configurations and sequencing decisions. Given a relaxed

feasible solution, the linear model (40)–(43) is solved to reoptimize and make the values of variables ws, qis,

I+it , and I−it feasible for the nonlinear formulation.

Variables
w̃s production time in subperiod s;

Ĩ+it inventory quantity of product i at the end of period t;

Ĩ−it backlogged quantity of product i at the end of period t

Min
∑
t∈T

∑
i∈N

(
h+i Ĩ

+
it + h−i Ĩ

−
it

)
(40)

Ĩ+i(t−1) +
∑
s∈St

Ŷisw̃sR
∑
f∈F

x̂ifs + Ĩ−it = dit + Ĩ−i(t−1) + Ĩ+it ∀t ∈ T ; i ∈ N (41)

∑
s∈St

w̃s ≤ Qt − ŜT t ∀t ∈ T (42)

w̃s, Ĩ
+
it , Ĩ

+
it ∈ R ∀t ∈ T ; s ∈ St; i ∈ N (43)

where Ŷis and x̂ifs are the values of variables Yis and xifs in the current integer relaxed solution, and ŜT t

is the total setup time in period t for the current relaxed solution, determined as:

Model 1: ŜT t =
∑
s∈St

stI v̂s +
∑
s∈St

∑
i∈N

∑
k∈K

stIIi ûiks

Model 2: ŜT t =
∑
s∈St

stI v̂s +
∑
s∈St

∑
i∈N

∑
k∈K

stIIi ûiks +
∑
s∈St

∑
k∈K

∑
e,e′∈E

stIIIee′ ẑkes

Given an optimal solution of the sub-problem (40)–(43), a feasible solution for the original problem is

constructed by taking the integer solution of the relaxed problem and substituting the values of variables ŵs,

Î+it , and Î−it by the values for the optimal solution of the corresponding sub-problem (40)–(43). Backlogging

and inventory holding costs must be adjusted.

5.3 MIP-based heuristic

Computational experiments using the solution approaches described above show the complexity of the prob-

lem and indicate how challenging it is to find optimal solutions for real size instances in affordable computing

times. An MIP based heuristic, which consists of three phases as presented in Algorithm 1, is developed to

quickly determine a good solution in shorter computing times compared to the exact methods proposed for

this problem.

This heuristic consists of the following three phases: (i) defining a set of feasible process configurations; (ii)

finding a feasible solution using the choices defined in phase (i); and (iii) applying an improvement procedure

to the solution obtained in phase (ii). A description of each phase is presented as follows and complemented

by further details in Appendix B of the online supplement.

Algorithm 1 3-phase MIP-based heuristic

1: Phase 1: Create an empty set of possible patterns ξ ← ∅
2: Perform the approaches described in Section 5.3.1 to generate feasible molding patterns for the original problem.
3: Append to the list ξ the molding patterns generated in this stage and save the information related to each ε ∈ ξ which will

be required for next phases.
4: Phase 2: Take the list ξ and the parameters associated to this set as input data for the an MIP model for lot sizing and

scheduling, and solve it using CPLEX (this MIP model is prsented in Appendix B (B.2)–(B.12) of the online supplement).
5: Phase 3: Transform the solution obtained in the previous step into a feasible solution for the original formulation.
6: Perform the fix-and-optimize heuristic presented in Section 5.3.3
7: return A feasible solution for the original problem
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5.3.1 Phase I

In this phase a set of feasible molding patterns are generated for each problem instance. The aim is not only

to generate patterns that will be used for the next phase of the heuristic, but to try to generate the ones

which are likely to be used in good quality solutions for the original problem. In order to achieve this, the

algorithms used in this phase take into account information about the lot-sizing and scheduling decisions,

besides the technological requirements which ensure that the generated molding patterns are feasible.

We perform two different relax-and-fix (R&F) heuristics based on the original MIP formulation, which

uses CPLEX and the B&Ch to solve the subproblem partitions. The R&F approach has been widely used

to solve many production problems, particularly lot-sizing and scheduling problems Wolsey (1998). This is a

construction heuristic which find an initial solution by solving several small integer problems. This is done

by dividing the integer variables into 3 partitions: a subset of fixed variables, a subset of integer variables

to be optimized, and a subset of variables whose integrality condition is dropped. At each iteration, these

partitions are defined according to a particular strategy and the resultant subproblem is solved, so that a

complete solution for the original problem is obtained at the end of the last iteration.

The first R&F approach set partitions of the integer variables according to the main decisions of the

problem. First, only the variables which determine the products to be produced are considered as integer,

then the ones related to the configuration of the conveyors, then the ones related to the molds attached

to the machine, and finally the setup variables are considered integer. Some overlapping in these subsets

of variables are allowed to ensure that a feasible solution can be found. The second R&F approach sets

partitions of variables according to the time structure of the original formulation, so that subproblems are

created according to each subperiod s ∈ S.

The first R&F is performed once, then the patterns used in the solution obtained are appended to a list of

patterns denoted by ξ, and next the second R&F is performed. Some local branching inequalities are added

to the formulation before the second R&F is performed to avoid that patterns already generated appear in

the solution of the second R&F approach.

5.3.2 Phase II

An MIP formulation for lot-sizing and scheduling is solved in this phase. This formulation uses the molding

patterns generated in Phase I and some data related to them as input parameters. The MIP model then

decides which molding patterns among the ones defined as input are used, how long they are used for, and

how they are sequenced. Although the MIP model in this phase involves lot-sizing and scheduling decisions,

which is by itself an NP-hard problem Bitran and Yanasse (1982), CPLEX is efficient in solving problem

instances of reasonable size. Using an MIP model for this phase highlights even more the importance of

generating patterns likely to appear in good quality solutions, so that the set of generated patterns can be

kept small to avoid large CPU times at this phase.

5.3.3 Phase III

This phase is used to further improve and refine the solution found in Phase II by using a fix-and-optimize

(F&O) heuristic. The solution from Phase II is set as an initial solution. The original formulation is divided

into several partitions, so that at each iteration of the F&O, one partition of variables are reoptimized

whereas the others remain fixed. We set partitions of variables according to the set of time periods T of

the planning horizon. Therefore, at each iteration the variables indexed to a given period t∗ ∈ T and the

subperiods belonging to this period (i.e., s ∈ St∗) are reoptimized whereas the others remain fixed. As this

F&O approach uses the original model of the problem, different patterns from the ones considered as input

for Phase II can be generated, and therefore a better solution for the problem may be obtained as a result.

6 Computational results

Computational experiments were performed to analyze and compare the solution approaches proposed in

this paper, as well as the effect of the symmetry-breaking constraints in the formulations. The data sets
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tested are based on real data provided by a company, which produces molded pulp packages for eggs and

fruits, and sector information on molded pulp equipment manufacturers. We present results for 10 different

groups of 10 instances each, which represent production environments in the same industry with different

characteristics and equipment sizes. Demand levels were defined based on the company data. Characteristics

of the production line, i.e., the number of conveyors, number of machine faces, width of products, faces,

and conveyors, were set according to the company environment and information collected from equipment

manufacturers in the molded pulp industry. For all the experiments we use Python 2.7 and solver CPLEX

12.6 on a computer with processor Intel(R) Xeon(R) X5675 / 3.07GHz and 16 GB of RAM.

Sections 6.1 and 6.2 present the results of the computational experiments performed for Model 1 and 2,

respectively. These experiments include the performance of the exact methods for different formulations of

the models that include symmetry-breaking constraints (SBC) presented in Section 4, as Table 1 summarizes.

We performed in total 1,280 runs to analyze the performance of the exact methods and valid inequalities

proposed. All these experiments for models 1 and 2 were limited to 10,800 seconds per instance. For Model 1,

we performed 300 test runs as a result of solving the 30 corresponding instances using 5 different variants of

this formulation (i.e., formulations A, B, C, D, and E) and two different solution methods (i.e., the linearized

model solved by CPLEX and the B&Ch). For Model 2, we performed 980 test runs as a result of solving

the 70 corresponding instances by using 7 variants of this formulation and the two exact solutions methods

presented in this paper. Section 6.3 presents the results of the 3-phase MIP-based heuristic. This heuristic

was tested for the data sets for Model 2, which comprise 70 problem instances. The detailed results of the

approaches presented in these sections are provided in Appendix C of the online supplement.

Table 1: Summary of the computational experiments of the exact methods

Variant Solution method Formulation Group (# inst) Total run

Model 1

Linearized MIP model A Model 1

300
solved by CPLEX B Model 1+SBC (31) T2P5 F6K2A1 (10)

C Model 1+SBC (32) T2P8 F6K2A1 (10)
Reformulation solved by D Model 1+SBC (31) & (32) T2P8 F6K3A1 (10)

the B&Ch E Model 1+SBC (31) & (32)+ bp*

Model 2

A Model 2 T2P5 F6K2A2 (10)

980

Linearized model B Model 2+SBC (31) T2P8 F6K2A2 (10)
solved by CPLEX C Model 2+SBC (32) T2P8 F6K3A3 (10)

D Model 2+SBC (33) T4P5 F6K2A2 (10)
Reformulation solved by E Model 2+SBC (32) & (33) T4P5 F6K3A3 (10)

the B&Ch F Model 2+SBC (31),(32) & (33) T4P8 F6K2A2 (10)

G Model 2+SBC (31), (32) & (33)+ bp* T4P8 F6K3A3 (10)

bp∗: branching parameters are set to give higher priority to variables vs

6.1 Results for Model 1

We tested three groups of instances where each group contains 10 instances in order to compare the perfor-

mance of the solution approaches for Model 1. All these instances represent a single production line, where

the molds attached to the machine are of the same width.

The major characteristics of each group of instances for Model 1 are described in Table 2. The group

names are defined as follows: “T” indicates the number of periods, “P” the number of products, “F” the

number of machine faces, “K” the number of conveyors, and “A” the number of possible arrangements. Each

time period is considered as a week, in which the production line operates seven days per week, 24 hours

per day. The groups “F6K2” represent the production line of the real company, which consists of a 6-faces

machine and two conveyors. The relationship between the width of the machine faces and conveyors is such

that l∗ < L < 2l∗, where l∗ is the conveyors width, so the parameter Hk = 1, ∀k ∈ K in these cases. Groups

“F6K3” consist of problem instances which represent a larger production setting with a 6-faces machine and

three conveyors. The machine faces of these groups are bigger compared to the ones in “F6K2”, so that the

width of the faces is exactly twice the conveyor width, i.e., L = 2l∗ and Hk = 2. Note that the number

of possible arrangements of all groups is equal to 1 and this thus meets the assumptions of Model 1. This

arrangement consists of three separating lanes of the same width.
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Table 2: Characteristic of the groups of instances for Model 1

Planning horizon Products Production Line

Group # inst. #per. |T | #subper. |S| #prod. |N | #faces |F | #conv. |K| #arrang. |E| #lanes |P |

T2P5 F6K2A1 10 2 8 5 6 2 1 3
T2P8 F6K2A1 10 2 8 8 6 2 1 3
T2P8 F6K3A1 10 2 8 8 6 3 1 3

Table 3 presents the average results for each group of 10 instances, for each formulation tested (i.e., A,

B, C, D, and E described in Table 1). The branching priority considered in variant E was selected based on

preliminary tests, whose results showed an improved performance when a higher priority is given to variables

vs. The information reported are the averages of the upper bounds, lower bounds, optimality gap, elapsed

time, and number of nodes. The number of optimal solutions found in each group and information related

to the reason for stopping the program is also included. We indicate how many instances were stopped due

to (1) finding a solution within the optimality tolerance, (2) reaching the time limit, and (3) running out of

memory. For the B&Ch, the average number of added cuts is also reported in the last column of Table 3.

First we analyze the effect of the symmetry-breaking constraints within each solution approach separately,

i.e., we look at the differences among the formulations A, B, C, D, and E for the linearized model and the

B&Ch. We observe that, for Model 1, the performance of B&Ch is significantly improved when all the

symmetry constraints are added to the reformulation. In addition to that, a reduction in the average CPU

time is achieved for two out of the three groups when the branching rule is set to give higher priority to

variables vs. On the other hand, for the linearized model solved by CPLEX, the best performing formulation

is different among the groups of tested instances. In this case, the best results are achieved for most of the

instances when the symmetry-breaking constraints are added individually, i.e., cases B and C, instead of

including all of them in the formulation.

The B&Ch results show that its best performance is achieved by including all the symmetry-breaking

constraints in Model 1, i.e., formulations D and E. Its performance for the cases A and B is very poor

and involves memory issues for most instances. The behavior of this B&Ch method for the cases with no

symmetry-breaking constraints can be explained by the form of the logic-based Benders cuts (38)–(39). As

described, these cuts force variable qis to be feasible for the original nonlinear formulation if the setup state

in a subperiod s is the same as a given solution of the relaxed formulation. As these cuts are stated in terms

of variable yipks in Model 1, and different values for these variables may lead to the same setup state as we

described in Section 4, many symmetric solutions appear and therefore many cuts need to be added for these
symmetric solutions. Thus, memory issues may arise and the convergence of the B&Ch is indeed very slow

for the cases where the symmetry-breaking constraints related to variable yipks are not considered. When

the B&Ch runs out of memory, no information about the number of nodes and number of cuts are provided;

however, the upper bounds, gap, and elapsed time reported are the ones achieved just before the interruption.

Comparing the best formulation of each approach, highlighted by bold text in Table 3, clearly shows

that the B&Ch algorithm outperforms the linearized version using CPLEX. For the smallest group tested

T2P5 F6K2A1, the B&Ch found optimal solutions for all the instances within approximately 65 seconds,

whereas using the linearized model only an optimal solution for the first instance is found before reaching

the time limit. For group T2P8 F6K2A1, the B&Ch has a better performance and the differences go beyond

better lower bounds and computing times. In this case the B&Ch found optimal solutions for 8 out of the 10

instances, whereas no optimal solutions are found by solving the linearized model using CPLEX. The average

gap using the B&Ch is reduced by 26.5% compared to the average gap of the linearized model solved by

CPLEX for this group.

For the last group of instances, both approaches found optimal solutions for the 10 instances. However, the

B&Ch solves the problems more efficiently, since its average computing time is approximately 3.3 times less

than the average time of the linearized model. Note that group T2P8 F6K3A1 seems easier to be solved than

the group of instances T2P8 F6K2A1, even though the former represents a bigger production environment.
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This may be explained by the fact that all instances in both groups have the same demand levels and time

capacity, but T2P8 F6K3A1 involves a bigger machine where a greater number of molds can be attached, and

it therefore can produce larger production quantities per time unit. This hence suggests that the tightness of

the machine capacity has a significant effect in the complexity of the instances, even more than the problem

size in this case.

6.2 Results for Model 2

Experiments for Model 2 comprise 7 different groups of instances as described in Table 4. The first 3 groups

are similar to the ones tested for Model 1. However, theses instances include products of different sizes, so

that conveyors can be set up according to more than one possible arrangement. These three first groups

comprise a planning horizon of 2 periods subdivided in 8 subperiods, and the demand and inventory levels

were generated uniformly based on the average actual demand. The last four groups of instances represent

a longer planning horizon with 4 periods sub-divided into 16 subperiods in total. These groups consider

real data regarding the demand and initial inventory levels, according to the data provided by the company.

They also involve more expensive backlogging costs, compared to the instances for Model 1 and the first

three groups for Model 2.

Table 4: Characteristic of the groups of instances for Model 2

Planning horizon Products Production Line

Group # inst. #per. |T | #subper. |S| #prod. |N | #faces |F | #conv. |K| #arrang. |E| #lanes |P |

T2P5 F6K2A2 10 2 8 5 6 2 2 ≤ 3
T2P8 F6K2A2 10 2 8 8 6 2 2 ≤ 3
T2P8 F6K3A3 10 2 8 8 6 3 3 ≤ 3
T4P5 F6K2A2 10 4 16 5 6 2 2 ≤ 3
T4P5 F6K3A3 10 4 16 5 6 3 3 ≤ 3
T4P8 F6K2A2 10 4 16 8 6 2 2 ≤ 3
T4P8 F6K3A3 10 4 16 8 6 3 3 ≤ 3

Table 5 presents the average results for the first three groups of instances for Model 2. These experiments

also include tests with symmetry-breaking constraints (33), so both solution approaches are tested for 7

different formulations as described in Table 1.

The B&Ch is able to prove the optimality of most solutions reported in Table 5, i.e., 28 out of the 30

solutions are proved optimal, whereas the linearized model solved by CPLEX proved the optimality of only

17 out of the 30 solutions in these data sets. Furthermore, the B&Ch algorithm clearly outperforms the

linearized model solved by CPLEX with respect to computing time, particularly for groups T2P5 F6K2A2

and T2P8 F6K2A2. In the case where both methods found optimal solutions for all the instances, i.e., group

T2P8 F6K2A2, the B&Ch solved these problem instances approximately 38 times faster than the linearized

model resolution by CPLEX.

Based on our findings for these sets of instances and the results for Model 1 presented in Table 3, we can

indicate that the integrated formulation proposed in this paper is able to provide good quality solutions for

these sets of real-size instances. However, using CPLEX to solve the linearized model is not effective to prove

the quality of those found solutions. The large average gaps reported for the linearized model are due to weak

lower bounds rather than the quality of the upper bounds. Although these lower bounds are improved by

including the symmetry-breaking constraints, solving the linearized model by CPLEX still fails to prove the

optimality of these solutions. On the other hand, the B&Ch approach is more effective and determined most

optimal solutions in short computing times. The reformulation solved by this approach is less complex than

the linearized model and the lower bounds are quickly improved by including the logic-based Benders cuts.

The symmetry-breaking constraints significantly improve the convergence and effectiveness of the B&Ch.

Table 6 presents the average results for the last four groups of instances for Model 2. Solving these sets of

instances became very challenging, due to the instance sizes. In addition, these instances particularly consider

the demand variations that may surge in practice, which affect the capacity consumption and consequently

influence the complexity of the instance.
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Similar to the results for the three first groups, the best performance of the methods for most instances is

achieved when all the symmetry-breaking constraints are included. These results show how challenging it is

to find optimal solutions for instances with a longer planning horizon and different production environments.

Note that the B&Ch solved 6 out of the 40 instances to optimality, whereas the linearized model solved by

CPLEX found only 1 optimal solution for these data sets.

Although these instances are more complex for both exact approaches, the performance of the B&Ch

algorithm is superior compared to solving the linearized model by CPLEX, since better upper bounds and

stronger lower bounds are achieved for all the four groups. On average, the B&Ch lower bounds are between

2.15% and 12.21% better than the lower bounds obtained by the linearized model. The B&Ch algorithm

found upper bounds which are, on average, 0.99% to 3.57% better than the ones obtained by the linearized

model solved by CPLEX.

In general, the improvements achieved by adding the symmetry-breaking constraints are consistent over

all the instance groups. They improved the lower bounds of the linearized model and are fundamental for

the efficiency of the B&Ch algorithm, particularly for the first six groups of instances. The most significant

improvements are achieved for the cases where constraints (32) were included in the formulation. This can

be explained by the fact that a larger number of symmetric solutions are expected for multiple assignments

of products to the conveyors lanes (i.e., symmetry type related to variables yipks) rather than for the other

types of symmetry described here.

The superiority of the B&Ch algorithm over the linearized model is also consistent over all the results.

In particular, for the first six groups of instances, the B&Ch found optimal solution for 56 out of the 60

instances in acceptable computing time whereas the linearized model found optimal solutions for only 28

instances after 3 hours. Note that the B&Ch is particularly effective to solve the data sets with 5 products

and 2 time periods. The number of nodes explored by this algorithm is far smaller than in the linearized

model for these groups, as solutions are found and proved optimal by the B&Ch within the first two minutes.

On the other hand, although the B&Ch yields better results than the linearized model for the last four groups

of instances, these data sets are difficult to be efficiently solved by both approaches. The cuts added in the

B&Ch do not appear as effective as for the smallest and medium instances, as they still have large optimality

gaps after 3 hours and the number of nodes in the search tree increased significantly. This may be explained

by the size of these problems, which implies a larger number of variables to branch on in the search tree.

We also run some computational tests to analyze the performance of the solution procedures with respect

to critical parameters as demand variance and backlogging costs, and present them in Appendix D of the

online supplement. These results show that the B&Ch algorithm still outperforms the linearized model for a

set of instances with variations in these parameters. Higher backlogging costs and a higher demand variance

make the instances more difficult to be solved and affect the performance to both production approaches.

However, the results for a sample of instances showed that the B&Ch is still able to find optimal and good

quality solutions for these cases whereas the linearized model presents large optimality gap after 3 hours (i.e.,

solutions with average gaps up to 21%). Instances with lower backlogging costs appear to be less complex

and can be effectively solved by both solution approaches. Results show that the linearized model and the

B&Ch could find optimal solutions in a few second for these cases.

6.3 Heuristic results

This section presents the results of the 3-phase heuristic described in Section 5.3. This method aims to find

competitive solutions in shorter computing times, particularly for the instances tested for Model 2 where

finding optimal solutions is challenging, even for the best performing exact approach.

Table 7 presents the average results for the first three groups and Table 8 presents the average results

for the last four groups of instances for Model 2 described in Table 4. Results show the objective function

values obtained at the end of each phase of the heuristic, the accumulated CPU time after each phase and

the deviation of the solution value, compared with the solution values obtained by the best performing

formulation of the B&Ch algorithm reported in Tables 5 and 6.
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Note that, although the first stage of this heuristic consists of generating feasible process configurations

to be used in Phase II, it is also possible to obtain feasible solutions after this phase, since the algorithm

developed uses MIP heuristics based on the original formulation. The time spent solving the MIP model of

Phase II is very short, i.e., few seconds for all the instances, since the set of possible patterns generated in

Phase I is usually small and CPLEX can solve the MIP problems efficiently. We observe that, for all the

groups, the solutions obtained after Phase II are already very competitive in comparison to the ones provided

by the B&Ch as most of them are in fact optimal and they are obtained in a much shorter computing time.

For the first groups of instances in Table 7, the heuristic developed obtained the same solutions as the

B&Ch algorithm, which found optimal solutions for 28 out of the 30 instances in these data sets. For groups

T2P5 F6K2A2 and T2P8 F6K2A2, the heuristic found the optimal solutions in approximately 25% and 68%,

respectively, of the time needed by the best performing B&Ch. For group T2P8 F6K3A3, the heuristic found

the same solutions as the B&Ch algorithm approximately 6 times faster (i.e., approximately 1.8 hours faster),

on average.

Table 7: Heuristic average results for groups T2P5 F6K2A2, T2P8 F6K2A2, and T2P8 F6K3A3

Phase 1 Phase 2 Phase 3

Group Obj.Val. Time Dev.a (min;max) Obj.Val. Timeb Dev.a(min;max) Obj.Val. Timeb Dev.a(min;max)

T2P5 F6K2A2 31154.6 13.6 39.8%(35%;57%) 22271.1 13.7 0.0%(0%;0%) 22271.1 21.7 0.0%(0%;0%)
T2P8 F6K2A2 49331.1 38.1 29.8%(70%;81%) 28263.4 38.2 0.0%(0%;0%) 28263.4 52.8 0.0%(0%;0%)
T2P8 F6K3A3 51580.4 1304.2 53.1%(50%;58%) 33700.4 1304.3 0.0%(0%;0%) 33700.4 1327.0 0.0%(0%;0%)

Time in seconds; a Deviation compared to the best solution found by the B&Ch; b Cumulative time

For the last four groups, the heuristic developed found competitive solutions in significantly less average

computing time. For the first set of instances T4P5 F6K2A2, the heuristic found competitive solutions in

approximately 1% of the average computing time spent by the best performing exact approach. For the

group T4P5 F6K3A3, the average deviation of the heuristic solutions is 2.04%, with an average time of

approximately 4.1% of the average time for the B&Ch. Particularly in this group of instances, as well as

groups T4P8 F6K2A2 and T4P8 F6K3A3, the heuristic found better solutions for some instances. In the

best case for group T4P5 F6K3A3, the heuristic found a solution which is 5.47% better than the one provided

by the B&Ch.

Table 8: Heuristic average results for groups T4P5 F6K2A2, T4P5 F6K3A3, T4P8 F6K2A2 and T4P8 F6K3A3

Phase 1 Phase 2 Phase 3

Group Obj.Val. Time Dev.a(min;max) Obj.Val. Timeb Dev.a(min;max) Obj.Val. Timec Dev.a(min;max)

T4P5 F6K2A2 115968.9 57.6 14.0%(6%;27%) 103007.2 59.4 0.7%(0%;3%) 102656.1 85.8 0.4%(0%;3%)
T4P5 F6K3A3 110683.9 184.4 16.0%(5%;26%) 98359.9 186.8 2.6%(-2%;8%) 97638.7 371.0 2.0%(-6%;9%)
T4P8 F6K2A2 179152.3 740.5 13.5%(2%;26%) 158107.8 754.0 -0.1%(-4%;6%) 156246.8 901.6 -1.1%(-4%;3%)
T4P8 FK3A3 159788.4 856.8 7.6%(-5%;20%) 145894.5 876.2 -2.3%(-10%;2%) 145550.8 991.4 -2.5%(-10%;2%)

Time in seconds; a Deviation compared to the best solution found by the B&Ch; b Cumulative time

For groups T4P8 F6K2A2 and T4P8 F6K3A3, the heuristic found better solutions than the ones provided

by the B&Ch whereas its computing times are at least 10.9 times shorter. In group T4P8 F6K2A2, the

heuristic found solutions at least as good as the B&Ch for 8 out of the 10 instances. On average, solutions

in this group are approximately 1.05% better than those of the B&Ch and the CPU time is approximately

12 times shorter than the B&Ch results. Finally for the group T4P8 F6K3A3, the heuristic provided better

solutions for 9 out 10 instances. The best case happened for instance 5, where the heuristic solution is

approximately 9.7% better than the solution found by the B&Ch. The average CPU time for this group is

approximately 10.9 faster than the B&Ch results, with an average improvement in solution quality of 2.54%.
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7 Concluding remarks and research directions

We presented an exact approach based on a branch-and-check framework and a 3-phase heuristic to solve an

integrated problem, which combines process configuration, lot-sizing, and scheduling decisions with sequence-

dependent setup times and costs. A particular application of this integrated problem in a molded pulp

packages company is considered in this paper. Our previous work in Mart́ınez et al. (2018) already showed

that the solutions obtained by solving the linearized formulations using CPLEX are better than the schedules

in practice. This work showed that, in general, the model solutions involve production plans with lower total

costs, which also fulfill a higher percentage of the total demand, reduce significantly the total setup times and

costs (i.e., above 50%), and reduce the backlogging and inventory levels compared to the production plans

in practice. As the solution methods proposed in this paper significantly outperform the linearized model,

we can therefore state that the branch-and-check algorithm and the 3-phase heuristic proposed here provide

better solutions than the schedules in practice.

In the branch-and-check algorithm, a relaxed formulation is solved and the logic-based Benders cuts are

generated and added during the branch-and-bound process. The exact framework presented in this paper

can be applied to other applications of production planning problems, where the production amounts and

process configurations must be simultaneously determined. The formulations and reformulations presented

here, mainly the specific constraints related to the process configuration decisions, may inspire mathematical

models for similar processes which includes molding stages, as injection molding and the production of plastic

parts, or production processes which require to synchronize the setup state of different production equipments.

Comparisons of the reformulation solved by the B&Ch with the linearized model solved by CPLEX for

a set of instances based on real-word operations show that the B&Ch clearly outperforms the linearized

model. As the original formulations for this problem allow symmetric solutions, we proposed three sets of

symmetry-breaking constraints to resolve this issue. The proposed symmetry-breaking constraints appear to

be particularly effective for the branch-and-check algorithm and could significantly improve the performance

of this method.

Results also show that the heuristic approach proposed in this paper provides competitive solutions in

much shorter computing times, when compared with the best performing case of the exact algorithms. For

the largest data sets, the heuristic developed found better solutions for many of the instances within these

groups. In general for the largest instances, heuristic solutions with average deviations between 0.4% and

-2.6% from the B&Ch results could be obtained within average computing times between 10.9 and 97 times

shorter than the average computing times of the B&Ch.

Extensions of this research may include enhancements for the branch-and-check framework. Other appli-

cations for the exact and heuristic approaches will also be considered as future research.
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